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Zusammenfassung

Der kosmische Mikrowellenhintergrund (cosmic microwawakground, CMB) entdt eine
Fulle von Informationentiber die Eigenschaften unseres Universums. In dieser iassa
entwickeln wir neue Techniken, mit welchen wir anhand desBCtndamentale Fragen der
Kosmologie edrtern.

Dunkle Energie — falls sie existiert — hintasist charakteristische Spuren im CMB, den
so genanntenintegrierten Sachs-Wolf¢ISW) Effekt. Man kann diesen schwacherffekt
Uber seine Kreuzkorrelation mit der gré@migen Materieverteilung (large-scale structure, LSS)
detektieren. Wir entwickeln eine optimale Methode zur Rete des ISW-Hekts, basierend auf
Temperatur- und Polarisationsdaten des CMB, die sich verbidder verwendeten Methode in
zwei fundamentalen Punkten unterscheidet: Wir halten &8 und einen Teil der primordialen
Temperaturfluktuationen fest, anstétber verschiedene Realisierungen zu mitteln, wie tgs f
die Standardmethode der Fall ist.UrFein ideales Szenario ist die ISW-Detektion mit unserer
Methode um 23% signifikanter als mit der Standardmethode. Félarisationsdaten délanck
SurveyotMission wird diese Erbhung mindestens 10% betragen, wobei der limitierendeoFakt
die Kontamination durch Vordergrundemission unserer Galist.

Der beobachtete CMB st fast perfekt isotrop, was als Ewvdim die Isotropie unseres
Universums gilt.  Allerdings wurden in der Temperaturkades Wilkinson Microwave
Anisotropy Probe(WMAP) Satelliten Anomalien gefunden, die die statistesclsotropie der
Temperaturfluktuationen in Frage stellen. Wir versuchenverstehen, ob diese Anomalien
zufallige Fluktuationen sind oder ihren Ursprung in einer leugten Richtung haben, die der
Geometrie des primordialen Universums intrinsisch istiiibaerechnen wir den Teil der WMAP-
Polarisationskarte, welcher nicht mit der Temperatugkaarreliert ist, und verwenden diese
Karte als statistisch unakhgigen Test {ir die so genanntaxis of evil Letztere stellt eine
ungewdhnliche Ubereinstimmung der bevorzugten Richtungen des Quadsupal des Oktopols
der Temperaturkarte dar. In der unkorrelierten Polansakarte stimmt die Achse des Quadrupols
mit deraxis of evillberein, die Achse des Oktopols jedoch nicht. Allerdingsemawir auf Grund
des hohen Rauschanteils in der WMAP-Polarisationskarte &nsicherheit von ca. 45n den
Achsen, @ir welche die Wahrscheinlichkeit, dass wir unser Ergebna&nem isotropen Universum
durch Zufall erhalten, ca. 50% bagt. Wir erhalten daher keinen Hinweigrfoder gegen eine
bevorzugte Richtung im primordialen UniversuniirPlanckerwarten wir eine Verbesserung der
Unsicherheit in den Achsen auf 18 20°, je nachdem, wie gut Vordergrundemissionen von der
Polarisationskarte entfernt werdeérinen. Unsere Technik angewandt BldnckDaten wird uns
daher als rachtiges Instrument dienen, um den Ursprung der CMB-Ani@maiu verstehen.

Anstatt wie oben beschrieben bestimmte Merkmale des CMBralysieren, knnen wir
den CMB auch dazu verwenden, mehrere kosmologische Pamagleichzeitig einzugrenzen.
Die Werte der kosmologischen Parameter, die mit WMAP bestinvurden, haben didra
der Pazisionskosmologie eingeleitet undrinen als der @fdte Erfolg der Mission betrachtet
werden. In solchen Studien zur Parameterbestimmung istgdschwindigkeitsbestimmende
Schritt normalerweise die Auswertung der Likelihood-FRimk Um dieses Problem zu umgehen,
haben wir daher eine aufudnen Gittern basierende Interpolation der WMAP-Liketilo
Funktion entwickelt und implementiert, die um @&enordnungen schneller auszuwerten ist als
die urspiingliche Likelihood-Funktion. Unsere Methode ist eine lkamenzf&hige Alternative zu
anderen Anatzen fir die Steigerung derfizienz von Parameterbestimmung.
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Abstract

The cosmic microwave background (CMB) provides us with altieaf information about the
properties of our Universe. In this PhD work, we develop applyanew techniques for studying
fundamental problems of cosmology using the CMB.

Dark energy, if it exists, leaves a characteristic imprmthe CMB temperature fluctuations,
the so-calledntegrated Sachs-Wolf@SW) effect. This small ect can be detected via its cross-
correlation with the large-scale structure (LSS). We deawn optimal method for ISW detection
using temperature and polarization data of the CMB whidfieds from that usually used in
two fundamental ways: we keep the LSS distribution and a giathe primordial temperature
fluctuations fixed, rather than averaging ovefatient realisations as done in the standard method.
For an ideal scenario, we obtain an overall enhancemeneafdtection significance of 23 per cent.
For polarization data from thBlanck Surveyomission, this enhancement will be at least 10 per
cent, where the limiting factor will be the contamination®wglactic foregrounds.

The CMB is observed to be almost perfectly isotropic, whistconsidered strong evidence
for the isotropy of the Universe. However, some anomalies tieeen found in the temperature
map of thewilkinson Microwave Anisotropy Prolf@&/MAP), which seem to question the statistical
isotropy of the temperature fluctuations. In order to un@ed whether these are due to chance
fluctuations or to a preferred direction intrinsic to the getry of the primordial Universe, we
compute the part of the WMAP polarization map which is unelated with the temperature map,
and use it as a statistically independent probe of the deetakis of evil The latter is an unusual
alignment between the preferred directions of the quadeugod the octopole in the temperature
map. We find that the axis of the quadrupole of the uncorrélptdarization map aligns with the
axis of evil, whereas the axis of the octopole does not. Hewelue to the high noise-level in the
WMAP polarization map, we have an uncertainty of about lhSour axes. With this uncertainty,
the probability of at least one axis aligning by chance insatropic Universe is around 50 per cent.
We therefore do not obtain evidence for or against a predediection intrinsic to the primordial
Universe. FoPlanck we expect the uncertainty in the axes to go down te-P0°, again depending
on how well the foregrounds can be removed from the map. Qimnique applied t&lanckdata
will thus serve as a powerful means to understand the origimeoCMB anomalies.

Instead of studying particular features in the CMB maps asrileed above, we can also use
the CMB to constrain several cosmological parameters samebusly by sampling the parameter
space. The parameter constraints obtained by WMAP marleduktihinning of precision cosmology
and were the biggest success of the mission. In such panasetepling studies, the main
bottleneck is usually the evaluation of the likelihood. Wavé thus implemented a sparse-grids
based interpolation of the WMAP likelihood surface as a shuifor the likelihood evaluation. This
is orders of magnitude faster to compute than the origikalihood. Our method is a competitive
alternative to other approaches for speeding up parametgslsg.
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Introduction

For hundreds of years, cosmology had been more of a metaplhfisid than a scientific discipline.
However, in the course of the last century, great progressbean made in understanding the
origin and nature of our Universe. The basics for all mod#ag-cosmology have been laid
by Einstein in the early twentieth century, when he formediahis General Theory of Relativity
dEinstei). Then, in 1929, Edwin Hubble discoveredakgansion of the Universle
1929), which should revolutionise the field of cosmologygegi that most cosmologists at that time,
including Einstein, had favoured a static Universe. Hulbbldised that many of the faint nebulae
in the night sky are galaxies outside our Milky Way, and thaishof these galaxies are moving
away from us with a recession velocity proportional to trdigtance from the Earth. This was
interpreted as an overall expansion of space. After Hubliiscovery, cosmology was dominated
by two different schools, one of which supported the idea that the tsavieas originated in a
Big Bang (LemzitréL M), whereas the other school favoured the so-c8teddy State model
ﬁBondi & Gold 1943), according to which the Universe did navé a beginning, but has always
existed and expanded as it does now. The end of the Steady r8tatel was marked by the
discovery of the cosmic microwave background (CMB) by ArrenBas and Robert Wilson in
1965 \(Penzias & Wilson 1965; Dicke et al. 1965). The CMB haeeredicted to exist in the Big
Bang model by Gamow, Alpher and Herman in 1948 (Gaﬁno_w[ﬂ%@h, &l & HermaﬁlﬁiS) but
lacked a natural explanation in the Steady State model.d tettie ninetiei Riess et M998) and
Perlmutter et al. (19@9) measured the redshift-distanieéioa of supernovae of type la and found
that the expansion of the Universe is accelerating rather ttecelerating as previously thought.
This led cosmologists to postulate some unknown medium dalak energywhich pervades the
Universe and drives the accelerated expansion of space.

The first full-sky map of the small temperature fluctuatiohshe CMB were obtained by the
COBE satellite in the early nineties (Wright etal. 1b92)e§h fluctuations are created by physical
processes in the early (and late) Universe, which dependh@mparameters of the cosmological
model and can thus be used to infer information about therlawith the precise analysis of the
CMB by theWilkinson Microwave Anisotropy Prolf®/MAP) satellite and various balloon-based
experiments, together with observations of other cosmcdbgrobes, we are now able to constrain
the cosmological parameters with an accuracy on the leveefedv per cent (Komatsu etal. 26)09).
This has lead to a widely accepted cosmological model, thealed concordance model ACDM
model. We expect to obtain even stronger constraints ondbmalogical parameters from the
Planck Surveyomission, which has been launched in May 2009 and will meath@&&€MB with
unprecedented accuracy within the next year.

However, even though we seem to be converging towards astenspicture of our Universe,
there remain many questions yet to be answered. We lack aetiwd understanding of three
essential ingredients of teCDM model: dark matter, dark energy, and inflation. Therefgreat
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effort is put into developing theoretical models and findingestational evidence for them. Even
the most fundamental assumption of cosmology, the homatyesnad isotropy of the Universe, is
the subject of some doubts triggered by observations of 18 (ible Oliveira-Costa et al. 2004;
Eriksen et al. 2067). We can hope to find answers to thesealneglsquestions in the information
contained in cosmological signals such as the CMB. Howstersignals encoded in data from
cosmological observations are subject to various uncesi ranging from detector noise to the
complex and imperfect signal transmission by the cosmo#dgirocesses themselves. A crucial
step in understanding our Universe is thus the harvestittgeahformation content of cosmological
data.

In this PhD work, we study specific aspects of the CMB relatetidth the question of dark
energy and the isotropy of the Universe. Both of these stutkéy on similar techniques of
combining CMB temperature and polarization data using treiss-correlation. This permits us to
infer more information about the respective problem thavious studies, provided data of high
guality are available. The signature of dark energy in theBaduses a small coupling between
CMB and large-scale structure data. We derive a techniquengistently treat this coupling in
cosmological parameter estimation studies. In order toerglch parameter estimations more
efficient in general, we finally develop and implement a novedlifood reconstruction method
based on the technique of sparse grids.

The integrated Sachs-Wolfe ffect

The first part of this work is devoted to developing new teghbes to detect thmtegrated Sachs-
Wolfe(ISW) effect in the CMB temperature fluctuations. The IS¥éet is a probe of the existence
of dark energy (or modified gravity), and can in principle\pde us with information about the
dark-energy related cosmological parameters. It can bectiet via its cross-correlation with the
LSS (Ho et al. 2008; Giannantonio et al. 2b08), but the meamsent of this cross-correlation signal
is made dificult by confusion with chance correlations of the primor@&B fluctuations with the
LSS.

The optimal methods for ISW detection developed in this war& designed to infer the
maximum amount of information about the ISWeet that the data have tdter, thus reaching
a higher detection significance than previously existinghoes. As a first step, we keep the
realisation of the LSS distribution fixed when trying to dettihe ISW, rather than averaging over it
as it is done in existing methods. This allows for an enhameerof the detection significance for
surveys going to relatively high redshifts. As a subseqstay, we extend this method to include
CMB polarization data, which are used to fix a part of the pruied temperature fluctuations in
the analysis. Roughly speaking, we remove from the temperatap those structures that are also
encoded in the polarization data, and search for the I8é¢kin the remaining temperature map,
which is now uncorrelated with polarization. Given that k8&V effect is not significantly imprinted
in the polarization, we thereby remove variance from theadahich is only a nuisance to the ISW
detection. This also considerably enhances the detedgtaifisance at small redshifts.

For an ideal scenario, we expect an enhancement of the idetsagnificance by 16 per cent
for low redshift surveys such as the SDSS galaxy sample, grabbut 23 per cent for surveys
ranging to higher redshifts of about 2. For currently av@d@aCMB and LSS data, we estimate
the improvement of the detection significance of our metrmdampared to the standard one to
be at most 5 per cent. The main reason for that is the low sigradise ratio of the polarization
data from WMAP. However, soon tH&lanck Surveyomission will provide us with polarization
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measurements of much higher quality than the WMAP data. A eende estimate yields an
improvement of the detection significance lanck of at least 10 per cent, where the limiting
factor is how well foregrounds can be removed from the ppédion data.

In order to include the information contained in the IS\Weet in cosmological parameter
estimation, we derive the joint likelihood for cosmolodiparameter estimation for CMB and LSS
data, which consistently includes the coupling betweentwtedata-sets introduced by the ISW
effect. Using this likelihood instead of assuming that theliil@ds for CMB and LSS data are
independent will result in small changes in the constrantthe dark-energy related parameters.

Anomalies in the CMB

In the second part of this work, we study the so-caliei of evi] a strong alignment between the
preferred directions of the quadrupole and the octopoléénGMB temperature map. This axis
has been found in recent years as one of several directipendent phenomena in the CMB that
seem to question the isotropy of the Universe (de Oliveioat€ et al. 2004; Abramo et al. 2006;
Land & Magueij&)\ 2007). It is strongly under debate whethesthanomalies are simply due to
chance fluctuations in the CMB temperature map, if they cabl&eed on local structures or on
systematics in the measurement, or whether they are gctladl to a preferred direction intrinsic
to the geometry of the primordial Universe. We can shed mght bn this question by probing the
anomalies with a statistically independent data set.

Since both the temperature and polarization fluctuations hheir physical origin in the
primordial gravitational potential, we expect the polatian data to show similar peculiarities as
the temperature, provided they are due to some preferredtin intrinsic to the geometry of
the primordial Universe. However, since the polarizatismot statistically independent of the
temperature, anomalies due to chance fluctuations in theebeture can also manifest themselves
in the polarization map. We suggest to split the polarizatitap into a part which is correlated
with the temperature map, and an uncorrelated part, anasbgto what we have done with the
temperature map in the optimal method for ISW detection. Uiierrelated part of the polarization
serves as a statistically independent probe of the anosmdgiecribed above.

We compute this map for the WMAP data, and use it to searchhiaxis of evil We find
that, within our measurement precision, the axis of the guaale of this map aligns with the axis
of evil, whereas the axis of the octopole does not. Howeuss,td the high contamination of the
WMAP polarization data with detector noise and Galactiefwounds, the uncertainty in our axes
is of the order of 45 With such an uncertainty, the probability of at least onis &eing aligned
with the axis of evil within its error bar just by chance amtauto about 50 per cent in an isotropic
universe. FoPlanckdata, a crude estimate yields an uncertainty in the axeslpflon - 20°. With
Planck we will thus have a powerful test to probe the axis of evil atlder CMB anomalies in
polarization.

Parameter sampling

As we have indicated before, there is a variety of physicacesses that have imprinted their
signatures in the CMB and other cosmological data-sets asithe LSS and the redshift-distance
relation of supernovae of type la. The ISWeet we study in the first part of this work is one
example of such a process. We can therefore use cosmolafzitalin order to simultaneously
constrain the cosmological parameters that have detedtieeappearance of one or more of these
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imprints. To this end, we have to define a likelihood, whichasmees how well the data fit to
the theoretical prediction for given values of the paramsgetend multiply it by an adequate prior
distribution in order to obtain the probability distribomi of the parameters conditional on the data,
the so-callegosterior distribution

Analysing the posterior distribution is not always easygsichanges in the observables typically
do not reflect variations of one particular parameter, hbilteradepend on a combination of certain
parameters of interest. Therefore, a set of parametersohlas tletermined simultaneously and
preferentially with several data-sets in combination. &Jisywe are dealing with cosmological
models consisting of at least 6 parameters, for which we e mean and variance by sampling
the parameter space using Markov Chain Monte Carlo (MCM@ukitions. For yielding reliable
parameter estimates, MCMCs have to evaluate the postesinibdtion (and thus the likelihood)
for about 50,000 - 500,000 points in parameter space for aiBr@nsional cosmological model.
However, the evaluation of the likelihood of the cosmoladjigarameters is very expensive and is
thus the main bottleneck in the parameter sampling procéssrefore, fast methods to evaluate
the likelihood are becoming of increasing importance, eislg in the light of thePlanck Surveyor
mission, which will soon provide us with a huge amount of dhtd we have to handle.

In the third part of this work, we therefore develop and impdmt a method to speed up the
evaluation of the likelihood by interpolating the likelibd surface using a technique based on sparse
grids. We show that projecting our interpolation with MCM@sproduces the one-dimensional
posterior distributions for the cosmological parametémsoat perfectly, running in only a fraction
of the time it takes to run them on the full likelihood. Usingranterpolation, the main bottleneck in
parameter sampling studies is now the MCMC algorithm itsglier than the likelihood evaluation.
In speed and accuracy, our interpolation method is compatabpproaches of fitting the likelihood
surface with polynomials or neural networks, while overaggrsome of the drawbacks of the latter.
These are, for example, the danger of creating unphysicajles if the polynomial degree is chosen
too high with respect to the number of available traininghyp®ior the comparably long training time
required for neural networks. Thus, our approach is a coitiyaealternative to existing approaches
to accelerate parameter estimation (Fendt & Wandelt ﬁOOKj ét al. 2008).

This thesis is organised as follows. We start by introdudimg basic concepts of modern
cosmology in chapter 1 and the necessary basics of statigtierence in chapter/2. Chapter 3
is devoted to our work on the ISWfect, whereas chapter 4 describes the project on the axigl of ev
In chapter 5, we present the work on the acceleration of ctmggival parameter estimation using
sparse grids. Concluding remarks and a short outlook aengivchapter 6.



Chapter 1

Cosmology

This chapter is devoted to introducing the fundamental ept& of modern cosmology as a
necessary background for this PhD work. We first explain #sds of Einstein’s General Relativity
in section 1.1, then derive the basic equations for modesmotogy from the Einstein equations
in section 1.2. In section 1.3, we briefly describe the cosgiohl concordance model. We
explain in detail the cosmic microwave background radraiio section 1.4, and briefly outline
other observational probes of the Universe in section 1.5.

1.1 Basics of General Relativity

In this section, we give a brief introduction to the Generiakdry of Relativity (GR). For a good
and detailed discussion of General Relativity, the reaslezferred to Misner et al. (19\73).

Einstein’s General Theory of Relativity is currently thesbdescription of the laws of gravity
that we have. It is based on the idea that spacetime is noa jststtic background, a framework in
which the laws of physics can be described, but spacetimausilly influenced by the matter that
lives in it. Matter curves spacetime, that is, it changegésmetry. The geometry of spacetime, in
turn, determines how the matter moves through it. We calbtentity that encodes the geometry
of spacetime the metric tensay,,. It defines the infinitesimal spacetime-interds between two
neighbouring points in spacetime with coordinate distanbé via the relationds® = g, dx'dx’.
Throughout this work, Greek indices are used as spacetidiedas running from 0 to 3, over one
time-dimension and 3 spatial dimensions, whereas Latilc@stare used as spatial indices that run
from 1 to 3. We also use Einstein’s sum convention, accorttirvghich indices that occur as upper
and as lower index in a term are summed over.

From the first and second derivatives of the metric we cantoaetthe Riemann tensor,

3 or,, o,

v 1% el o4
V/lp = W axp + l—‘/mrvp - prry/l 5 (11)

which describes the curvature of spacetime. Here, we hdusedeahe Christfel symbols

agav + aga/l _ agv/l

oxt X oxe (1.2)

1
r, = zgﬂa

Note that uppéglower indices are called contravarigravariant indices, and can be converted into
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one another by applying the metric tensgr:= g,,v". Contracting the Riemann tensor over the first
and third index yields the Ricci tensor:

R!

WAV °

Ry (1.3)

the contraction of which with the metric represents a scalawvature, which is called the Ricci
scalar:

R=d"R, . 1.4
Given the above definitions, we can now define the Einsteisoien
1
G =R - Eé’jR, (1.5)

whered, is the Kronecker symbol. The Einstein tensor plays a certtalin General Relativity.

We have now defined the necessary quantities describingetimagtry of spacetime. The matter
distribution in spacetime is described by the energy moorariensorT!, which we require to be
divergence-free with respect to the covariant derivaiiv@rder to impose generalised energy and
momentum conservation:

Tg;u =0, (1.6)

where the covariant derivative is defined as

aT{’l [e% @
QAEW-FFZ/ITV —FMTéf. (17)
The fundamental equations relating the Einstein Te@oand the energy-momentum tensor
T/ are the Einstein equations:
G, =8rG T/, (1.8)

where we have set the speed of lightte 1, a convention which we will use throughout this work.

1.2 Basics of cosmology

The evolution of the Universe as a whole is described by thee@ Theory of Relativity, which
we have introduced in the last section. Let us now derive #gcbequations of cosmology from
the Einstein equations. For a more thorough introductiomaealern cosmology, see, for example,
Coles & Lucchin (2002), Dodelson (2003), or Peacock (1999).

The basic assumption in cosmology is the so-called cosnoalbgrinciple, which states that the
Universe is homogeneous and isotropic on large scales.cbhisiderably simplifies the structure
of the metric. The most general metric in a homogeneous aiEc universe is the Robertson-
Walker metric, for which an infinitesimal spacetime intdrdais given by

2
d< = —dt? + a(t)z(ld—r

S TP rzsinzedqbz), (1.9)

where,r, 6, andg are spherical coordinates on a constant-time hypersurfdeevariabldg denotes
the universal timea(t) is the overall expansion parameter of space, the so-csdlale factoy and
K is called curvature parameter. The curvature parametemaanthe values 0, 1 and -1, for which
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the metric describes a spatially flat, closed or open unéyeespectively. The spatial coordinates
r, § and¢ are called comoving coordinates, because the time-depepdet is factored out. We
can substitute the time coordinate in the Robertson-Walfiegric by theconformal time; using the
definition

dt = a(n) dn, (1.10)
so that the metric becomes
2
4 = a(n)z( — i + Ty o+ 12007 4 7 sir? 9d¢>2). (1.11)

The various matter componentsof the Universe can be described by the energy momentum
tensor of a perfect fluid with the coordinates of the Roberéé@lker metric being fixed to the fluid
elements. For baryonic matter, the rest frame of those fleichents corresponds to the one of the
galaxies, if one averages out the proper motion of the idd®i galaxies. The energy momentum
tensor of a perfect fluid is

Ty = (P + P)U'U, + Pody (1.12)
wherep, and p, denote the energy density and pressure of the companamdu = %—’j is the 4-
velocity of the fluid, which is defined as the derivative of §pacetime-coordinate with respect to
the proper timet of the fluid (in the rest frame of the fluids® = —dA?). Since the fluid is at rest in
our coordinate system, the spatial componehts the 4-velocity vanish. For the zero-components
of the 4-velocity, we obtain’uy = W'u, = ‘é—j’%—’j‘ = g—ﬁ = —1, so that the energy momentum tensor
of the fluid becomes

T = diagtpa: Po. Pas Po)- (1.13)
The total energy momentum tensor is then just the sum overaimponents,

T =) T4, =diagtp, p, p. p), (1.14)

wherep = Y, p, @andp = >, P, are the total energy density and pressure of the matter in the
Universe.

Inserting the Robertson-Walker metric, €q. (1.9), and thal tenergy momentum tensor, eq.
(1.14), into the Einstein equations yields the first and sddériedmann equation for the scale
factora(t):

a? = ?paz—K, (1.15)
4
a = —”TG(ersp)a. (1.16)

In this work, we use the dot to denote a derivative with resp@t¢he universal time, whereas
the prime denotes the derivative with respect to the cordbtime . From the first Friedmann
equation, eq. (1.15), it is easy to show that the curvaturarpeter K vanishes if the energy density
is equal to the critical density

3 &
81Ga?’
We define the density parameters for the constituents of thieetse as the present ratio of their

Perit = (1.17)
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energy density to the critical density,

Q, = P20 (1.18)
Perit,0

where the subscript O indicates that we refer to the variabthe present timg. We will use this
convention throughout the work. A flat universe (i.e. a uréeewith vanishing curvature) is thus
equivalentta2 = ', Q, = 1.

In the course of the last years, there has been increasinigrea for the Universe being
remarkably flat. This evidence comes mainly from measurésneithe the cosmic microwave
background by WMAP Komatsu et al. (2009), combined with oks#ons of supernovae of type
la (Riess et al. 1999; Perlmutter et al. 1999). There is alsiooag theoretical motivation for a flat
universe from the theory of inflation, which we will brieflysdiuss in section 1.3.3.

Instead of working with the two Friedmann equations, we @place the second Friedmann
equation, eq! (1.16), by the continuity equation

b+3g(p+ p) =0, (1.19)
which can easily be derived frofi;. = 0 with the aid of the Christdel symbols given in

Appendix A of Kodama & Sasaki (1984). The continuity equatidso holds for the various matter
components of the Universe separately, if they are not exgly coupled to other components.

It is convenient to express the presspgeas a function op,, in the equation of state (EoS),

Po = Wy 00 » (120)

wherew, is called the equation of state parameter, and has the v&uderlradiation (including all
relativistic particle species), and 0 for cold dark mattedt haryons. Using the equation of state, we
can write the continuity equation for the components a®vwdt

. a
Do + 35(1 + W, )pe = 0. (1.22)
Integrating this equation, we find the following scaling &elour for a constani, :

Pa = Paoa > Ewe), (1.22)

where we have adopted the conventagre 1. We will use this convention throughout the work.

In order to complete this section about cosmology, let us muwoduce some important
cosmological quantities which will be used in this work. Gmter two astronomical objects, one of
which is sitting in the origin of our coordinate system. Tgreper distance g between these two
objects is defined as the integral over the spacetime intdsith dt = dé = d¢ = 0 at timet:

fobi — dr
d, = a(t)f o (1.23)
P 0 V1-Kr2
The recession velocity of these two objects from one anasher
d a
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Eq. (1.24) is called thelubble law and the quantity
a
H(t) = - 1.25
®== (1.25)
is is the so-calletHubble parameterlt is convenient to define the dimensionless quartiby
Ho = hx 100kmstMpc?, (1.26)

whereHj is the present value of the Hubble parameter. From receetrexents, astronomers have
determinech = 0.72+ 0.05 tKomatsu et al. 20¢)9).

The inverse of the Hubble parametgt—), is called theHubble radiusor Hubble horizonand
represents the upper limit of the size of regions being irsabcontact at time t. This quantity is
important in the theory of cosmological structure growthgs it defines the largest scale on which
cosmological perturbations can still grow. On scales detthhe Hubble horizon, perturbations are
frozen in time. Perturbations on scales much smaller thaiitibble horizon are callesiibhorizon
modes

Theredshift z which is defined by

1+z= — (1.27)

is a measure of how much the wavelength of radiation, emlted source at timé¢, has been
stretched by the expansion of the Universe since the lighblean emitted. It is closely connected
to the distance between the emitting source and the Earthvetto, the exact relation between
redshift and distance depends on the expansion historedftiiverse. One of the main challenges
of modern cosmology is to obtain information about the esp@anhistory by observing this relation.

1.3 The cosmological concordance model

1.3.1 Constituents

During the last ten years, theory and observations haveetged to yield a consistent model of our
Universe, the so-calledoncordance modeMe believe that our Universe is spatially flat and that
it consists of dark energy-{0%), cold dark matter (CDMy25%), baryons+ 5%), and radiation
and neutrinos+10-3%).

It is noteworthy that the baryonic matter, which is the nratte can actually observe in form
of galaxies and gas, only contributes about 5% to the totigyncontent of the Universe. 95% of
the constituents of the Universe are not directly obsersabid their existence can only be inferred
from their gravitational impact. This is somewhat suspisicand it could actually be a hint that the
laws of physics as we know them, in particular the Generabfhef Relativity, have to modified
on cosmological scales.

Cold dark matter is thought to consist of heavy (and thusnedativistic) particles, which do not
or hardly interact with baryons and photons, and thus domdtleght from which we could observe
it. The concept of cold dark matter explains the flat rotatiorves of galaxies, the mass of galaxy-
clusters obtained from dynamical estimates, the formatfdhe LSS from small initial fluctuations
at the time of last scattering, and gravitational lensingenations. Candidates for dark matter
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particles are so-called weakly interacting massive gagi@/NIMPs), the most promising candidate
for which is the lightest supersymmetric particle, the nairio. Attempts to explain the observed
behaviours listed above by modifying the laws of gravityhemtthan by introducing dark matter
include modified Newtonian gravitMOND) (Milgrom 1983), andTensor-vector-scalar gravity
(TeVeS) (Bekenstei@04). However, these theorigiesfrom some dficulties as shown, for
instance, bg Feix et al. (20b$), Klypin & Prada (2009), and/Manatos et al, (2009).

Dark energy has been postulated in order to explain the vdderccelerated expansion of the
Universe discovered by Riess et al. (1\998)\and Perimuttair @99@). We will explain dark energy
and its observational evidence in detail in section 1.3.2.

1.3.2 Dark energy

An accelerated expansion of the Universe as observed by Ried. \(199\8) and Perlmutter et al.
@) cannot be obtained with normal matter (i.e. baryamd @ark matter) in a Friedmann-
Robertson-Walker cosmological model, as can be easily sh®uring an accelerated expansion,
the second time derivative of the scale fackas by definition positivea™ 0. Considering the
second Friedmann equation, €q. (1.16),

a= —?(ph?p)a,

it becomes clear that > 0 only if the dfective equation of state (EoS) parametet g of the

total energy content of the universe is smaller th@n But all known forms of matter including
dark matter havev, > 0 and can thus only decelerate the expansion. Therefolee édcelerated
expansion is to be explained by some exotic form of energydtter is required to have a negative
pressure such that the total EoS paramater —1. Such an exotic form of energy was postulated
after the observations of Riess et al. (1998) and Perimettai; k1999), and it was namethrk
energy

In addition to explaining the accelerated expansion, daeegy can account for the missing
mass which is necessary to reach the critical density. Measents of the CMB combined with
observations of supernovae of type la provide strong egel@f our Universe being spatially flat.
As we have seen in section 1.2, the total energy density irt arflaerse is necessarily equal to the
critical density. But the matter we actually observe by éitight (baryonic matter) and by its
gravitational impact (dark matter) only accounts for ab@@fo of the critical density. This makes
it necessary to postulate some form of energy which accdontfie missing 70% of the critical
density. Dark energy naturally accounts for this missingsna

Another evidence for the existence of dark energy, whicm@ependent of the observations
described above, is the integrated Sachs-Wolfe (ISNécein the CMB, which we will explain in
detail in section 1.4/3. Chapter 3 of this work is devoted ¢wedoping optimal methods for the
detection of the ISW féect.

There are several fierent theoretical models for dark energy, or rather, forla@rmg the
observations described above. Some models postulate isteree of an exotic form of energy
while leaving General Relativity unchanged, whereas sthmodify the laws of gravity. In
the following, we briefly describe the most common models amticate how they could be
distinguished by observations.
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parameten  WMAP WMAP 5year | explanation
S5year ML | +BAO+SN Mean
Qp 0.751 0.721+ 0.015 density parameter of dark energy
Qm 1-Qp 1-Qp density parameter of matter (darkbaryonic)
Qph? 0.02268 | 0.02265+ 0.00059 | density parameter of baryonic matteh?

h 0.724 0.701+0.013 Hubble constant

T 0.089 0.084+0.016 optical depth to last scattering

Ns 0.961 0.960+ 0.014 spectral index of the primordial power spectrum
g 0.787 0.817+ 0.026 Fluctuation amplitude at/B Mpc

Table 1.1: Table of the main cosmological parameters of tha {ZdM model as given Hy Komatsu et al.
), table 1. The values of the parameters in the second column arextmeumelikelihood values

for the 5 year WMAP data, which are used in the analysis in chapter 4. dlbesvin the third column

are the mean values from combining the 5 year WMAP data with measuremenéshartfon acoustic
oscillations and supernovae of type la. These values are used inicBapte

The cosmological constant

One possible candidate for dark energy is tmsmological constant, which was originally
introduced by Einstein in order to obtain a static univ: Esieiteir{ 1917). The Einstein equations
with the cosmological constant read

G+ Ad" = 81G TV, (1.28)

After Hubble discovered the distance-redshift relationgafaxies, which was interpreted as an
overall expansion of the Universe, Einstein called the mfdhe cosmological constant “the biggest
blunder in my life” . However, now the discussion abauthas been revived by the apparent
accelerated expansion of our Universe. Instead of addieg\tterm to the left hand side (the
geometrical part) of the Einstein equations, one can etgntlg include it in the energy momentum
tensor. In this picture, the cosmological constant cowedp to the vacuum energy density of the
Universe and has the constant EoS parametes —1.

The cosmological model that contains about 70% vacuum grengsity, 25% cold dark matter,
5% baryons and 8% radiation and neutrinos is referred to/a8DM model. TheACDM model
fits surprisingly well to observations of the CMB, the mattkstribution in the Universe, and
the distance-redshift relation of supernovae of type lain@¢he simplest cosmological model
comprising dark energy, it is the model which is most widedgd by cosmologists. In this work
we will use theACDM model with parameter values given by Komatsu et al. (20@®le 1, which
are listed in Table 1.1.

Dynamical scalar fields

Instead of considering dark energy to be vacuum energy jeitsis also possible to obtain the
behaviour of dark energy from dynamical scalar fields. Dyicairscalar fields are fields which are
not just sitting in the ground state of their potential, as the case for vacuum energy, but the field
has started out in some non-equilibrium state and then es@ucording to its equations of motion.
The main potentially observablefférence to the cosmological constant is that the EoS paramete
of the dynamical models evolves with time. In principle sipiossible to observe such an evolution,
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for example by measuring the redshift dependence of thekbeddaryon acoustic oscillations
in the matter power spectrum, which will be introduced intieec1.5.2. There is a wide range
of models for dark energy using dynamical scalar fields,uidiclg quintessencg (Wetterim988;
Peebles & Ratra 1988), k-essence (Armendariz-Picon \eOﬁIl)Z and phantom enereII
2002), just to name a few of them.

Other

In what we have described above, we have implicitely assutmna@dEinstein’s General Theory
of Relativity is the correct theory to describe our Univeosecosmological scales. This is not
necessarily true, and in fact General Relativity has ongnbeonfirmed on scales up to solar system
scales. There are attempts to reproduce the observatigonslukrl above by changing the laws of
gravity on large scales rather than by introducing darkgnedne example is represented by scalar
tensor theorie@a,b). These can, however, bemefated in terms of GR theories in
which a scalar field, possibly representing dark energgraats universally with all matter fields.

Another, highly controversial, approach to circumventkdanergy is to use backreactions
of inhomogeneities in the Universe on the background eXpan@uchert\ 2008; Rsﬁinelh
\2004; Martineau & Brandenberger 2005; Kolb et al. 2008; IKaBaI.\ZOOé). An inhomogeneous
Universe may on average evolvefdrently from a homogeneous solution of Einstein’s laws of
gravity. This could result in an apparent acceleration efdakpansion of space.

Yet another idea of explaining the apparent acceleraticdhdshypothesis that our observed
Universe can be described by a LéimaTolman-Bondi model, which is a spherically symmetric
but inhomogeneous dust Universe. Such a model can in plencipnic an accelerated expansion
dEnqvisH 2008), but in order to preserve the observed ipgtod the CMB, we would presumably
need to be placed quite close to the centre of such a strustiotating the Copernican principle
dCaIdweII & Stebbins 2008). One particular scenario whiak heen investigated is that we live in a
giant void, with a larger Hubble rate inside than out (TOIM). However, it was shown recently
that a giant void is not necessary in order to circumvent @aegy in a Lemidre-Tolman-Bondi
model, but a large hump would do the job as welkgier et alggé%.

1.3.3 Inflation

There is yet another poorly understood but essential cosrgasf the cosmological concordance
model, the so-callethflationary phasef the very early Universe, about 10s after the Big Bang.
This inflationary period was supposedly a phase of rapid aodlarated expansion, in which the
Universe was blown up by a factor of @¥folds within a fraction of a second. This exponential
expansion is thought to be driven by one or more scalar fiskisi¢times called theflaton field,

as suggested by Alan Guth and Andrej Linde (djuth 1981; Guthe?nWertﬁ 1983; Linde 19@2).
Without inflation, we lack a natural explanation for why oumiterse should be spatially flat to such
a high degree, which is commonly referred to asftatness problemin addition, in a Friedmann-
Robertson-Walker Universe without inflation, there is nas@n why the CMB should be isotropic,
since the dferent regions from which we observe the CMB cannot have breeausal contact by
the time when they emitted the radiation. This problem isedathe horizon problem Inflation
solves both the flatness problem and the horizon problemthéisame mechanism: The Universe
we observe is just a tiny patch of the pre-inflationary Urseemwhich has been blown up by a factor
of aboute®® by inflation. This implies that the observed Universe is sfiigtflat, as can be easily
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seen from dividing eq| (1.15) by

)= (1.29)

a\? _ &G K
( ) 3 a2
The inflaton field has an EoS parameter closeipand thup ~ const, see eq. (1.19). Therefore,
since the scale factaris growing with time, the curvature term in theffdirential equationi</a?,
eventually becomes negligible compared to the constargityeterm. The horizon problem is
solved by the fact that the fikerent regions we observe in the CMB radiation were all pathef
same pre-inflationary patch and thus in thermodynamic i before inflation.

Furthermore, the theory of inflation naturally explains glresence of small inhomogeneities
in the early Universe: During inflation, quantum fluctuasoof the inflaton field get blown up
to cosmological scales and act as seeds for the formationsvhalogical structures. The power
spectrum of these initial fluctuations is predicted to berlyescale-invariant. This has been
confirmed by observations of the CMB and can thus be congidbeefirst observed ‘prediction’
of inflation. The seeds for structure formation are furthemnpredicted to be close to Gaussian,
but to exhibit small non-Gaussianities that depend on tleeip model of inflation. Observations
of the CMB roughly confirm the Gaussianity of the fluctuatioagart from certain non-Gaussian
features that still lack an explanatid)n (Vielva etal. j(ﬁ@ﬁaita etal. 2009). The detection of small
primordial non-Gaussianities of the type predicted by tidlacould be a handle to distinguish
between the dierent inflationary models. Furthermore, there is a chancdetécting relics of
gravitational waves created during the inflationary phaséhée so-called B-mode of the CMB
polarization fluctuations, which will be introduced in sent1.4.4. Being the first direct evidence
for an inflationary period, such a detection would be one ef gheatest successes of modern
cosmology.

1.4 The cosmic microwave background

In this section, we introduce the cosmic microwave backgdotadiation (CMB), which is one
of the richest sources of information about our Universe W@ have. The analysis of fiierent
aspects of the CMB will be the main focus of this work. The gnéged Sachs-Wolfe (ISWiect,
for which we will develop new detection methods in chaptes 8xplained in detail in section 1.4.3.
Other secondaryffects on the CMB, which we could in principle apply our methtasare briefly
described.

1.4.1 Origin of the CMB

After the Big Bang, the matter in the Universe was extremelydnd dense, and it successively
became cooler and less dense as the Universe expanded. Dheséohigh temperatures, the
hydrogen in the early Universe was ionised, and baryons &tbps were tightly coupled via
Thomson scattering of the CMB photons by the free electr@&asyons and photons thus formed
the so-callebaryon-photon fluid Approximately 400,000 years after the Big Bang, the Urseer
had become cool enough for the free protons and electromsribioe and form neutral hydrogen, a
process which is referred to escombination After recombination, the photons could no longer get
scattered by free electrons, and thus baryons and radidicoupled. Since then, the photons have
been free streaming through the Universe, and can nowadagisderved as the CMB. We measure
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the CMB radiation in the microwave band, because the wagétest the photons has been stretched
by the expansion of the Universe. We denote the time whenhb®ps have been scattered for the
last time the time ofast scattering(ls). The corresponding surface on our backwards lightcone
is referred to as the surface of last scattering. It has ehréds zs ~ 1100. The CMB features
an almost perfect blackbody-spectrum, which tells us thatltaryons and photons have been in
thermal equilibrium at last scattering.

1.4.2 Temperature anisotropies

The CMB is almost isotropic over the whole sky. There are, dv@y, small temperature-
anisotropies of the blackbody-spectrum é? ~ 107°, most of which originate in density
fluctuations in the baryon-photon-fluid before last scatter Others, the so-calledecondary
effects are imprinted in the CMB after last scattering. For notagiosimplicity, we redefine
T(h) = %O‘TO whereTy denotes the average CMB temperature of 2.725 K, faisdthe direction
on the sky.

The temperature anisotropi€$n) can be expanded in spherical harmonigs

T(R) = Z al Yim(f). (1.30)
I,m
Here, thea| are the expansion cigients, which are defined by

f dQT(A) Y (7). (1.31)

where the integral is taken over the whole sptei@nd the star denotes complex conjugation. We
can define the autocorrelation function of the temperatigteiloution as

TOTE@ Doy = D, @B Yim() Y (1)
ILI7,mny
20+1
- 4* Cl P(A- /), (1.32)
|

where the average is to be taken over an ensemble ftdreint realisations off given the
cosmological parametes i.e. over the probability distributioR(T|p). The power spectrunﬁlT of
the temperature anisotropies is defined by

@ralsy=o1ommCl, (1.33)

where we have assumed statistical isotropy of the temperfitictuations.P,(x) are the Legendre
polynomials, which we have introduced into the equationdiggithe addition theorem for spherical
harmonics,

2I +1

Z Yim(R) Yim (V) =
m=—|
Since we only observe one CMB, we will never be able to obtanaverage over fierent CMB
realisations in order to measure the power spectrum. Wénarefore forced to assume the ‘ergodic
hypothesis’ that the average oveffdrent directions in the sky gives the same result as an efnsemb

P|(A i) . (1.34)
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Figure 1.1: Temperature power spectrum oA&DM universe with the current best-fit values of
the cosmological parameters as given\by Dunkley etal. (2009), togetitlerthe WMAP 5 year
measurements.

average. This leads to the problemanfsmic varianceit is not possible to obtain a good spatial
average over large-scale fluctuations, since we simplytthawe enough of these patterns to average
over. As a straightforward calculation shows, the minintabewith which we can measure the
CMB power spectrum from one sky is given by

R 2
\/ (CT - c,T)2> = \/ 57Cl - (1.35)

whereCl = 1/(2| + 1) ¥, la] 7 is the power spectrum estimated from our CMB realisation, an
the average has to be taken over an ensemble of CMB reafisatibhis cosmic variance is a
fundamental limit on the estimation of the power spectrumciv becomes large for low

For a given cosmological model, we can calculate the theate€MB power spectrum by
solving the coupled system of perturbation equations fawydres, dark matter, photons and
neutrinos. These perturbation equations comprise tharised Einstein equations, generalised
energy-momentum conservation for baryons and dark meadtet, the Boltzmann equation for
photons as well as the collisionless Boltzmann equationdatrinos. A detailed derivation of these
equations can be found in Durr?(ZOOl). The temperaturepspectrum has been measured with
high precision by dferent experiment§ (Nolta et al. 2009: Masi et al. 2007 Reittet al. 2009;
Sievers et al. 2009). In Fig. 1.1, we plot the temperaturegoaspectrum of aA\CDM universe
with the current best-fit values of the cosmological paranmsetas given b& Dunkley et al. (2@09),
together with the WMAP 5 year measurements, which are alousshic variance limited for very
low I.

The most prominent feature of the CMB spectrum are the amguséks, which originate at the
time before last scattering when baryons and photons diregditly coupled and form the baryon-
photon fluid. Dark matter, which is not coupled to the photdrel already started to clump and
form potential wells well before last scattering. The réidiapressure from the photons resists the
gravitational compression of the fluid into these poteniialls and sets up acoustic oscillations
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in the fluid. The frequency of a mode with wavelengtlis given byv = =, ¢ being the sound
speed. Therefore, the modes with shorter wavelengths lvaestd oscillate more often before
last scattering than the longer wavelength modes. Con#igezero-mode’ g, for which there
has been just enough time to go through half an oscillatidarbdast scattering. It is the longest
wavelength mode that is at the maximum of its oscillatioraat kcattering. Therefore, it leads to
the first acoustic peak in the CMB-spectrum. Half of the wamgth of this mode is equal to the
distanceds which sound can travel before last scattering, as one caly sas: ds = 2—10c5 = %/lo.
This distance is commonly referred to as #oeind horizorat last scattering. The mode with half
the wavelength of the zero-mode oscillates twice as fasttaréfore undergoes one full oscillation
before last scattering. At last scattering, it will also ldette maximum of its oscillation and
corresponds to the second peak of the spectrum. The othks pea due to higher harmonics
of the zero-mode.

On large scales, i.e. for smai, the power spectrum is dominated by the Sachs-Wolfe (SW)
and the integrated Sachs-Wolfe (ISWheet. Both are related to the gravitational redshift a photon
experiences when climbing out of a gravitational potentil. At last scattering, the CMB photons
are sitting in potential wells and on potential hills crebly the density fluctuations of dark matter.
When the photons are set free at last scattering, they haslertb out of the wells, or fall & the
hills, and thus get red- or blueshifted, respectively. Tihigeferred to as the Sachs-Wolffezt.
The integrated Sachs-Wolféect will be explained in detail in section 1.4.3.

1.4.3 Secondary anisotropies

The temperature anisotropies we have explained in the éxdtos are primordial anisotropies
originating at the surface of last scattering. However,ntagter inhomogeneities the photons pass
through on their way towards us, leave imprints on the CMBtélatons in various ways. These
imprints are called secondarffects. The most important secondafieets are the ISWfeect, the
Rees-Sciama (RS}ect, the thermal and kinetic Sunyaev-Zel'dovich (SEgets, and gravitational
lensing. We describe thes#&exts in the following.

The integrated Sachs-Wolfe ffect

In section 1.4.2, we have explained the Stiéet as the gravitational redshift of photons that have
to climb out of potential wells at the surface of last scatigr The same happens when the CMB
photons pass through gravitational wells or hills on theaywo us. If the gravitational potential of
a cosmic matter structure is static, the net frequency &irifh photon travelling through it is zero.
However, if the depth of the potential changes in time the egdl blueshift no longer cancel, and
the photon experiences a net frequency shift. On smalléesdhe frequency shifts from changing
potentials average out, because the photon passes thraughsmall overdense and underdense
regions on its way to us. On the largest scales, however, tb®op will only pass through few
potential wells and hills, and there will remain a net fregueshift, the ISW &ect, which can be
observed on the large angular scales of the CMB. On thosessadsmological structure growth
can still be described by linear perturbation theory.

In an Einstein-de Sitter universe, i.e. a flat matter doneidaniverse, the gravitational potentials
are constant on linear scales, and thus no 1S¥§ce can be observed. However, in a universe
which contains dark energy, gravitational potentials glegih time and give rise to an ISWiect.
The same holds if the apparent acceleration of the Universeti caused by dark energy, but is a
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consequence of modified gravity, which we have introducesation 1.3. Curvature of space also
causes gravitational potentials to decay, but as we saatd#iere is strong evidence against such
a curvature, so that the ISWrect is considered to be a probe of dark energy or modified tyravi

On non-linear scales, on which the matter fluctuations amwaed from the background
expansion, gravitational potentials grow due to the mattill into potential wells. This non-
linear ISW dfect is called Rees-Sciama (R3ext. It is quite small since the matter flow velocities
causing the changing potential are well below 1 per cent.

The temperature anisotropies coming from the integratetisS®/olfe éfect are given by

770
Tia(®) =2 [ 0. Cr0 - ) ) . (1.36)
Ms

Recall thaty denotes the conformal time and the prime stands for theatem/with respect to the
latter. s andno denote the conformal time at last scattering and the pr h, respectively,
andn is the direction on the sky is the gauge invariant Bardeen potenlialiBarHeen 1980xhwh
coincides with the Newtonian gravitational potential i tNewtonian gaudeused in this work.
Note that the integral in the above equation has to be takemahe backwards light cone.

In Newtonian gaugeTisy can be obtained by applying a suitably constructed linearaipr@
to the present matter density contrégtno):

Tisw = Q6m(m0) - (2.37)

The matter density contrast is definedaéx) = [pm(X) — pm] /om, Whereom(x) denotes the density
of matter in the Universe at positian andpn, is the background matter density. Eq. (1.37) can
be verified by using the perturbation equations derived lgy, Kodama & Sasaki ( 1984) or Durrer
M): In order to obtain the expression for the oper&an the subhorizon-limit, let us look at
the Poisson equation

3H2

whereA denotes the Laplace operator in comoving coordinates. FnenfPoisson equation, we

obtain ,
68m

e 1) (L= 1) D) Im(k, 10). (1.39)

wheref = dIné,/dInais the growth functionPD(n) = sm(k, 7)/5m(Kk, 7o) denotes the linear growth
factor, k stands for the absolute value kfand we define Fourier transformed quantities as

¥'(k,n) =

Sm(k,7) = f d3x 5% 5m(x, ), (1.40)

with the inverse transformation

1
(2r)°

Sm(X, ) = f dk ™ 5m(k, 1) . (1.41)

The expression for the operatQrcan then be obtained by Fourier transforming eg. (1.39) and

'For a detailed explanation of the gauge freedom in linear perturbationytheeat a definition of Newtonian gauge, see
Kodama & Sasaki (1984).
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Figure 1.2: CMB and ISW power spectrum oA£L DM universe with the current best-fit values of the
cosmological parameters as giveH by Dunkley et al. (b009).

inserting it into eq./(1.36). Note, though, that we have regtdithe subhorizon-limit in this work,
as eg./(1.37) is valid on superhorizon-scales as@vhfilFlg 1.2, we compare the power spectrum
of the ISW dfect with the one of the CMB. Note that the ISVHei:t only significantly contributes
to the total CMB power spectrum at the lowest multipoles.

The Sunyaev-Zel'dovich dfect

The Sunyaev-Zel'dovich (SZ)Ykect (Sunyaev & Zeldovich 1972) is the interaction of CMB pirest
with ionised gas in galaxy clusters and filaments. We dististgbetween the thermal and the kinetic
SZ dfect. In both cases, the relatively cool CMB photons undengerse Compton scattering by
free electrons of the X-ray gas in the cluster, i.e. the pmotget kicked to higher or lower energies
while the electrons lose or gain energy.

In the case of the thermal S4fect, the energy kick of the CMB photon is taken from the
thermal energy of electrons in clusters. Since the temperan clusters is much higher than the
temperature of the CMB photons, the photons are on averageaifered in energy. This causes a
deviation of the photon energy distribution of the CMB frone tblackbody spectrum. Therefore,
the thermal SZ ffect can be separated from the primordial CMB by using its tsglesignature.
The thermal SZ fect leaves an imprint on the CMB spectrum at very small saaledsmight even
dominate it at > 2000.

In the case of the kinetic SAtect, the energy change of the scattered photon comes from the
bulk motion of the ionised gas. The kinetic SHeet does not destroy the blackbody spectrum

2The correct formula foQ in Newtonian gauge, which also holds on superhorizon-scales, castdieed by difterentiating
and Fourier transforming the expression

" " H2 O
v =exp(- [ plemanr) [zt o ot e [ ot anar,

and inserting it into eql (1.36), instead of the expressiontid, 1) in the subhorizon-limit, eql (1.39). Here, we have defined
p(k, 1) = 2252 and the linear growth factaB(k, 7) = e which in general depends on the Fourier méde
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shape of the CMB but only changes its temperature. Thergtarannot be distinguished from the
primordial CMB signal without additional information akiahe distribution of the clusters which
create the SZféect. The kinetic SZ signal of clusters is typically sevenaes smaller than their
thermal SZ &ect.

Gravitational lensing

According to Einstein’s General Theory of Relativity, theneature of spacetime determines how
massive particles and light rays propagate through spades r@sulting deflection of light by
gravitational potentials is callegravitational lensing Einstein’s prediction of the deflection angle
of starlight which gets deflected by the sun has been confibypédthur Eddington’s measurements
during a solar eclipse in 1919 (Dyson etal. ﬂ920), and wasobrlee great successes of general
relativity.

The CMB photons are subject to gravitational lensing wheavetiting through the
inhomogeneous gravitational field of the large-scale sinec(LSS) on their way from the last
scattering surface to us. This causes a change in size apd shéhe warm and cold patches in
the CMB temperature fluctuations, and aldteets the polarization of the CMB, which we will
introduce in the next section. Th&ect of gravitational lensing manifests itself in the CMB pow
spectra by smoothing out sharp features in the latter. Téfésets contribute about 1 per cent to the
CMB power spectra dt~ 400, and become larger than the primordial fluctuationsza8000.

1.4.4 CMB polarization

Thomson scattering, which is the dominant process thatlesyghotons to free electrons before last
scattering, creates linear polarization of the CMB photdnsthe following, we give an intuitive
explanation of this process. For a thorough discussion oBQ@idlarization, the reader is referred
to Durrer (2001) or Zaldarriaga & Seljak (1997).

We consider a linearly polarized incoming wave with polatian directione’, which is scattered
into an outgoing wave with polarization directi@n(the polarization direction is defined as the
direction in which the electric field oscillates). Thefdrential Thomson scattering cross section
for this process is given l& Jacks@975)

g—g = %E’ - €, (1.42)
whereo is the total Thomson cross section. For an unpolarized inmogrioeam, this leads to
a differential cross section which is independent of the scageangled if € is perpendicular to
the scattering plane, and proportional to €6yif € lies in the scattering plane. If the incident
photons come in isotropically from all directions, therenis net polarization of the scattered
photons. However, if the intensity of the incoming radiatiexhibits a quadrupole moment in
the rest frame of the scattering electron, Thomson scagtégads to some linear polarization of the
outgoing beam. This can be intuitively understood by caeréig) two incident light beams coming
in from directions separated by 9(cf. Fig.[1.3). From the mathematical derivation (Du@p
Zaldarriaga & Seljak 19@7), it becomes clear that amongnaitient multipoles the quadrupole is
the only source of polarization of the outgoing beam.

Due to the process described above, the CMB photons leakimgurface of last scattering
are linearly polarized to a certain degree. After recomioma nearly all of the free electrons and
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<

Figure 1.3: Two unpolarized light beams are coming in from directions atggghby 90. The light
beam coming in from the left has a higher intensity, as indicated by the lont¢gization vectors. The
outgoing light beam is linearly polarized to a certain degree.

protons have combined to form Hydrogen, and thus the prétyati the photons getting scattered
is very low. Only during the epoch of reionizationat- 10 — 20, there are again free electrons
created by ionising photons from the first supernovae, aodtatO per cent of the CMB photons
get scattered again. The free-streaming of the photonsngpfrom the last scattering surface has
enhanced the quadrupole incident on the scattering etectb reionization (Zaldarriaga 1997).
Therefore, the re-scattering of CMB photons during reiatian creates additional polarization on
large scales.

Let us now introduce the mathematical framework used to ridesdinear polarization on
a sphere, which has been developed\ by ZaIdarriaga&SéIjQﬁ?Ql Consider a coordinate
system with the z-direction pointing towards us along thme Iof sight. The electric field of
a monochromatic electromagnetic wave travelling in zatiom is of the formE = Ege®zeD,
wherek andw are wave-vector and frequency, respectivély.= (Ej €x) + Eé’ €y)) is the complex
amplitude of the electromagnetic wave, wéky ande being the unit vectors ix andy direction,
respectively. We can characterise a linearly polarized oobromatic wave by the three Stokes
parameters |, Q, and U, which are defined as

| = |Ed?+I|EP, (1.43)
Q = |E*-IE/?, (1.44)
U = EiE, +EE, (1.45)

wherel is proportional to the total intensity of the wave, Q encotltespolarized intensity in the
directions ofe) ande€y), and U describes the polarized intensity in the directimetined by 43
to that.l is related to the temperature of the CMB introduced in sactid.2 b@

oT _ 101
T 41°

3Note that we had redefinét(A) = T(?—;TO in section 1.4.2, which we have ignored in éq. (1.46) for clarity.

(1.46)
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Since the Stokes parameters depend on the chosen coosdiatem, they are not well suited for
describing polarization on the full sphe\re (Zaldarriaqaeijék\ 1997). However, the combinations

QxiU, (1.47)

wherei denotes the imaginary unit, transform as spin-2 quantitieder rotation around the z-
axis. They can therefore be expanded in spin-weighted m@th@armonicsgY\n(f), with the index
S=+2:

(Q+iU)(h)

Z azim2Yim(f),
I,m

(Q-iU)(A)

> aom 2Yim(f), (1.48)
I,m

where the expansion cfiients can be obtained from the following equations:

a2,Im

f dQ,Y; (A)(Q + U)(R).

a—2,Im

[ da_avi Q- ). (1.49)

Instead of working with the cdcients a.,m, it is convenient to introduce their linear
combinations, the so-called E and B modes:

o
3
Il

1
_E(aZ,Im +a2)m) . (1.50)

i
5(@2im —a2im). (1.51)

o
3
|

Under parity transformations, the E mode remains unchangpedeas the B mode changes sign, in
analogy to electric and magnetic fields.

With the above definitions, we can fully characterise thésttes of CMB fluctuations by the
following four power spectra:

@maim) = Cl owdmn, (1.52)
@) = C % 616mm (1.53)
@) = CF owdmm (1.54)
@aly = CPoybmm. (1.55)

Note that theT B and EB cross power spectra vanish in a universe symmetric undety par
transformation, because B has the opposite parity of T and E.

In Fig.|1.4, we plot the theoretical TE cross power spectromtlie WMAP 5 year best fit
cosmological model, together with the values measured byARNh Fig.[1.5, we plo€ andCF
for comparison. Note that the power contained in CMB poéran fluctuations is about a factor
of 100 less than the power contained in the temperature #tiohs. Nevertheless, the polarization
of the CMB contains valuable information about our Univer§bke E-mode can be used to obtain
information about the epoch of reionization, and the B modeich contains only a fraction of
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Figure 1.4: TE cross power spectrum ofAZZDM universe with the current best-fit values of the
cosmological parameters as giveﬁ by Dunkley et al. (2009), togethetheitralues observed by WMAP.
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Figure 1.5: TT and EE power spectrum ofACDM universe
cosmological parameters as giveH by Dunkley et al. (bOOQ).

with the current best-fit values of the



1.5 Other observational probes of the Universe 35

the power of the E-mode, is considered to be a smoking guneficting primordial gravitational
waves created during inflation.

The currently available full-sky polarization data from VWAR are highly contaminated by
detector noise and Galactic foregrounds. HoweverPla@ack satellite, which has been launched
in May 2009, will soon provide us with full-sky polarizatiosata of unprecedented accuracy.
WhereadPlanckwill presuma nly detect the E-mode fluctuations, thet gexeration of CMB
experiments, such as PolarB% CMBPoP are designed to measure the B-mode as well. Given
that inflation is at present merely a hypothesis without dmgeovational evidence, measuring the
primordial gravitational waves would be a tremendous ss&t@ the standard model of cosmology,
in which inflation plays a crucial role.

1.5 Other observational probes of the Universe

In addition to the CMB explained in the last section, there amumber of other observational
probes that are used to infer information about our Universéhe following, we briefly introduce
the most important probes and discuss the constraintsdhdie obtained from their analysis.

1.5.1 The luminosity distance-redshift relation

The relation of the distance of astronomical objects torthailshift encodes information about
the geometry and expansion history of the Universe. Theegrdistance to an object as defined
in section 1.2 corresponds to the distance measured by a ohaulers at a fixed timé. It is
not possible to determine the proper distance by obsenjaliecause we observe astronomical
objects through their light, which takes a certain time tacteus. Therefore, we have to rely on
observationally motivated distance measures to charsetire distance to astronomical objects.

An important distance measure is the so-called luminosstadced, , which is defined such as
to preserve the Euclidean inverse-square law for the ditimnwf light:

L

dLE m

(1.56)

Here,L is the absolute luminosity emitted by the source at time t@mdoving coordinate distance
r, andf is the flux we observe at tintg.

The area of a sphere centred on the source and passing thiteeiglosition of the observer
at timety is just 4rr2, as can be easily seen from the Robertson-Walker metrig{1eg). In an
expanding Universe, the diminution of light is proportibtaan additional factor o&, due to the
redshift of the single photons and to the dilution of the nenmdf photons:

L

f=—=a",
Arr2

(1.57)
from which we readily obtain

=—. 1.
do =~ (1.58)

“http://bolo.berkeley.edu/polarbear/index.html
®Baumann et al| (20®8http ://cmbpol.uchicago.edu
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Expanding the scale fact@ in a Taylor series arounty) and integrating the Robertson-Walker
metric for a light ray (for whichds® = 0), it is quite straightforward to obtain the relation betme
the distance coordinate r and the redshift z (Coles & LucHQB'(DQ):

r= Hio z- %(1 +qo)Z + 0@ |, (1.59)

whereqq is called the deceleration parameter, which is defined as

a(to)
=—-——=. 1.60
0= At (1.60)
Inserting this relation into eq. (1.58), we obtain the luasity distance-redshift relation
1 1
do=—|z+Z(1-q0)Z +O(D)| . (1.61)
Ho 2

If the absolute luminosity. of an object and thud, is known, the distance-redshift relation
given in eq. [(1.61) can be used to infer information about lthéble parameteH, and the
deceleration parametep. Examples for astronomical objects of known absolute lasity, the
so-calledstandard candlesare certain variable stars (Cepheids), and supernovagpefla. In
case of the supernovae of type la, an empirical relation bas iound between the shape of the
light-curve emitted by the supernova and its absolute losity. Up to present times, however,
we still lack a theoretical understanding of this relatidwevertheless, supernovae of type la are
considered reliable standard candles, and have been usletetonine the deceleration parameter
of the Universe by Riess et al. (1998) and Perlmutter et QWL with the surprising result that the
expansion is actually accelerating rather than decehey#tif. section 1.3.2).

1.5.2 Angular distances

In analogy to the luminosity distance introduced in the kesttion, we can define the so-called
angular diameter distanch. It is defined in such a way as to preserve the variation of tiggilar

size of an object in Euclidean space. It be the proper (physical) diameter of a source placed
at coordinate r at time t, anAl the angle on the sky subtended by the source. We then define the

angular diameter distance to be
Ds
dy= —. 1.62
h= (1.62)

From the Robertson-Walker metric, €q. (1.9), we obtain éhation
Ds = arAd, (1.63)
which we insert into eq. (1.62) in order to obtain
da=ar. (1.64)

Just as for the luminosity distance, we can again expandxpeegsion for the angular diameter
distance, eql (1.64), in a Taylor series in z. For astronahuibjects of known physical diameter,
the so-calledstandard rulers we can then use the angular diameter distance to infer tlblelu
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parameter and the deceleration parameter.

The potentially most powerful standard ruler is the baryooustic oscillations (BAOS) in the
power spectra of the CMB and the matter distribution. The BASBiginate in the oscillations
of the baryon-photon plasma at the time before last scagietiWe have already described these
oscillations and the imprint they leave in the CMB spectramsection 1.4. We have also explained
that the physical scale of the first peak in the CMB spectrugivien by the sound horizon at last
scattering. The BAOs are visible not only in the spectrunhef€MB, but also in the matter power
spectrum, which can in principle be measured up to a redsh#bout 7 or higher from the galaxy
and quasar distributions and from 21cm observations. Bgraehing the BAO scale at fierent
redshifts, it is thus in principle possible to actually maasthe expansion history of the Universe.
Therefore, BAOs are considered to be among the most prognfataire sources of information
about dark energy.

1.5.3 Weak lensing

In section 1.4.3, we have already introduced gravitatitaraing as a secondarffect on the CMB.
Just like the CMB photons, also the light emitted from gadaxgets deflected by gravitational
potentials it passes through, resulting in a distortion aragnification of the observed galaxy
images. Since gravitational lensing is sensitive to amgththat creates a gravitational potential,
it can be used to obtain maps of the projected dark matteniison and to determine the dark
matter power spectrum. This is done by analysing gravitatitensing in the weak lensing regime,
in which the distortions of the galaxy images can be desdridyea complex field calledhear

Obtaining the shear from the elliptical distortion of galariages involves taking the mean
over a large sample of galaxies, in order to average out tiiesic shapes of the galaxies. At
present, weak lensing measurements therefore sfiléisirom a high noise-level. Nevertheless,
once there are enough galaxies to average over, weak lem&agurements provide a potentially
very powerful tool to map our Universe.

1.5.4 Primordial nucleosynthesis

Within the first three minutes after the Big Bang, the liglereents deuteriunfHe, *He and’Li
have formed from Hydrogen during primordial nucleosynihiéBig Bang nucleosynthesis, BBN).
The relative abundance of these elements after BBN depenitiedoaryon content of the Universe.
This allows us to obtain bounds on the density parameterrgbina,Q2,, by comparing the observed
abundances of the light elements with predictions of BBN jgotations.
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Chapter 2

Statistical inference

Note: Section 2.3 of this chapter is taken from EnRlin émoe), to which I have contributed as
a second author, but which was primarily the work of Torsteflin.

Modern-day cosmology heavily relies on the use of probghbihieory. Cosmological models
make predictions of the statistical properties of cosmigklgsignals such as the CMB, which
we compare to the statistical properties of the observediastigin this chapter, we give a brief
introduction to the basic concepts of Bayesian inferenee usthis PhD work. For a more thorough
treatment, please refer to Bolstad (2004), Robert (@OO@ebman et dI.L(&M).

2.1 Notation

Most of the random variables we will be dealing with in thisrancluding certain cosmological
signals and detector noise, can be approximately desctiged Gaussian distribution. For
simplifying the notation, we therefore define

G6.C) =

1 1.,
5= exp(—z)(T C 1)() (2.1)

to denote the probability density function of a Gaussiatrithsted vectory with zero mean. By
‘vector’ we generally mean a vector in function space (i.Behl), for example the value of the
CMB temperature fluctuations as a function of position onsghigere. The covariance matr, is
defined as

C = (et = f Dy (i) 6(v. ). (2.2)

where the integral has to be taken over all possible field gardtions ofy. We usually work with
pixelised quantities, in which case this translates to tegimal over all pixels i,

Dy =T dy' . (2.3)
Note that in general the covariance matrix depends on theaogical parameterpg, which is not

explicitly stated in our notation. A daggered vector or nxatlenotes its transposed and complex
conjugated version, as usual. Hence, given two veaasdb, ab’ must be read as the tensor



40 Statistical inference

product, whereas' b denotes the scalar product.

2.2 Bayesian inference

The Bayesian approach to probability theory (Bayes 1763) isterpret missing knowledge as
probabilistic uncertainty. It is therefore better suitedédosmological problems than the frequentist
interpretation of probability as relative frequency of ooence, since we have no possibility to
do a cosmological ‘experiment’ many times in a row. Bayesitatistics can furthermore be used
to assign probabilities to the values of the parameters ofstaitistical models, and even to the
underlying models themselves. Thus, Bayesian inferenteisnethod best adapted to constrain
cosmological parameters, and it is also widely used in atbatexts in cosmology. In this work,
we sometimes talk aboutsample of universesn order to visualise the uncertainty of our signal
in question. We understand this asgpotheticalsample of universes, though, which does not
necessarily have to exist.

Let us consider a signalwhich we are interested in and which represents some spaspict
of the physical state of our Universe, for example the fluatumg of the CMB radiation or the matter
distribution in the Universe. Since the signal does notaorthe full physical state of the Universe,
any degree of freedom which is not present in the signal luteinces the data will be received as
probabilistic uncertainty, or shortly noise.

In order to infer information about the signal from the data,need to specify a statistical model
describing our state of knowledge about the sidgrefbrethe data are observed. This knowledge
can be taken from theory, or from previous measurementstafatataining information about the
signal. The corresponding probability distributig?(s), which we assign to the signal is called the
prior distribution or simply theprior.

Our state of knowledge about the sigradter the data have been measured is described by
the posterior distributionor posterior, £(s|d). This is the probability distribution of the signal
conditional on the measured data. Usually, we can not easitg down a model for the posterior.
It is much more straightforward to define the so-calli&élinood for the signal from theoretical
modelling, i.e. the probability distribution of the datargm the signal.£(s) = £(d|s). From the
prior and the likelihood we then obtain the posterior via 8gyl heorem:

P(sld) = %, (2.4)
where the normalisation,
P(d) = f@s?’(dls)?’(s), (2.5)

is called theevidence The posterior is the key quantity from which we deduce imfation about
our signals. The evidence also plays a central role in Bayesian inferesince it is used to assign
probabilities to the statistical models in Bayesian moe&ction.

2.3 Information field theory

Throughout this work, we make the assumption that all thegsses we are dealing with are well
described by Gaussian probability distributions, whickldeavery well for everything done in this
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thesis. However, the work on the ISW detection presentedhapier 3 can be extended to other
secondary fects in the CMB, for which the assumption of Gaussianity iseapoor. This can be
done using the mathematical frameworkmfbrmation field theor{IFT) presented in EnRlin et al.
@). In this section, we give a brief introduction to tlengral framework of IFT.

Let us assume we want to infer information about a sighfibm its posterior distribution
P(s|d) via Bayesian inference. This is very straightforward agglas the posterior is Gaussian,
but it quickly becomes very flicult for non-Gaussian posteriors. IFT provides us with agpnate
solutions of all moments of a non-Gaussian distributedaigmovided that the prior of the signal as
well as the likelihood are known or can at least be Tayl@eRet-expanded around some reference
field configuratiort. Then Bayes’ Theorem permits us to express the posterior as

PAIYP(S) _ 1 g

P(s|d) = W =7 e R (2.6)

where we have introduced the Hamiltonian
H[s] = Hq[s] = —log[#(d, 5)] = —log[P(d| ) P(9)] . 2.7)

Let us also define the partition functi@n= Z4 as

Z=Pd) = f DsPd|9)P(s) = f Ds et (2.8)

Itis extremely convenient to include a moment generatimgtion into the definition of the partition
function

Zy[J] = f Ds gHld+'s, (2.9)

This meangP(d) = Z = Z[0], but also permits us to calculate any moment of the sifjed via
Fréchet-diferentiation of eq/ (2.9),

1 " Zy[J]
X “ e X = — . 210
(s(x1) -~ S(xn))p(se) = 5 530) 0300 |50 (2.10)

where the average is taken over the posterior distributidheosignal.
Of special importance are the so-called connected cooalainctions or cumulants

" logZy[J]
e ) = 2.11
<S(X1) S(Xn»p(qd) (5J(X1) . -5J(Xn) o 5 ( )

which are corrected for the contribution of lower momenta twrrelator of orden. For example,
the connected mean and dispersion are expressed in terheirafimconnected counterparts as:

(SNpegy = (SXDp(sa) »
(S(X) Mgy = (S(X) S(YDe(sa) = (S(X))e(sa) (S(Y)e(sia) » (2.12)

where the last term represents such a correction. For Gausandom fields all higher order
connected correlators vanish:

(S(X1) -+ S(Xn))pgey = O (2.13)
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for n > 2, but are in general non-zero for non-Gaussian random fields
The assumption that the Hamiltonian can be Tayl@eRet expanded in the signal field permits
us to write

(2.14)

1. . o 1
HIg = 58D s jist Hot ) AL, Su Sy,
n=3
where repeated coordinates are thought to be integratedidwefirst three Taylor caicients have
special roles. The constaHt (not to be confused with the Hubble parameter introducethapter
1) is fixed by the normalisation condition of the joint probigpdensity of signal and data. H[s]
denotes some unnormalised Hamiltonian, its normalisatimstant is given by

Ho = log fz)sfz)d e Halsl (2.15)

OftenHp is irrelevant unless elierent models or hyperparameters are to be compared.

We call the linear co@cient j information source. This term is usually directly and linga
related to the data. The quadratic fi@ent, D1, defines the information propagatb(x, y),
which propagates information about the signay &b locationx, and thereby permits us, e.g., to
partially reconstruct the signal at locations where no dastaken. Finally, the anharmonic tensors
A create interactions between the modes of the free, harntioeicy. Since this free theory will
be the basis for the full interaction theory, we first invgate the casa® = 0.

2.3.1 Free theory and the Wiener filter

A very simple and widely used data model specifying the i@habetween signal and data is the
model
d=Rs+n, (2.16)

where the data are given by a linegasponse matrix Rpplied to the signal plus an additive noise
termn. For precise definitions dk andn, the reader is referred to EnRlin et al. (2009). For the free
theory, we assume both the signal prior and the noise disivibto be Gaussian, i1.€(s) = G(s,S)
and®(n) = G(n, N), with the signal and noise covarianc®s= (ss )pg andN = (NN )p().

Since the noise is just theftkrence of the data to the signal-respomse,d—R s the likelihood
is given by

Pd|ls)=P(h=d-Rs|s)=G(d-RsN), (2.17)
and thus the joint distribution of signal and data for the §€@an theory is

P(s, d)

[P(d]9) P(s)]
[6(d-RsN)G(s.S)] . (2.18)

This leads to the Hamiltonian

Hgls]

—log[#(d|s) P(s)]

1 .
= Es:TD-ls,— j's+HY, (2.19)

with )
D=[S"+RNTR] (2.20)
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being the propagator of the free theory and
j=R'Nd (2.21)

the information source. Finally,

1. 1
HS = 5 d"N1d+ 5 0g (127 S [27 NI) (2.22)

has absorbed a#independent normalisation constants. We prove eq. (h18ppendix A.1.

The partition function of the free field theory,

fz)s e—Hg[s]+J*s

f@s exp{—%sTD—ls+ (J+])fs- Hg} , (2.23)

Z5[J]

is a Gaussian path integral, which can be calculated exgatiging

Z5[J] = V|22 D] exp{+%(\] +)'DE+j) - Hg} . (2.24)

The explicit partition function permits us to calculate ez (2.11) the posterior mean of the signal,
i.e. the expectation of the signal given the data:

6logZs :
= = =D
Srec (S)(sd) 53 1o J
= [ +RINTR| RN, (2.25)
Fwr

The last expression shows that the posterior mean is givehebgtata after applying a generalised
Wiener filter, sec = Fwed, which has first been derived @950). We call the
Wiener reconstructionf the signal, hence the index ‘rec’. The propagdd{xk, y) describes how
the information on the density field contained in the dateoaationx propagates to positioy:

Sedy) = [ d*x D(y, x) j(x).

In Appendix A.1, we explicitely derive the signal posteriahich is
P(s|d) = G(S— Sec, D) . (2.26)

From eq./(2.26), we readily see that the real siggaltually fluctuates around the reconstruction
Sec With the covariancd, due to remaining uncertainties. The propagator is thus @fied the
Wiener variance The Wiener reconstruction is often used to reconstructrtager distribution in
the Universe from galaxy catalogues, and to obtain mapedfMB fluctuations from time-ordered
data.
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2.3.2 Interacting information fields

In the previous section, we have introduced the free themyesponding to a Gaussian posterior
distribution. A non-Gaussian signal or noise, a non-limegponse, or a signal dependent noise
create anharmonic terms in the Hamiltonian. These desiribeactions between the eigenmodes
of the free Hamiltonian.

We assume the Hamiltonian can be Taylor expanded in theldigids, which permits us to
write

1 . o 1
HIS = 5 sDts-jis+ Hg+Z = AL S Sy, (2.27)
n=0

H
g[S] Him[s]

Repeated coordinates are thought to be integrated overoritmast to eq. (2.14), we have now
included perturbations which are constant, linear and iedn the signal field, because we are
summing fromn = 0. This permits us to treat certain non-idefikets perturbatively. For example,
if a mostly position-independent propagator gets a smaitipm dependent contamination, it might
be more convenient to treat the latter perturbatively artddanimclude it into the propagator used in
the calculation. Note further, that all déeients can be assumed to be symmetric with respect to
their coordinate-indices.

Since all the information about any correlation functionha fields is contained in the partition
sum and can be extracted from it, only the latter needs to loalated:

fz)s e—H[s]+J"Ls

oo l B
[[Dsex- 5 AR 55| it
n=0

}fﬂse—Hg[s]H*s

1 ) 0
N AD
eXp[ 2 o 6de, 0dy
0
exp|-Hinl 51| Zol31. (2.28)

Z[J]

n=0

There exist well-known diagrammatic expansion technidoesuch expressions (e[g. Binney et al.
1992). The expansion terms of the logarithm of the partisam, from which any connected
moments can be calculated, are represented by all possibieected diagrams build out of lines

( ), vertices (with a number of legs connecting to lines, lie —e—, —, )'(, ...) and without
any external line-ends (any line ends in a vertex). Thesgraias are interpreted according to the
following Feynman rules:

1. Open ends of lines in diagrams correspond to externaldowates and are labelled by
such. Since the partition sum in particular does not dependny external coordinate, it

1This mean®,, = Dyx andA{, = AL , with = any permutation ofl. ... n}, since even non-symmetric dieients
would automatically be symmetrized by the integration over all repeatedicades. Therefore, we assume in the following
that such a symmetrization operation has been already done, or weeiiihpghand before we continue with any perturbative
calculation by applying
1
n) = Q)]
Axl,..xn = n! Z AX,,(;[)..,X,,(,-,) N

nePn

This clearly leaves any symmetric tensor invariarfjfis the space of all permutations{df . . ., n}.
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is calculated only from summing up closed diagrams. Howewer field expectation value
Secd(X) = (S(X))psa) = dlogZ[J]/dI(X)|;-0 and higher order correlation functions depend
on coordinates and therefore are calculated from diagraitis ame or more open ends,
respectively.

2. Aline with coordinatex’ andy’ at its end represents the propagdyry, connecting these
locations.

3. Vertices with one leg get an individual internal, inteagchcoordinatex’ and represent the

term jy + Jy — AL,

4. Vertices withn legs represent the termA) _, where each individual leg is labelled by one
1 %n

of the internal coordinates,, ..., X;. This more complex vertex-structure, as compared to
QFT, is a consequence of non-locality in IFT.

5. All internal (and therefore repeatedly occurring) caooates are integrated over, whereas
external coordinates are not.

6. Every diagram is divided by its symmetry factor, the nunmdifepermutations of vertex legs
leaving the topology invariant, as described in any book eld fiheory (e.g. Binney et al.
1992).

The n-th moment ofs is generated by taking theth derivative of logZ[ J] with respect toJ, and
then setting] = 0. This correspond to removimgend-vertices from all diagrams. For example, the
first four diagrams contributing to a signal reconstruc{igg = (S)p(sq)) are

———~ = Dyiy

1
— ~=Dyy A, Dy,

2
< = 15,790, i, Du
- _é Xy {xyuz Yzz Jz PDuw Ju
1 .
Q« = _Eny A§/4i)uv Dzu DW’ JV’ . (2.29)

Here, we have assumed that any first and second order peituriveas absorbed into the data
source and the propagator, thi€) = A@ = 0. Repeated indices are assumed to be integrated (or
summed) over. The Feynman diagrams are to be interpreteahgsutational algorithms and can
be implemented using existing map-making codes or linegatabh packages for the information
propagator and vertices.

In EnRlin et al. \(20d9), we have shown the utility of IFT on texamples: The derivation of
a Bayesian estimator for the non-Gaussianity in the CMB, taedhon-linear reconstruction of a
Gaussian signal with Poissonian noise in one dimensionlaftex serves as a one-dimensional toy
model for the LSS distribution measured from galaxy counts.

2.4 Parameter sampling

In section| 2.8, we have assumed that we have an analytic fértheoposterior distribution
P(s|d), or at least an analytical approximation to the latter gig the Taylor expansion of the
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Hamiltonian. However, this is not always the case, sinceesones we can only compute the

likelihood numerically. We cannot use IFT to infer infornaett about our signal in these cases. In
this section, we explain cosmological parameter estima®an example of such a problem, and
introduce the concept gfarameter samplingvhich we can use to address it.

The cosmological data we observe are created by compligdigsical processes, which leave
characteristic imprints on the data. The correspondingsighy processes can be theoretically
described by an adequate model, which ususally dependsverakeosmological parameteps
By comparing the predictions of such a model with observatiave can thus infer information
about the cosmological parameters from the data. Howeseglly we have to constrain several
parameters simultaneously, since theteets on the data are often degenerate. The considered
cosmological parameter spaces typically have between @ 2dimensions.

In order to obtain constraints on our cosmological paramseige use Bayes’ Theorem, eq.
(2.4), with the cosmological parametgrdeing the signal:

21D PR)

P(pld) = P)

(2.30)

As already mentioned, the likeliho#(d | p) often does not have an analytic form, but needs to be
evaluated numerically. In the case of the CMB, for instarealuating the likelihood implies
running a Boltzmann code such aMBFAST dSteak&Zaldarriag 1996)CAMB (Lewis et al.
@J), or CMBEASY dDoran@S) to calculate the power spectrum, which is trexhifto a
likelihood code. Since we lack an analytic form of the likelod and thus of the posterior, we
need a representation of the latter in parameter space,ifoich we can compute the posterior
mean values and variances of the cosmological parametées.ugual way of doing so is to run
Markov Chain Monte Carlo simulations, which we will deseribriefly in section 2.4.1.

2.4.1 Markov Chains and the Metropolis Algorithm

Markov Chain Monte Carlo (MCMC) simulations (Chib & Greemfeg%f Gamerman 19@7; Neal
EQS) are used to draw samples from a probability distrilutiThe statistical properties of the
distribution, such as its mean and variance can then be astihirom the sample. Usually, one
wishes to sample the posterior distribution of the (cosmjickl) parametersP(p|d), but the
technique can equally well be used to sample any other pildigatiistribution. MCMCs are
especially well-suited for high-dimensional problemscdugse the computationaffert increases
only linearly with the number of parameters.

The samples are drawn by running a Markov Chain, which is ddfas a sequence of random
variables (in our case points in parameter space) chosenrbgdmm process such that a given
element of the sequencg, depends solely on the previous elemgnt;. The aim is to choose the
next point in the chain based on the previous point such teatlistribution of the points becomes
stationary, withP(p| d) being the stationary distribution, in the limit of the nuenlof points going
to infinity.

One possibility of implementing such a process is the MatlisgHastings (M-H) algorithm
{Metropolis etal. 1953), which we briefly introduce in théldaing. For a given pointp; in the
chain, the M-H algorithm draws a poiptffom a proposal distributiog(p| p;). The proposed point
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is accepted, i.gj,1 = P, with the transition probability

a(pi | B) P(P1d)
a(Bl pi) P(pild)’ 1} : (2.31)

In practise, this is implemented by drawing a uniformly digited random variabla from [0,1],
accepting the proposed point if

a(pi, p) = min{

o(p | P) P(Id) _

aplp) P(pild)
and rejecting it otherwise. Ip is rejected, we retain the old point and get; = p;. If the proposal
distribution is symmetricg(p| pi)) = q(pi| pP), the algorithm is called the Metropolis algorithm
Metropolis et al. 1953). The Metropolis algorithm is usedthe MCMC driver of CMBEASY
Doran & Milller 2004).

(2.32)




48

Statistical inference




Chapter 3

Optimal methods for detecting the
Integrated Sachs-Wolfe #ect

Note: Sections 3|2-3.4 and section|3.7 of this chapter, dsasappendix B.1 and A.1, have been
published in Frommert et al. (20b8). The bulk of section 318 appendix B.2 have been published
in Frommert& EnRlin (2009a). Section 3.6 has been added.

3.1 Introduction

As we have seen in section 1.4.3, the integrated Sachs-\sfdéet (Sachs & Wolfe 19$7) is an
important probe of the existence and nature of dark energy &d Crittenden & Turok 19@6)
and the nature of gravity (sée Lue et al. 2004; Zhang 2006bbyverer, the detection of the ISW
signal is a challenging task, for it is much smaller than thmprdial temperature fluctuations in
the CMB, which originate at the time of last scattering. Wa bty to detect the ISW féect via
its cross-correlation with the large-scale structure (LS®Bich a correlation exists, since the ISW
effect is created by the interaction of CMB photons with the gaéional potential of the LSS. The
primordial temperature fluctuations of the CMB, on the othand, should be uncorrelated with
the LSS distribution. In recent years, substantitdre has been made to detect the IS¥eet via
cross-correlation of the CMB temperature fluctuations W% surveys, such as optical galaxy and
guasar surveﬁis radio surve)@» and X-ray surve@éj1

The standard methodbr detecting the cross-correlation between the LSS an€WB, which
has been used by the studies mentioned above, involves cogplae observed cross-correlation
function with its theoretical prediction for a given fiduc@smological model. The theoretical
prediction is by construction an ensemble average ovepa#iple realisations of the universe given
the fiducial parameters, i.e. over all possible realisatiointhe primordial CMB, which originates
at the surface of last scattering, and all realisations efltital matter distribution. Assuming
ergodicity, this second ensemble average can also be thofigis an average over all possible

1Sloan Digital Sky Survey, Adelman-McCarthy et al. (2008), Two-Micrdl-Sky Survey, Jarrett et al. (2000)

2NRAO VLA Sky Survey, Condon et al. (1998

3High Energy Astrophysics Observat‘ﬁ%?)

4Such cross-correlation studies have, for example, been done byhBatal. (1998), Boughn & Crittenden (2004),
Boughn & Crittenden| (2005), Afshordi etal. (2004), Rassat et2007),| Raccanelli et al. (2008), McEwen et al. (2007),

Pietrobon et al. (2006), Fosalba et al. (2003), Fosalba & ®ag (2004), Vielva et al. (2006), Liu & Zhang (2006), Ho et al.
dzooé) and Giannantonio et al. (2@)08), just to name a few of them.
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positions of the observer in the Universe ("'cosmic meanhe $pecific realisations of both the LSS
and the primordial temperature fluctuations of the CMB indniverse thus contribute to the error
budget of the detection. We estimate the contribution cdetttero sources of uncertainty to the total
variance in the detected signal under the simplifying aggion that there is no shot noise in the
galaxy distribution. The contribution of the LSS to the tatacertainty, which we refer to dscal
variance amounts to about 11 per cent in the case of an ideal LSS sgoieyg out to about redshift
2 and covering enough volume to include the large scalesamidor the ISW. We will show that
this local variance leads to a biased detection significanttee standard method for ISW detection.

In this chapter, we present new methods for the detectiomefi$W dfect, which reduce
both sources of uncertainty mentioned above by working itimmél on the LSS distribution and
on the measured CMB polarization. The method which only ajgsr conditional on the LSS
distribution, without using polarization data, will be eefed to as theptimal temperature method
The conditionality on the LSS implies that the signal-taseaatio or detection significance in the
optimal temperature method depends on the specific raahsat the LSS in our Universe. Note
that we use the two expressiosignal-to-noise raticanddetection significancas synonyms. On
average, the detection significance is about 7 per cent htgha for the standard method, due to
the reduction of local variance. Here, we have assumed agigyhlaxy survey covering all of the
relevant volume. In addition to reducing local variance,ca&e reduce the variance coming from
the primordial temperature fluctuations of the CMB by inifggrinformation about the latter from
CMB polarization data. The resulting method is calledapémal polarization methad\ote that,
of course, the optimal polarization method uses not onlggzdtion data but also temperature data.
The latter reaches a detection significance of up to 8.5,wisi@bout 16 per cent higher than the
standard one for shallow LSS surveys such as the SDSS maixygsdmple, and about 23 per cent
for a full-sky survey reaching out to a redshift of 2. Agaimese estimates hold for ideal (noiseless)
data. Unfortunately, for currently available CMB and LS®/msys, the detection significance of our
optimal polarization method is not notably above the stashdae, which is mainly due to the high
contamination of the WMAP polarization data by detectoiseand Galactic foregrounds. A very
crude estimate for data from tianck Surveyomission promises an enhancement of detection
significance of at least 10 per cent for the optimal polaiiraetethod as compared to the standard
method.

Many of the cross-correlation studies mentioned above haitempted to constrain
cosmological parameters using a likelihood function fa tosmological parametepsgiven the
observed cross-correlation function between CMB tempegatiuctuations and LSS data. Just
like the detection significance, these parameter estinsattes from biasing due to local variance.
Furthermore, to our knowledge, there is no straightforwary of combining the likelihood
function for the cross-correlation with the likelihoods foMB and LSS data so far. In this chapter,
we derive the correct joint likelihood functioR(T, P, 54| p) for cosmological parameters, given
the CMB temperature and polarization mapsind P and the LSS datéd,, from first principles
for the linear LSS formation regime. This joint likelihooartsistently includes the coupling
between the two data-sets introduced by the 1S¥cg, which so far has been neglected in analyses
deriving cosmological parameter constraints by combir@B and LSS datag (Tegmark et al.

\2004; Spergel & et al 2007). For parameter sampling studsasguour likelihood, we expect
small changes of the dark-energy related parameters véfieot to studies neglecting the coupling
between the data-sets.

This chapter is organised as follows. We start by explaitimgdiferent stochastic processes
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that are relevant for the measurement of the IS¥at in section 3.2. In section 3.3, we review the
standard method for detecting the IS\Weet via cross-correlation and estimate the contribution of
the local variance to the total variance of the detectedasiggection 3.4 is devoted to presenting the
optimal temperature method of ISW detection we developed,ta comparing it to the standard
method, whereas in section 3.5, we present the optimal ipatan method and compare it to
the other two methods. In section 3.6, we estimate the inggn@nt we obtain from the optimal
polarization method for currently available data. We déscihe role of the biasingtect due to local
variance in parameter constraints and derive the jointiliked function(T, P, d4| p) in section
3.7. Concluding remarks are given in section 3.8.

3.2 Stochastic processes

In order to understand the methods for ISW detection inttedun this chapter, it is necessary to
be familiar with the diferent stochastic processes that need to be considered.tiduice those
processes in the following.

3.2.1 Realisation of the matter distribution

During inflation, the matter density perturbations havenbereated from quantum fluctuations of
the inflaton field. This stochastic process is believed teeHasen close to Gaussinov
%5), permitting to write down the probability distriboni for the matter density contrast given the
cosmological parametesas

P(Om!| P) = G(6m, Sm) (3.1)

where the covariance matrg, = <5m6?n)¢>(5m|p), depends on the cosmological parameterdhe
average(..)p(s, p) IS defined as ensemble average over thedint realisations ofy, the index
P(Oom| p) explicitly states which probability distribution the aage has to be taken over. Given
homogeneity and isotropy, we note that the Fourier transhtion ofS is diagonal:

(Om(K)om(K) Ve p = (2m)35(k = K)P(K), (3.2)

whereP(K) is the power spectrun#(..) denotes the Dirac delta function, and the star is used for
denoting complex conjugation.

The stochastic process due to the inflationary quantum #Htiolns created the angular
fluctuations in the CMB, that is, the primordial temperatilwetuations originating from the surface
of last scattering at redshit= 1100, as well as the integrated Sachs-Woffea imprinted by the
more local matter distribution &< 2. Throughout this work we will assume that the primordial
fluctuations and the ISWHect are stochastically independent, which is a safe assomiven that
they are associated with matter perturbations of vefiedint wavelengths that are spatially well
separated, so that very little intrinsic cross-correlatian be expecteH (Boughn etal. 1\998). In fact,
for notational convenience we will use the symbglto only denote the local matter distribution
atz < 2. The joint probability distribution foifis, = Q6 (cf. eq. (1.37)) and the primordial
temperature fluctuationg,m then factorises

SD(Tisw, Tprim | p) = P(Tiswl p) p(Tprim | p) > (3-3)
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with
P(Tisw| P) = G(Tisw> Cisw) » (3.4)

and
P(Tprim | P) = G(Tprim» Cprim) » (3.5)
where we have defined the angular two-point auto-correidtioction for the fluctuatiomy (X
being ’isw’ or "prim’)
Cx = (TxT ey p) - (3.6)

Again, given homogeneity and isotrofyy is diagonal in spherical harmonics space

(@& (e p) = CL 61 S (3.7)

where CIX is the angular power spectrum of the quant€y and we have used the expansion
codficients ofTx into spherical harmonicg,,

%sﬁmn®mw, (3.8)

where the integral is taken over the sphere. Given that the ghstribution #(Tisw, Tprim| P)
factorises into two Gaussian distributions, the stim Tisw + Tprim, Which denotes the temperature
fluctuation of the CMB, is again Gaussian distributed

P(TIp) =6(T,Cr), (3.9)

with
Cr = Cisw *+ Cprim - (3.10)

Given the cosmological parameters, the angular power 1spEgt, CFW, and C!prlm can all be
calculated usingCMBFAST (http://ascl.net/cmbfast.html, ]Seljak&ZaIdarriada 1996)),
CAMB (http://camb.info, Lewis et ai. ‘(2000)), OICMBEASY (www.cmbeasy.org, Dora
2005)). In particularCis,, can be obtained from the three-dimensional matter covegiamatrix
Sm by

Cisw = QSmQJr > (3.11)

where we have used that linear transformations of Gausaiziom variables are again Gaussian
distributed, with the covariance matrix transformed adougly (see also Coor 2002a).

3.2.2 CMB detector noise

From CMB detectors, we do not reaft the actual CMB temperature fluctuationsas defined in
the last section, but a temperature where the detector mgiskas been added. Again, this can be
modelled as a Gaussian random process,

P(Taed) = G(Tdet Caed) , (3.12)

whereCgyet denotes the detector noise covariance. This process ipendent of the process that
created the CMB fluctuations, such that if we redefin€ = T + T to be the temperature we read
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off our detector, we obtain
P(TIp)=G(T.Cr), (3.13)

whereCr = Cpiim + Cisw + Cget NOW includes the covariance of the detector temperature.

However, in most of this work we will neglect the detector sein the CMB temperature
(Cget = 0), since the ISW is only present on the largest angular scaleere the dominant source
of noise is cosmic variance (AfshonWZOM). However, ifded, the detector noise can be easily
included by just substitutin@prim — Cprim + Cder The only part where we explicitely include
the temperature detector noise will be in section 3.7, wharalerive the joint likelihood for the
cosmological parameters, given CMB and LSS data, sincadtikielihood we also include smaller
angular scales.

3.2.3 Shot noise

Unfortunately, the matter distribution is not directly kmm and we have to rely on LSS catalogues
from which we can try to reconstruct it. A process to be com®d when working with such
catalogues is the stochastic distribution of the galaxidsch only on average follows the matter
distribution. Since the galaxies are discrete sources fuich we want to infer the properties of
the underlying matter overdensity field, we have to deal witbt noise in the galaxy distribution.
More specifically, we assume the observed nunigk;) of galaxies in a volume elemenv(x;)

at a discrete positior; to be distributed according to a Poisson distribution

/l(xi)Ng(Xi)e—/l(Xi)

P(Ng(Xi) [ A(xi)) = Ng(x))!

(3.14)
Here, A(x) denotes the expected mean number of observed galaxiaa witix), given the matter

density contrast,
A(X) = W(X) NG AV [1 + bom(X)] . (3.15)

In the above equatiomj = Ny"**'/V denotes the cosmic mean galaxy density, wigh'* being
the total number of galaxies in the volurite Note that we have added an indekto stress that
these are the actual (real) number of galaxies presefVimot the observed number of galaxies
Ng, which can be smaller due to observational detection limitee windoww(x) = ®(x) m(f)
denotes the combined selection functid(x) and sky maskn(f) of the survey, andb the galaxy
bias, which in general depends on redshift, scale, and gaygpe. The variance in the observed
number of galaxiedly(x) within AV(x) is theno-S(x) = ((Ng(x) - /l(x))2>Ng = A(x). Here, we have
used the indedy on the average to indicate the average over the Poissoibdigin in eq.|(3.14).

If the average number of galaxid¢x) is large, the Poisson distribution is well approximated
by a Gaussian distribution aroungx). For simplicity we will use the Gaussian approximation
throughout this work. Furthermore we will ignore the depamzk of the noise o0éi,(x) by using
a-s(x) = W(x)n_gAV instead of the correct noise terarrg(x) = A(x), for the latter would require a
non-linear and iterative approach. Such an approach isnoetfe scope of this paper, but is also
irrelevant for the main finding of this work. However, see EmBt al. k2009) for a better handling
of the Poisson noise and bias variations.

Since the cosmic mean galaxy denssTgy’s not known, we have to estimate it from the observed
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galaxy counts by

MAV = ————, (3.16)
Dz W(Xi)

where Ng’t is the total number of observed galaxies and the sum goesativéire pixels in our
volume.

With the above-mentioned simplifications, we can now workhwthe following linear data
model. First we define the observed galaxy density conttagisationx to be

Ng(X) — W(x) nj AV

— , 3.17
ng AV ( )

dg(X) =

which is the convention used in Kitaura et al. (2\009). Not this definition difers from the one
usually used in cross-correlation studies by a factow@f) (see, e.g., Pogosian et al. 2b05). We
then write

wheree(X) is the additive noise-term that originates in the Poissomiistribution ofNg(x), andR

is the linear response operator. In the simplest dage, X;) = bw(x;) 6jj, but in generaR maps
the continuous space in whiéh, lives onto the discrete pixel space of our déjaand it can also
include the mapping from redshift-space onto comoving dimate space. In the latter case, the
matter density contrast, would have to be read as a density contrast in redshift space.

Gravitational lensing introduces a magnification bias adbserved galaxy density contrast, as
described bﬂ/ Loverde et al. (2@07). In our data model, itrigightforward to take thisfeect into
account by letting

Rom(A,2) = W(A, 2)[b6m(r(2) A, 2) + 3QnHZ (2552 - 1)
‘ 1 r(@)(r(@-r())
Xfo dz H

(2) r2
(1+Z)om(r(2 1, 2)]. (3.19)

wherer (2) is the comoving distance corresponding to redshiind the slops of the number count
of the source galaxies is defined as

_ dlog;gN(< m)

S= —am (3.20)
with m being the limiting magnitude anbl(< m) being the count of objects brighter tham
Note that in order to get the correct formula for the magniitcabias term in 3 dimensions, we
used the Dirac delta function as the normalised selectiontion used by Loverde et al. (2@07),
W(z Z) = 6(z- 2).

From the Poisson distribution in eq. (3.14), we see {bgt, = Rom, and thus with the above
simplifications the noise is Gaussian distributed around zero

P(elp) = G(e,Ne), (3.21)
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with the noise covariance matrix

NGk, X)) = (e06) Xy = o 5. (3.22)
g

3.3 Standard cross-correlation method

In this section, we briefly review the standard method foedighg the cross-correlation of the CMB
with the projected galaxy density contrast, which was fiegalibed by Boughn et al. (1@98), but
see for example also Ho et al. (2008) and Giannantonio é:zaoao). Note that we use the word
galaxy density contrast for convenience, but the method t®orse the same when working with
other tracers of the LSS.

3.3.1 Description

The theoretical cross-correlation function of two quaesiX(n) andY(n) on the sky is defined in
spherical harmonics space as
C*Y = (ajam i - (3.23)

The average in the above definition is an ensemble averageatiyeossible realisations of the
universe with given cosmological parameters, i.e. @&, dg, T|p). This is indicated by the
index 'all’ on the average. We will denote the abstract cramselation function as a vector in
Hilbert space by*Y to simplify the notation. This can be understood as a vectquixel space
or as a vector irgm-space. Only when evaluating the expressions we derive, Wehwose the
representation of the abstract vecgdr” in spherical harmonics space’()mim = C*Y 61 Smn.
In the following we will work with the cross-correlation fation of the projected galaxy density
contrast with the CMB temperature fluctuatio&,”, in order to reproduce the standard approach
in the literature. '

The observed projected galaxy density cont&éé"ﬂ for a redshift bin centred around redstaft
in a given directiorm on the sky is

nz) = [ dzWz2)5,(A2

f dzZWz z) [Rom(A, 2) + €(A, 2)] | (3.24)

whereW(z z) denotes the normalised selection function that defineghhgin, andsg is given by
eqg. (3.17). Note that in many cross-correlation studiesitiienalised selection functiah(x) of the
survey is used to define the bin. However, since later on wiecanisider a perfect galaxy survey
covering all the redshift range relevant for the ISW, we needhtroduce the additional narrow
selection functio’W(z, z) defining the bin.

If the LSS survey and the CMB map cover the full sky, it is coneat to define an estimator for
the cross-correlation function of the projected galaxysitgrcontrast with the CMB in spherical
harmonics spacé (Rassat etal. 2007),

1
~uT _ '
Cl =57 Re(al af) . (3.25)
m
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wherea} andal are the expansion cfigients of the observaif" andT into spherical harmonics
as defined in eq. | (38). The hat has been added to discrimihatestimator of the cross-
correlation function from its theoretical counterpé:\gcT. In the case that the experiments cover
only a part of the sky, one has to take into account tfieces of mode-coupling when working
in spherical harmonics space. In this case it is thereforeenstraightforward to define other
estimators for the cross-correlation function, such asames over the sphere in real space (see,
e.g.J Giannantonio et al. 2008) or quadratic estimators Asshordi et a|.\(20d4). However, for the
statement we will make in this work the actual definition o #stimator is not relevant, and we
find the one defined in spherical harmonics space the mosen@mt to work with, since a closely
related quantity also appears within the framework of thitnogd detection method presented later
on in section 3.4. Again we use the abstract notagfohfor the estimator of the cross-correlation
&7 In order to keep the notation simple, we will from now on urstend£%T and ¢ 7 as
being vectors in spherical harmonics-space as well as ksfmce, containing the cross-correlation
functions for all the diterent bins.

In the literature, the probability distribution of the alesstefined estimatog®” around the
theoretical cross-correlation functigh' is usually approximated by a Gaussian,

P& 1p)=6 (& -¢%".Co) (3.26)

where the covariance matrix of the cross-correlation egtims defined as
—~ — —~ T
Cee = (€87 = & Nyan) (€% = & Nan) a (3.27)

The first question usually addressed in the above-mentiomess-correlation studies is whether
a non-zero cross-correlation function can be detectedl.atTal this end one assumes a fiducial
cosmological model, which is used to predict the theorktarass-correlation function and
covariance matrixC... In this chapter, we use the flACDM model with parameter values given
by Komatsu et al. (2009), table 10,h? = 0.02265Q, = 0.721 h = 0.701 ns = 0.96, 7 =
0.084, og = 0.817. The covariance matrix is usually estimated by MontddCsimulations (see
Cabeg et al. \(200\7) for an overview), or analytically as in Afsticet al. k2004). The analytical

prediction is possible in the case that the joint probapitiistribution for the projected galaxy
density contrast and CMB given the cosmological paramefefs)®, s>, T|p), is Gaussian,
which is valid in the framework of linear perturbation thgorHere we have used the indgx

to denote the projected galaxy density contrast ofibifhen the covariance matrix in spherical

harmonics space can be expressed in terms of two-poini@borefunctions as

1

o
=5 T Dy

[cHTe T+, (3.28)
where we have used the auto-correlation power spectrurnédCMB, as defined in ecf(S.K)f’ng
contains by definition the power coming from the underlyirgtter distribution plus the shot noise.
Note that, in principIeCIT in the above formula also includes detector noise, which egtatt here

as discussed in section 3.2.2y is the fraction of the sky covered by both, the galaxy survey
and the CMB experiment. In the following, we will assurfig, = 1 whenever we go to spherical
harmonics space.

Putting an amplitude or fudge factd. in front of the theoretical cross-correlation function
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£9T by hand, one can now find out whether it is possible to detecinazeroA... The index 'cc’
on the amplitude indicates that it is the amplitude of thessroorrelation function. Of course this
amplitude should be one in the fiducial model. However, elvreidata are taken from a universe in
which the underlying cosmology is the fiducial model we willgeneral not estimate the amplitude
to be one. This is due to theftBrent sources of stochastic uncertainty or noise in thenasti of
A, which we have described at length in section 3.2. The hikeld for the amplitude given the
cosmological parameters reads

P(£%7 | Ace, p) = G (€8T — Acc %, Coe) - (3.29)
A commonly used estimator of the amplitudg. is the maximum likelihood amplitude
R, - ETCRET
&9 } Ccc &9
i@+ 1%, e ) e

B | A 3.30
i@+ 1) 3 Clg"T(CICC)—l(L i) CIQJ,T ( )

where in the second line we have used the representationeofrtéss-correlation functions in
spherical harmonics space. The maximum likelihood angiditis an unbiased estimator (if the
underlying probability distribution is Gaussian), hence the fiducial model we have for the
average over all cosmic realisations

(Acoda = 1, (3.31)

since(é?"Uau = Clg"T by definition of the latter quantity. Note that here we hav&uased that the
data are taken in a universe where the underlying cosmokggtually the fiducial model. This
will be assumed in the rest of this work as well.

The variance in/ﬁ\s.:C is given by

O-gc <(A\cc - <A\cc>all)2>all
(e eon)”

1

Z(ZI + 1)Zc|9”(c|“3-1(i, e (3.32)
[ 0

In the standard literature, an estimated significance isrgte the detection of the amplitude,
the estimated signal-to-noise ratio

N = . (3.33)

$i(@ + 1) ¥ COT(CE)L(i, j) O

B <(B) - @D e )

Jcc

However, since the real signaldg. = 1, the actual signal-to-noise ratio or detection signifoeais

given by
2

(E)cc == Z(Z' * 1)%:C?i’T(C|°°)‘1(i, neiT, (3.3)

2
N O&e

and is therefore independent of the data.
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3.3.2 Analysis of error-contributions

In this section, we analyse thefidirent sources of noise that contribute to the total variames).
(3.32). In order to simplify this task, we assume that themoi shot noise in the galaxy distribution,
that is, we sek = 0 in eq. ((3.18), which means that the galaxies trace the mdi&ribution
perfectly. Furthermore, we work with the ideal case that weeha galaxy survey that covers the
whole sky and goes out to redshift 2. With these two assumgtiwe have a perfect knowledge of
the matter distributio@a,, relevant for the ISW #ect.

For suficiently narrow bins, the integration kernels for ISW andaggl density contrast are
approximately constant over the bin and heaﬁﬁ(') = const(i)x a] . In egs|(3.30),/(3.32), and
(3.34), we can therefore substitute every ind@by the index iswi), since the constant factor
cancels out. Now, if one uses the ISW kernel, working withesalnarrow bins that cover the
whole volume relevant for the ISWiect is equivalent to working with only one bin covering
the same volume. This is because the ISW integrated over tioéewelevant volume is exactly
the information about the ISWHect contained in the CMB. Thus, one does not gain anything by
working with bins if using the correct kernel. We outline fiveof for this in Appendix B.1. In what
follows, we therefore consider only one bin, which signifitta simplifies the form of egs (3.30),
(3.32), and((3.34).

Furthermore, we note that, since the IS\Weet is uncorrelated with the primordial CMB
fluctuations, we have‘::l'sw’T = CP". The index all' now indicates an average over the
probability distributior®(Tisw, Tprim | P) = P(Tisw| P)P(Tprim | P) (cf. section 3.2). Under the above
assumptions, eq. (3.30) for the estimated amplitude reads

C’:‘isw,T

Aco = — (3.35)
2+ 1)W
with the variance (eq. 3.32) .
isw -
Toc = (Z(Zl + 1)0;58—103 : (3.36)
and the signal-to-noise ratio in eq. (3.34) simplifies to
(§)2 =M@+ 1).l . (3.37)
N/ec 4 CW+Cf

The signal-to-noise ratio as a function of the maximum sutionandex|,ax for our fiducial model

is depicted in the top panel of Fig. 3.1, for which we have rfiediCMBEASY in order to obtain
CI‘SW andCIT. There are contributions to the signal-to-noise up to roufk 100. Note, though, that
our assumptions of Gaussianity of the matter realisatipand the assumption @@ being a linear
operator do not hold on small scales where structure groagrblecome non-linear. However, this
issue will not be addressed here and it will nfieat our main results, which are due to advantages
of our method on the very large scales, which are mfistted by cosmic variance.

The above estimator for the amplitude is only unbiased whesraging over the joint
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distribution

(Acoail = (Acc)primdisw = 1. (3.38)

Here, we indicate averages ovE(T,im|p) and P(Tisw|p) by the indices 'prim’ and ’'isw’,
respectively. This means that both the primordial CMB flations and the realisation of the local
matter distribution are included in the error budget. Weé tbe latter the local variance, indicating
that it originates in the realisation of the matter disttibo in our observed Universe. Let us now
estimate the contribution of the local variance to the tetaiance ofA. To this end, we split the
variance in eq. (3.36) into two parts

o—gc <<(A\cc - 1)2>prim>isw

(((ch - <ch>prim)2>prim>isw

+<(<A\cc>prim - 1)2>isw

= Olim+ Thoc (3.39)

O prim

where we have defined the contributions to the variance apinom primordial CMB fluctuations
and the local variance asf)rim andaﬁm, respectively. Both can be easily calculated, and the skecon
contribution turns out to be

Si(@ +1) (C(f C,ZW)

-2 (3.40)

loc

(Z,(ZI ; 1)@)2'

In the bottom panel of Fig. 3.1, we plot the relative conttitw of the local to the total variance,
o ./oé. against the maximurhthat we consider in the analysis for our fiducial cosmoldgica
model. For a maximum multipolg,ax = 100, this relative contribution amounts to

Tioc

— ~ 11%. (3.41)

Oce
This estimate agrees with Cébet al. \(2007), who compareffirent error estimates for the standard
cross-correlation method. They compare what they call ti@l Mhethod, which only takes into
account the variance in the CMB and ignores the varianceeangtilaxy overdensity, with their
MC2 method, which includes also the variance in the galavgraensity. Both methods rely on
performing Monte Carlo (MC) simulations of the CMB, and oéthalaxy overdensity in the case
of MC2, and the simulations used to compare tHeedent error estimates have converged with an
accuracy of about 5 per cent, as stated in the paper. The iethdt, compared to the MC2 method,
the MC1 method underestimates the error by about 10 perwhith agrees well with our estimate.

In eq. (3.39), we have seen that the contributions to themae of the measured amplitude of
the cross-correlation come from primordial temperaturetdiations (rpr .) as well as the specific
realisation of the LSS in our Unlverser?g ). In the following two sections, we will show that it
is possible to reduce bo'dﬁ2 and ap «m PY working conditional on available information about
the LSS and the primordial temperature fluctuations. We staft with reducingrﬁ)c in the next
section.
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Figure 3.1: Comparison of the average signal-to-noise ratio and varadrtbe optimal method with
the ones of the standard method gy = 2. Top panel: Average signal-to-noise ratio of the optimal
method (solid) and signal-to-noise ratio of the standard method (dashsdp\ube maximal multipole
considered in the analysisviddle panel: Relative improvement of the average signal-to-noise ratio
in the optimal method.Bottom panel: Average relative improvement of the variance in the optimal
method (solid) and relative contribution of the local variance to the totalivegian the standard method
(dashed).

3.4 Optimal temperature method

In the last section, we have seen that the local varianceibotégs about 11 per cent to the total
variance in the standard method for ISW detection, whichuiteca considerable contribution. The
reason is, that the ISWect is created by the decay of the gravitational potentiating from
the structures on the largest scales, i.e. from structina@shiave not yet undergone significant
gravitational collapse and are still not decoupled fromekgansion of the Universe. These largest
scales are mosti@cted by cosmic variance. Therefore, when comparing therebd (local) cross-
correlation function to its cosmic mean value, the reatisedf the matter distribution in our vicinity
acts as a source of systematic noise in the estimation oftiss-correlation, thus leading to a biased
detection significance, due to cosmic variance.

From the surveys mentioned above, the local matter disioibus known to a certain degree,
and hence the local variance can be reduced by working ¢onditon that information. We present
a generic technique of how to include the knowledge of theendistribution into the detection of
the ISW via cross-correlation, thus reducing the sourcemie to the unknown part of the matter
distribution and the primordial CMB fluctuations. We defihe systematic noise that comes from
the known part of the matter distribution as bias, for it canrémoved by working conditional
on the LSS data. The method presented here is referred t@ aptimal temperature methoth
contrast to thestandard methodor ISW detection described above and thygimal polarization
methodexplained below.
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The main idea of the optimal temperature method is to creat&@ template from a Wiener
filter reconstruction of the LSS. We then estimate the anngiditof that template in the CMB data,
using a maximum likelihood estimator. Since we assume éviey to be Gaussian distributed, this
maximum likelihood estimator is equivalent to the estimate obtain from an optimal matched
filter approach. Our amplitude estimate is unbiased alreeltlyn averaging conditional on the
observed galaxy density contrasg, Since we work conditional on the LSS, the variance in the
estimated amplitude and the signal-to-noise ratio botkedeén the actual realisation of the matter
in the Universe. For an ideal LSS survey, we show that theageewariance in the detected
amplitude is reduced by 13 per cent in the optimal tempegatnethod. As we show in this
section, in the framework of the optimal temperature methadstraightforward to correct for the
magnification bias due to gravitational lensing, as desdrw Loverde et al. (2007). Furthermore,
there is no need to estimate the covariance matrix by Montt Ganulations as in the standard
method. This saves time and increases the accuracy of thedet

Note that a dierent attempt to make the detection of the ISW unbiased byehksation
of the local matter distribution was made By Zhaﬁg (2006a).involves comparing CMB-
galaxy and lensing-galaxy cross-correlation functiomg] thus relies on nowadays stillficult
lensing measurements.  Another work which does ndtesufrom local variance is by

\Herréndez—Monteagubb (2008). He implements an optimal mattihedin spherical harmonics
space, and finds by numerical comparison that it always pegdetter than or equally well as the
standard method. However, Hamdez-Monteagudo (2008) works directly on the sphere,ouith
using a Wiener filter reconstruction of the LSS, and is theeeglightly sub-optimal in exploiting
the available three-dimensional information on galaxyipmss.

In principle, the idea of working conditional on the LSS datn also be used to decrease
the variance of the detection of other seconddfgats on the CMB, such as the kinetic Sunyaev-
Zel'dovich dfect, the Rees-Sciamdfect or gravitational lensing. However, in our derivation we
assume a Gaussian data-model, which is very well suitedhii$W dfect, because the very
large scales on which the ISWtect is created are still Gaussian. The assumption of Ganigsia
breaks down on smaller scales, though, due to non-lineactate growth. For the detection of
secondary fects on non-linear scales, our method would therefore reebd todified to account
for the non-linearities. This is possible using informatfeeld theory presented in section 2.3 and
in EnRlin et al. \(2009), however, it is beyond the scope of Work, and we leave the extension of
our methods into the non-Gaussian regime for future work.

3.4.1 Derivation of the posterior distribution

Let us first ask the question what the observed galaxy densityrast tells us about the matter
distributions,,. The data model in eq. (3.18) is the same as the one in eq)(2A46é signal and
noise are Gaussian distributed, cf. eqs (3.1) land (3.21thévefore obtain the posterior distribution

P(6m g, P) = G(6m — Dimj, Dm) » (3.42)
where we have defined the Wiener variance

Dn= (RIN IR+ Sy H 2, (3.43)
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and the response over noise weighted data
j= RN 6. (3.44)
From eq.[(3.4R2), we can directly reaff the posterior mean of the matter distributig

6= Dppj = (R'INTR+ Sy ) RN 6. (3.45)

This is the Wiener filter applied to the galaxy-overdensLWie(neH 1950; Zaroubi et al. 1995;
Zaroubi 1995; Fisher et al. 1@95; Ef@gliu et al. 20d4¥ Kitaura & EnRlin 20b8). We call this
estimator aeconstructiorof the matter distribution from the galaxy survey, thus thelsol 5;°.

With this knowledge of the matter distribution, let us nowdfithe posterior distribution for
T = Tisw + Tprim + Tdet, given the observed galaxy density conti@stThe probability distribution
for Tisw, Obtained from the one fai,, eq. (3.42), rea

P(Tisw| 5g, P) = G(Tisw — T-,QDr@Q") , (3.46)
where we have defined the ISW template

T, = Qo™ (3.47)

Since the uncertainty in the reconstructed matter digiohus not related to the primordial
CMB fluctuations (cf. section 3.2.1), the joint probabildistribution for Tisw, Tprim, @ndTget given
dq4 factorises:

P(Tisw, Tprim, Tdet| 5ga p) = P(Tisw | 5ga p) P(Tprim | p)
P(Taetl P) - (3.48)

Note that in the above equation we have used the fact thatrthmmlial CMB fluctuations do
not depend on the galaxy distribution. We now again use tbetlfeat the sum of stochastically
independent Gaussian distributed random variables is1@gaussian distributed with the sum of
the covariance matrices. We then obtain the posterioriloligion for T, given the LSS data:

P(T|6g, p) = G(T — T, CaT) . (3.49)

Here, we have used the probability distributions Tgfm and Tger, €9s((3.5) and (3.12), and the
covariance matrix for the total noise is

Car = (ATAT) = QDy@Q" + Cprim + Caet (3.50)

where we have defineiT = T — T,, and the average has to be taken over the distribution given
in eq. (3.49). As we have already said before, we will negleetdetector noise in the rest of this
section Cget ~ 0) and only include it when deriving the likelihood in secti®.7.

Snote that we again use that linear transformations of Gaussian distrilzuteédm vectors are again Gaussian distributed,

cf. eq.[(3.11)
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3.4.2 Estimation of the ISW amplitude

We can now ask the same question as before, namely if it id pbasible to detect a non-zero
amplitudeA, that we put in front of our ISW template in eq. (3.49). Agaire van write down the
likelihood function for the amplitude

P(T A, 09, P) = G(T = AT, Cat), (3.51)

and estimate the amplitude by a maximum likelihood estimato

Tt
TTCK%TT Z|(2l + 1)?

—_

A,

- - . (3.52)
o T
TCaTe yn@+1S
1

where we have assumégl, = 1 in the second step, and defined the estin@onf the ISW power
spectrum analogous to the cross-correlation estimatay.i{Be25):

1
Clr=_—_ |2 3.53
! 2l + 1Zm:|a1rn| ( )

This maximum likelihood amplitude is again an unbiasednestior, but now with respect to the
probability distribution conditional o,

(Adeond = 1, (3.54)

where the index ‘cond’ on the average denotes an averagehwvdistribution”(T | A, 6, P).

In other words, we have eliminated the noise component ggiiom the realisation of the
known part oféy, thus reducing the sources of noise to the unknown paft,@nd the primordial
CMB fluctuations. The variance i, is

0'3 <(A\r - <Kr>cond)2>cond

=T.\"1
e

| c
(again we have assumedgly = 1 in the second step), and we obtain the signal-to-noise fatia
full-sky analysis
S\ 1 cl
(N)T = 5= Z(ZI + 1)CIAT . (3.56)

Note that the error estimate (and hence the signal-to-mais® of the optimal temperature method
depends on the concrete LSS realisation, and how well ititedsto detect the ISWfect. In a
universe where by chance the local LSS ddess not permit a good ISW detection, the error is
smalflarge, as it should be.

We would like to point out that in our method there is no need$timate the covariance
matrices from Monte Carlo simulations, since for a giverodebsmological parameters, the matter
covariance matrix (power spectrur), can be calculated analytically using the fitting formula
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provided bﬂf Bardeen et al. (1986), since it is still lineartoa scales we are interested @im can
be obtained from Boltzmann codes sucltsBEASY, and the noise covarian®& can be estimated
from the data.

3.4.3 Comparison of signal-to-noise ratios and biasing

In order to compare our method to the standard one, let us m@ain anake the simplifying
assumption that there is no shot noise in the galaxy disiobuand that we have a perfect galaxy
survey, as we did in section 3.3.2. At the end of this sectie® will approximately look at the
effects of a galaxy survey that is incomplete in redshift, ifeat fgoes out to a maximal redshift
Zmax < 2. For the perfect survey, the shot noise covariance mitrig zero, and hence the posterior
for 6min eq. (3.42) is infinitely sharply peaked around the reaoiesionsi<© (eq.| 3.45), which turns
into

oree (RN R RN,

= R. (3.57)

Here, R should be read as the pseudo-invers&®oé.g. as defined in terms of Singular Value
Decomposition (sée Press et al. (1992)\and Zaroubi taG 19

The posterior fob, in eq. (3.42) is therefore now a Dirac delta function

P(6m g, P) = 6(6m — R_lag) ) (3.58)

which makes our ISW template exact, and the noise covariarateix due to the error in the
reconstruction is zera@ D,,Q" = 0, thus leaving us witlCxt = Cpriim = Ct — Cisw. Since our
perfect LSS survey covers the complete volume relevantien$W dfect, our template is now
equal to the ISW-temperature fluctuationis, = Tisw. We can then substitute all indicesn eqs
(3.52)-(3.56) by the index isw, and the estimated amplituelomes

"lsw T

— Z (ZI + 1) T IswW
A= i (3.59)
Zl(ZI + 1)C|T—C:SW

with the variance i

o2 (Z(2|+1)%] , (3.60)

and the signal-to-noise ratio
ISW

( ) Z(2|+1) et (3.61)

As we mentioned before, the variance, and thus the sigrabite ratio of the optimal
temperature method, depend on the actual realisation ofttéer distribution in our observed
Universe. In Fig. 3.2, we plot the probability distributiohour signal-to-noise ratio fdg,ax = 100
andznax = 2, which we have inferred from the distribution Bf,, using the central limit theorem
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Figure 3.2: Probability distribution of the signal-to-noise ratio in the optimal teatper method (solid)
for Imax = 100 andznax = 2. The vertical line (dashed) shows the signal-to-noise ratio of the sthnda
method for comparison.

for (S/N)?, and from that deriving the distribution fQS/N)T@ We have also checked the validity
of the central limit theorem in this case by comparing witk ttorrect probability distribution
of the signal-to-noise ratio given by an expansion into leagel polynomials as derived, e.g., in

Castdio-Martnez & L()pez-thqueH (20d7). The probability distribution is such thatdlgnal-to-
noise ratio can easily fler by A (S/N), ~ 1 for two different realisations of the matter distribution.

The mean signal-to-noise rati®/N)2" = 1/ /o2 4, = 1/ /(o 2)isw, increases Witlmay as it did
for the standard method. For evdpyy, we compare the mean signal-to-noise ratio of the optimal
temperature method to the signal-to-noise ratio of thedstahmethod (cf. eq. 3.37) in the top
panel of Fig.| 3.1, again farh,x = 2. Note that in our formula for the signal-to-noise ratio, eq
(3.61), there is now a minus sign betwe@;ﬁandCI‘SW, in contrast to the signal-to-noise ratio of the
standard method in eq. (3.37), which has a plus sign instads we take advantage of the LSS
instead of moving it into the error budget. The absolute anbment of the signal-to-noise ratio
in our method is therefore independent gf;, since the main advantage of working conditional on
the LSS arises on the very large scales, where the contiibofithe ISW to the CMB is highest.
The average relative improvement of the signal-to-noistescted in the middle panel of Fig. 3.1.

It amounts to about 7 per cent figax = 100. In the bottom panel of Fig. 3.1, we compare the mean
relative improvemento?, — o2 ;) /o2, of the variance in the optimal temperature method with the
contribution of the local to the total variance in the staddaethod. The variance is reduced by
about 13 per cent in the optimal temperature method, as ceupa the standard method.

Note that the maximal average signal-to-noise ratio we @gelor when trying to detect the
ISW via cross-correlation, given a perfect LSS surveySjN)2" ~ 7.3, with a variance as depicted
in Fig./3.2. Hence, if we are lucky and live in an environmdrattallows for a high signal-to-noise
ratio, we can maximally obtain a detection significance afdl§7.5 - 8) o

Let us now look at theféect of an incomplete galaxy survey. Incomplete galaxy sygean be
treated generically with our method, because the dark nfatd, and thus the ISWftect, are split

6This will provide accurate results for multipoles> 1, however, is a coarse approximation in the reglimel.
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Figure 3.3: Average signal-to-noise ratio of the optimal temperature methbd)(@nd signal-to-noise
ratio of the standard method (dashed) vemus for Imax = 100.

into a known part (the reconstruction) and an unknown paragalitive noise term uncorrelated with
the reconstruction). However, for now we only want to giv@agh estimate of the consequences
of an incomplete survey. Therefore, we introduce a sharfun redshift, znax, and we simply
redefineTisy = Tisw(< Zmax) t0 be the part of the ISWfEect created at < znax The part of the ISW
that has been createdat znax is then considered part of the primordial temperature fatobns
Torim. The power-spectr@lis"" andCIprlm are redefined accordingly. With this redefinition, we have
introduced a correlation between what we consider the I$\&ctand primordial fluctuations,
which we would not have if we had used the reconstruction éolefiningTis,,. However, for
getting the picture, we ignore this subtlety for the monfent.

In Fig./3.3, we plot the signal-to-noise ratio of the standarethod together with the average
signal-to-noise ratio of the optimal temperature methad W&z, for Imax = 100, where we have
used the above-described redefinition(l{)‘lW in egs ((3.61) and (3.37). With decreasing maximal
redshift of the LSS survey, the total signal-to-noise ratid®ooth methods goes down, as does its
relative enhancement of the optimal temperature methodapared to the standard one. The
relative contribution of the local to the total variance hetstandard method goes down with
decreasing survey depth as well.

Currently available full-sky LSS surveys (whiclfectively cover about 70-80 per cent of the
sky after masking out the galaxy, see Giannantonio dmg(hre either very shallow in redshift
(Two-Micron All-Sky Surveyl Jarrett et al. (ZdOO)), or thegve an uncertain redshift distribution
which results in a large uncertainty in the ISW template (NIR¥LA Sky Survey (Condon et al.
@3), High Energy Astrophysics Observatd& chM%?ﬂ‘ne SDSS luminous red galaxy
(LRG) sample covers a redshift range upzte- 0.7, and the QSO sample even reaches out to
z ~ 2.5. However, the SDSS only covers about a quarter of the skiytlars at most a quarter of
the ISW-relevant volume. Even with future surveys such aQEIDE, we will effectively (after
masking out the galaxy) only observe an area of aboud@Dded, which is roughly half of the

"The ratio of this neglected coupling to the template strength gets large for zpallOur estimates are therefore less
accurate in this regime.
8http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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sky. We would theron averagestill only obtain an enhancement of the detection signifteany at
most 3.5 per cent.

However, as we stated in section 3.3.2, the amplitude-agtiof the standard method is biased
when the averaging is performed conditional on the galaatady, due to local variance. This leads
to an over- or underestimation of the detection significastoee the estimated amplitude is used
when estimating the signal-to-noise ratio from the dataw&s$ave shown, the contribution of the
local to the total variance of the estimator is quite smélgwt 11 per cent for an ideal galaxy survey
and even smaller for a shallower survey or a survey that sawelly a fraction of the sky. We thus
expect the biasingfiect in general to be quite weak. However, we could be unluckylize in an
unlikely realisation of the matter distribution, given thewer spectrum, which would enhance the
effect of the biasing.

With the method we presented in this section, the local magadfect is reduced. If we knew
the local matter distribution perfectly, we would not beated by local variance at all, as we
have shown. Unfortunately, we have to rely on reconstrastaf the matter distribution from LSS
surveys, which sftier from shot noise and thefects of mask and selection function. However,
the reconstruction treats mask and selection function iopimal way, and extracts the maximum
amount of information from the LSS data which can then be uséak ISW detection.

3.5 Optimal polarization method

With the optimal temperature method introduced in sectigh) &e were able to reduce the low
redshift cosmic varianceflect in the estimate of the ISW amplitude, i.e. we reduced thisen
coming from the specific realisation of LSS in our Univer&%c. However, in both the standard
method and the optimal temperature method, the main sotiggcertainty in the detection of the
ISW effect comes from chance correlations of primordial CMB flutires with the LSSp-fmm
(cf. section 3.3.2). In this section, we show ho@;im can be reduced by including polarization data
in the analysis. CMB polarization is correlated with the pemature fluctuations, and can thus be
used to obtain information about the latter. We use the obseE-mode polarization map, which
we translate into a temperature map using the TE cross-pgpestrum. The obtained temperature
map is then subtracted from the observed temperature mdgheas no longer contributes to the
noise budget of the detected signal. In other words, we parfour amplitude estimate of the
ISW template conditional on the part of the temperature dlatdons which is correlated with the
polarization map.

Again we work with a Gaussian data model, as before whenidgrihe optimal temperature
method. This assumption is very well-suited for the IS#éet. Usinginformation field theory
{Enrslin etal. 2009), it is possible to extend the optimabpiakation method into the non-Gaussian
regime, in order to use it for detecting seconddtge@s on smaller scales, but again we leave those
extensions for future work.

Using polarization data to reduce the noise in the deteatibosecondary fects was first
proposed by Robert Crittenden, following a suggestion aihap Page\ (CrittendHn 2d06). He
already derived the uncorrelated temperature power spectvhich we show in Figure 3.4, and
roughly estimates the improvement of the signal-to-naggm rfor ISW detection to be around 20
per cent, which we confirm with our calculations.
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3.5.1 Uncorrelated temperature maps

In order to use the information contained in the polarizatiata in our analysis, we enlarge our
data vectod to include the observed polarization map

-
dz(P), (3.62)

PE( J ) (3.63)

As we have seen in chapter 1, we represent the polarizatisphiarical harmonics space in terms
of the so-called E and B modes, and thus

a'IT
al =] at |. (3.64)
3m

In principle, it is possible that the secondafieet we are looking for is also present as a small
signal in the polarization data. If the temperature antgméas created by the secondaryeet
exhibit a quadrupole component at the time of reionizattbig quadrupole will be re-scattered
by free electrons and create a polarization signal (Zd%@?). However, for the ISW this
effect has been proved to be small (Cooray & Melchiorri 20063htiuld also be small for the RS
effect, lensing and the kinetic S4fect, the highest contributions of which are on relativelyam
scales and are mostly created after reionization. Thusfiest approximation we assume that the

polarization data do not carry any signal of thifeet we want to detect. Given the signal template
for the temperaturel;, our signal template is then

= (T)

2y
am$ = |0 |, (3.65)
0
and the data model becomes
T T, + AT
o(3)-().

with AT = T - T, as before. The observed polarization maps Pcmp + Prg + Pget, CONsists of the
cosmological polarization sign&.:mp, residual Galactic foregrounds after foreground remé&yg|
and the detector noideye. Assuming again Gaussianity, we can write down the likeltho

P(d|r,p) =G(d-1.C), (3.67)
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where the covariance matrixis

= C C
€ =(@- - 1era= 27 7). (3.68)
PAT P
with
Car = <ATATT>c0nda (3.69)
Catp = (AT PT)cond, (3.70)
Cp = <PPT>cond, (3.71)

and we have redefined the index ‘cond’ to denote the averagelos probability distribution in eq.
(3.67).

By using block-wise inversion of the covariance magixt is possible to rewrite the likelihood
as a product of the part of the temperature map which is uelated with polarization, and a
polarization part. To this end, let us define the uncorrdlééenperature map and covariance

rec -1
Tuncorr = T- CAT,PCP P

= T-T&n,
Cuncor = Cat — CaTpCp'Cpat
= Cat — Ceorr, (3-72)

where we have introduced the definitions

TEC = CatpCp'P,
Ceor = CatpCp'Cpar. (3.73)

We have added the index ‘rec’ afs:, and T/5%,,, to indicate that under certain assumptidr$;,
actually corresponds to a Wiener reconstruction of therralion map, translated to a temperature
map. We prove this in appendix C.1 fféctively, what we have done is the following. We have
a polarization mag, which is correlated with the temperature fluctuatiaisvia Cat p. That is,
the polarization map contains information about the termfoee map, which we can translate into
the part of the temperature map which is correlated with thlarjzation, using the prescription
Tie¢ = CatpCpP. This correlated part of the temperature map is subtracted fhe observed
one, in order to obtain the part of the temperature map wisicimcorrelated with the polarization,
TI'eC

uncorr
With the above definitions, the likelihood becomes

#(d|7,p)

P(TIP. T, pP(PlIp)
= G(Tincorr— Tr» Cuncor) G(P.Cp), (3.74)

as we prove in Appendix B.2. Now, our goal is to find the sigeahplateT. in the CMB data.
The polarization part of the above likelihoog@(P,Cp), does not depend on the signal template,
nor does the uncorrelated temperature part expliciteledeémnP. In other words, the observed
polarization map does not contain relevant informationmye after introducing the uncorrelated
temperature fluctuations. Thus, we can marginalise ovand,continue only with the likelihood of
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the uncorrelated temperature map

P(Tincor! TP = G(Tincorr— Tr» Cuncor) - (3.75)

The uncorrelated temperature mag:s,,, fluctuates around our signal templatgonly with the
varianceCyncor, Which is smaller than the full varian€®,r of the observed temperature map. This
reduced variance is the uncertainty going into our sign&ga®n problem now, rather than the
full variance of the original temperature fluctuations. ®ldhbat it is straightforward to derive
the factorised likelihood also for the case that we do haverazero signal template, for the
polarization part. In that case, the covariance madrig slightly changed, as well as the definitions
of the uncorrelated temperature map and covariance matnia, we can no longer neglect the
polarization part of the likelihood. Please refer to Appe&ril2/for details.

In multipole space, only the E-modaﬁn, is correlated with the temperature fluctuations,
whereas the B-mode is not (cf. section 1.4.4). In the isa@tropse, transforming S and Ceorr
into multipole space results in

AT.E
Al _ G o
m:?
m C|E
AT.E\2
clen = @) E) : (3.76)
CI

where we have define@IAT’E = aIAmTaETT>, and the corresponding quantities fHf<,,,, and Cyncorr
are
aITlrJ?]((:JOTI’ — aIT _ aITfr;gfr
m m m
rec
cuneorr CIAT —C|T°°”, (3.77)

with CIAT = <a1AmTa|AnT*). Note that if isotropy does not hold, for example, if we cut aupart of
the sky by applying a mask or if we have inhomogeneous ndigecdvariance matricés.,; and
Cuncorr@re no longer diagonal in spherical harmonics space.

In the next section, we estimate by how much the variance endistection of secondary
signals can actually be reduced by working conditional @ndbrrelated part of the temperature
fluctuations. We will perform this estimate for an ideal samém, where we have noiseless data.

3.5.2 Reduction of variance

We now attempt to get a feeling for the reduction of the varéam the detection of secondary
signals, obtained from including polarization data. Wekladthe best case scenario, in which we
have full-sky polarization maps, and there is no contanonaif the CMB polarization signdcm,

by foregrounds or detector noise. Note that we are still famfthis scenario with our currently
available polarization data. The WMAP satellite has predidis with full-sky polarization maps,
but since WMAP was primarily designed to measure tempegdtuctuations, the detector noise
in the polarization data is very high. Even more problematithe contamination of the CMB
polarization by synchrotron and dust emission from our @ald herefore, the WMAP team has
masked out about 25 per cent of the sky, but even in the rentpparts of the sky the Galactic
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foregrounds dominate over the CMB signal. In chapter 4, wi otitain the correlated and
uncorrelated temperature maps for the WMAP data, and hawekadt the noise contamination.
With the Planck mission (Taube%O), the detector noise will be reducedh lmonsiderable
amount, however, lots of work has still to be done in orderridarstand and remove the Galactic
foregrounds. Therefore, our estimate of the reduction cawae has to be understood as an upper
limit of what we can gain from polarization data.

As in section 3.4, let us put an amplitude in front of the sigaaplate in eq. (3.75), and estimate
it from the data using a maximum likelihood estimator:

—~Trec
CluncorrTr

. Tree fc-1 T ~ Z|(2|+1)'ClunW

A-r — uncorr uncorr' 7 (378)
-1 Crr
T: CuncorrTr ZI(Zl + 1)CIE:r|1_wrr
Here, the last expression is in spherical harmonics spdeevariance of, is now
-1 6TT -1
o2 = (T CanconTs) = (Z(z + 1)CUT'CW) , (3.79)
| |
and thus the signal-to-noise ratio becomes
S\2 . cr
(N)pol = TTTCuncorrTT = Z(ZI + 1)Wr
|
2 +1)C
= > (3.80)

ot - (ClAT,E)Z JCE ’

Note that we have used the index ‘pol’ to indicate that thithessignal-to-noise ratio one obtains
when using the polarization data to reduce the variance. gadnyg the signal-to-noise ratio in
eq. (3.80) with the one in ed. (3.56), we see that by includiveginformation contained in the

o . . 2
polarization data, we reduce the variance in every modeé)\;eutm(CfT’E) /CE.

Let us now get an impression of how much the variance getxestfor the diferent multipoles.
To this end, we neglect the detector noksg; and the foreground noisEf(E (note that we have
neglected the detector and foreground noise for the teryerdata, too), which allows us write

CIAT,E ~ CIT,Ecmb _ CITrsEcmb (381)
T o~ ¢l -2/ +Cl (3.82)
C|E ~ CIEcmb . (383)

We furthermore neglect the cross-te@ﬁ“Eﬁmb. For the ISW &ect, we have verified numerically
that it is negligible, as shown in Fig. 3.5. For the kinetic &&ct and the RSfeect, the template
itself is so small that we can also certainly negl@ﬁt’Emb. Then, the uncorrelated temperature

°In reality, Galactic E-mode foreground%, are likely to be the limiting factor in the improvement of the detection
significance coming from including polarization data. We comment on thseagnd of this section.
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Figure 3.4: Reduction of the variance in the detection of secondary tetupesagnals by using the
information contained in polarization data. Shown are the CMB temperaturerpaqvectrumclT

(solid), and the template-free part of the uncorrelated temperature ppeeruntC; —(CIT’E““b)2 JCFem
(dashed), together with the part of the CMB power spectrum coming frentahrelated part of the

: . . o 2
temperature fluctuations which we infer from the polarization rf@p,™)" /C~™ (dotted).

power spectrum defined in eq. (377) becomes

(c==y

o (3.84)

Cio~ ¢l - 2¢0 T+ C -

In Fig. 3.4, we plot the template-free part of the uncoredatemperature power spectrum,

CIT—(ClT’ECmb)2 /CFe™ (note that we have not included the template-dependenste2® '™ andC,”

in the plot), which gives us an impression of how the variac@waing from primordial temperature
fluctuations is being reduced by including polarizatioradakhe variance will be further reduced
by working conditional on the signal templafe, which is encoded in the terme2C>™ andC/",
and already described in section 3.4. We also plot the aigdMB power spectrunﬁ'.:lT and the
difference to the uncorrelated one for comparison. We have assanflatACDM model with
the parameter values given \by Komatsu et al. (QOOQ), tabfeph’(= 0.02265Q, = 0.721 h =
0.701 ns = 0.96 7 = 0.084 oy = 0.817), and use@MBEASY (Doran 2005) for obtaining the
respective spectra.

In Fig.'3.6, we plot a realisation of the original temperetarapT (top panel), the uncorrelated
temperature map 5%, (Mmiddle panel) and the correlated temperature nidgy, for comparison
(bottom panel). The realisations were created usingHte Pix package\ (@rski et al, 200\5).

Note that all of what we have done works equally well for redgahe polarization map when
trying to detect a secondary signal contained in the pa#drm data. One has to simply exchange
the roles ofT and P in the derivation. This was partly already donemézooé), who used
the information contained in the CMB temperature map fodjmténg a polarization map from it.
The equivalent plot to Fig. 3.4 for this scenario is given ig.B.7. The likelihood for the case
of simultaneously detecting a temperature templatand a polarization template. is derived in
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Figure 3.5 Plotted are the cross-power speff4, CP"™* andC'E. We see thafisw and E are

hardly correlatedC;™"F ~ 0.

Appendix B.2.

In practice, the accuracy to which we can measure the patazmap is limited by Galactic
foregroundsPyg, the most important of which are synchrotron radiation anst @mission of the
Milky Way. Uncertainty in the measured polarization map egthe reduction of the temperature
power spectrum lesdiecient, because the power contained in the foreground r@llEé"e,enhances
the observed E-mode power spectr@n ~ C™ + CIEfg +C . In sectiori 3.6, we estimate the
improvement of the signal-to-noise ratio for an ISW measwaet for such a realistic scenario.

3.5.3 Application to the ISW dfect

Let us now apply our method to the ISWFect. That is, our signal templafe is now an ISW
template which we obtain from a Wiener filter reconstructidrihe LSS, as described in section
3.4. Again we assume the best-case scenario of having pénfiseless) LSS and CMB data. In
other words, we neglect detector noise and residual Gelewggrounds, as well as the shot-noise
in the observed galaxy distribution, and assume that we @iaveeal galaxy survey that covers the
whole sky and goes out to a redshift of at least two. Recalldbasignal template is exact in that
case,T; = Ts = Tisw, and the residuall{ — Tisw) = Tprim is simply given by the primordial CMB
fluctuations, which are created at the surface of last soadtéwe have ignored other secondary
effects here). Since we assurfig, to be uncorrelated with the primordial fluctuatiohgim, we
can writeC>"* = " = C}s".,

The signal-to-noise ratio for the detection of the ISW sigeq. (3.80), then reduces to

2 2 +1)C"

(Wha=2

_ : . . (3.85)
I Clprlm_(clprlm,Ecmb) /CIEcmtJ

As explained in section 3.4, the signal-to-noise ratio dejgeon the specific LSS realisation in our
Universe viaC®". Again, we can infer its probability distribution from thésttibution of Tis,, by
using the central limit theorem for the distribution(&/N)? and deriving the distribution fa®/N
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Figure 3.6: Realisation of the original CMB temperature mgfop panel), the uncorrelated temperature
map TS, (Middle panel) and the flerence between the twd g, for comparison (bottom panel) in
uK. We have chosen the same colour range frésiQuK to 50Q:K for all maps.
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Figure 3.7: Reduction of the variance in the detection of secondary patiarizsignals by using the
information contained in temperature data. Shown are the CMB E-mode ppmnstrmﬂCFmb (solid),

and the template-free part of the uncorrelated E-mode power speCfrtifn- (CIT’E°mb)2 /CT (dashed),
together with the part of the CMB power spectrum coming from the correlpéetof the E-mode

fluctuations which we infer from the temperature n(@T,’Emb)z /C (dotted).

from that. We then average the signal-to-noise ratio ovisrglobability distribution in order to
compare it to the signal-to-noise ratio of the standard oubtleq. (3.37), and the average signal-
to-noise ratio of the optimal temperature method, leq. (3.&ecall that the signal-to-noise ratio
obtained for the standard method is given by

S (2 + 1)C
(N)CC:Z o (3.86)

The cumulative signal-to-noise ratios versus the maximaltipole |,ax used in the analysis are
plotted in Figl 3.8. We see that including the polarizatiatedn the analysis increases the signal-
to-noise ratio by 16 per cent as compared to the optimal tesiyre method, and by 23 per cent
as compared to the standard method. Note that we only indltidelinear ISW #ect in Fig. 3.8.
Beyond a multipole of about~ 100, non-linear fects start to play a crucial role (Coo%ay 20b2b),
which could change the plot for> 100. However, we see that for the linear IS\eet, there is
hardly any contribution from such high multipoles.

Let us now look at the enhancement of the signal-to-noige fat shallower LSS surveys.
We use the same approximation as in section 3.4, i.e., wednte a sharp cutfoin redshift and
redefine everything beyond that redshift as primordial lations. We plot the redshift-dependence
of the signal-to-noise ratios of the three methods in/Fig. 8/e also plot the ratio of the signal-to-
noise of the optimal polarization method with the one of ttasmdard method (solid) and with the
one of the optimal temperature method (dashed). Note tkagrthancement of the signal-to-noise
ratio with respect to the optimal temperature method is atroonstant in redshift. This is quite clear
from the fact that we have reduced gémordial noise with the polarization data, and neither the
primordial noise nor the reduction of the latter depend asinédt. Therefore, the reduction of the
noise from including polarization data is always the samaependent of how deep in redshift our
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Figure 3.8: Comparison of the cumulative signal-to-noise ratiozfgx = 2. Top panel: Average
signal-to-noise ratio of the optimal polarization meth@&IN)3” (solid), of the optimal temperature
method §/N)2" (dashed), and signal-to-noise ratio of the standard met8@d){. (dotted) versus the
maximal multipole considered in the analydnttom panel: Ratio of the signal-to-noise of the optimal
polarization method with the one of the standard method (dotted) and with thefdhe optimal

temperature method (dashed).

survey goes, and the signal-to-noise ratio is already fsiginitly enhanced for currently available
surveys. For example, for a maximal redshiftzgfy ~ 0.3, which is the maximal redshift for the

SDSS main galaxy sample, we have a better signal-to-noisbyt 16 per cent as compared to
the standard method. The additional enhancement for higlashifts of our signal-to-noise ratio

with respect to the standard method comes from working ¢immdil on the galaxy data, as we have
described in detail in section 3.4.

3.6 Improvement for currently available data

Let us now find out how much subtracting the correlated teatpes mapT ., from the original
CMB temperature map would improve ISW measurements witheatly available CMB and
LSS data. In chapter/4, we will computgs?, and TS, together with the covariance of the
correlated temperature ma@.o, for the WMAP data, and we will already use these results
here. We transform the covariance matty, to multipole space, which gives us the non-diagonal
matrix Cf, ., since our problem is not isotropic. This is due to the inhoem®@pus noise in the
polarization map and the fact that we we have to mask out thacGaplane in the polarization
data (cf. chapter 4). However, we only consider the diagd®fd[| ,, and take the average over all

I,m?
multipole componentm for every fixed!:

Clclorr = 1 4 Cﬁg{im. (3.87)
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Figure 3.9: Comparison of the signal-to-noise ratios versus the maximdliftedg.x of the galaxy
survey. Top panel: Average signal-to-noise ratio of the optimal polarization metgN g‘(’)l (solid),

of the optimal temperature metho8/()2¥ (dashed) and signal-to-noise ratio of the standard method
(S/N)¢c (dotted). Bottom panel: Ratio of the signal-to-noise of the optimal polarization method with
the one of the standard method (dotted) and with the one of the optimal temparadtirod (dashed).
We see that with polarization data included, the signal-to-noise is significartigneed even for low

redshifts.

In the upper panel of Fig. 3.10, we plot this ‘averaged powéthe observed 3¢ together with
the theoretical power spectrum of the correlated tempesanapC™ ~ (C[F)2/CEm, and the
power in the CMB temperature fluctuatioi®,. The theoretical power spectrung,¢=m)>2/C =,
is the upper limit of the reduction of the variance that we obtin per multipole (cf. Fig. 3.4).
The ratioC/[(C-%™)2/C*™] is shown in the bottom panel of Fig. 3.10. For WMAP, thisadti
around 50 per cent for the lowest multipoles and faffts@a value below 1 per cent above 10.
We now compute the signal-to-noise ratio we would obtairhwite WMAP data for our
optimal polarization method and compare it to the one of thadard method. We do not create
an ISW template from LSS surveys to compute the correct bigraoise ratio, but we rather
perform a crude estimate in multipole space. To this end, stienate the signal-to-noise ratio
of the optimal polarization method for WMAP da(&/N S\CI)I,WMAP' by simply substituting the term

(CP™Eem)2/CEem in eq. (3.85) byCEe". We plot the ratio ofS/N Suiwmap to the signal-to-noise
ratio of the standard metho@S/N),., for a given depth of the LSS survey in Fig. 3.11. This is
analogous to what is plotted in the bottom panel of Fig. 3.@teNhat we have again neglected
the shot-noise in the galaxy distribution. We see that fdaxgasurveys withz,.x < 0.6, we

do not gain more than 5 per cent in detection significance fMAR. With currently available
data, our optimal polarization method and the standard odetbr ISW detection thus still yield
approximately the same detection significance. Given tiestandard method has been applied to
all currently available LSS data sets (ﬂsee Ho et al. 2008ni@iatonio et al. 2008, and references
therein), we decide not to proceed and apply our method to WAta.
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Figure 3.10: Reduction of the variance of ISW detection from includingrizaton data for WMAP
and for 2 limiting estimates foPlanck which are explained in the texilop panel: CIT (dotted), the
theoretical reduction of variance per multipolelT Cmb)Z/ClEcmb (dashed), and the variance reduction
achieved by WMAPFPlanck G°" (solid). The three cases shown fof°" are: The estimate fdPlanck
with the WMAP noise covariance scaled down by a factor of 1 per cemtefuiinin line), the same for

a scale-factor of 10 per cent (middle line), and the estimate for WMAP (batitdck line). Bottom
panel: The ratioCS°"/((C,"5em)2/CF=™), which is roughly the ratio of the variance reduction achieved
by WMAP/Planckover the theoretically achievable reduction of variance per multipole. Tke tases
shown are the same as in the top panel.
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Figure 3.11: Ratio of the signal-to-noise ratio of the optimal polarization methddetmne of the
standard method, for WMAP (dotted line) and for the two limiting estimate®fanckas explained in
the text: WMAP noise covariance scaled down by a factor of 10 per dashéd lineg = 0.7) and by

a factor of 1 per cent (solid line; = 0.9). ForPlanck we will obtain an enhancement of the detection
significance of at least 10 per cent, even for the more conservativesgs.

However, thePlancksatellite (Taubar 20&)0), which was launched in May 2009l wibvide
us with much more accurate polarization measurements tHdARVLet us therefore do a similar
rough estimate of the potential improvement of ISW detectiith Planckdata. We first need to
find a way to estimat€;°" for Planck which we attempt to do based on the polarization noise
covariance matrix of WMAP. FoPlanck the Galactic foregrounds will certainly be the limiting
factor for the quality of the polarization data. We thus assuhe detector noise to be negligible
in comparison to the residual foregrounds. We can furtheenegpect the foreground removal for
Planckdata to be more accurate than the one for WMAP, due to the braadge of frequencies
covered byPlanck In the following, we therefore assume the covariance duedidual foregrounds
for Planckto be between 5 and 50 per cent of the one for WMAP. For the WM@|Brjzation data,
the foregrounds contribute about 20 per cent to the diagointéle noise covariance matriXp in
pixel space. In order to obtain a noise estimate for the tmdtilig cases of th&lanckforeground
removal, we do not change the shape of the total noise covaillp, but simply scale it down
with a factor of 1 per cent or 10 per cent, respectively. Thilsamly give us a very crude estimate,
of course, since the covariance matrix of the residual fa@gds should dier strongly from the
detector-noise dominated covariance of WMAP. In partiGulze contribution of the foregrounds
to the total noise covariance matrix of WMAP should dependhenmultipole, which we ignore
by just downscaling the total noise covariance. Never#sléor the very rough estimate we are
trying to obtain, this assumption should be good enough. Mgeghe resulting power spectra and
their ratio in Fig{3.10. The rati€°"/[(C"%™)2/Cf™] for the lowest multipoles is around 0.7
for the WMAP noise covariance scaled down by a factor of 10gest, and around 0.9 for the
noise covariance scaled down by a factor of 1 per cent. Fohitfteer multipoles, this ratio falls
off quite rapidly, which is simply due to the fact that the WMAHgrzation data contain so little
information at the higher multipoles. FBtanck we assume that the quality of the polarization data
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does not notably drop until~ 100. That is, we assume a constant ratio
a= Cﬁorr/[(CIT,Ecmb)Z/ClEcmb] , (388)

and we takea to be 0.7 and 0.9, for the two limiting cases described aboker these two
cases, we again compute the signal-to-noise ratio of theafpolarization method by substituting
(CP™Eem)2/)CEem in eq. (3.85) by (CP"™F™)2/CFe™, and plot its ratio to the signal-to-noise ratio
of the standard method in Fig. 3/11. The improvement we plisaalready around 10 per cent for
low redshift surveys ofnax = 0.3 for the more conservative estimate. We can thus expectitbat
improvement of the ISW detection significance for the optipwdarization method will be at least
10 per cent foPlanck even with currently available LSS surveys.

3.7 Likelihood for cosmological parameters

Many of the above-mentioned cross-correlation studiesgtwhse the standard method described
in section 3.3 to detect the ISWtect, attempt to constrain cosmological parameters usmtS.
However, the biasingfiect of the signal-to-noise ratio we have described in sec3id.3 is of
course also present when moving from the pure detectioneofSKV to the task of constraining
cosmological parameters. This problem can already be sedmeilikelihood function for the
cosmological parameters of the standard method in eq.)(3TB@ estimator of the cross-correlation
function,£% T, could be quite dferent from the theoretical prediction with the underlyirggmeter
values, just because we are living in an unlikely realisatsd the matter distribution, given the
power spectrum. Then, the likelihood in eq. (3.26) wouldofavcosmological parameter values
for which the theoretical prediction of the cross-corrielatfunction is closer to its estimator, thus
biasing the parameter estimates. Furthermore, to our latme, there is no straightforward way of
combining the likelihood from the cross-correlation in €426) with the likelihoods for CMB and
LSS data, as e.g. given by Verde et al. (260\3b), Percival éI@M) and Cole et al. (20b5).

Usually, when combining CMB with LSS data for deriving camastts on cosmological
parameters, it is assumed that the two data-sets are stiseligsindependent, i.e. that
P(M,Poglp) = PT,PIp)P©glp) (see, e.g..\ Tegmark et al. 2004; Sperqel&ek al 2007;

Komatsu et all. 2009). But the ISWfect (and also otherfiects as, e.g., the Sunyaev-Zel'dovich-

effect) introduces a small stochastic dependence of the CMBatathe LSS data. That is, instead
of assuming that the joint likelihood factorises, one sdadnsider

P(T, P, 691 p) = P(T, P|6g, p) P(Sg1 P), (3.89)
in which we insert eq. (A.4) for the data model given in €ql83, and eq/ (3.74), obtaining
P(T, P64 p) = G(Tieorr— Tr» Cuncon) G(P.Cp) G(6g RSR" + N), (3.90)
and we recall for convenience the definitionTgfS,,, andCyncors €. (3.72),

rec — -1
Tuncorr =T _CAT,PCP P

_ )
Cuncor = Cat — Ca1,pCpCpat,



3.8 Conclusions 81

and of T, eq. (3.47),
T, =Q65°.

Note that here the detector noi$g.: has to be included iI€yncorm bECAUSE We also consider
higher multipoles, in which cosmic variance no longer daatess the uncertainty. Eq. (3.90) is
the generic expression for the joint likeliho@(T, P, 54| p) for the cosmological parametefs
given CMB and LSS data, consistently including the smallpting between the two data-sets
introduced by the ISWféect. The quantities depending on the cosmological paramateCyr,
Catapr, Cap, Q, R, Sy, and, in generalN.. Multiplying the likelihood by a priorP(p) for the
cosmological parameters, one can then sample the paraspetee and derive constraints on the
cosmological parameters from the posterior distribuf§p| T, P, o) o< P(T, P, 641 p) P(p). Note
that our likelihood function remains valid if galaxy biasriaions, position dependent noise, and
other non-linear #ects of galaxy formation are taken into account, as long evdniance of the
reconstructionDy, = ((6m — 61€%) (6m — 619 "), is estimated consistently (see EnRlin etal. (2009) for
methods to treat such complications).

Using the joint likelihood given by eq! (3.90) in parametempling studies, rather than
assuming the likelihoods of CMB and LSS to be independemt,affact the constraints on dark-
energy related parameters. If the curvature of the Univisrset to zero in parameter estimation
studies, we do not expect a notabl&elience im,, sinceQ, = 1- Qn, andQn, is well constrained
by the acoustic peaks in the CMB. However, if the curvatunesisd as additional parametey, is
no longer fixed by, and thus sensitive to changes in the ISKéet. The constraints a2, using
our likelihood should then éier from the ones obtained when neglecting the coupling betwiee
data-sets. The constraints on the EoS parameter of dargyesieould change as well. Note that in
order to see such aftierence, we will need a LSS survey that covers enough volulexarg for the
ISW effect. The ideal survey would be EUCLID, however, Ho et al. @mhd Giannantonio et al.
M) claim to seeftects in the parameter constraints when including inforomatiom the ISW
effect already when combining the currently available surVisysd in section 3.4.3.

3.8 Conclusions

Due to the obscuration by primordial CMB fluctuations, théedgon of the ISW #&ect and
other secondaryfiects in the CMB is a rather filicult task, and has to be performed by cross-
correlating the CMB temperature fluctuations with the lasgale structure. The standard method
for doing so compares the observed cross-correlation ifuméb its theoretical prediction, which
is by construction an ensemble average over all realisatidrthe primordial CMB fluctuations
and matter distributions. Therefore, both the specificisaabn of the primordial temperature
fluctuations and the LSS in our Universe act as sources oé moikie detection of secondarffects

in the CMB. In this chapter, we have derived methods for ISYéctéon which reduce both of these
sources of uncertainty by working conditional on the LS$riigtion and on the CMB polarization
data.

First, we have presented a generic technique of how to iectbd knowledge of the matter
distribution into ISW detection in an optimal way, thus reshg the défect of the local variance.
This optimal temperature method requires a three-dimeasid/iener filter reconstruction of the
LSS, including an estimator of the full uncertainty covada matrix of the reconstruction. Note
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that also other reconstruction techniques that providesamator of the uncertainty covariance can
easily be included into our method. The conditionality aaltl$S data results in a dependence of the
variance in the detected signal on the specific realisatitineoLSS in the observed Universe. The
average variance in the optimal temperature method is egtlog about 13 per cent as compared
to the standard method, in the case of an ideal LSS surveg réduction of the noise translates
into an average enhancement of the signal-to-noise or tit@tesignificance by about 7 per cent
for the optimal temperature method. However, note that giecsignal-to-noise ratio depends on
the actual realisation of the matter distribution. Theref@ven if the average enhancement of the
detection significance only amounts to 7 per cent, we coulth&ey (or unlucky) and live in an
unlikely realisation of the matter distribution given thesger spectrum, so that the enhancement in
our Universe could be higher (or lower) than the averageevallne fact that the standard method
for ISW detection does not work conditional on the LSS disttion causes the ISW estimate to be
biased by the latter. Thiglect becomes stronger the more unlikely the specific LSSsedain in
our Universe is.

We have then presented a way of reducing the noise coming framordial temperature
fluctuations by simply subtracting from the temperature ragp part which is correlated with
the polarization data. When doing so, only the uncorrelgid of the temperature fluctuations
contributes to the variance of the signal estimate. We &atled the achievable reduction in
primordial noise for perfect (noiseless) data, and obthiaesignal-to-noise ratio of up to 8.5.
This corresponds to an enhancement of the signal-to-naise oy 16 per cent as compared to
our optimal temperature method, independent of the depiiieof SS survey. In comparison to the
standard method, the signal-to-noise ratio is enhance®lpe® cent for a full-sky galaxy survey
which goes out to a redshift of at least two. For the upcomiolgnzation data from th&lanck
mission, a very crude estimate yields an enhancement oftieetibn significance of at least 10 per
cent. This depends strongly on the residual foregroundsepten the polarization maps. We would
like to point out that in our methods there is no need to egérntze covariance matrix by Monte
Carlo simulations, which safes time and increases the acgwf the method (using 1000 Monte
Carlo simulations to estimate the standard covarianceixradtthe cross-correlation function only
reaches an accuracy of about 5 per cent, as stated by @aat: ( 2007)).

In order to consistently include the information encodedha ISW dfect in cosmological
parameter estimation studies, we have derived the joigliikodP(T, P, 64| p) for the cosmological
parameterp, given CMB and LSS data, within the linear regime of struetiarmation. We expect
small changes in the dark-energy related cosmologicahpatexrs when using this joint likelihood
rather than assuming that the likelihoods of CMB and LSS fiati@rise.

The variance reduction achieved with the presented methatsignificantly improve the
detection of all kinds of secondaryfects on the CMB, for which a spatial signal template can
be constructed from non-CMB data. Note, however, that we hised a Gaussian approximation
for the uncertainty in the signal template, which may not pgnoal for efects on smaller scales
such as the RSfkect, the kinetic SZ fect, or gravitational lensing. The extension to non-Gaussi
data models is beyond the scope of this work, but can be dang tise framework introduced
in section 2.3, which was developed\ in EnRlin et al. (iOOQ)e Work presented here stresses the
importance of accurate measurements of the LSS distribatid of CMB polarization fluctuations
even for signals that are not directly contained in thesedata-sets. ThElanck Surveyomission,
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as well as more future experiments like PolarBEa& CMBPol! will soon allow us to benefit
from polarization for the detection of secondary CMB sigrialthe way presented here.

%http://bolo.berkeley.edu/polarbear/index.html
11Baumann et al| (20®8http ://cmbpol.uchicago.edu
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Chapter 4

The axis of evil - a polarization perspective

Note: This chapter, as well as appendix C, have been sulsmitte publication in MNRAS
(Frommerté EnRlin 2009b).

4.1 Introduction

A major assumption of modern day cosmology is the cosmaddgicnciple, which states that
the Universe is homogeneous and isotropic on large scales.observed isotropy of the Cosmic
Microwave Background (CMB) is one of the strongest evidensepporting the cosmological
principle.

However, in recent years, there have been claims of anosnaetected in the CMB
temperature map with considerable significance, which se&erbreak statistical isotropy of
the temperature fluctuations and thus to question the cagieal principle. Several groups
(de Oliveira-Costa et al. 2004; Abramo et al. 2006; Land&m‘gj\zoo#; Samal et al. 2008;
Raki¢ & Schwarz 2007) claim to have found a strong alignment betwibe preferred axes of the
guadrupole and the octopole, which is commonly referredstthaaxis of evil Others i
2008; Eriksen et al. 2007; Hoftuft et al. 2009) have foundgmificant power asymmetry between
the northern and southern ecliptic hemisphere, and somkerveaomalies have been found for
the low multipoles beyond the octopoie (Copi etal. 2@04:d_&r1\/laqueijo\ 2005; Abramo et al.
2006; Pereira & Abramo 20b9). However, the existence of saichsotropy breaking in the
CMB temperature map is strongly under debate, and also imegaisults have been published
dSouradeep etal. 2006; Magueijo & Sorkin 2007). The clairhshe existence of a preferred
direction in the CMB temperature map have led to a discusalmwput whether this is simply
due to a chance fluctuation in the CMB temperature map, ifnttoa blamed on local structures
or on systematics in the measurement, or whether it is dgtdale to a preferred direction
intrinsic to our Universe\ (Copi et HI. ZdOV; Dola et\al. ZDbEaturi et al.\2007; Samal et al.
LO&\ Groeneboom & Eriksen 20@9; Morales &% 2008: Vielva et al. 2007; Inoue & Silk 2007;
Gao 2009; Ackerman et al. 2007; Copi et al. 2006; Schwarz @08l4; Hansen et al. 2004, 2009;
Prunet et al. 20d)$; ¥ et al. 2005, 20d)$; Bernui et al. 20@6; Wiaux et al. 2006).

The polarization fluctuations of the CMB, just as its tempaafluctuations, have their origin
in the primordial gravitational potential. The polarizatishould thus exhibit similar peculiarities
as the temperature, provided they are due to some prefeneadion intrinsic to the geometry of
the primordial Universe. Note that this is not generic torgv@odel creating anomalies in the
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map | explanation| eq. multipole | (I, b) o
Peorr T - P (4.13) | quadr (-117,60°) | -
oct (-124,66°) | -
PECor | "P=Peor” | (4.16) | quadr (=79, 36%) 4
oct (-17°,0°) 48
TS "P->T" (4.9) | quadr (=73,42) 4z
oct (-17,-19) | 37
TSonr | "T =TS | (4.12) | quadr (-107,42) | 33
oct (-112,5%) | 1O°

Table 4.1: Axes and their uncertainties for the foufetient maps in Galactic coordinates. The large
errors are due to theffects of the mask, residual foregrounds and the detector noise in the WMAP
polarization data.

temperature map. For example, if the peculiarities in theperature maps are due to a secondary
effect on the CMB such as the integrated Sachs-Wdlaeg we would not expect them to be present
in the polarization map% (Dvorkin et al. 2008). The searchaftomalies in the CMB polarization
map is still in its initial stage, due to the high noise-lewethe available full-sky polarization map
from the Wilkinson Microwave Anisotropy Prob@/MAP). \Souradeep et al. (2006) have found
some evidence for anisotropies in the WMAP polarizatioradaging the method proposed in
Basak et al. (20d)6). However, they state that the anisasaoie likely due to observational artifacts
such as foreground residuals, and that further work is reduin order to confirm a possible cosmic
origin.

Given that the polarization map is correlated with the terapge map, it is not a statistically
independent probe of the anomalies which have been foume itetmperature map. If the observed
anomalies were due to a chance fluctuation in the temperatapg this chance fluctuation could
also be present in the polarization map, due to the coroeldietween the two. Therefore, we
split the WMAP polarization map into a part correlated witle temperature maP.or, and a part
uncorrelated with the latteR[5". .. We obtain the part of the polarization map which is coresat
with the temperature map by simply translating the tempeeanap into a polarization map, using
their cross-correlation. The part of the polarization mdgiclv is uncorrelated with the temperature
map serves as a truly independent probe of the above-medt@momalies. Chance fluctuations
in the temperature maps do ndfext the uncorrelated polarization map, so that a detecfidimeo
anomalies in the latter would be a hint to an actual cosmo&girigin of them. Note, though,
that this does not have the power to exclude residual foregi®or systematics as potential origins
for the anomalies. Similarly, we split the WMAP temperatarap into a part correlated with the
polarization mapT.eS, and an uncorrelated map, s, If the anomalies detected in the CMB
temperature map are of genuine cosmological origin, theylshbe present in the correlated and
the uncorrelated parts of both the temperature and potemizanap. For convenience, the four
resulting maps are summarised and briefly described in Pable

We focus on using the uncorrelated polarization map to ptiedexis of evil. In order to define
the preferred axis of the multipoles, we use a statistic gged by de Oliveira-Costa etal. (2@04),
which is the axis around which the angular momentum dispeisimaximised for a given multipole
I. We note that we have to mask out about 25 per cent of the skeiMMARP polarization data in
order to reduce Galactic foregrounds. Furthermore, tharjzaition data are highly contaminated
by detector noise and residual foregrounds even outsidm#s. We therefore perform a Wiener
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filtering of the polarization data before determining thefprred axes, in order to reduce the noise
contained in the maps. However, we still expect a large taicgy in the axes, which we obtain
by running Monte Carlo (MC) simulations conditional on thatal The uncertainty in our axes
amounts tar ~ 45°.

We find that, for all four of the maps, the preferred axes oftgthadrupole all point in the same
direction, within our measurement precision. However, gheferred axis of the octopole of the
uncorrelated polarization map does not align with the onthefquadrupole. The same holds for
the correlated temperature map. In order to assess out, eswdsk the following question. We take
the axes measured in the temperature map as given, and aggtriige axes of the uncorrelated
polarization map are distributed isotropically and indegently of each other. We then ask how
likely it is that at least one of these axes lies such that #ie @&f the temperature map lies inside
its 1o~ region. This probability amounts to about 50 per cent forentty available polarization
data. This high probability is due to the large uncertagwie have in the axes of the uncorrelated
polarization map. The main contribution of this uncertaicwmes from the high noise-level in the
polarization data rather than from the mask. We can thezdfope that th@lanckpolarization data
dTaube%O) will yield much stronger constraints on thesathan the WMAP data.

Note that our approach to probing the axis of evil in poldi@ais phenomenological, since
not all theoretical models of the primordial Universe extirilgg anomalies in the CMB temperature
map show the same behaviour in the uncorrelated polanzat@p. We outline a more thorough
analysis, taking into account the predictions of the spenifbdels for the uncorrelated polarization
map, in the conclusions of this chapter.

This chapter is organised as follows. In sections 4.2 andve3xplain in detail the splitting of
the WMAP temperature and polarization maps, respectiddgtion 4.4 is devoted to determining
the preferred axes for the quadrupole and octopole for aurrffaps. We conclude in section 4.5.

4.2 Splitting of the temperature map

In this section, we split the WMAP temperature map into a gartrelated with the WMAP
polarization mapJT s, and a part which is nofl 5%, To this end, we translate the polarization
map into the correlated part of the temperature map, usie@tbss-correlation between the two.
However, as we have already mentioned in the introductien\/WMAP polarization data are highly
contaminated by detector noise and Galactic foregrounias.observed polarization map we use is
the linear combination of the maps of the Ka, Q, and V frequdyands (corresponding to 33, 41,
and 61 GHz), which is used for determining the low-| polatiza likelihood in the 5 year WMAP
likelihood code (Hinshaw et al. 20\09). By using the lineambination of the maps, we combine
the information from dierent frequency bands rather than using only the informatemtained in

a particular band. Therefore, the linear combination is tEmtaminated by noise than the original
maps per frequency band. We use the P06 mask (Paqé et dl.tﬁ@ﬂé’gsk out the Galactic plane in
the polarization map. The linear combination maps for tlek&t Q and U parameters are shown
in Fig./4.1 in Galactic coordinates.

In order to reduce the noise level, we perform a Wiener filgeaf the observed polarization map
before translating it into the part of the temperature maivis correlated with the polarization
data. Similarly, we will perform a Wiener filtering of the paf the polarization map which is
uncorrelated with the temperature map, as we will descrikgetail later on. Our data model for
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Figure 4.1: Observed polarization maps (linear combination of Ka, Q, arahd tmaps). Stokes Q map
(top panel) and Stokes U map (bottom panel).
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the observed polarization m&} which contains the Stokes Q and U maps shown in/Fig. 4.1, is

P= ( 8 ) = W(Pcmb+ Pget + Pfg) . 4.1)

Here, Pcmp is the intrinsic CMB polarizationPge; and Prg denote the detector noise and residual
foregrounds, respectively, and we have introduced theavwnd in order to describe the mask.

Let us define the signal covariance matrix of the CMB poldilaragiven the cosmological
parameter,

Sp = (PcmbpcmbT>P(Pcmb| K (4-2)

and the noise covariance matrices for the detector nois¢hamesidual foregrounds:

Net (PgetPdet YP(Pye)
Nig = (Prg Pfg-l.>7’(Pfg) : (4.3)

The signal power spectrum (and th8g) has been computed usit@VBEASY (Doran’?.()l's) for
the Maximum Likelihood cosmological model frdm Dunkley ék 009): {Qph? = 0.0227.Q) =
0.75L,h=0.724 v = 0.089 ng = 0.961, 0g = 0.787.

In order to derive the Wiener filter fd?, let us define the noise,

n= W(Pdet"‘ Pfg) s (4.4)
for which the noise covariance is then
Np = (N N")py = W(Nget + Nig) W', (4.5)

where we have assumed thyj: and Py are uncorrelated. We take the total noise covariaNge,
for the observed polarization map from the WMAP code. Wehterrtidentify Pcyp, with the signal

s, the maskV with the respons®, andP with the datad. With these definitions, we have translated
our data model, eq. (4.1), into the one given in eq. (2.16)vdfassume the noiseand the signal
Pemp t0 be Gaussian distribu@dme therefore obtain the posterior distribution for thensig

P(Pembl P p) = G (Pemb — Pty Dp) » (4.6)
with
e = (Spt + WING'W)TWINGP, 4.7)

which is the Wiener reconstruction of the polarization map]
Dp = (Sp! + WNs'w) ™, (4.8)

which denotes the Wiener variance. We show the Stokes Q andps$ of the Wiener filtered
polarization magP> in the top panels of Fig. 4.2 and Fig. 4.3, respectively. Niog only the low

| modes survive the Wiener filtering, whereas the higheodes are strongly suppressed due to the
high noise-level they contain.

1The assumption of Gaussianity holds well for the detector nBigeand the signaP.., For the residual Galactic
foregrounds, this assumption is probably less accurate.
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Figure 4.2: Stokes Q part of the following polarization mapsp panel: Wiener filtered polarization
map, P, Middle panel: Part of the polarization map correlated with the temperature Mgy,
Bottom panel: Part of the polarization map uncorrelated with the temperature Rigl,. The colour

scale is the same in all maps.
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Figure 4.3: Stokes U part of the following polarization mapsp panel: Wiener filtered polarization
map, P, Middle panel: Part of the polarization map correlated with the temperature Mgy,
Bottom panel: Part of the polarization map uncorrelated with the temperature Rigl,. The colour

scale is the same in all maps.
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We now split the WMAP temperature map into a part correlatétt the polarization map,
Tk, and a part uncorrelated with the latt&ss. . We use the Wiener filtered polarization map
PCr, which is of resolution NSIDES8, and the internal linear combination (ILC) temperature
map \(Gold etal. 2009), which we have smoothed with a Gaudstam of FWHM-=18.3° and
downgraded to the same resolution. Among thgedent WMAP temperature maps, the ILC
is the one for which the alignment of the low multipoles isskeaontaminated by Galactic
foregrounds\ (Gruppuso & Burigana 2009). When working ogdascales, we can safely neglect
the detector noise in the temperature data (Afs WZO(M)rthermore, we decide to neglect

residual foregrounds in the temperature map.

We translate the Wiener filtered polarization mag,", into the correlated part of the

temperature map, using the cross-correlation betweemtre t

T = S1.p Sp' Py (4.9)

cmb?

where the signal covariance matrices given the cosmolbgarametersp, are defined as

SpT
St

(PembT YT Porms! p) » (4.10)
T T - (4.11)

The uncorrelated temperature MBS, is then obtained by simply subtractifigfy, from T:
Tlﬁiorr =T- T(r:g(r:r' (4-12)

In Appendix C.1, we prove thak{sS and T[5S,,, are indeed uncorrelated, and that the definitions
of TS in eq. (4.9) and in eq.| (3.73) are equivalent. In other wotks, splitting of the CMB
temperature map performed here is the same splitting thaiave already used in chapter 3 in
order to reduce the noise in ISW measurements.

We plotT, TLES, andT (5, in the top, middle, and bottom panel of Fig. 4.4, respectiieét us
first concentrate of S5, and try to assess whether some of its structures could cameGalactic
foregrounds rather than being intrinsic CMB fluctuationsté\that this is just meant to be a quick
glance on what we can immediately pick out by eye. Compariif with the overview over the
Galactic foregrounds publishedin Hinshaw et al. (2007Y, i makes us suspect that the warm
region in the middle of the northern hemisphere might be@assd with the North Galactic Spur.
A part of this region is already masked out, but it is well pblesthat the mask should be bigger
in order to better mask out this foreground. One might algtktthat the big red blob on the right
hand side off igy;, close to the Galactic plane, could be due to the Gum Nebusueer, plotting
the two maps on top of each other reveals that the Gum Nelagdurther to the East than our red

blob. Therefore we exclude that the blob comes from thatqudatr foreground.

Let us now compare the three mapsT 55, andT /%, In the northern Galactic hemisphere, all
maps look quite similar, apart from the hot region aroundNloeth Galactic Spur, which is more
prominent inTZSE than in the other two maps, and which we have already commenteHowever,
in the western part of the southern hemisphere, we obtairoagstleviation ofT [5f, from the ILC
map. In fact, the features iflg;, have the opposite sign to the structures in the ILC map. This
enhances the amplitudes of the features in the western p#ré southern hemisphere WS,
as compared to the ILC map. In particular, the so-catleld spot which has been found to have
non-Gaussian characteristics by Vielva etal. (2004) sout to be even colder i35, than in the
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Figure 4.4:Top panel: ILC map, smoothed with a beam of .B8 and downgraded to a resolution of
NSIDE=8. Middle panel: Part of the temperature map which is correlated with the polarization map,
TS, Bottom panel: Part of the temperature map which is uncorrelated with the polarization map,
TS The colour scale is the same in all maps.
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-0.25 mK

Figure 4.5: Thecold spotf which has been found to have non-Gaussian characteristics, is martkes
ILC map shown here by a black circle.

ILC map. The cold spot, which we mark in the ILC map in Fig. 4y&lblack circle, has later been
confirmed to have non-Gaussian characteristics by manyotbee, e.g} , Maez-Gonalez et al.

\2006; Cruz etal. 2006; Naselsky et al. 2007). It would berggtng to redo the above-mentioned
analyses of the cold spot with the high-resolution versibi§g,,, in order to see whether the

significance of the non-Gaussian features is even highdranmap. A thorough analysis of the

characteristics of the cold spot is beyond the scope of thigkwhough, and we leave this exciting

question for future work. Lastly, we notice that on the lasgpales we are looking at, we have
much stronger deviations of the temperature towards theearad of the temperature spectrum than
towards the warm end, for all three of the maps.

4.3 Splitting of the polarization map

We now split the WMAP polarization map into a part correlateth the WMAP temperature map,
Pcorr, @and a part uncorrelated with th&". . As before, we obtain the correlated polarization map
by simply translating the temperature map into a polarratap:

Peorr = SP,TS'_rlT ) (4.13)

The Stokes Q and U maps & are shown in the middle panels of Fig. 4.2 and Fig. 4.3,
respectively.

In order to obtain the uncorrelated map, we would like to P from P
Puncorr = Pemb = Peorr - (4-14)

However, we do not know.m, because we only obserf which is highly contaminated by noise.

SubtractingPcor from the Wiener filtered polarization mapy.’,, does not result in uncorrelated
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maps. We therefore subtraatP from the observed polarization mag,

Pincor = P—WPeor

uncorr

= WPuncorr+ n, (415)

where the noise is the same as in section 4.2. We then compute the Wienerseuaotion of the
Signal Puncorn With the data bein [J?\Vgorr'

I:)lrJenccorr = [(SP - SF’,T S'_I']-ST,P)_:L + VVT’\II?LV\/]_]-VVT nglpﬁvgorr- (4-16)
Here, we have used the signal covariance

<PuncorrPuncorr-}->7>(Pcmb,T| p)
= (Pcmbpcmbw - (PcmbTT>S'_rlST,P
—Sp7STHT Pemp') + SprSTHT TS ST
= Sp-SprSiiStpe. (4.17)

Pl given in eq.[(4.16) is uncorrelated wik, as we prove in Appendix C.2. The posterior of
Puncorr IS given by
P(Puncorr| T’ P7 p) = g (PUHCOI'I’_ PLen%orp Duncorr) ’ (418)

with the Wiener variance
Duncorr = [(Sp — SF’,TS-_rlST,P)_1 + WTngl\N]_l . (4.19)

Note that here we use the index “uncorr” to denote the untzde® polarization map, whereas in
section 3.5 this index referred to the uncorrelated tentpezanap.

We show the Stokes Q and U maps of the uncorrelated polanzatiap, P[5, in the
bottom panels of Fig. 4.2 and Fig. 4.3, respectively. No# the symbols for the correlated and
uncorrelated parts of temperature and polarization mapdisted and briefly explained in Table

4.1.

4.4 The axis of evil

We now search for the axis of evil in the four maRS, Pieom Teor @NdT pso,. Note thatPeor and
Tor have of course the same axes as the original temperatureoarization maps] andPyr
respectively. To define the preferred axis, we use a stapstiposed by de Oliveira-Costa et al.
2004), which has been introduced in order to quantify trefgured direction that can be picked
out in the smoothed temperature map by eye. When lookingeadrttoothed ILC map in Fig. 4.4,
most of the hot and cold blobs seem to be lying on the same .plEme quadrupole and octopole
extracted from the ILC map show the same behaviour (see, @egOliveira-Costa et al. 20b4),
and the planes are roughly the same for the two multipolesorder to quantify this alignment,
de Oliveira-Costa et al (2004) came up with the followingtistic. The temperature maps are

expanded into spherical harmonics, which are eigenfunstid the square and the z-component of
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the angular momentum operator

T(R) = D TilA) = > a8, Yim(D). (4.20)
| I,m

Then, for every multipold, one determines the z-axisfor which the expectation value of the
z-component of, - L, is maximised:

(TIA-L2IT) = > Pl ()12, (4.21)

Here,a] (i) denotes the spherical harmonic ffia@enta obtained in a coordinate system with the
z-axis pointing inA-direction. We determine the axisby simply rotating the z-axis into every pixel
centre and checking for the maximum, which is well feasibleua resolution. Neighbouring pixel
centres in our map tfer by approximately % but we will soon see that the uncertainties in our axes
are so large that it is $icient to check only the pixel centres as potential z-axes.h#ve done
the same exercise allowing the axes to point to all pixelresraf NSIDE=16 instead of NSIDES,

and our results are robust under this change.

As we have already mentioned, the mask, residual foregamdl detector noise in the
polarization data will result in an uncertainty in the preéel axes. The posterior distribution of
the real CMB polarization ma@.mp, given the one we observ®, is given by eq.| (4.6).Pemp
fluctuates around our Wiener reconstructiBffy,, with the Wiener varianc®p.

In order to obtain the uncertainties in the axesT¢ff, and T5%,,, we have run Monte Carlo
(MC) simulations, drawing realisations &, from its posterior distribution. From these, we
obtain realisations of

Teor = Stp Sﬁlpcmb,
Tuncor = T = Teorr, (4-22)

for which we then determine the preferred axes. The unceytai the axes oP[- ., is obtained
similarly, using the posterior distribution &,ncorr given in eq./(4.18). Note that and thusPcq
are assumed to have no contributions from residual foregi®wr detector noise, and thus no
uncertainty in the preferred axes.

For drawing realisations from the probability distribution eq. (4.6), we have computed the
Wiener variancé®p given in eq. (4.8). We have then computed the Cholesky faetiionL of Dp,
which is a particular form of the square-root of a positivérdege matrix:

Dp = LL. (4.23)

In order to obtain our realisatioR.mn, We applyL to a mapn,, of white noise, i.e. a map where the
temperature at every pixel is independently drawn from asSian distribution with unit variance,
and add the mean vall&’ . Pemp = LNy + PSS, This results in a map which is drawn from the
distribution in eq.[(4.6), as one can easily see:

((Pcmb - P.r;en(]:b)(Pcmb_ PEerﬁb)'%(nN)
= L{nyni)pn, L" = LL" = Dp. (4.24)
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Figure 4.6: Wiener realisation 0t

An example of a Wiener realisation df. in shown in FigW@

We plot the axes and their uncertainties for thedent maps in Figs 4.7 — 4.10. Both ends of
every axis are marked by a cross in the maps, and the coloimgcodunts how many times the
preferred axis came to lie on the respective pixels in 50009d@ples.

All axes and their standard deviations which we obtained from the MC simulations, are
summarised in Table 4.1. Fd?.,, and thus the ILC map, we reproduce the results from
de Oliveira-Costa et al. (20b4) within our measurementipi@e: the axes of the quadrupole and
the octopole ofP., point in the same direction, which is roughlylf) ~ (-120°,63°), where
| andb denote Galactic longitude and latitude, respectMer (tle=da-Costa et al. (2004) found
(I,b) = (-110,60)). For T/o,» @gain both axes point in the same direction as the ax&gnf
within our measurement precision.

For P55 the preferred axis of the quadrupole has an angular distemnthe average axis of
the ILC map of 37. That means that the latter lies inside its degion. The same holds fai;,
(and thusP:), for which the axis of the quadrupole has an angular digtamthe average axis of
the ILC map of 34. The axes of the octopole &%, andTS, though, do not align with the axis
of evil. What can we learn from this result? The significantcéhe alignment between the axes of
the quadrupole and octopole in the temperature map has bsessad extensively in earlier works.
Here, we only look at the additional information we obtaionfrthe axes oP[:%. . To this end, let
us take the preferred axis in the temperature mags given, and assume that the axeB, are
distributed isotropically over the sky and independeniiyrf each other. In Appendix C.3, we work
out the probability for at least one of the axesRff-. . being such that the axis of the temperature
map is included in thed region around it. This probability amounts to about 50 peat,céue to
the large &r regions we have.

In order to assess whether the mask or the noise in the WMA#&tipation maps is the main

2We had to regularise the Wiener variances, eqgs (4.8) and (4.19diygaGaussian noise in order to make them positive
definite. This is required by the Cholesky factorisation. However, sineenttise was added mostly on small scales, the
quadrupole and octopole remained completelyfi@eded by this. In fact, our results remained unchanged under varyeng th
variance of the added Gaussian noise over 5 orders of magnitude.
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Figure 4.7: Preferred axis of the quadrupole (top panel) and the detéipattom panel) folPgqr and
thus for the ILC map. We reproduce the results of de OIiveira-Costd(M.Af) within our measurement
precision. The axes of quadrupole and octopole point in the same direstiich has been named the

axis of evil.
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1 I . 77

Figure 4.8: Preferred axis of the quadrupole (top panel) and the detipmitom panel) foP5%,,. The
colour coding counts the number of MC samples whose axis came to lie on pleeties pixel. The axis
of the quadrupole aligns with the axis of evil within our measurement precigioereas the axis of the

octopole does not.
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Figure 4.9: Preferred axis of the quadrupole (top panel) and the detéipattom panel) fofl s, and

thus forPZ% . The axis of the quadrupole aligns with the axis of evil within our measureprenision,

whereas the axis of the octopole does not.
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Figure 4.10: Preferred axis of the quadrupole (top panel) and the aet@pottom panel) foil 55,
The axes of the quadrupole and the octopole both align with the axis of evihvdtlhr measurement
precision.
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source of uncertainty in the axes, we have determined thertamcty with the amplitude of the
noise covariance matrix rescaled to 10 per cent of the @igine. This yields an uncertainty of
about 20 in the axes. We have done the same exercise for the noisetadgptiownscaled to 1 per
cent of the original one, which results in an uncertainty ©+7.0° in the axes. This means that
the noise is actually the main source of uncertainty in oalyais rather than the mask. Soon, the
Planck Surveyomission (Taubdr 2000) will provide us with polarization reegements that have
a noise-level which is significantly below the one in the WMddta. The main problem will then
be the contamination of the polarization data by Galactiedoounds. In the WMAP polarization
data, the foregrounds contribute about 20 per cent to tlgodad of the noise covariance mati

in pixel space. WithtPlanck we will be able to determine the foregrounds better thah WiMAP,
due to the broader frequency range coveredlanck If we assume that the covariance due to
residual foregrounds fdPlanckwill be between 5 and 50 per cent of the one for WMAP, we will
get the uncertainty on the axes down to aboutdfid 20, respectively. With this, we will have a
powerful test to probe the axis of evil in polarization.

4.5 Conclusions

In the last few years, a preferred axis has been found in th® @Gdvhperature map, posing a
challenge to the cosmological principle. This so-cabed of evildenotes the unusual alignment
of the preferred axes of the quadrupole and the octopolesitetimperature map.

We have split the CMB temperature and polarization maps WéMAP into a part correlated
with the respective other map, and an uncorrelated pahelékis of evil were due to some preferred
direction intrinsic to the geometry of the primordial Unige, we would expect its signature to be
present in all four of these maps, although this is not tru@ficheoretical models creating an axis
in the temperature map. In particular, the part of the poddion map which is uncorrelated with
the temperature map serves as a statistically indepencdwye pf the axis of evil. In order to reduce
the noise contained in the polarization maps, we have Wittened the maps before computing
the axes. We have then determined the preferred axes of HuFupole and the octopole for the
four maps. In order to assess the uncertainty in the axesngpfrom the mask, detector noise
and residual foregrounds in the polarization maps, we hawetC simulations conditional on the
observational data.

For the part of the polarization map which is correlated wiiite temperature ma.or, We
find that the axes of quadrupole and octopole point in the ghireetion, confirming earlier results
by\de Oliveira-Costa et al. (20\04). The part of the tempeeatoap which is uncorrelated with the
polarization mapJ/c<,,, exhibits the same alignment of the axes within our measenéprecision.
For the part of the polarization map which is uncorrelateithwie temperature map,o» we find
that only the axis of the quadrupole aligns with the axis df @hereas the axis of the octopole does
not. The same holds for the correlated part of the tempeyahap, T S,. We have computed the
probability that a rough alignment with the axis of evil, as find it for the axis of the quadrupole
of Pi%.om happens by chance if the axes are distributed isotrogicetlis probability amounts to 50
per cent for currently available polarization data, duenelarge uncertainties in the axes. We are
thus looking forward to redoing this analysis with polatiaa maps fromPlanck which will yield
much more significant results. Of course, similar analysedoe carried out for all other anomalies
that have been found in the CMB temperature maps. Note tiggad of working in pixel space as
we have done, one could implement the analysis in sphergaidnics space, which would help to
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separate the E modes we are working with from contaminatyd® imodes.

The approach we have chosen here is a phenomenologicalaapprsince in principle one
should take into account thatftBrent models causing anomalies in the temperature mapcpredi
different signatures in the polarization map. Thus, for a mayeotigh analysis, one would need to
consider particular models of the primordial Universe tirgganomalies in the temperature maps,
and compute the statistical properties of the uncorrelpt#drization map for these. This can be
done by modifying a Boltzmann code such @4BEASY or by simulations as in Dvorkin et al.
w). One can then try to find these predicted signaturtseinncorrelated polarization map via
Bayesian model selection. Such an analysis would truly goiethe usual a posteriori analysis of
finding anomalies in the temperature map, since we would nset@al model to make predictions
for the uncorrelated polarization map and then comparesthbesdictions with observations. We
leave this promising analysis for future work.
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Chapter 5

Efficient cosmological parameter sampling
using sparse grids

Note: This chapter, as well as appendix D.1, will be submifte publication in MNRAS. Section
as well as parts of the other sections have been writteDitiyPfliger.

5.1 Introduction

The main two bottlenecks in cosmological parameter estimaitsing the power spectrum of the
cosmic microwave background (CMB) are the calculation & theoreticalC,-spectrum using
Boltzmann codes such a&VBFAST {Seljak & Zaldarriag\é 1996)CAMB {Lewis etal. 2000), or
CMBEASY (Doran 2005) and the evaluation of the likelihood using tfieial WMAP likelihood
codé. There exist several methods to speed up the calculatidreqidwer spectrum (Jimenez et al.
2004 Kaplinghat et al. 2002; Habib et al. 2007) or the WMARIihood functionZ (Sandvik et al.
2004; Fendt & Wandelt 2007; Auld et al. 2008). These metheoddased on dierent techniques,
such as analytic approximations, polynomial fits, and nene&vorks, which are all trained using a
set of training points, for which the real power spectra akelihood values have to be calculated.
Once the codes are trained for a particular cosmologicaletdldey can be used to evaluate the
power spectrum or the likelihood function in every subsedqy@arameter estimation run, which
significantly speeds up the Markov Chain Monte Carlo (MCM@)dations used for parameter
estimation. Due to the ever-growing amount of availabledatfast evaluation of the likelihood
is becoming of increasing importance, especially when ¢oimgp CMB data with data-sets whose
likelihood is less expensive to evaluate. TRkanck Surveyomission O) will be the
upcoming challenge in this respect.

We approximate the WMAP log-likelihood function fhin the spirit of CMBfit kSandvik etal.
\2004) and Pico (Fendt & Wand\jt 2@07), which work with polgmal fits, and CosmoNet
{Auld et aIH2008), an approach based on neural networks. ohtrast to the fitting functions
constructed therein, we introduce the techniquespdirse gridsin this context to construct an
interpolation of InL, returning the exact function values at a set of samplingtgoi

Most straightforward interpolation techniques are basedets of sampling points in each
dimension, typically based on (uniform) grid structures-asider, e.g., piecewisd-linear or

Thttp://lambda.gsfc.nasa.gov/product/map/dr3/likelihood_get.cfm



106 Hficient cosmological parameter sampling using sparse grids

piecewised-polynomial interpolation schemes. Unfortunately, gomsed methods are only feasible
in low-dimensional settings, as theyffar from the so-called¢urse of dimensionalitySpending

N function evaluations or grid points in one dimension leaw#it grid points ind dimensions.
The exponential dependency on the dimensionality imposesrs restrictions on the number of
dimensions that can be handled. Sparse grids, as introdhycédnéérl), allow to overcome
the curse of dimensionality to some extent, at least f@igantly smooth functions as it is the case
in our setting. Sparse grid interpolation is based on an@&ipelection of grid points, requiring
significantly fewer grid points than conventional integ@dn on a full grid, while preserving the
asymptotic error decay of a full-grid interpolation witltneasing grid resolution up to a logarithmic
factor. This permits us to compute higher-dimensionalrpatations and approximations than
before. A very good overview about sparse grids, discusgemgral properties, can be found in
\Bungartz & Griebel (2004).

The sparse grid technique is a completely general approatiailored to a single application,
and can therefore be used to interpolate any function whsichfficiently smooth. Additionally,
as it allows for arbitrary adaptive refinement schemes, #reeral, fast convergence rates can be
improved even further, by adapting to the special charaties of the underlying target function.

We obtain excellent results, which are competitive to fiftiorocedures using polynomials
(Fendt & Wandelt 2007; Sandvik et al. 2004) or neural netwarkuld et al. 2008) in speed and
accuracy. Furthermore, we believe that the interpolatiased on sparse grids has several
advantages over these approaches. First of all, we can @sedtlts of sparse grid approximation
quality (Bungartz & Griebel 20d)4), guaranteeing the cogeece of the interpolation towards the
original function with increasing number of grid points.

Second, once we have chosen the volume in which we want tgpolgge the function in
question, the sparse grid structure itself determinesoaiphie location of potential sampling points
(which can additionally be refined in an adaptive manner &gpiasi). This makes it unnecessary to
assemble a set of training points beforehand (by running \IGMds it is done by Fendt & Wandelt
m), e.g.). The generation of the sampling points and@dmstruction of the interpolant can be
strongly parallelised, which makes the sparse grid appreacideal candidate for computational
grid projects such as the AstroGtidThe time needed to construct the interpolant is determined
almost only by the time it takes to evaluate the likelihoothat sampling points. We do not need
additional training time as in the case of Auld et al. (2008).

Furthermore, polynomial fits to a set of training points riwe risk of creating unphysical
wiggles if the polynomial degree of the fitting function isosten too high with respect to the amount
of training points available. Using the sparse grids apgnppiecewise polynomials of low degree
are stficient, as we are not fitting certain evaluation points, btlieainterpolating a function.
Increasing the accuracy is therefore equivalent to evialgiat more sampling points.

Sparse grids are based on a hierarchical formulation of tigenlying basis functions, which
can be used to obtain a generic estimate of the current aippstgn error while evaluating more
and more sampling points. This can be directly used as aiontéor adaptive refinement as well
as to stop further refinement.

Another advantage is that the projection of sparse gridpotations can be done in a very fast
and simple way. This would make sparse grids in principleag@andidate for sampling posteriors
and projecting them directly, without having to use a Markhain approach in order to marginalise
the posterior. Given that MCMCs need to determine the paetgientially and can therefore not

“http://www.d-grid.de/index.php?id=45&L=1
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be parallelised (apart from running several chains at theegame), it would be highly desirable to
find alternatives that can be run in parallel.

We have attempted to use sparse grids in order to substlietdMCMCs in cosmological
parameter estimations. In order to directly project thetgromr distribution we would need to
sample the posterior rather than its logarithm. Since, imega, the logarithm of a probability
density function is considerably more well-behaved thanftmction itselﬂ Sandvik et al. (20b4),
Fendt & Wandelt (20d7), and Auld et al. (2008) all operateogr-$pace to speed up the generation
of MCMCs instead. As the convergent phase of the interpmiatvith sparse grids sets in rather
late when interpolating Gaussian functions (and thus theARNikelihood, which is close to a
d-dimensional Gaussian), we restricted ourselves to thdiketihood as well.

This chapter is organised as follows. First, we describebtmacs of sparse grids in section
5.2, introducing a modification of the standard sparse gpigk@ach, thus adapting the latter to
our problem. In section 5.3, we then present the interpmiatif the WMAP likelihood for two
different sets of parameters in both six and seven dimensionssh@ve that the results obtained
for regular (non-adaptive) sparse grids are already catiegio other approaches and demonstrate
how adaptive refinement can further improve the resultsti®eb.4 finally concludes this chapter.

5.2 Basics of sparse grids

Standard grid-based approaches of interpolating a fumdtiexhibit the curse of dimensionality,
a term going back to Bellma@m): Any straightforwardcdisisation scheme which employs
N grid points (or, equivalently, degrees of freedom) in orreetision leads t&® grid points ind
dimensions. For reasonalie the exponential dependency on the number of dimensiofisatiyp
does not allow to handle more than four-dimensional problem

Sparse grids are able to overcome this hurdle to some exéeptiring significantly fewer grid
points than a full grid, while preserving the asymptoticoemecay of full grid interpolation with
increasing grid resolution up to a logarithmic factor. rids have originally been developed
for the solution of partial dierential equationé (Zen&er 1991) and have meanwhile bedredp
to various problems, see Bungartz & Griebel (2004) and tlereaces cited therein. Recent
work on sparse grids includes stochastic and non-stochzastiial diferential equations in various
settings\(von Petersdd& Schwaﬁ)\ 2006\; Ganapathysubramanian & Zabbras 2007; Widtragr
M), as well as applications in economics (Reisinger & ﬂZOOHLoIth), relgression
{Garcke & Heglanél 2009; Garcke 2d)06), classification (Butaget al. ZOOB; Garcke et al. 2001),
fuzzy modelling \(Klimke etal. 20(1)6), and more. Note thatr{ramlaptive) sparse grids are closely
related to the technique of hyperbolic crosses (TememB;L

In this section, we provide a brief overview of sparse gridisihterpolation. For a detailed
derivation of the characteristics of sparse grids, we refeBungartz & Griebel (2004). We start
by formulating the interpolation on a conventional fulldytising hierarchical basis functions, from
which we then derive the interpolation on a sparse grid byttomgithe basis functions contributing
least to the interpolation.

5.2.1 General idea of interpolating a function on a full grid

We consider the piecewis#linear interpolation of a functiorf : Q — R which is given only
algorithmically, i.e., we have no closed form bfbut we can only evaluaté at arbitrary points
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Figure 5.1: One-dimensional piecewise linear interpolatio®, dashed, of a functiofi(x), solid, (left)
by a linear combination of hat basis functions (right).

using a numerical code. As we want to discretise our domaimtefestQ, we restrictQ to a
compact sub-volume d&¢; here,Q = [0, 1], thed-dimensional unit-hypercube. (For the standard
approach of sparse grids techniques, we only considerimnscthat are zero on the boundary of
the volume on which they are defined. This assumption will mpped when we come to the
interpolation of the log-likelihood of WMAP.)

To construct an interpolantof f, we discretise& via a regular grid, obtaining equidistant grid
points x;, with mesh widthh, = 27" for some discretisation or refinement levelat which we
evaluate and interpolate If we define a suitable set of piecewiddinear basis functiong;(x), we
can obtainu(x) from the space of continuous, piecewdséinear functionsv, by combining them
adequately as a weighted sum of basis functions, i.e.

f(0) ~ u(¥) = ) aiei(x)

with codficientse;. Fig./5.1 sketches the idea for a one-dimensional exampiaguhe standard
nodal basis.

The curse of dimensionality, encountered when using a fudl, gan be circumvented by a
suitable choice of basis functions: We need a basis whemekeant information is represented by
as few basis functions as possible. Most basis functionsheanbe omitted as they contribute only
little to the interpolation off, reducing a full grid to a sparse grid and allowing us to harigher-
dimensional functions than before. A suitable basis carobed by a hierarchical construction as
introduced in the following section.

5.2.2 Hierarchical basis functions in one dimension

Sparse grids depend on a hierarchical decomposition of migerlying approximation spaces.
Therefore, and first considering only the one-dimensioaakecwhich we will later extend td
dimensions, we use the standard hat function,

¢(X) = max(1-[x,0), (5.1)
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Figure 5.2: One-dimensional basis functigng and corresponding grid poinis; up to leveln = 3 in
the hierarchical basis (left) and the common nodal point basis (right).

from which we derive one-dimensional hat basis functionditatation and translation,

(¥ = p(@'x - 1), (5.2)

which depend on a levéland an index, 0 < i < 2. The basis functions have local support and are
centred at grid points;; = 27'i, at which we will interpolatef. Introducing the hierarchical index
sets

h={ieN:1<i<2-1iodd}, (5.3)

we obtain a set of hierarchical subspa?és
W = spanfgi(X) i i€ l}}. (5.4)

We can then formulate the space of piecewise linear fungtfgron a full grid with mesh widthn,
for a given leveh as a direct sum o\,

V, = @ W, (5.5)
I<n

see Figl 5.2. Note that all basis functions of the same suab&fpiahave the same size, shape, and
compact support, that their supports are non-overlapging,that together they cover the whole
domain.

The interpolatioru(x) € V, can then be written as a finite sum,

up) = Y (), (5.6)

I<n,iel,

where the so-called (hierarchical) surplussgsare uniquely indexed by the same level and index
as the corresponding basis functions.
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5.2.3 Higher-dimensional interpolation on a full grid

The basis functions are extended to thdimensional case via a tensor product approach,

d
o) = [ [0, (5.7)
-1

with the d-dimensional multi-indice$ andi indicating level and index for each dimension. The
other one-dimensional notations can be transferred to thiérary-dimensional case as well,
consider, e.g., the index siet

={itl<ij<2'-1lijodd1l<j<d}, (58)

the subspacedV,, the spaceV, of piecewised-linear functions with mesh widtin, in each
dimension,

Vo= P W, (5.9)
[lw<n
leading to a full grid with (2 — 1)? grid points, and to the interpolan¢x) € V,,
u(x) = Z aigri(X) . (5.10)
Heo<n,i€l,

Here and later on, we need thenorm|l|; = Z?zllj and the maximum-norm|, = MaX<j<dl;
of multi-indices|. Fig./5.3 shows some 2-dimensional examples for the basigtiins of the
subspacesV;, which correspond to anisotropic sub-grids with mesh-widt in dimension j
characterised by the multi-index

5.2.4 Sparse grids

Starting from the hierarchical representationvafby the subspacés/, we can now select those
subspaces that contribute most to the overall solution effafi-grid interpolation in eq./ (5.10).
If the function we want to approximate meets certain smagghrconditions—the mixed second
derivatives have to be bounded—this can be done a priori asamederive bounds for the
contributions of the dferent subspaces. We then obtain the sparse grid space

v = @ W, (5.11)

[lli<n+d-1

leaving out those subspaces from the full grid spdceith many basis functions of small support.
(The exact choice of subspaces depends on the norm in whiateasure the error; the result above
is optimal for both thd_., norm and the maximum norm.) Note that in the one-dimensicasg,
the sparse grid space equals the full grid space.

Fig. shows the selection of subspaces and the resulpiages grid forn = 3, i.e. the
sparse grid spacVél). Compared to the full grid for the same discretisation lavdéthe full
grid spaceV; would also comprise the grey subspaces in Fig. 5.4), thiscesithe number of
grid points (and therefore function evaluations and unkmvsignificantly fromo(h-%) = O(2"%)
to O(h;1(logh-1)4-1) — whereas the asymptotic accuracy deteriorates onlytbliflom O(h?) to



5.2 Basics of sparse grids 111

.
50
QR
A
A 9,
IR0

i
ik
s ‘\‘\\
T
W, \,‘v\":“t\\%\\‘@g\\\k\\\»

SR N/ N
A0 \\,‘”\
/AN
VNN,
&>
Q>

N

il

i
i
I 'I":"{{{{"%{{%\‘

K>
X

1
J ‘,f

i 4
Wil
e

M\ i
A

WA
0,"

NN

Figure 5.3: Basis functions of the subspa@édor ||, < 3 in two dimensions.

O(R2(logh-19-1), see Bungartz & Griebel (2004) for detailed derivationsg. 5.5 shows sparse
grids in two and three dimensions for levet 6 each.

Functions which do not meet the smoothness requirementliohwhow significantly diering
characteristics (comprising steep regions as well as fled,ag.) can be tackled as well, if adaptive
refinementis used. The sparse grid structure defined in dd.)(@efines an a priori selection of grid
points which is optimal if certain smoothness conditioresraet and no further knowledge about the
function in question is known or used. An adaptive (a postgriefinement can additionally select
which grid points in a sparse grid structure should be refimeed, due to local error estimation, e.g.
To refine a grid point, often all®children in the hierarchical structure are added to theexiigrid,
if they haven’t been created yet. Note that it usually haseterfsured that all missing parents have
to be created, as algorithms working on sparse grids depetrawersals of the hierarchical tree of
basis functions. If additional knowledge about the prob&tmand is available, it can be used in the
criterion for adaptive refinement, allowing to better adagtroblem specific characteristics.

5.2.5 Extension to functions that are non-zero on the boundar

Up unto now we have only considered functions that are zertherdomain’s boundaryQ. To
allow for non-zero values on the boundary, usually addéiayrid points located directly oHQ
are introduced. For example, the one-dimensional basigwal bne, containing only; 1(X), is
extended by two basis functions with level O and indices Olaresbtricted td2, namelyypg o(X) and
vo.1(X). They are then extended to talimensional case as before, with the exception that the new
basis now contains basis functions on the modified level atfeaverlapping support.

Apparently, this approach results in many more grid poiatsl(therefore expensive function
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Figure 5.5: Sparse grids in two and three dimensions for leveb.
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Figure 5.6: Modified one-dimensional basis functigns constant on level 1 and “folded up” if adjacent
to the boundary on all other levels.

evaluations) than before. This shows quite nicely that ihe$ suficient to just consider the
asymptotic behaviour: asymptotically, nothing changes for very high dimensionalities we are
not able to even start to interpolate any moredldimensions, the basis for the subsp&i¢efor
example contains already Basis functions, rather than a single one. Especially ingstwhere

a very high accuracy close to the boundary is not required-elwholds in our case—(or where an
adaptive selection of grid points is used in any case), itimaadvantageous to omit the grid points
on the boundary, and instead modify the basis functionstrapgalate towards the boundary of the
domain.

We modify the one-dimensional basis functions as follows:1&el 1, we have only one degree
of freedom; the best guess towards the boundary is to assusaine value, leading to a constant
basis function. On all other levels, we extrapolate linetwlvards the boundary, “folding up” the
uttermost basis functions. All other basis functions remaichanged, yielding

1 ifl=1Ai=1,
2-2".x ifxe[o»zl—l-l] ifl>1Ai=1,
” 0 else (5.12)
@Lilx) = . —i i — 51 |
{2 X+1-i |fxe[1 211’1]} ifl>1Ai=2-1,
0 else
(p(X-ZI—i) else

in one dimension, see Fig. 5.6. Ttkaimensional basis functions are obtained as before viasite
product of the one-dimensional ones.
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5.3 Interpolation of the WMAP likelihood surface

We now construct an interpolation of the logarithm of the WRAkelihood, In£, using sparse
grids. In order to adapt the problem to our interpolationrapph, we first use a 6-dimensional
set of so-called normal parameters introduced in Sandak éEOOAh), which are a transformation
of the usual cosmological parameters such that the majes akéhe Gaussian align with the
coordinate axes. The logarithm of the likelihood is thenlwapbroximated by a sum of one-
dimensional parabolas in thefidirent parameters, a fact that we will take advantage of hygusi
the modified basis-functions described in eq. (5.12). Fisrght of normal parameters, we obtain
an accurate interpolation already for a comparably low egfient level. This is shown for the 6-
dimensional model as well as for a 7-dimensional extensisimg the running of the spectral index
as an additional parameter.

However, as a subsequent step we demonstrate that the paramaasformation is not
essential for obtaining a good interpolation. By investingre grid points, we obtain an accurate
interpolation as well when using directly the 6- and 7-disienal standard parameter set, which
is usually used in cosmological parameter sampling. This@grh shows the advantage of sparse
grids of being rather generic. Furthermore, we are notiotsttto the parameter range in which the
transformation to normal parameters can be inverted.

5.3.1 Choice of basis functions

We use the modified basis functions as introduced in'eq. Y5uRich are well-suited for our
problem. First, and as already indicated in sedtion 5.2rgh®n close to the domain’s boundary is
less important in our setting than the centre&nfWe will centre the domain of interest roughly at
the maximum of the log-likelihood function 1f and determine the boundary such that it includes
the region with (InLmax — In £) > 25, which we will refer to as the 25 log-likelihood region ¢se
section 5.3.3). Towards the boundaries of our intervaksikelihood is then fectively zero and
thus no great accuracy is needed in these regions. Thereferdo not want to spend too much
work on Q. Using the modified boundary functions, we extrapolatéir{early) towardssQ2, see
the discussion of the modified basis functions above.

Second, the modifications are especially well-suited if ftnection to interpolate can be
separated into a sum of one-dimensional funclomsssume that the likelihood: was a perfect
product of one-dimensional Gaussians,

L(X)=c- e_al(xl_#l)z_--~_ad(xd_,ud)2 , (5.13)

centred at {1,...,14)". Then the interpolation of the log-likelihood I reduces tod one-
dimensional problems,

d
INLe) =Inc+ > ), i) = —a(% - md’, (5.14)
k=1

separating into a constant term plus a sum of functions tieat@nstant in all directions but one.
Keeping in mind that the one-dimensional basis functionewell 1,1 1(x), is constant (cf. Fig.
5.6), this simplifies the interpolation task. THedimensional basis function on levé] ¢; 1(x),

3In this case, the analysis of variance (ANOVA) would exhibit no termgling between the parameters.
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serves as anftset. (Only if [ug,...,uq)" is the centre oL, a11¢11(X) exactly expresses )
Additionally, it is suficient to spend only grid points on the main axes of the sparise(igvel
1 in all dimensions but one) to approximate the remaining-dingensional contributiongy(xx)
arbitrarily well:

d
u(x) = a1191.1(X) + Z Z @1 @i (%) l—[ e11(X)) | - (5.15)

k=1 \ly,ix 1<j<d,j#k

fil(%)

Inc

Of course L is not a perfect product of one-dimensional Gaussianspgiiats that do not lie on
the sparse grid’'s main axes account for the additional migedelated) terms of I£. Given that
in sparse grids a large amount of points lie on the main akespiechanism works very well—the
better, the less correlation between th@atent parameters exists.

In order to take as much advantage as possible offiieete described above, we introduce a
parameter transformation in the following section, for g¥hihe new parameters are less correlated.
However, the fact that the interpolation using the stangardmeters—which have much stronger
correlations—works as well, spending just more grid powi,show that the sparse grid approach
does not depend on this argumentation: Sparse grids canusaks# such properties but do not rely
on them.

5.3.2 Normal parameters

The set of cosmological parameters describingAM model consists of the Hubble constant,
h = W‘(’wpd, the density parameter of vacuum enerQy,, the ones of baryon%€?,, and of
matter (baryonic+ dark), Qn, the optical depth to the last scattering surfacehe scalar spectral
index of the primordial power spectrums, and the scalar initial amplitudés. We will refer to
these parameters as cosmological parameters. For a maredetescription of the cosmological
parameters, we refer to Coles & Lucchin (2b02). In the litene, there have been several attempts
to transforming these parameters into a set of parametatsrtinror the various physicalfiects
on the CMB power spectrunh (Hu et al. 2¢)¢)1; Kosowsky etal. b?.OOﬁ\Chu et al. \(20d3), a set
of parameters is provided in which the likelihood-surfaéehe CMB is well approximated by
a multivariate Gaussian with the major axes aligned withaberdinate axes. Here, we use the
parameters given H)y Sandvik et al. (2004), where the pasrset of Chu et al. (2003) is combined
with the other parameter sets mentioned, in order to briegrhjor axes of the likelihood surface
even closer to the coordinate axes. The new parameters emg@k hy, hs, t, A., Z}, which we
refer to as normal parameters. When working with the latte, logarithm of the likelihood is
well-approximated by a sum of one-dimensional parabolakendiferent parameters. The basis
functions introduced above are therefore ideally adamtéuis$ problem. In the following, we repeat
the definitions of the normal parameters for convenience.

The first parameter of our set is the angle subtended by thesacscale

_ rag) 180
DA(als) n’

(5.16)

S

where the index Is denotes the time of last scatterDg(as) stands for the comoving angular
diameter distance to the surface of last scattering (whiehwll come back to later), and(ay) is
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the comoving sound horizon at last scattering,

_ tis cs(t)
rs(as) = fo a(t)dt' (5.17)

Here, cs(t) denotes the sound speed for the baryon-photon-fluid at timehich is well
approximated by

1
cs(t)? ~ =(1+ 3721, (5.18)
3 Py
with the indexb standing for baryons and the indgxor photons. Using the Friedmann equations
and ignoring the vacuum energy at last scatteng@s) can be shown to be (Sandvik etal. 2004;

\Kosowsky etal. 20@2)

23 as In V1+Rs+ VRs+NsRs

s\ds) = , 5.19
where
= Spo(@s) _ s\
Re = 2a) _30wb(103) , (5.20)
_ pe(@s) _ 1 3s
e = LU = 0042w, (1 03). (5.21)

The indexr stands for radiation, i.eg, consists of the sum of photon and neutrino energy densities,
and the indexn is used for matter (baryonsdark matter). We definey, = Quh? in the same way
asw, = Qph?. The redshift at last scatterings, is well approximated b)& (Hu et al. 2001)

Zs = 1048 (1+0.00124w,% 3% (1 + giwiz), (5.22)
g1 = 0.0783w;%%%(1+ 395w %), (5.23)
g2 = 0560 (1+211w; 81, (5.24)

As already mentioned)a(ass) in eq. (5.16) denotes the comoving angular diameter distémthe
surface of last scattering and is given by
1
c 1 ~
Da(as) = — = = da. (5.25)

The second and third parameters in our set are the ratiog sktond and the third peak to the
first peak in theC| spectrum of the CMB (Hu et al. 2001), where the tilt-depermeas factored out
(Page et al. 2003),

h, = 0.0264w,°"%exp(-0.476[In(255wW, + 1.84wWm)]?) , (5.26)
-1
Wy 2 Wy -1
hy = 217(1 ( ) w°~59(1 1 (1——) ) . 27
3 ( 0,044 ) m (141631~ Go71) W (®.27)

We use the tilt parameter given \by Sandvik et al. (i004), tvis@ slightly modified version of the
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one in Chu et al, (2003) in order to minimise the correlatiotinw,:

Wp \05233
- (0 024) ons-L (5.28)
The amplitude parameter is
As -2 ( k )ns_l ~0.568
A= ——————e|— Wi, 0, (5.29)
2.95x 109 Ko m

wherek, = 0.05Mpc* denotes the pivot point. The normalisation factor &5« 10-° comes
in because we use the scalar amplitddeof CMBEASY, which is defined as the primordial power
of the curvature fluctuations evaluated at the pivot pofat= Aé(kp). It is related to the scalar

amplitudeAs of CMBFAST, which is used in Sandvik et al. (2004), By = 2= (Verde et al.

2.95x10°9
2003a). Finally, we use the physical damping due to the alptiepth to last scattering as our last

parameter:
Z=ge". (5.30)

In order to construct the interpolation of the likelihoodfage, we need the transformation
that maps the normal parameters back onto cosmologicainedeas. The reason for this is the
way we construct the interpolation: Our sparse grid alparitthooses the normal parameters
where it wants to refine the grid, which we then need to transfimto cosmological parameters
to run CMBEASY and the WMAP-likelihood code. Our technique of inverting tharameter
transformation is presented in appendix D.1.

5.3.3 Generation of test set and choice of interpolation rage

For choosing the parameter range in which to construct ttegpalation, we have run MCMCs
containing about 50,000 points at a temperaturd@ of 3. That is, in the Metropolis algorithm
we choose the transition probabiligfx, y) from a pointx in the chain to a new poiny to be
alx,y) = min{(L(y)/L(x))% , 1}. Using this transition probability witi = 1 results in the usual
Metropolis algorithm, whereas choosiiig= 3 allows us to explore a larger parameter range than
with the regular algorithm. These chains covered a regianohiag out to about 25 log-likelihoods
around the peak.

The optical depth to the last scattering surfacewhich can be determined from the CMB
polarization, is not well-constrained by the WMAP polatiaa data due to their low signal-to-
noise ratio. Therefore, when running the MCMCsTat 3, we had to restrict to the physically
meaningful range > 0. This restriction correspondsZo< 1 for the normal parameters. In the case
of the normal parameters in 7 dimensions, we had to addltjorestrict the intervals td, < 0.52
andhz > 0.38, which is the range in which the parameter transformasiamvertible. Furthermore,
we chose to restrict our set of points to be within the 25 laghhood region around the peak.

In order to roughly centre our intervals at the maximum oflttelikelihood function, we have
determined the latter using a few runs of a simple simplexd;&aThe interval boundaries were
then defined as the box centred at the maximum which contdipsiats of the above-described

“We were running several simplex searches and chose the result whigtiest value of the log-likelihood. The runs did
not all converge to exactly the same point, which we think was due to numh&ssties (the log-likelihood was presumably not
completely convex, which could be dues to the dips we will mention in sect®Bb)5.
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Figure 5.7: Absolute error of the interpolation with respect to the real lagiikod in 6 dimensions for
an interpolation with a sparse grid of level 5 (left panel) and of level &{ipanel) for normal parameters.
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Figure 5.8: Absolute error of the interpolation with respect to the real lagiikod in 7 dimensions for
an interpolation with a sparse grid of level 6 (left panel) and of level h{panel) for normal parameters.

chains. Note that it is not important for the accuracy of titeripolation that the intervals are well-
centred at the maximum. Note further that we have also usedsé#t of points as a test set for
comparing our interpolation with the real log-likelihood.

5.3.4 Results

We have interpolated the log-likelihood of the WMAP 5 yeatadm the 6-dimensional normal
parameter space described in section 5.3.2. The same hasitwee for a 7-dimensional model,
in which we have chosen the running of the spectral index@ptimordial power spectruna;, as

an additional parameter. Constructing the interpolatiam loe parallelised to an arbitrary degree,
according to the available computational resources.

For the 6-dimensional model, we plot the absolute error @faly-likelihood, (1—In £), against
the negative WMAP log-likelihood«In £), for the points in the test set in Fig. 5.7. We have used
an interpolation on a sparse grid of levet 5 (consisting of 2561 grid points) in the left panel, and
of leveln = 6 (consisting of 10625 grid points) in the right panel. Oreacly sees the improvement
in accuracy when increasing the grid level fram= 5 ton = 6. Fig./5.8 shows the same plot
for the 7-dimensional model, for grid leval= 6 (18943 grid points) in the left panel amd= 7
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(78079 grid points) in the right panel. We again see the imgmeent in accuracy with increasing
refinement level. However, the additional parametas quite strongly correlated with many of
the other parameters, whereas the correlations betweemth&l parameters in 6 dimensions are
reduced to a minimum. We therefore have to increase the gviel by one in 7 dimensions, in
order to obtain results comparable to the 6-dimensionad.olmeboth figures, we note a systematic
negative d@set of the interpolation with respect to the real functiohjcl becomes less severe for
the higher refinement levels. Thiffget is due to the fact that we construat-inear interpolant of

a convex function, which systematically lies below the fiime. This could be easily coped with by
adding a small fiset toa ; after the interpolation, or, even better, by using piecevwslynomial
instead of the piecewise linear basis functions. We leagauiage of piecewise polynomial basis
functions, which promise to be well-adapted to the logHiaod, for future work.

Note that we have restricted the plot range to [-2,2], bezaudy 0.1% or less of the points
lie outside this randg.Almost all of these points lie in the corners @fdue to relatively strongly
correlated parameters. These are the regions in paranpeies where the 25 log-likelihood range
around the peak extends to the interval boundaries. Dueetextrapolation we use close to the
boundaries (cf.the end of section 5.2), we obtain relativ@lge uncertainties in those regions,
which do not #ect the one-dimensional projections of the likelihood tiot, though. The
uncertainties can be further reduced, spending (adaptivebre grid points in those regions, see
also the discussion about adaptivity in section 5.3.5.

For the 6-dimensional interpolation with a sparse grid gélé, 25% of the test points have
an absolute errar 0.25 in the log-likelihood, and.03% of the test points have an absolute error
> 1. In 7 dimensions and for refinement level 7, the correspandumbers are 9% and39o,
respectively. This is a higher level of accuracy as reacheRibo kFendt & Wandelt 2007), for
which about 90 per cent of the points in a region reaching o3 log-likelihoods around the
peak have been calculated with an absolute error below Bl@kbever, we note that these numbers
for Pico are valid for a 9-dimensional parameter space, @dgewe work in 6- and 7-dimensional
spaces and leave the extension to higher-dimensional sitmdlture work. But we also note that
in all settings where a systematiffget in the interpolation error can be observed, it isent to
reduce the fiset to improve our results significantly, in particular fotarpolations on lower levels
(see, e.g., the scatterplot for the 6-dimensional modebgiddevel 5, Figl. 5.7).

We have projected both the interpolation and the WMAP Ihk@bid function using MCMCs
of about 150,000 points, and compare the results for them@usional model for grid level
n = 5in Fig./5.9. We reproduce the projected one-dimensiokalitiood curves almost perfectly.
The results for the 7-dimensional model for= 6 are shown in Fig. 5.10. Again, the one-
dimensional curves are reproduced with great accuracy.viBo@l comparison of our results with
the projected one-dimensional likelihoods obtained bynGaiset \(Auld etal, 2007, 2008) shows
that we reproduce the original curves of both the 6-dimeradiand the 7-dimensional model with
a higher accuracy than the latter. Note also that our intatipo is constructed in a rather wide
region, encompassing about 25 log-likelihoods around #akpwhereas in Auld et al. (2008) the
region in which In£ was fitted covers only# around the peak for the combined likelihood of CMB
and LSS. This corresponds to a region of about 8 log-likeldsaround the peak for the combined
likelihood, and even less when using only the CMB likelihood

Consider now the interpolation of the WMAP likelihood sweausing directly the standard

5In 6 dimensions, the number of points outside this range is 0.02% (0.)0@8%= 5 (n = 6); in 7 dimensions, it is about
0.1% for both grid levels.
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Figure 5.9: Comparison of the one-dimensional projections of the 6-dinrealsiWMAP 5 year
likelihood (solid) and its interpolation (dashed) using a sparse grid of level5 (consisting of 2561
grid points) for normal parameters. The curves match almost perfectly.
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Figure 5.10: Comparison of the one-dimensional projections of the 7-diomeisWMAP 5 year
likelihood (solid) and its interpolation (dashed) using a sparse grid of teveb (consisting of 18943
grid points) for normal parameters.
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Figure 5.11: Absolute error of the interpolation with respect to the realikeghood in 6 dimensions
for an interpolation with a sparse grid of level 6 (left panel) and of levéight panel) for standard
parameters.

parameters, which are used by default when doing cosmalbgarameter sampling with the
MCMC driver fromCMBEASY (TDoran & MUIIeﬂ\2004):{wm, Wb, h, 7, ns, IN(10'°As) — 27}, to which
we again add as an additional parameter in the 7-dimensional case. Woprkith these parameters
has the advantage that we do not have to restrict ourselvéi® tparameter range in which the
parameter transformation is invertible. However, the f@obis now less adapted to our choice of
basis functions, due to the stronger correlations betweediferent parameters. We therefore pay
the price of having to increase the grid level by one in thgeda order to reach an accuracy as good
as before. We show the absolute error of the log-likelihdod, In £), against the negative WMAP
log-likelihood,  In £), for the 6-dimensional model for grid level= 6 (10625 points) and = 7
(40193 points) in Figﬂﬁ,and for the 7-dimensional one for= 7 (87079 points) and = 8
(297727 points) in Figiﬁ,For the 6-dimensional (7-dimensional) interpolation watlsparse
grid of leveln = 7 (n = 8), the fraction of test points with absolute ert00.25 in the log-likelihood

is 6% (20%), and % (25%) for an absolute errof 1. The one-dimensional projections for the
6-dimensional case for level= 6 and for the 7-dimensional case for levek 7 are presented in
Figs 5.13 and 5.14, respectively.

We have tested the evaluation time of our interpolation taleating a sparse grid interpolant
of level 6 in 6 dimensions for 2,000,000 points randomly @mgom withinQ. On a conventional
desktop computer (Intel chipset, 2.8 GHz), this took ab@ji®Oper point, including the random
generation of the point. In 7 dimensions on the same level awe ltwice as many grid points
and one dimension more, which doubles the evaluation timn88us. For CosmoNet and Pico,
the evaluation of a 6-dimensional model is specified to tdd@ial0us and 25Qs, respectively
dAuId etal. ZOOB). Note that we do not know on which hardwaeedvaluation times of CosmoNet
and Pico have been measured, which makes a comparison lpaxsHlible. Note further that our
code to evaluate a sparse grid function is not optimised dst &€valuation times and that there
is still room for improvement. In any case, for all of theseles the bottleneck in cosmological
parameter sampling is now the MCMC algorithm itself rathemt the evaluation of the likelihood,
at least with the MCMC driver used here (Doran &'JNM\2004).

Note that in 7 dimensions, we need significantly more grich{saihan in 6 dimensions, since the

SHere, about 0.3% (0.2%) of the points in the test set lie outside the clptsterange for the grid of level = 6 (n = 7).
"About 1% of the points in the test set lie outside the chosen plot-range fgrithef both leveln = 7 and leveh = 8.
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Figure 5.12: Absolute error of the interpolation with respect to the realikeghood in 7 dimensions
for an interpolation with a sparse grid of level 7 (left panel) and of levéidght panel) for standard
parameters.
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Figure 5.13: Comparison of the one-dimensional projections of the 6-diomedsWMAP 5 year
likelihood (solid) and its interpolation (dashed) using a sparse grid of feweb (consisting of 10625
grid points) for standard parameters.
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Figure 5.14: Comparison of the one-dimensional projections of the 7-diomeisWMAP 5 year
likelihood (solid) and its interpolation (dashed) using a sparse grid of tewel7 (consisting of 78079
grid points) for standard parameters.
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additional parametar strongly correlates with the other parameters, and we thad to increase
the grid level by one to obtain good results. As the storagairements are rather low, this mainly
increases the number of evaluations that are needed fotrgoinsg the sparse grid interpolation.
As already stated before, though, the construction of tkerpolation can be parallelised to an
arbitrary degree, according to available computationsbueces, so that this point should not be
an issue. To store the interpolant for a regular sparse grbddimensions for level with N grid
points, we would only neetll doubles for the cd&cients and two integers to remember bdth
andl, leading to N + 1)8 Bytes. For adaptively refined sparse grids, we addiliphave to store
at least which grid points have been refined, requiring Hifghore storage. For current hardware
architectures, the size of the memory is therefore not ditignfactor for our application.

5.3.5 Improvements with adaptive sparse grids

As it has already been mentioned, the log-likelihood is nqtegfect sum of one-dimensional
functions. The dierent parameters contributefférently to£ and correlate more or less with each
other. It is therefore reasonable, especially when usiegstandard parameters which correlate
more, to employ adaptivity, spending more grid points irtical regions and less grid points
elsewhere. In this section, we demonstrate the utility @fpaigity by showing some first results
as a proof of concept. As they can clearly be improved furtiver leave a thorough study of
adaptive sparse grids for the interpolation ofJor future work.

Employing adaptivity, one can attempt to either obtaindrattsults fixing roughly the number
of grid points used, or to achieve a similar accuracy usisg tgid points. In the following, we
show results for the former, tackling the 7-dimensionalnepke using the standard parameters on
level 7 with 78079 grid points presented above. We start avigegular sparse grid of some low level
and refine grid points, creating aliZhildren in the hierarchical structure (if possible) eaafil
the grid size exceeds 78000 grid points. In settings wheredntributions of the dimensionalities
differ significantly, it can be useful to start with level 2 to alldimensional adaptivity, neglecting
unimportant dimensions; here, the grid points on low lewelsbe created in any case, so we can
start with a sparse grid on level 5, e.g., to save on the nuoftataptive steps.

Choosing a suitable refinement criterion, it can be detezthiwhether to refine in a broad
way (close to regular sparse grids) or in a more greedy waki@rsparse grid’s hierarchical tree
structure. It is reasonable to take the surplusses of tldepgiints into account as they contain the
local information about the functions, i.e., if the functibas a high gradient locally. Furthermore,
they decay quickly with increasing level-sum in the coneatgphase. The mere surplus-based
criterion, refining the grid points with the highest abselutlue of the surplus first, is known to tend
to minimise theL,-norm of the error. As we do not spend grid points on the doimaimundary, and
as we are extrapolating towards the boundary, the biggegsiusses per level can be found for the
modified basis functions which are adjacent to the boundamnere surplus-based criterion will
therefore only refine towards the boundary. This reduce®tite especially for sampling points
with a high error in the scatterplots, as they are locate@tds/the boundary of the domain.

In the following, we theoretically derive a refinement aiive@ which is better suited to our
problem than the purely surplus-based one. In order to magithe information our interpolation
contains about the real likelihood, we attempt to minimise Kullback-Leibler distancelx,
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between the interpolation and the likelihood function,
L(x)
d9% £(x) In —=—
J axsoon S8
f d% £(x) (In £(x) — u(x)) , (5.31)

dkL

which is defined for two normalised probability distributgy/ and exp(). Let us now derive the
refinement criterion we obtain from minimisirdy, . Assume that we have already computed an
interpolationu(x) with N grid points, then the Kullback-Leibler distandg_ when evaluating the
function at an additional point,1 is changed by

new old
|dRs" - dt

f d% £(x) [In £(x) — u"™Y(x) — InL(x)+u°'d(x)”

= f dx £(x) [u O'd(x)—u”ew(x)]‘
N+1

[
lu
N
= fddxll(x) {Zal‘pi(x)_zai‘pi(x)
[

i=1 i=1

= f d% £(x) CUN+190N+1(X)]‘ (5.32)

If we refine the interpolation around the grid point that ciimited most to the Kullback-Leibler
distance, we can hope to converge towards the minimudg ofastest. In order to obtain a suitable
refinement criterion, we have to simplify the formula in €6.32) considerably. We thus assume
the likelihood £(x) as well as the basis functias,1(x) to be locally constant oy, 1'S support,
obtaining

|dRs — dRE| ~ Vie1L(Xns) lonal (5.33)

whereVy,1 is the volume covered by the basis functigq,; (i.e. its support), and we have used
en1(Xne1) = 1

With eg. (5.33), we have derived an estimation of the coatigm of a basis function tdy,,
which is a reasonable refinement criterion in our settingaddition to the surplus of the grid point,
lan+ 1), it takes into account the value of the likelihodidxy 1) at the grid point, and the volume of
the basis functioiVy,1. The likelihood takes care of the fact that we would like to@re accurate
where the likelihood is higher. The regions of very low likelod are less interesting for us—the
likelihood being already very close to zero beyond fiedence of about 20 log-likelihoods. The
volume factor, on the other hand, prevents the interpoiatarefine too deeply (to very high grid
levels) locally in the parameter space. However, sinceubiglly only takes féect after several
refinement steps, and as we have restricted the number gbgrits, we choose not to include the
volume factor but rather to refine several points at the same, tvhich addresses this issue in an
alternative way, and which will be discussed later on. Wihierrchoose to introduce a temperature
T again, which allows us to weight the likelihood with respeecthe surplus and thus to influence
how much to refine close to the maximum. The refinement coitenie used in this study is thus

T
(i(r:;;)) |t il, (5.34)
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Figure 5.15: Absolute error of the interpolation with respect to the realikegihood in 7 dimensions

for an interpolation with an adaptively refined sparse grid for standarahpeters.

where we have divided the likelihood by its peak valdgax (which we have already obtained
determining the interpolation domain) because the WMAReaedurns the log-likelihood only up
to a constant fiset, so that we do not know the correct normalisatiofofor T = 1, refinement
takes place only very close to the maximum/sdecays quickly; a temperature 6f= 6 showed
to provide good results within the whole domain of interest.

Refining only one grid point per refinement step often caudaptavity to get stuck in a single,
special characteristic of the function. InterpolatingJmvith our choice of basis functions, all grid
points are likely to be created only in the direction wheeeltg-likelihood decays fastest, or around
one of the local dips we will address later on. Refining moentane grid point at the same time
helps to circumvent suchtects, resulting in a broader refinement scheme.

The Kullback-Leibler distancdy can also be used to measure the quality of our interpolation:
The distance between the real likelihood and or interpmhashould be as small as possible.
However, as we have already mentioned above, we do not kr@wdimalisation of the WMAP
likelihood function. Thereforegk, is not necessarily positive and thus looses its propertyeofd
a useful measure of the ‘closeness’ of the two functions. Mis tise a slightly modified version,

dkL = fddxlj(x)l In £(x) — u(xX)|, (5.35)

as a measure of the quality of our interpolation, insteachefdctual Kullback-Leibler distance.
It can be easily calculated from an MCMC wilh = 1 obtained forL, by simply averaging the
sum of the absolute erroi$n L(xi) — u(x;)| over all points. Furthermore, we quote this value
averaged over a chain @f = 3 (exploiting the interpolation domain better), which @sponds to

[ A% LTI L(x) = u(x)|.

Fig.5.15 shows the scatterplot for an adaptively refinedsspgrid in 7 dimensions. Starting
from a regular grid of level 5, we refined 100 grid points eactoading to the refinement criterion
in eq. (5.34) withT = 6. Needing only about as much grid points (78551) as for thalae sparse
grid of level 7, Table 5.1 shows that we obtain results whighdose to those of a regular sparse
grid of level 8 with almost 4 times as many grid points. We pdevthe Mean Squared Error (MSE)
as well agdy, for bothT = 1 andT = 3 chains for regular sparse grids of level 7 and 8, and for the
adaptively refined case. We also quote how many points ebdnibabsolute error larger than 1 or
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err>1,T=3 err>025T=3 MSE,T=1 MSE, =3 dk.,T=1 dk., T=3

level 7 4.2% 50.5% 0.087 0.532 0.256 0.354
level 8 2.3% 19.3% 0.017 0.210 0.091 0.193
adaptive 1.8% 23.6% 0.027 0.202 0.110 0.204

Table 5.1: Comparison of errors of regular sparse grids of level 7lara 8, respectively, and an
adaptively refined sparse grid using approximately as many grid pointsésmed in the regular grid of
level 7. Shown are the number of points with an absolute error larger tba0.25 in theT = 3 chains,

the MSE for chains of = 1 andT = 3, andaKL, which denotes the absolute value of the error averaged
over chains off = 1 andT = 3.

0.25 for theT = 3 chains. We do not show the histograms of the adaptivelya@fmodel, as the
histograms for both the regular grid on level 8 and the adalytrefined one, are very close to the
already very good results presented for level 7 above.

We would like to mention, that, due to numerical problems, ¢hrrent version o€EMBEASY
produces local, unphysical and sometimes rather high dijpss problem is already known and
will be corrected in the next release. For stochastic ambres, this is not a big problem, though:
The dips are local and just cause some noisy evaluations.it Boses a problem for numerical
approaches if a grid point hits a dip. Then it can happen, shahding more grid points can
even deteriorate the results. For our regular grid in 6 dsimrs using the standard parameters,
e.g., increasing the level from 7 to 8 caused a higher overadl on the chain-data used for the
histograms, as especially two new basis functions closkea@éak caused an error of up to 12 of
the log-likelihood for all evaluationsficted by those basis functions.

Fortunately, dips can be detected automatically due to igmifchical structure of the sparse
grid and the smoothness of lfy using a criterion that is once more based on the surplusses.
Furthermore, it is not a severe problem when using adaptiag adaptivity localises thefects
of the dips automatically. One just has to take care not tacgp®o much grid points to compensate
for the dips.

The first adaptive results are promising, but there is sidihn for a lot of improvement. Even
better refinement criteria than those used so far could béognegh Using not only piecewise linear
functions, but rather piecewise polynomials, and applgdaptivity in both the mesh-width and the
polynomial degree is very promising; especially the exttafon properties towards the boundary
would be improved, and less grid points would be needed @iokhhe same accuracies.

5.4 Conclusions

In this chapter, we have explored the utility of interpalgtthe WMAP log-likelihood surface using
sparse grids. We demonstrated that the results are excafidncompetitive to other approaches
regarding speed and accuracy, and we discussed advantagédstimg the likelihood surface with
polynomials\( Fendt & Wandelt 2007; Sandvik et al. 1004) armaknetworks (Auld et al. 2008):

The interpolation based on sparse grids converges towlaedsxact function in the limit of the
grid level going to infinity. We can therefore reach an agbitraccuracy by simply increasing the
amount of work we spend. In the case of a polynomial fit, thisasguaranteed since increasing
the polynomial degree runs the risk of becoming unstable.

In order to construct the sparse grid interpolation, we doneed to sample a set of training
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points using MCMCs beforehand, since the sampling poirgsdatermined by the sparse grid
structure which is given a priori. Once we have chosen the@mel of interest, the time for
constructing the interpolation is dominated by the evabhmadf the likelihood function at the grid
points. We do not need additional training time as for nenetivorks (Auld et al. 20d)8), for
example. Constructing the interpolation can thus be damestl arbitrarily in parallel, only limited
by the computational resources that are available.

The sparse grid technique is rather general and not restriotcertain classes of functions. In
particular, the choice of sampling points and basis fumstis not tailored to a single problem as for
neural networks, where the properties of the network suds &gpology and transfer functions have
to be chosen problem-specifically (often in a heuristic wayje sparse grid interpolation technique
as well as our extensions can therefore be readily appliedher problems in astrophysics and
cosmology, and will be useful in further tasks, where an eateuinterpolation of a function is
needed.

The excellent performance of the sparse grid interpolat@m be further improved, leaving
future research to do: It can be applied to models with moaa $even parameters by spending
more computationalféort. Further modification of the basis functions, for exaenallowing for
a piecewise polynomial interpolation, promises betterveogence rates and higher accuracies.
Adaptive refinement schemes, which take into account theactexistics of the interpolated
function, can be used to further increase the accuracy ofntieepolation, as we have already
demonstrated for a first example.




Chapter 6

Conclusions and outlook

In this PhD work, we have studied fundamental questions afenmocosmology by developing and
applying data analysis techniques that combine the CMB ¢eatpre data with its polarization data
and LSS measurements.

We have derived optimal methods for detecting the 1S¥at, which serves as a probe of dark
energy and has the power to yield constraints on the dariggmelated cosmological parameters.
Our optimal methods for ISW detection extract more infoloratbout the ISW fect from the
CMB and LSS data than existing methods. Thus, compared taghal method, the detection
significance of our optimal polarization method in an ideeérsario is 16 per cent higher for
low redshift surveys such as the SDSS galaxy sample and 28gmerfor surveys going out to
a redshift of about 2. With currently available polarizatidata from WMAP, our method yields
approximately the same detection significance as existiethhods, due to the high contamination
of the polarization data by noise and the low volume covedgrirrently available LSS surveys.
However, with polarization data froflanck our method will be significantly better than existing
methods, where the exact improvement depends on how weltGaforegrounds can be removed.
A very crude estimate yields an improvement of the detedignificance of at least 10 per cent.
Note that the numbers quoted refer to the average detedtjoifisance reached with our method,
where the average is taken over all possible realisatiotiedfSS. The actual detection significance
reached with our methods depends on the specific realigaittbe LSS in our Universe and can thus
be higher (or lower) than the average. Since the standafgotieloes not keep the LSS fixed in the
analysis, but uses an average over all possible realisatios specific realisation of the LSS causes
a biasing of the detection significance, which gets strofganore unlikely LSS realisations.

Our optimal method for ISW detection can be extended to thectien of other secondary
anisotropies, such as the kinetic Sunyaev-Zel'dovithat, the Rees-Sciamé#ect or gravitational
lensing. This extension will require some additional waice all secondaryfiects apart from
the ISW originate on smaller scales, on which the LSS hasdjrendergone non-linear structure
growth and can thus no longer be described by a Gaussiaibbdigin. The extension of our method
to a non-Gaussian posterior distribution can be done ubmgeld theoretical techniques described
in sectiori 2.3 and in EnRlin et al. (2d09).

In the course of developing our optimal method for ISW détectwe have derived the
correct form of the joint likelihood of CMB and LSS data forstnological parameter estimation,
consistently including the small coupling between the tataesets introduced by the ISWect.
Previously, in parameter sampling studies, it has usualgnbassumed that the joint likelihood
factorises into a product of the likelihoods of the respectiata-sets. Once LSS surveys cover
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a large enough volume that we can create an ISW templateicmganost of the ISW signal,
using our likelihood instead will provide better consttaion the dark-energy related cosmological
parameter§2, and the equation of state of dark energy. The ideal survethiemwill be EUCLID,
which will measure the galaxy distribution for all of the assible sky outside the Galaxy out
to a redshift ofz ~ 2. However, even for currently available LSS surv) and

Giannantonio et al. (2008) obtain affext on cosmological parameter constraints when including
the information contained in the ISWfect in the analysis.

The second part of this work was devoted to understandingttigen of the axis of evil, an
unusual alignment between the preferred directions of tizelqupole and the octopole in the CMB
temperature map. To this end, we have subtracted from the @dization data the fraction of
which is correlated with the temperature map, and checketh®axis of evil in the remaining
polarization map. This uncorrelated polarization map eem@s a statistically independent probe
of the axis of evil and other anomalies present in the CMB tnajpire map, and can thus help
to assess whether these anomalies are just due to chancafiloics in the temperature, or if they
have their origin in some preferred direction intrinsic he geometry of the primordial Universe.
We find that the preferred axis of the quadrupole aligns withdxis of evil, whereas that of the
octopole does not. However, the contamination of the WMARujation data by detector noise
and Galactic foregrounds leaves us with a large uncertairayr results, such that we do not obtain
any evidence for or against a preferred direction intringiour Universe. Nevertheless, with the
upcoming polarization data from tiidancksatellite, we will have a powerful tool to probe the axis
of evil of the CMB in polarization, thereby assessing thedisl of the cosmological principle.

As we have already mentioned above, the method we proposedeaised to probe any
anomalies present in the CMB temperature map. Among suchalies, there is a significant
power asymmetry between the northern and southern echpticisphere in the multipole range
| ~ 2 - 40, a strong lack of power in the quadrupole of the tempegatuap, and some weaker
anomalies in the low multipoles beyond the octopole. Thayaisof the uncorrelated polarization
map ofPlanckwill shed more light on the origin on all of these anomalies.

Note that our studies of the axis of evil were phenomenobldgio far, since not all theoretical
models creating anomalies in the temperature map predictdme features for the uncorrelated
polarization map. In order to go beyond the phenomenolbgiature of these studies, it will
be necessary to consider particular models of the primbtétiaverse creating anomalies in the
CMB temperature maps, and compute the statistical pr@sesfithe uncorrelated polarization map
for these by modifying a Boltzmann code suchCGABEASY or by numerical simulations. Using
these signatures predicted for the uncorrelated pol@&izatap, one can then compare th&etient
models with each other and with an isotropic Universe viad3gn model selection. This will
permit us to truly go beyond the usual a posteriori analysSMB anomalies, and to fully exploit
the power of complete CMB data to assess how well the assompfi isotropy holds for our
Universe.

In both of the projects described above, the study of the I8&¢eand the analysis of anomalies
in the CMB, we have studied the imprints of specific phenomeribe CMB. However, the main
power of the CMB lies in its ability to provide us with simutt@ous constraints on the cosmological
parameters. Such parameter estimation studies usuaflpmesampling the parameter space using
MCMC techniques. The main bottleneck in these studies isettauation of the likelihood of
the cosmological parameters, a problem which becomesasicrgly serious with the ever-growing
amount of data we have to handle. In the third part of this was have therefore developed and
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implemented a sparse-grids based technique to interpilat8/ MAP likelihood surface, which
reduces the evaluation time of the likelihood to a fractidnaomillisecond, thus significantly
speeding up MCMC sampling. In speed and accuracy, our iolgipn technique is competitive
to previous attempts to fit the likelihood with polynomialsreeural networks, while overcoming
some of the drawbacks of the latter. These include, for mtgtathe danger of creating unphysical
wiggles in the fit if the polynomial degree is chosen too higthwespect to the number of available
training points, or the comparably long training time reqdifor neural networks. Using our
technique to interpolate the likelihood surfaceR&nckwill significantly simplify the parameter
estimation process, especially when combinfignckdata with other data-sets whose likelihood
is less expensive to evaluate, as, for example, in the paears@mpling studies using the correct
joint likelihood for CMB and LSS data proposed above. Furtin@e, our interpolation algorithm
is completely general and can be applied to any function Wwisisuficiently smooth. We can thus
use it to speed up the likelihood evaluation of any large-datavhose likelihood is expensive to
evaluate, and apply it to other problems where an accurtgpiplation of a function is needed.

Closing words

With this thesis, we have made a tiny step forward on the kagting path towards understanding
the world in which we live. Personally, | do not think that thasic picture of cosmology that
we have now will be the last word in the history of cosmologyl @hat the remaining tasks are
now merely to better understand the ingredients of therlafieere have been times in the history
of physics, when we thought that the big picture is all set,fasexample, in 1874, when Max
Planck was advised not to study physics by the Munich phymictessor Philipp von Jolly, with
the statement that “in this field, almost everything is alsediscovered, and all that remains is to
fill a few holes.” Instead of filling holes, Planck formulatdek quantisation of energy emitted by a
black body, which marked the beginning of quantum physluss revolutionising our view of the
world. | expect there will be yet many revolutions like theednitiated by Planck, and we should
be prepared to constant changes in our view of the world asons#a;ng and try to understand the
Cosmos in which we live.
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Appendix A

A.1 Derivation of the Wiener filter
In this section, we will derive in detalil the posterior distrtion for the free information field theory,
eg. (2.26). We start from the data model given in eq. (2.16),

d=Rs+n, (A1)

and assume the signal prior and the noise distribution todnes&an. Note that we now explicitely
state the dependence of the probability distributions encttemological parameteps Rewriting
the data model as = d — Rsand inserting this into the noise distribution, we obtain

P(d|s, p)

P(d-Rsls p)
G(d-RsN). (A.2)

The joint probability distribution of signal and daf@(d, s| p) = P(d| s, p) P(s| p), is thus

#(d, s| p) g(d-RsN)Gg(sS)

G(s-Dj,D) G(d,RSR + N), (A.3)

where we have used the definition of the propagator] eq.)2.20
D=(RINTR+S) ",
and of the information source, eq. (2.21)
j=RN"1d.

We will prove the second step in eq. (A.3) in section A.1.1.e Thstribution in eq./ (A.3) can be
trivially integrated oversin order to obtain the evidence

P(d|p) = G(d,RSR + N). (A.4)
Therefore the posterior distributio?(s| d, p) = £(s.d| p)/P(d| p) reads

P(sld, p) = G(s-Dj,D), (A.5)
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where i
Sec=Dj = (RIN"'R+S™) "R'N'd, (A.6)

is the Wiener reconstruction of the sigrsal

A.1l.1 Lemmal

We now prove the expression for the joint probability distition P(d, s| p) given in eq. (A.3). To
this end, we start with

P(d, s p)

G(d-RsN)G(sS)
1

[27N[[27S]
X exp(—:—zL(d -R9'NId-R s))

X exp(—% s' S‘ls) . (A.7)

Let us first rewrite the exponent

(d-R9'NHd-R9+s Sis
= s’D's-2j"s+d" Ntd
(s-D))'DY(s-Dj)-j'Dj+d Nd
(s-Dj)'DXs-Dj) +d"(RSR + N)"1d, (A.8)

where we have used the definitiondbandj, egs|(2.20) and (2.21), in the first step, then completed
the square in the second step, and we will separately previagt step as Lemma 2 in the next
subsection. After doing that we will prove that

127N[27S| = |27D|122(RS R + N)|, (A.9)

which we name Lemma 3, allowing us to reformulate eq. (A.7) as

1
VI27D||27(RS R + N)|

X exp(—%(s— Dj)'D(s- Dj))

P(d,s|p) =

X exp(—% d" (RSR + N)‘ld) : (A.10)

which is what we claimed in ed. (A.3).
Note that from the second line in eg. (A.8), and adding therdmrtion of the determinants in
eg. (A.7), we readily obtain the Hamiltonian of the free thyeeq. (2.19):

Hgls] = —log[#(ds)#(s)]

1 .
= Es,TD-ls,— j's+HY, (A.11)
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with 1 1
HS = > d"N1d + 5 log (127 S|127N)) . (A.12)

A.1l.2 Lemma?

In this subsection we prove that
jiTDj-d" N2td=-d" (RSR +N)d. (A.13)
In order to simplify the notation, let us introduce
M = R'NIR. (A.14)
It can be easily seen that eq. (Al13) is equivalent to
NIR(ESHM)  R'INIT-N1=—-(RSR+N)? (A.15)

by inserting the respective expressionsfoand j. We start with eq.| (A.15) and transform it into
an equation which is true.

NIRGS T+ MR NT-N1=—(RSR +N)*

RSRNIRS T+ M) RN+ RS T+ M) 'RINT-RSRN!1-1=-1
RIMES T+ M)+ (@1 +MS)T-1JR'INt=0

RYMS(L+MS) 1+ (1+MS)1-1JR'Nt=0

RY(1+ MS)(1+MS)1-1]RIN"t =0. (A.16)

11101

This equation is true, QED

A.1.3 Lemma3

In the following we prove that
12zN||27S| = [22D||27(RS R + N)|, (A.17)

which is equivalent to
INIS| = [DIRSR + NI, (A.18)
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for the factors of 2 cancel for matrices that operate on the same vector spatas k&ite

INIIS|
DI

INJIS|ID™Y

INJISD|

INJIS(S7! + RINIR)|
|Nmmxmm1+sﬁN4m)
INIexp(Tr log(1+ SRNT'R))
IN| exp(Tr log(1+ RSF?N‘l))
INlexp(log|1+ RS RN)
INJRSRN™ +1
I(RSREN™1+ 1N|

IRSR + NJ. (A.19)

The crucial step here was to use the cyclic invariance ofrdeetTr and to notice that this cyclic
invariance still holds for the trace of a logarithm, whictndae easily verified using the Taylor

expansion of the logarithm.



Appendix B

B.1 Proof of the equivalence of the number of bins

We now outline the proof that if one uses the correct kernel, the ISW kernel rather than the
kernel for the galaxy density contrast in the analysis, stev@ted amplitudé.. and the variance
a2, are independent of the number of bins chosen, provided thiaina together cover the whole
volume relevant for the ISWfeect. The proof here is done only for the variance, but folldines
same scheme for the estimated amplitude. The total variafcene obtains when working with
N bins is given by eq.| (3.32), where we have substituted thexigi by ISW(), following the
argument of section 3.3.2:

-1
o= Y @ +1)> Ty, e (B.1)
[ i

We then use the form of the covariance matrix given by leq.8)3a2d the following relations that
only hold for the ISW kernel:

N

CIisw(i),T _ chisw(i),iSW(j) (B.2)
i=1
N

Csv = ZC;SW(J),T. (B.3)
=1

Now we choose a fixed but arbitrary number of biisnvert the covariance matrix and by inserting
the above relations we obtain
isw

L L C
CISW(I),T Ccc -1 i, . C|sw(J),T - | ) B.4
EH_ 0T(CR) D)) e (B.4)

Inserting this into eq! (B!1), the resulting formula fef, is exactly what we obtain from one single
bin covering the whole volume relevant for the ISWeet. We have checked this explicitly for
N = 2 -5 and it is straightforward, though timely, to also checloitény other number of bins.
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B.2 Proof of the factorization of the likelihood

We now explicitely prove the factorization of the likelirdin eq. [(3.67) into a reduced temperature
part and a polarisation part, as given in eq. (3.74). We willtds for the more general case that we
not only have a signal templale for the temperature part, but also a non-zero temgat®r the
polarisation part. In this case, the covariance matrix is

% Cat Catap
C= ’ , B.5
( Capat  Cap ) (85

instead of the simplified one given in eq. (3.68). HeYB,andAT are defined adP = P — P, and
AT =T - T, respectively. A block matrix

~ (A B
CE(C D) (B.6)

with A and D being invertible square matrices, can be bloskvinverted as given by the following
formula:

( A B )‘1 _ ( (A—BDlC)! _(A-BD'C)'BD! 6.7)

C D -D-'c(A-BD!C)! D!+DIC(A-BDC)!BD! /"

Let us define a a generalised version of the reduced temperaap and covariance matrix, which
we had introduced in eq. (3.72):

Tlﬁgorr = T- CAT,AF’ CX%’ AP
Cuncor = A- BD_lC =Cat — CAT,AP C;é CAP,AT . (B-8)

Using these definitions and the blockwise matrix inversiam first rewrite the exponent of
G(d-1,C)ineq. (3.67):

(AT*,APT)C"—l( i; )

= AT CineorAT = AT CincorCat.ap Cop AP = AP'CL5CaP AT ClncorA T
+AP' (Cap + CipCaPaTCinconCat.ap Cip) AP

= AT'CaleorAT = AT Cilor(Car.ap Cib AP) = (Catap Cab AP) CileorAT
+AP'Cyp AP + (C1.ap Cib AP)' Citorr(Catap Cib AP)

= (AT = Carap Cb AP)' Cikeorr(AT = Carap Cib AP) + APTCEAP

= (Tiheor= T)' Concon(Tlneor— Tr) + AP'C AP, (B.9)

where we have use(dZT’AP = CapaT, Ci; = Cat, @ndC}, = Cap, and have completed the square

in the second last step. Similarly, using the factorizatbthe determinant of a block matrix,

A B

det( C D

) = |D||A- BD'C|, (B.10)
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we can rewrite the determinant of the covariance mairas
ICI = ICuncort [Capl - (B.11)
Inserting eqs (B.9) and (B.11) ingg(d — , C), allows us to write
6(d-1.C) = G(Tion— Tr. Cuncor) G(P — Pr, Cap) . (B.12)

In the case of the polarisation templd&g being zero, this expression reduces to the one given in

eq. (3.74).
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Appendix C

C.1 Proof of vanishing correlation betweenT [5¢. and T/5%,,,

We now prove that the two magsst, and TS, into which we split the temperature mapin
section 4.2, are indeed uncorrelated. Let us first look afdh@wing covariance matrices, which
we will need in the derivation:

Cp = (PP)pp p) = WSpW' + Np, (C.1)

where we have assumed thdyn, is uncorrelated withPge; and Prg, and we have inserted the
definition ofNp, eq. (4.5).

Since we neglect the detector noise and residual foregeourttie temperature data, we obtain
for the covariance between temperature and polarizatitan da

CT,p = <T PT>7)(T,P| p) <T PCmbT >7)(T,Pcmb‘ p)WT

= ST’pWT 5 (CZ)

where we have assumed that detector noise and residuatdarets in the polarization map are
uncorrelated with the CMB temperature map.
We now write

Tég?r = Stp Slglpgerl\:b
= StpSHH(SH+ WINSW)tWINSTP
= Srp(l+W'Nm'WSp)'WiNGP
= SrpW(L+ Na'WSWH) NP
= SrpW/(Np + WSsWH) 1P
= CrpC:lP, (C.3)

where we have insertef°", from eq. [(4.7) in the first step. The third step can be easitified

by using the geometric series 1(dr+ W' N;lwsp)_1 W', which has a convergence radius of 1, and
is thus valid for|WTN,;1WSp| < 1. In our case, this holds because our polarization dataasen
dominate(@ Note that we have just proven that the Wiener reconstrucid®,, translated into a
temperature map, ed. (4.9), is equivalenT{f, as given in eq. (3.73). We have proven it here for
a zero signal templatd,. = 0, but the proof for a non-zero signal template can be doneeiisame

!By adding a smalé-term to the responsé#/, and thus making it invertible, the third step also holds generally.
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way.
Let us now look at

(T Demeip — (TonTeor YPrpip
= (TPYprpip(Ne + WSeW') "W Spr
— StpW (Np + WSeW') (PP e )
(Np + WSpWH)tWSpp
= SrpW/(Np + WSeW) WSt
— St pW'(Np + WSpW)H(Np + WSW')
(Np + WSpW') "W Spy
= StpW'(Np + WSW) W So 1
— StpW(Np + WSpWH)tWSpp
= 0, (C.4)

rec rect
(TuncorrT corr >7D(T,P| p)

where we have inserted eds (C.3), (C.1), and [(C.2). ThisgsrdhatT/sc,, and TES are
uncorrelated. QED

C.2 Proof of vanishing correlation betweenP.q and P,

For the splitting of the polarization map, we first prove ttheg unfiltered uncorrelated map defined
in eq. (4.15) P&, is uncorrelated withPgor:

<F)F;‘corrJr >¢>(T,P| p) — W< F)corrPcorrJr >P(T,P\ p)
= (PT"prp pSt Ste
— WSt STHT Tprpip) ST ST
= WSptSi'Stp - WSptS7'STSTStp
= WSptS7iStp— WSerS7iSTp
= 0. (C.5)

(PimeorPeorr Y2(Tp I p)

From the above, we readily obtain that also the Wiener fidtemgcorrelated map,

Pincor = [(Sp—SprStiSre)™t + WING'W] ™
Wi nglpraw

uncorr»

is uncorrelated withPeor:

[(Sp — SprS7'Stp) ™ + WING'W] ™
wf N|51< PL?V\clorrPCorrUP(T,PI p)
0. (C.6)

( P[IenCCOI’IP CO”’T >5D(T,P | p)

QED
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C.3 Probability for chance alignment in an isotropic universe

We would like to assess whether the rough alignment of threabthe quadrupole iR, actually
provides us with some information about the axis of evil. Weréfore compute the probability for
at least one of the axes &%, aligning with the axis of the temperature map in an isotropic
universe. To this end, let us take the preferred axis in ttipégature maf as given, and assume
that the axes oP[5C.,, are distibuted isotropically over the sky and indepengeintim each other.
We then work out the probability for at least one of the axeB#ff,,,, being such that the axis of the
temperature map is included in the tegion around it.

For simpliticy, we assume that the the tegions are symmetric circles around the axes, with
radiuso ~ 45° for both the quadrupole and the octopole. The solid aAgipanned by such arl
region is well approximated b ~ 7022 The probability of at least one of therlregions hitting
the axis of evil is just the solid angle spanned by the twadgions divided by the solid angle of the
hemisphere, 2 However, the solid angle spanned by the tworggions depends on the overlap
B between them, it is® — B to avoid double counting of the overlapping area. Given tiguéar
separationr between the axes of the quadrupole and the octopole, thipwaan be computed as
follows:

B(a) =2

2 @y a [, o
o arccos(zo_) >\ T } , (C.7)
which can be derived from the geometry of the problem in figtagpproximation. We marginalize
the hitting probability over the overlap(e), using the fact that is distributed as?(a) = sin(@)
{de Oliveira-Costa et al. 2004):

P(hit)

T/ 2
f P(hit| B(a))P(a) da

=0

/2 _
f 2A~ B gin@) da ~ 50%. (C.8)
a=0 2n

2This flat-sky approximation ¢liers from the actual value of the solid angle by 6 per cent.
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Appendix D

D.1 Inversion of the parameter transformation

In the following, we present a technique of inverting thegmaeter transformation of Sec. 5.3.2 to
compute the cosmological parameters given the normal pessn The normal parametey in
terms of cosmological parameters is given by

(Wi, Wh) = 0.0264w},%"*?exp(—-0.476[IN(25.5wW, + 1.84wWm)]?) . (D.1)

We solve this equation fomy, as a first step:

Wm(hz, Wp) = (exp{i

L (e e . 255w, | - (D.2)
0.476 (0.0264 P =T I18a '

Inconveniently, there exist two filerent solutions fow,(h,, wy), which complicates the inversion.
We now substitut@vy, in hs(wm, W) (5.27) for (D.2) and thus obtais(ho, W), which, of course,
has two solutions as well. An example of the two branches@f,, wy) for h, = 0.45 is depicted
in Fig..D.1. We can calculate the critical point where onlg@olution exists using the condition

0.9

0.85

0.8 |

0.65

0.6 |

0.55

05 L L L L L L L
0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

Wh

Figure D.1: The two branches b versusw, for hy = 0.45.
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1 ha
- | wo782) = 0 D.3
0476 n(0.0264 b : (D-3)

as can be seen from (D.2). This condition gives us the foligvibrmulae for the parameter values
at the critical point:

0.0264\"°762
Wh crit(N2) ( H ) , (D.4)
2
1
Wm,crit(hz) = (1- 25-5Wb,crit) m s (D.5)
Wh crit \2 -1 Wh ~ri -1
hacic(hs) = 2.17(1 + (ﬁ) ) wose, (1 + 1.63(1 - ﬁ;”‘l) Wm,crit) GY)

The two parameters, andhz can now be inverted ta/,, andwy,. For a givenh,, we expresss
in terms ofh, andw,, as described above. We then Usg;i:(hy) to choose the upper branch of
hs(hy, wp) if our givenhs is bigger tharh; ¢it(h2), and the lower branch if it is smaller. Using the
respective branch dis;(h,, wy), we search numerically iw, until hz(h,, wy) matches the givehs.
Substituting that value ofy, into equation[(D.2), we readily obtain the value fay.

Now it is straightforward to compute the values farandAs fromt andA.. To obtainh from
O, we follow the procedure suggested\bv Kosowsky et al. (QO@a)ressingas in terms ofh in
terms ofh and then searching imnumerically until®s(h) matches the given value 6.
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