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Abstract

Ein analytisches Modell unserer Galaxie wird durch die Kopplung eines chemischen Evolu-
tionsmodells mit analytischen Modellen der Kinematik unserer Galaxie entwickelt. Mit Hilfe
dieses Modells wird die umfangreiche radiale Migration vonSternen in der galaktischen Scheibe
nachgewiesen. Diese hat umfassende Konsequenzen für die Struktur und Geschichte der
Scheibe, einschließlich der Ausbildung einer dicken Scheibe, ohne eine Kollision mit einer
kleineren Galaxie voraussetzen zu müssen. Durch die M̈oglichkeit, die lokal gemessene Me-
tallizitätsverteilung mit Hilfe von Sternen aus anderen Regionen derScheibe aufzubauen, entfällt
die Notwendigkeit starker Veränderungen in der chemischen Zusammensetzung unserer Galaxie
in der jüngeren Vergangenheit. Im Gegenteil favorisiert das neue Modell einen nur sehr gering-
fügigen Anstieg der Metallizität, was in ausgezeichnetem Einklang mit den Beobachtungsdaten
steht. Das Modell erklärt ferner auf naẗurliche Weise die bekannten Zusammenhänge zwischen
Chemie und Kinematik in Sterndaten aus der Nachbarschaft unserer Sonne. Einige neue Befunde
aus lokalen Beobachtungen werden gezeigt und mit den Modellerwartungen verglichen.
Mit Hilfe des Modells wurde ein grundlegender Fehler in der Bestimmung des Ruhestandards,
bzw. der Geschwindigkeit unser Sonne relativ zur idealen Kreisbahn in unserer Galaxie ge-
funden. Zusammen mit der später erfolgten Messung der Rotationsgeschwindigkeit der Sonne
um das Zentrum der Milchstraße konnten wir den galaktozentrischen Radius und die Rota-
tionsgeschwindigkeit der Milchstraße am galaktozentrischen Radius der Sonne neu bestim-
men. Diese zweite Messung wurde durch eine neue statistische Methode erm̈oglicht, die eine
höhere Genauigkeit bei der statistischen Korrektur von Sterndistanzen erlaubt als die Ansätze
der klassischen statistischen Astronomie. Die neue Methode war auch von großem Nutzen
beim Nachweis, dass die jüngsten Behauptungen einer dualen Struktur des galaktischen Ha-
los auf Distanzfehler und die ungerechtfertigte Beschreibung intrinsisch asymmetrischer Daten
durch Gaußfunktionen zurückzuf̈uhren sind. Aus dem mathematischen Apparat für die Kine-
matik des Scheibenmodells wird eine einfache analytische Funktion zur Beschreibung der
Geschwindigkeitsverteilung in der Scheibe hergeleitet, die bei gleicher Zahl freier Parameter
eine physikalisch besser motivierte Alternative zu den häufig genutzten Gaußfunktionen bietet.



Abstract

An analytic model of our Galaxy is developed by coupling a chemical evolution model with
analytic models of the kinematics of our Milky Way. With thismodel the presence of strong
stellar radial migration in the Galactic disc is proven. This bears far-reaching consequences for
the structure and history of our disc including the formation of a thick disc component. Hence
there is no more need for a collision of the Milky Way with a smaller galaxy in the past to
explain the existence of the thick disc. By building the locally observed metallicity distribution
function with the help of stars from other regions of the Galactic disc the model does not require
strong changes of the chemical composition in the near past.On the contrary the new model
favours a relatively flat age-metallicity relationship in excellent agreement wih observations.
The model explains in a very natural way the known links between chemistry and kinematics of
Solar neighbourhood stars. Some new results from local observations are shown and compared
to the model expectations.
With the help of the new model a systematic error was discovered in the classic determination of
the Local Standard of Rest or respectively the velocity of theSun relative to a circular orbit in
the Galactic disc. Together with the later measurement of the total azimuthal speed of the Sun
around the centre of the Milky Way we are able to determine thelocal galactocentric radius and
the circular speed of the Milky Way at the local radius. The measurement of rotation from stars
has been enabled by the creation of a new method that allows for a higher accuracy in correcting
the average distance to asample of stars than the classic strategies of statistical astronomy. The
new method was very useful in demonstrating that the recent claims of a dual structure of the
galactic halo are the result of significant and systematic distance errors and the unjustified use of
Gaussian functions to describe intrinsically asymmetric data. From the mathematical apparatus
developed for the kinematics of our disc models we derived a simple analytic function describ-
ing the velocity distribution of disc stars that offers at the same number of free parameters a
physically better motivated alternative to the commonly used Gaussian fits.



Chapter 1

Introduction

1.1 Preface

Work on the physics of our Milky Way sometimes resembles the job of a historian: piece to-
gether the heap of information that the true archaeologistsof our Milky Way - observers and
spectroscopists - provide and try to provide as simple as possible explanations that shatter some
light of the wide variety of the data. Two simplifications could be done: With our new ra-
dial migration models the wealth of local spectroscopic andkinematic data of the Galactic disc
could be explained without having to invoke any special violent merger that formed the Galactic
thick disc while explaining the otherwise peculiar similarities between thick disc and inner disc.
Second with our progress in understanding stellar distances, distance errors and their effect on
kinematics we could not only re-institute stars to their role as a keystone in determining Galactic
parameters, but also make our picture of the Galactic halo simpler by dismantling recent claims
on a pronounced dual structure of the Galactic halo as a result of distance errors and insufficient
analysis.
Soon in my research on the Galactic disc I had to notice that the theoretical modelling may be a
well confined and rather foreseeable course of advance, but that without deep involvement in the
actual data I would maybe make some observer happy whose dataI use in blind trust, but would
never hold a reasonable model of our Milky Way. Of course the result was not doing it better
than the observers, but doing it better than without understanding of the traps and short-comes
in observational data. This errand through Galactic astrophysics would have been a pain had not
my supervisor turned out to be the epitome of patience bearing calmly and positively reacting
to my weekly changes of interest and topics. The result is - asthe reader may notice - a rather
kaleidoscopic view on our Galaxy, that covers almost all their parts apart from the Galactic Bulge
(which could perhaps also be covered in the context of our radial migration models, but that will
be another, later story). This has the adverse effect that a general line of developing my thoughts
and arguments cannot be found, although all of the presentedwork is connected to each other
and none of these chapters and publications could exist without each other.
Among the presented work the unfortunately rather destructive piece on halo structure turned
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out to be the most productive of them all - it forced me not onlyto create the analytic formula
for disc kinematics that then triggered the shown improvement in adiabatic modelling that is key
to development of an improved disc model in the near future, it is also the source of my idea
to use stellar kinematics in a novel way and by these improvedastrostatistics opened the way to
obtaining Galactic parameters at high precision.

1.2 General remarks

Due to the broad scope of this work a complete introduction tothe relevant physics cannot be
given - it would have to cover the entire range of Galactic astrophysics, dynamics, stellar evolu-
tion, spectroscopy and much more. Instead I will present some rather simplistic explanations to
central topics and refer the interested reader to Binney & Tremaine (2008) for stellar dynamics
and kinematics, to Mo, van den Bosch & White (2010) for a view on Galactic evolution closer to
cosmology, to Binney & Merrifield (1998) for questions of Galactic Astronomy, to Pagel (1997)
for chemical evolution and to Trumpler & Weaver (1962) for anintroduction to astrostatistics.
The field where stellar astrophysics and Galactic chemical evolution meet together is sometimes
called Galactic archaeology. The stellar population hostsboth the witnesses and the drivers of
chemical evolution (for a related discussion, where the picture was drawn similarly I reference
Scḧonrich, 2011a), i.e. the change of the chemical compositionof the star forming gas by the
products of stellar fusion and to a minor extent by spallation and radioactive decay. While the
massive stars burn their nuclear fuel quickly and dispel it into the surrounding medium quickly,
driving chemical evolution, their light-weight counterparts (around or below about a solar mass)
live comparatively long with or longer than the age of our Galaxy. As the products of their fusion
during the main sequence evolution (which would anyway be mostly limited to Helium and some
changes to CNO abundances, i.e. elements involved in the Bethe-Weizs̈acker cycle (Weizs̈acker,
1937, 1938; Bethe, 1939), for stars above around 1M⊙) do not pass through the mostly radiative
interior of a star to its surface their surface metallicities reflect the composition of the interstellar
medium from which they were born. So in principle the entire history of the Galaxy lies stretched
on the sky before us, however, we need to perform the highly non-trivial task of decoding it, as
their ages are uncertain and their birthplaces are unknown.
For this task a detailed theory of chemical evolution is veryhelpful to limit the range of possible
developments that the chemistry in a galaxy can take and to link the observed trends to phys-
ical mechanisms. Fig. 1.1 delineates the main players in thechemical evolution process. The
chemical evolution begins when enough gas has flown into the Galaxy to become unstable and
trigger star formation. In contrast to elliptical galaxies, which contain mostly hot gas that does
not support star formation, the Milky Way contains predominantly cool gas near its disc plane.
This reservoir keeps up continuous star formation concentrated in its spiral arms as well as a
small central ring near the centre and a ring of more intense star formation near 4kpc, proba-
bly triggered by the Galactic bar. The most massive stars from that star formation die after a
couple of million years. As the iron core of the supernova progenitors in most cases collapses
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Figure 1.1: Sketch of processes in Galactic chemical evolution. “cc SN” is an abbreviation for
the core collapse supernovae produced by massive stars and “AGB” indicates the elements freed
in the final asymptotic giant branch stage of intermediate mass stars. Fe-rich indicates yields
rich in iron, whileα-rich classifies the yields of massive stars that are rich inα-elements like
magnesium or calcium.

into a neutron star or black hole (see e.g. Janka et al., 2007), only the outer layers can be ex-
pelled and what is mixed up by turbulence and jets. Hence onlya small amount of iron peak
elements is given back to the interstellar medium, while those explosions set free a lot ofCNO
andα elements, i.e. elements whose nuclei are multiples ofα particles derive from fusion before
reaching the final stage of silicium burning. There exists a second channel of enrichment with
heavy elements: Supernovae of type Ia (normally denoted SNeIa) are thermonuclear explosions
of a white dwarf that lead to the complete disruption of the body and as a considerable fraction
of the mass is fused into iron they change the composition of the galactic interstellar medium
considerably in favour of iron. Despite an ongoing debate about the exact timescales and if the
dominant channel are mergers of two white dwarfs, white dwarfs reaching the Chandrasekhar
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mass or sub-Chandrasekhar explosions triggered by a helium-flash (Sim et al., 2010; Fink et al.,
2010), it is clear that the time necessary for the creation ofa white dwarf from an intermediate
mass star and the subsequent development require far more time than needed towards a core col-
lapse supernova. This sets a natural clock that starts running with the first populations of stars
born in a galaxy. At first the core collapse supernovae produce their yield inα elements and the
[α/Fe] ratio begins to drop when the first SNe Ia are produced. This clock plays also a pivotal
role as it was commonly believed that the bimodal behaviour of [α/Fe] ratios in local stellar
samples indicated a hiatus in star formation probably connected to a cosmic catastrophe like a
major merger of our Milky Way (see e.g. Brook et al., 2007) in the far past creating the thick disc
as well. In Scḧonrich & Binney (2009a), or Chapter 2 we have shown that such a bimodal dis-
tribution even with a deep gap is the natural outcome of the logarithmic abundance scale acting
together with radial migration of stars and the standard timing of SNe Ia making any hiatus in
star formation obsolete for explaining the current observations.
Some words of caution have to be added to all this abundance timing: In its use we have to be
always aware that we are not holding an absolute age, but an age relative to the first population
born in the system. On its trend down in[α/Fe] there are also strong influences by the time line
of star formation. A pronounced peak in star formation can increase the content ofα elements
and temporarily drive chemistry back to higher[α/Fe] ratios (cf. e.g. Colavitti et al, 2008).
Even more caution has to be applied to absolute metallicities as time indicator. Fuelled by some
simplistic chemical evolution models that neglected lock-up of processed material in the hot gas
phase and other essential ingredients there has been spreadthat metallicities are a direct indicator
for age. They are not. It is correct that in general a system will involve to higher abundances, but
we have to acknowledge that the enrichment (see e.g. our galactic abundance gradient and the
contrast to the intergalactic medium) is strongly inhomogeneous in space.
Chemical evolution bears also a lot of open questions. The lock-up of processed material in the
hot gas phase and the transport of this material in the radialdirection of a disc Galaxy are not
understood. Similarly we know from isotope measurements inthe Earth’s crust and in meteorites
that the solar system must have at its formation contained a relatively large amount of short-lived
radioactive isotopes. This proves that there must be a significant direct enrichment of molecular
clouds and protostellar systems by nearby supernovae (see e.g. Gounelle & Meibom, 2008). Still
the absolute fraction of supernova yields dumped in the direct channel is neither sufficiently
constrained by observations nor by theoretical argument. This is a sad situation as the early
chemical enrichment of any system depends critically on this parameter.

1.3 Galactic structure

Despite the impressive reasoning by which Kant (1755) predicted not only the formation of stellar
and Galactic systems from collapsing dust clouds and hence their disc shape as well as the fact
that the then observed “nebulae” would turn out as remote stellar systems (termed “Welteninseln”
by him) it took until the last century it became widely accepted that we are not in the centre of
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our system (?) and that there is a great abundance of other stellar systemsoutside our Galaxy
(Curtis, 1920) and that we are not in the centre of our system assuggested by Herschel’s (see
Fig. 4 in Herschel, 1785) reddening and distance affected star counts, but live rather on the edge
of our disc galaxy (?). As most disc galaxies carry a more or less pronounced spiral pattern of
enhanced star formation and molecular cloud density, they are commonly termed spiral galaxies.
In a very simplistic way the Milky way can be decomposed into three components: disc, bulge
and halo. Like in all spiral galaxies, the disc of the Milky Way harbours almost all of the cold
gas content in our Galaxy in a very thin layer (a scaleheight of about 10pc or respectively 30
light years compared to a scale length of about 3kpc). This gas condenses into the molecular
clouds from which disc stars are formed till today. They constitute the thin stellar disc which at
a comparable scale length to the gas attains a larger scale height of around 300pc as stars gain
random energy during their lifetimes and hence reach higheraltitudes. While the average age
increases drastically towards higher altitudes, the density slope gets shallower. Be it a separate
entity or just a smooth transition, this can be well described by a second component (Gilmore &
Reid, 1983) that locally (i.e. in the disc plane) makes up around 12% of the “thin” disc and has
a scale height of around 900pc (Ivezic et al., 2008).
In its centre our Galactic disc hosts a bar and a relatively small bulge. Many processes have been
brought up for formation of this component. The fact that it attains around solar metallicity at
still high [α/Fe] ratios (see Meĺendez et al., 2008) indicates very dense and rapid star formation
(the high[α/Fe] ratio indicates a short history of star formation that did not allow for SN Ia
explosions to contribute significant amounts of iron to the metal enrichment and the high metal-
licity then demands rapid star formation to deliver the necessary amount of metals. Currently it
is rather up to speculation what this entity constitutes. There is some indication (e.g. the rela-
tively small mass estimates for the central black hole) thatmost of its mass is actually a pseudo
bulge - older disc stars that have been taken to a bulge-like structure by secular processes. A
major contributor might also have been a vigorous disc instability at the start of disc formation
leading to the formation of giant clumps that by friction fall into the central regions (Aumer et
al., 2010; Bournaud et al., 2009). The latter paper offered also a nice process that may contribute
to thick disc formation. If preliminary results of Bulge studies hold true, a clumpy appearance
of the metallicity distribution function for which some tentative indications have been found by
(Bensby et al., 2011a; Hill et al., 2011) (the two-Gaussian fitdone by Hill et al. may be con-
sidered irrelevant, as it is common knowledge that metallicity distributions of common chemical
evolution models are intrinsically asymmetric) may be a first observational hint such a process.
The detailed origin of the Galactic halo, the extremely low density mass of stars surrounding
our disc and bulge, is still unexplained. A lot of its mass is contributed by in-falling dwarf
galaxies/satellites forced to spiral into the Galaxy by dynamical friction and getting disrupted in
the tidal field of our Galaxy. The observational evidence so far is quickly summarised as: the
Galactic halo is very metal poor with a quite broad metallicity distribution peaking somewhere
around[Fe/H] ∼ −2 to [Fe/H] ∼ −1.5 (see e.g. Ryan & Norris, 1991; Schörck, 2009), i.e. at
less then a tenth of the solar metal content, its populationsare kinematically very hot with the
velocity ellipsoid elongated strongly in the radial direction at roughly a 2 : 1 axis ratio with the
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vertical and azimuthal components. With the globular clusters it hosts some of the oldest and
still most enigmatic objects of the universe. Some globularclusters likeω Cen are believed to be
cores of disrupted dwarf galaxies (Bekki & Freeman, 2003). Some may be remnants of mergers
or chunks of in-falling gas that collapsed to stars during its infall into the Milky Way (the first to
speculate about such a process again appears to have been Kant, 1755). Most of them display,
contrary to what was believed until a couple of years ago, multiple populations visible both in
spectroscopic metallicity distributions and photometry (see e.g. Bedin et al., 2004; Caretta et al.,
2009; Lind et al., 2011; Marino et al., 2011). As globular clusters lose many of their members
by core contractions and hence contribute a significant fraction of stars to the dispersed stellar
population of the Galactic halo (see e.g. Martell & Grebel, 2010). Possible differences between
the inner and the outer halo have always been central issues of research in this field. A priori it
is clear that by the adiabatic contraction of the halo populations in the deepening gravitational
potential of our Galaxy the outer halo should be on average a bit younger and probably contain
a larger fraction of fresh debris from infalling satellites. Other studies, especially Carollo et
al. (2007, 2010) claimed a strong retrograde motion for the outer halo and a lower metallicity
for these objects from local halo star data. While other observational studies like Sesar et al.
(2011) do not find a convincing metallicity gradient from in situ samples, we could show that
all the signatures found by Carollo et al. (2007, 2010) can be traced back to distance biases and
inadequate analysis of their data. This is presented in chapter 8 or respectively in Schönrich et
al. (2011b).

Back to the structure of the Galactic disc: The main source of information about the structure,
dynamics and history of the Disc is the combination between chemistry and kinematics of disc
stars. Hence a deeper understanding of the chemical evolution of the Galactic disc is required.
All of this is discussed in detail in the following chapters,but Fig. 1.2 sketches the most im-
portant processes. A central ingredient to this are the dynamics of the cold gas in the Disc.
Most observational data apart from a few exceptions indicate present disc metallicity gradients
of d[Fe/H]/R ≤ −0.05dex/kpc, more than can be explained within chemical evolution mod-
els without radial flows, especially as we know from Casagrande et al. (2011) that the mean
metallicity did not experience significant changes during the past few billion years. The most
reasonable explanation for the persistent presence of a Galactic abundance gradient has been
laid out by Goetz & Koeppen (1992) and Portinari & Chiosi (2000): A radial inflow through the
Galactic disc can advect the yields of stars towards the central regions of the Galactic Disc, while
the outer parts experience the inflow of “fresh”, less enriched material. Flows of order 1kms−1

are entirely sufficient to drive this mechanism. The main drivers of this process are identified
(see a discussion of possibilities in Lacey & Fall, 1985) andcurrently the most important factor
seems to be the onfall of material with lower angular momentum onto the disc. At the same time
Sancisi et al. (2008) find that there is demonstrably onflow ofcold gas onto Galactic discs, but
it is not sufficient to cover the needs of those systems for sustaining their high star formation
rates. In this context Marinacci et al. (2011) delivered thewelcome explanation that supernova
explosions can push cold clouds out of the disc plane to higher altitudes where hot gas from the
corona condenses on their thermally unstable boundaries. There is an interesting implication to
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Figure 1.2: Sketch of gas flows and stellar migration in a typical disc galaxy. “IGM” abbreviates
the intergalactic medium.

this process: the hot coronal gas has a significantly lower angular momentum, lagging the local
circular speed by roughly 75kms−1. As we will demonstrate in an upcoming paper the radial
abundance gradient as observed by Luck & Lambert (2011) is fully consistent with this angular
momentum difference of the infalling gas driving the radialgas flow.
Once we have established a radial abundance gradient, the local metallicity distribution can be
used to constrain disc dynamics. In Chapter 2, or respectively Scḧonrich & Binney (2009a) it has
been shown that the shape of the local metallicity distribution function as observed in the Geneva-
Copenhagen Survey (GCS, Holmberg et al., 2007; Casagrande et al., 2011) can only be explained
when we allow for significantly more stars from other radii entering the solar neighbourhood
than can be explained by orbital excursions due to the heating up of the populations (“blurring”)
alone. It is hence necessary to allow for an additional migration process that allows for stars
changing their angular momentum significantly. The only such process is radial migration by
resonances with the potential perturbations from the Galactic bar and spiral pattern as described



1.3. GALACTIC STRUCTURE 9

for the first time by Sellwood & Binney (2002). Stars participating in this process are expected
not to experience any significant heating during their angular momentum change and we term
this process “churning” in contrast to the aforementioned “blurring”. Apart from the proof of
radial migration/“churning” we discovered that the migration of inner disc populations with their
hotter kinematics leads to a significant increase in the discscale height in the outer disc regions
and solar neighbourhood, explaining the larger scaleheight of the thick disc in addition to the
already understood separation in chemistry without havingto invoke any cosmic catastrophe.
This analytical result was later confirmed by Loebman et al. (2011) on an N-body model. As
a side result we also showed that this immigration of hotter stars into the solar neighbourhood
resolves the old tension between theoretical expectationsand observations on the disc heating
function with time: By perturbations in the Galactic potential, mostly clouds, clusters and other
density fluctuations, stars get scattered or in other words diffuse through phase space gaining
random energy with time. Theoretically this can be approximated by a simple heating law like
σi ∝ t + t0β whereσi is the dispersion of a population in velocity componenti, t is the age of the
component,t0 is a small offset giving the population a finite dispersion atbirth andβ is the time
coefficient. Theoretically this relationship should display a time coefficientβ < 1/3 while e.g.
Aumer & Binney (2009) measuredβ > 1/3. This difference is readily displayed by increasing
influence of inner disc stars on the solar neighbourhood withtime as we show in Chapter 2.

These successes of radial migration motivated a detailed investigation into the links between
kinematics and chemistry in our radial migration model performed in Chapter 3, focusing es-
pecially on the common selection schemes to separate suspected thick disc objects from thin
disc objects. We proved on the basis of Toomre diagrams of thesingle components that no such
selection could ever yield a clean result in terms of population separation, which explains the
stragglers (low[α/Fe] stars in the kinematically hot component and high[α/Fe] stars in the
kinematically cool, i.e. thin disc, selection). We have demonstrated that all the structure in the
abundance plane observed in local studies is perfectly matched by our radial migration model
without having to adapt a single further parameter. Also theobserved abundance pattern was
traced back to a very natural origin: Generally the thick disc displays a high[α/Fe] enrichment
up to quite high metallicities[Fe/H]∼−0.4 and then turns down towards lower[α/Fe] enhance-
ment meeting the thin disc ridge line around or slightly above solar ([Fe/H] = 0) metallicity. The
cradle of such a population must hence have experienced a farquicker enhancement or respec-
tively star formation than the local population (that dropsin [α/Fe] at lower metallicities). In
the simplest case this is just achieved when a quick metallicity increase is spurred by high star
formation rates in a dense environment, exactly what is found in the early inner Galactic disc.
In classical chemical evolution models this component had to be artificially created by driving
up the local star formation rates by a manipulation of the Kennicutt law (the law connecting gas
surface density to star formation efficiency) and a subsequent arbitrary break in star formation
and the coefficient of the Kennicutt law. Apart from the very natural set-up of our thick disc
formation, this is a very natural explanation for the findingof Meléndez et al. (2008); Bensby et
al. (2011a) that the inner disc/bulge follow approximatelythe same trend in abundances as the
local thick disc.
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Investigations into the structure of the model yielded a surprise for Galactic kinematics. At
least since the work of Delhaye (1965) it was common knowledge that the Local Standard of
Rest (LSR) could be determined via the Strömberg equation, or in other name asymmetric drift
relation that states a linear relationship between the asymmetric drift (i.e. the velocity difference
between the circular speed of the Galaxy and the azimuthal velocity component of a population
in question) and its squared velocity dispersion. Intuitively this relationship is clear as a lack
of angular momentum and hence kinetic energy in the azimuthal velocity component can be
made up by random energy in the other components, formally itcan be directly derived from
the Jeans equations. Dissecting a sample into kinematically hot and cool objects, this linear
relationship can in principle be measured and by extrapolation to zero asymmetric drift the LSR
and the solar azimuthal velocity against this circular speed can be recovered. Until now an
important aspect of the asymmetric drift relation has been overlooked throughout the history
of its use: The relation contains the radial density gradient of a population. The gradient is
remarkably stable for populations of different ages, but ifwe select a sample by metallicity,
we select for inner and outer disc stars respectively. For moderately metal poor objects born
in the outer disc, this gradient will even reverse leading inextreme cases up to a sign change
in the asymmetric drift relation. And indeed the classic selection of stars involves metallicity:
Having no other parameters at hand, stars were selected by their colour. This strategy uses
the fact that blue stars have higher stellar masses, which makes them die young and hence the
average age of a population of main sequence stars increasesfrom blue to red until the red-most
turn-off point that is set by the oldest stellar populationsof our Galaxies, also called Parenago’s
discontinuity (Parenago, 1950), from where the dispersionshould remain constant. However, as
higher metallicity implies redder colours for stars of the same mass, the colour selection leads to
metal-poor stars being preferentially in the young bins andmetal-rich stars on the old, red side.
This distorts the expected linear relationship and thus an unphysical linear relationship is faked
on the red side. This novel view explains also the large systematic aberration observed for young
stars from the slope defined by the linear relation and led to acorrection of the standard value
for the solar azimuthal velocity from(5.25±0.54)kms−1 to now(12.24±0.47)kms−1 with an
assumed systematic uncertainty of 2kms−1. Some observational data are presented that confirm
the predictions made in this paper.

As mentioned above our tests on the alleged duality of the Galactic halo (Chapter 8) revealed
that the claims of such a duality had no substance. While it is good news by itself that our
Galaxy is not as complicated as it was suspected to do making its physics simpler and forcing
less assumptions, this paper triggered a couple of further developments: For reliable comparisons
of a theoretical model velocity distribution to the observations, several sources of error have to
be respected, or technically their terms have to be folded onto the theoretical distribution to
match the data. As a result of distance errors especially theazimuthal velocity distributions
carry a highly asymmetric error term that mimics a second component when being neglected.
Further the proper motion errors have to be correctly applied and distance errors enter the stage a
second time by letting the other velocity components cross over into the component in question
(see Chapter 9). This folding is easily explained, but becomes painful when fitting complicated
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kinematic models to the observations. The alternative on the marketplace are the widely used
Gaussian fits. However, their solutions are dynamically absurd and have nothing to do with the
underlying physics, e.g. they neglect the intrinsic asymmetry of azimuthal velocity distributions
in Galactic discs resulting in the need for artificial secondor even third components. To solve
this problem we created a simple analytic formula (presented in Chapter 6) that can of course not
compete with a complete model, but does not demand more free parameters than the classical
Gaussian fits and instead has physical motivations and interpretations for each used parameter,
while it naturally covers the intrinsic asymmetry of velocity distributions and hence gives a true
indication for allowed shapes and the need for further components.

In the course of this work we noticed an inconsistency in the classical approach of adiabatic
models for the kinematics of our Galaxy: An inconsistency ofclassic adiabatic modelling was
noted by Binney & McMillan (2011) in that with larger verticalenergies adiabatic models give
orbits an increasing inward bias. They approximated this bias by replacing the angular momen-
tum aligned with the disc rotation axis (Lz) with the total angular momentum of the orbit in
calculating its horizontal extent. Of course this correction pushes the orbit outwards as desired,
but we found that a more natural explanation: The adiabatic approximation violates total energy
conservation by changing the vertical energy of an orbit dependent on Galactocentric radius (the
nearly adiabatic expansion of an orbit towards the outer Galaxy reduces vertical energy) and we
demonstrated that this problem can be solved by the introduction of what we call the “adiabatic
potential” in the horizontal term. This potential simply corrects the usual effective potential of
horizontal motion by adding the energy difference in the vertical term, resulting in an outwards
tilt of the effective potential. This copes naturally with the observation that a few stars in simu-
lations at high vertical energies never reach their guidingcentre radius (i.e. the orbit of a circular
orbit with theirLz). In addition we show in Chapter 7 that the approximation by using the entire
entire angular momentum of an orbit is by some coincidence valid near the solar neighbourhood,
but does not generally hold in all potentials, while the adiabatic potential gives very promising
results.

The second upshot of the halo paper was our work on distances,presented in Chapter 9. It
uses the idea that distance errors induce specific correlations between velocities that vary over
the sky. As an example think about a typical halo star (no motion in the azimuthal velocity
direction) observed at an elevation of about 45 degrees in the direction of rotation of our Galaxy.
As we are rotating with the Galactic disc beneath this star, it’s Galactic latitudeb will rise, while
we see its light blue-shifted. Only when knowing its correctdistance we will ascribe the right
motion to this object. In case we overestimate its distance,the angular motion outweighs the
line-of-sight velocity and consequently we will think thatthis object rises vertically into the
sky. Vice versa - had it been placed behind our direction of motion, we would have - by our
distance overestimate - have inferred it moving downwards.In short with a common sentence:
With a systematic distance error we see “the skies falling”.Exploiting this idea we developed
a distance estimator that is more sensitive and robust than the classical strategies of statistical
astronomy, i.e. the secular and the statistical parallax. This work also definitely revealed the fact
that the suspected subgiants/turn-off stars that were usedby Carollo et al. (2007, 2010) and are
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still used by Beers et al. (2011) in the spectroscopic samplesfrom the Sloan Digital Sky Survey
(SDSS/SEGUE) are entirely unreliable, as they are dominated by contamination from dwarf and
giant stars. We have also applied our distance estimator with great success to stellar distances in
the RAVE survey. There it uncovered biases for a couple of different stellar categories and the
results will soon be described elsewhere.
The novel distance estimator impacts our ability for using stellar samples in the determination
of Galactic parameters, especially the solar Galactocentric radius and the circular speed of the
Galaxy near the Sun. Since the invention of the Oort constants (Oort, 1927) this field has not
made a lot of significant progress, especially as distances for stars outside the HIPPARCOS
sphere, where we have geometric parallaxes, were too uncertain to allow high precision measure-
ments. However, with our ability to assess the systematic distance scale this field lies suddenly
open for exploration. First approaches are laid out in Chapter 10. In this work we discovered
that the large geometric extension of the new big samples like SDSS and RAVE allows to mea-
sure the absolute rotation speed of a component from the systematic rotational streaming in the
heliocentric radial velocities: Simply explained the stars on one side of the Galactic centre come
towards us while they move away from us on the other side. Apart from a beautiful assessment of
component rotation in our Galaxy that is fully independent of assumptions on the Solar motion
itself, we can do more: By matching the measured rotation to the mean azimuthal motion of stars
we can infer the total azimuthal velocity of the Sun and discounting for the already determined
LSR motion of the Sun we can infer the local circular velocityof our Galaxy. As we can weigh
the sample by its impact on the rotation estimator, we get a fully unbiased estimate of rotation
that does not require any prior knowledge e.g. on the change of asymmetric drift with altitude
above the plane. As a downside the inferred solar velocity depends on the assumed Solar Galac-
tocentric radius. Adding the proper motion of SgrA∗ (Reid & Brunthaler, 2004) with which our
relation intersects as second constraint we derive both theSolar Galactocentric radius and the
solar velocity. As a second measurement we only have to use the fact that the derived circular
velocity must be the same for all populations irrespective of their intrinsic rotation. Since our
estimator is independent from the estimates of McMillan (2011), we can match our results (that
are of comparable precision) to his and obtain the highest formal accuracy of Galactic parameters
among the studies we are aware of withR0 = (8.24±0.09)kms−1 andvφ ,⊙ = (249±4)kms−1.



Chapter 2

Chemical evolution with radial mixing1

2.1 Abstract

Models of the chemical evolution of our Galaxy are extended to include radial migration of
stars and flow of gas through the disc. The models track the production of both iron andα
elements. A model is chosen that provides an excellent fit to the metallicity distribution of
stars in the Geneva–Copenhagen survey (GCS) of the solar neighbourhood, and a good fit to the
local Hess diagram. The model provides a good fit to the distribution of GCS stars in the age–
metallicity plane although this plane was not used in the fitting process. Although this model’s
star-formation rate is monotonic declining, its disc naturally splits into anα-enhanced thick disc
and a normal thin disc. In particular the model’s distribution of stars in the ([O/Fe],[Fe/H]) plane
resembles that of Galactic stars in displaying a ridge line for each disc. The thin-disc’s ridge
line is entirely due to stellar migration and there is the characteristic variation of stellar angular
momentum along it that has been noted by Haywood in survey data. Radial mixing of stellar
populations with highσz from inner regions of the disc to the solar neighbourhood provides a
natural explanation of why measurements yield a steeper increase ofσz with age than predicted
by theory. The metallicity gradient in the ISM is predicted to be steeper than in earlier models,
but appears to be in good agreement with data for both our Galaxy and external galaxies. The
models are inconsistent with a cutoff in the star-formationrate at low gas surface densities. The
absolute magnitude of the disc is given as a function of time in several photometric bands, and
radial colour profiles are plotted for representative times.

2.2 Introduction

Models of the chemical evolution of galaxies are key tools inthe push to understand how galaxies
formed and have evolved. Their application to our Galaxy is of particular importance both on

1 This chapter was published as Schönrich & Binney (2009a). It was further done to a major part during my diploma
thesis for which it was used. Text and content are identical to the journal paper apart from minor editing.
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account of the wealth of observational data that they can be required to reproduce, and on account
of the inherent interest in deciphering the history of our environment.
From the pioneering papers by van den Bergh (1962) and Schmidt(1963) it has generally been
assumed that a galaxy such as the Milky Way can be divided intoconcentric cylindrical annuli,
each of which evolves independently of the others (e.g. Pagel, 1997; Chiappini et al., 1997, 2001;
Naab & Ostriker, 2006; Colavitti et al, 2008). The contents ofany given cylinder are initially
gaseous and of extremely low or zero metallicity. Over time stars form in the cylinder and
the more massive ones die, returning a mixture of heavy elements to the remaining gas. The
consequent increase in the metallicity of the gas and newly-formed stars is generally moderated
by an inflow of gas from intergalactic space, and, less often,by an outflow of supernova-heated
gas.
The cool, star-forming gas within any cylinder is assumed tobe well mixed, so at any time it can
be characterised by a metallicityZ(r, t), wherer is the cylinder’s radius. Hence the stars formed
within a given cylinder should have metallicitiesZ(r, tf) that are uniquely related to their time of
formation,tf. Observations do not substantiate this prediction; in factEdvardsson et al. (1993)
showed that solar-neighbourhood stars are widely distributed in the(tf,Z) plane – for a detailed
discussion see Haywood (2006) and Section 2.7.2.
The absence of an age-metallicity relation in the solar neighbourhood is naturally explained by
radial migration of stars (Sellwood & Binney, 2002; Haywood,2008; Roskar et al., 2008b). It has
been recognised for many years that scattering by spiral structure and molecular clouds gradually
heats the stellar disc, moving stars onto ever more eccentric and inclined orbits. Stars that are on
eccentric orbits clearly contribute to different cylindrical annuli at different phases of their orbits,
and thus tend to modify any radial gradient in the metallicities of newly formed stars. Moreover,
scattering events also change the guiding centres of stellar orbits, so even a star on a circular
orbit can be found at a different radius from that of its birth. In fact, Sellwood & Binney (2002)
argued that the dominant effect of transient spiral structure is resonant scattering of stars across
the structure’s corotation resonance, so even a star that isstill on a near-circular orbit may be far
from its radius of birth. Roskar et al. (2008a) showed that in acosmological simulation of galaxy
formation that included both stars and gas, resonant scattering at corotation caused stars to move
outwards and gas inwards, with the result that the stellar disc extended beyond the outer limit of
star formation; the outer disc was entirely populated by stars that had formed much further in and
yet were still on nearly circular orbits. This simulation confirmed the conjecture of Sellwood &
Binney (2002) that gas would participate in resonant scattering alongside stars.
We distinguish two drivers of radial migration: when the angular momentum of a star is changed,
whether by scattering at an orbital resonance or by non-resonant scattering by a molecular cloud,
the star’s guiding-centre radius changes and the star’s entire orbit moves inwards or outwards
depending on whether angular momentum is lost or gained. Whena scattering event increases
a star’s epicycle amplitude without changing its angular momentum, the star contributes to the
density over a wider range of radii. In a slight modification of the terminology introduced by
Sellwood & Binney (2002), we say that changes in angular momentum cause “churning” while
changes in epicycle amplitude lead to “blurring”. This paper extends models of Galactic chemical
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evolution to include the effects of churning and blurring.
Given the strength of the arguments that cold gas should participate in churning alongside stars,
and that shocks induced by spiral structure cause gas to drift inwards, it is mandatory simul-
taneously to extend traditional chemical evolution modelsto include radial flows of gas within
the disc. Lacey & Fall (1985) studied chemical evolution in the presence of a radial inflow of
gas and demonstrated that a radial flow enhances the metallicity gradient within the disc. This
enhancement plays an important role in our models, which differ from those of Lacey & Fall in
that they include both radial gas flows and radial migration of stars. Moreover we can fit our
models to observational data that is much richer than that available to Lacey & Fall (1985).
Our models are complementary to ab-initio models of galaxy formation such as those presented
by Samland & Gerhard (2003) and Roskar et al. (2008b) in that they allow the solar neighbour-
hood to be resolved in greater detail, and because they are enormously less costly numerically,
they permit parameter searches to be made that are not feasible with ab-initio models.
The paper is organized as follows. Section 2.3 presents the equations upon which the models
are based. These consist of the rules that determine the rateof infall of fresh gas, the rate of
star formation, details of the stellar evolution tracks andchemical yields that we have used and
descriptions of how churning and blurring are implemented.Section 2.4 describes in some detail
a “standard” model of the evolution of the Galactic disc. This covers its global properties but
focuses on what would be seen in a survey of the solar neighbourhood. Section 2.5 presents
the details of the selection function that is required to mimic the Geneva–Copenhagen sample
(GCS) of solar-neighbourhood stars published by Nordström et al. (2004) and Holmberg et al.
(2007), and explains how this sample has been used to constrain the model’s parameters. Section
2.6 explains how the observable properties of the model depend on its parameters. Section 2.7
discusses the relation of the present models to earlier ones, and discusses the extent to which it is
consistent with the analysis of solar-neighbourhood data by Haywood (2008). Section 2.8 sums
up.

2.3 Governing equations

The simulation is advanced by a series of discrete timestepsof duration 30Myr.
The disc is divided into 80 annuli of width 0.25kpc and central radii that range from 0.125kpc
to 19.875kpc. In each annulus there is both “cold” (∼ 30K) and “warm” (>∼104K) gas with
specified abundances(Y,Z) of helium and heavy elements. The “warm gas” is not availablefor
star formation and should be understood to include both inter-cloud gas within the plane and
extraplanar gas, which probably contains a significant fraction of the Galaxy’s ISM. Indeed, in
NGC891, a galaxy similar to the Milky Way, of order a third of HI is extraplanar (Oosterloo et
al., 2007). In the Milky Way this gas would constitute the “intermediate-velocity clouds” that
are observed at high and intermediate Galactic latitudes (Kalberla & Dedes, 2008).
Within the heavy elements we keep track of the abundances of O, C, Mg, Si, Ca and Fe. Each
annulus has a stellar population for each elapsed timestep,and this population inherits the abun-
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dancesY , Z, etc., of the local cold gas. At each stellar mass, the stellar lifetime is determined by
the initial abundances, and at each age we know the luminosity and colours of such of its stars
that are not yet dead. Each stellar population is at all timesassociated with the annulus of its
birth; the migration of stars is taken into account as described below only when returning matter
to the ISM or constructing an observational sample of stars.

2.3.1 Metallicity scale

The whole field of chemical modelling has been thrown into turmoil by the discovery that three-
dimensional, non-equilibrium models of the solar atmosphere require the metal abundance of the
Sun to beZ⊙ = 0.012−0.014 (Grevesse et al., 2007) rather than the traditional value∼ 0.019.
This work suggests that the entire metallicity scale needs to be thoroughly reviewed: if the
Sun’s metallicity has to be revised downwards, then so will the metallicities of most nearby
stars. Crucially there is the possibility that values for themetallicity of the ISM require revision:
some values derive from measurements of the metallicities of short-lived stars such as B stars
and require downward revision (e.g. Daflon & Cunha, 2004), while others are inferred from
measurements of the strengths of interstellar emission lines, and are not evidently affected by
changes in stellar metallicities. If the metallicity scaleof stars were lowered while that of the
ISM remained substantially unaltered, it would be exceedingly hard to construct a viable model
of the chemical evolution of the solar neighbourhood. Moreover, both the stellar catalogue and
most of the measurements of interstellar abundances with which we wish to compare our models
are on the old metallicity scale, and unphysical anomalies will become rife as soon as one mixes
values on the old scale with ones on the new. Therefore for consistency we use the old solar
abundanceZ⊙ = 0.019 and exclude from considerable metallicity values that are on the new
scale.

2.3.2 Star-formation law

Stars form according to the Kennicutt (1998) law. Specifically, with the surface density of cold
gasΣg measured in M⊙pc−2 andt in Myr, star formation increases the stellar surface density at
a rate

dΣ∗
dt

= 1.2×10−4

{

Σ1.4
g for Σg > Σcrit

CΣ4
g otherwise

, (2.1)

where the threshold for star formation,Σcrit is a parameter of the model andC = Σ−2.6
crit ensures

that the star-formation rate is a continuous function of surface density. The normalisation in
equation (2.1) was chosen to yield the observed surface densities of gas and stars near the Sun.
The stars are assumed to be distributed in initial mass over the range(0.1,100)M⊙ according to
the Salpeter function, dN/dM ∝ M−2.35. The luminosities, effective temperatures, colours and
lifetimes of these stars are taken by linear interpolation in (Y,Z) from the values given in the
BASTI database (Cassisi et al., 2006).
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2.3.3 Return of metals

The nucleosynthetic yields of individual metals are in manycases still subject to significant
uncertainties (e.g. Thomas et al., 1998); in fact models of the chemical evolution of the solar
neighbourhood have been used to constrain these yields (Francois et al., 2004).
For initial masses in the ranges 5− 11M⊙ and 35− 100M⊙ values ofX ,Y,Z,C and O were
taken from Maeder (1992) using a non-linear interpolation scheme: the paper gives yieldsYLZ

for a low metallicity (Z = 10−4) and yieldsYHZ for a high metallicity (Z = 0.02). Guided by the
metallicity-dependence of the sizes of CO cores reported by Portinari et al. (1998) we take

Y (Z) = (1−α)YLZ +αYHZ, (2.2)

where

α =



















0 for Z < 0.005

320(Z −0.005) for 0.005< Z < 0.0075

0.8+16(Z −0.0075) for 0.0075< Z < 0.02

1 for Z > 0.02

. (2.3)

The yields of elements other thanX ,Y,Z,C and O from stars with masses in this range were
taken from theORFEO database of Limongi & Chieffi (2008) with the mass cut set such that
0.05M⊙ of 56Ni is produced; this relatively low mass cut reproduces the Ca/Fe ratio measured
in very metal-poor stars by Lai et al. (2008). Stars less massive than 10M⊙ were assumed to
produce no elements heavier than O. For stars with masses< 5M⊙, the yields were taken by
linear interpolation from Marigo (2001).
For initial stellar masses in the range 11− 35M⊙ we used the metallicity-dependent yields of
heavy elements from Chieffi & Limongi (2004) by linear interpolation on mass and metallicity,
extrapolating up toα = 1.5 orZ = 0.03 respectively. Chieffi & Limongi (2004) used a relatively
high mass cut, which produced 0.1M⊙ of 56Ni. With our interpolation the average amount of
56Ni produced is well within the expected range.
A fraction feject of the gas ejected by dying stars leaves the Galaxy; we testedmodels with 0≤
feject≤ 0.05 (Pagel, 1997). Increasingfeject has the effect of reducing the final metallicity of the
disc; in fact there is almost complete degeneracy between the values offejectand nucleosynthetic
yields. In view of the evidence that star formation near the Galactic centre drives a Galactic wind
(Bland-Hawthorn & Cohen, 2003), we setfeject= 0.15 atR < 3.5kpc in models that use the
accretion law (2.6) below. At all other radii we setfeject= 0.04.
A fraction fdirect of the ejecta goes straight to the cold gas reservoir of the local annulus, and the
balance goes to the annulus’s warm-gas reservoir. Settingfdirect to values∼ 0.2 has a significant
impact on the number of extremely metal-poor stars predicted near the Sun. However, such large
values offdirect are not well motivated physically, and in the models presented herefdirect= 0.01
has a negligible value.
In each timestepδ t a fractionδ t/tcool of the “warm” gas (which includes extraplanar gas) trans-
fers to the cold-gas reservoir from which stars form. The parametertcool is determined by the
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dynamics of extraplanar gas and the balance between radiative cooling and shock heating within
the plane. Consequently, its value cannot be determined a priori from atomic physics. Increasing
tcool increases the mass of “warm” gas and delays the incorporation of freshly made metals into
new stars, so the number of very metal-poor stars formed increases withtcool. Although of order
a quarter of the neutral hydrogen of NGC 891 is extraplanar (Oosterloo et al., 2007), some of this
gas will be formerly cold interstellar gas that has been shock accelerated by stellar ejecta. We
do not model shock heating of cold gas, and replenish the warm-gas reservoir exclusively with
stellar ejecta (from stars of every mass). Hence the warm-gas reservoir should be less massive
than the sum of the extraplanar and warm in-plane bodies of gas in a galaxy like NGC 891. We
have worked with valuestcool>∼1Gyr that yield warm-gas fractions of order 10 percent. The
results of the models are not sensitive to the value oftcool.

There is abundant evidence that pristine intergalactic gasdisappeared from the intergalactic
medium (IGM) long ago: quasar absorption-line studies reveal an early build up of heavy el-
ements in the IGM (Pettini et al., 2003). While it is clear thatthe disc formed from material that
had been enriched by pregalactic and halo stars, it is unclear what abundances this material had.
We take the chemical composition of the pre-enriched gas to be that of the “warm” ISM after
two timesteps, starting with 5×108M⊙ of pristine gas. In each of the following four timesteps,
a further 1.25×108M⊙ of gas with this metallicity is added to the disc. The surfacedensity of
the added gas is proportional to

(1.0−e(R−19.8kpc)/11.8kpc)e−R/4kpc. (2.4)

Thus the surface density is exponential with scalelength 4kpc inside∼ R0 but tapered to zero
at the outer edge of the grid. The existence at the outset of a warm, pre-enriched component of
the ISM is physically well motivated and proves the most effective way of producing the right
number of metal-poor stars.

Type Ia supernovae are included by assuming that 7.5 per cent of the mass in white dwarfs formed
by stars of initial mass 3.2 to 8.5 M⊙ ultimately explodes in type Ia supernovae. The yields were
taken to be those of the W70 model in Iwamoto et al. (1999). It isbelieved that the progenitors
of type Ia supernovae have lifetimes of order a Gyr (Förster et al., 2006) and we have taken the
massMWD of the population that survives to timet from white-dwarf formation to satisfy

dMWD

dt
=

{

0 for 0< t ≤ 0.15Gyr

−MWD/1.5Gyr for T > 0.15Gyr
. (2.5)

The rate of type Ia SNe is constrained by the requirements that (i) [O/Fe] has to fall from∼ 0.6
for the oldest stars to around−0.1, and (ii) [Ca/Fe] should go from about∼ 0.3 to∼ 0. The full
curve in Fig. 2.1 shows for the best-fitting model the mass-return rate as a function of time, while
the green dashed curve shows the SFR at the solar radius.
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Figure 2.1: The rate of mass injection by SNIa in the standardmodel (solid black line) versus
time. The broken green line gives the star formation rate in the solar annulus.

2.3.4 Inflow

It is generally agreed that viable models of galactic chemical evolution require the disc to be con-
stantly fed with gas from intergalactic space; inflow resolves several serious problems, including
(i) the appearance of too many low-metallicity stars near the Sun (the “G-dwarf problem”, e.g.
Pagel, 1997), (ii) excessive metallicity of the current ISM, (iii) an unrealistically low abundance
of deuterium in the current ISM (Linsky et al., 2006). Moreover, both the short timescale for the
current ISM to be consumed by star formation and direct manifestations of infalling gas (San-
cisi et al., 2008) argue strongly for the existence of infall. Unfortunately, many aspects of infall
are extremely uncertain. We find that the predictions of our models depend sensitively on how
these uncertainties are resolved, so to the extent that other aspects of our models have sound
foundations, they can usefully constrain the nature of infall.
In principle the rate and radial distribution of infall is determined by cosmology. For example,
Naab & Ostriker (2006) infer it by assuming that the disc scale length grows in parallel with the
cosmic scale, while Colavitti et al (2008) derive the global rate from N-body simulations. At this
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stage we feel that cosmological simulations are beset by toomany uncertainties to deliver even
a secure global infall rate, never mind the radial distribution of infall. In particular the extent of
angular-momentum exchange between baryons and dark matteris controversial, as are the extent
to which gas is accreted from cold infall rather than a hot corona. Moreover, nothing is known
with any confidence about the dynamics of the corona.
For want of clear inputs from cosmology we have sought a flexible parametrisation of infall.
First we parametrise the global infall rate, and then the radial distribution of infall.

Infall rate

We have investigated two approaches to the determination ofthe infall rate. The first starts with
a quantity of gas (8×109M⊙) and feeds gas into it at a rate

Ṁ =
M1

b1
e−t/b1 +

M2

b2
e−t/b2. (2.6)

Hereb1 ≃ 0.3Gyr is a short timescale that ensures that the star-formation rate peaks early on,
while b2 ≃ 14Gyr is a long timescale associated with sustained star formation in the thin disc.
We adoptM1 ≃ 4.5×109M⊙ and chooseM2 such that after 12Gyr the second exponential has
delivered 2.6×1010M⊙.
In an alternative scheme, the gas mass within the disc is determined a priori and infall is assumed
to be available to maintain the gas mass at its prescribed level. We have investigated schemes in
which the gas mass declines exponentially with time, but focused on models in which it is held
constant at 8.4× 109M⊙; models in which the gas mass declines exponentially produce very
similar results to models in which the infall rate declines exponentially.

Distribution of infall

We know even less about the radial distribution of the infalling gas than we do about the global
infall rate. In fact our only constraint is that the stellar disc has an approximately exponential sur-
face density now, and was probably exponential at earlier times too. Besides the star-formation
law, the structure of the stellar disc depends on both the radial distribution of infall and gas
flows within the disc, and a disc that is consistent with observations will not be formed if ei-
ther the radial infall profile or the internal gas flow is fixed without regard to the other process.
Consequently, the requirement that only observationally acceptable discs be produced requires
one to develop a parametrisation that couples infall and flowin a possibly unphysical way. The
scheme we have developed involves such an unphysical coupling – this is the price one pays for a
scheme that allows one to explore as economically but fully as possible a range of infall profiles
and internal flows that are consistent with the known radial structure of the disc.
We start from the assumption that the surface-density of gasis at all times exponential,Σg(R) ∝
e−R/Rd, whereRd = 3.5kpc is chosen such that with the star-formation law adoptedabove, the
inner stellar disc acquires a scale lengthR∗ = Rd/1.4= 2.5kpc similar to that determined from
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star counts (Robin et al., 2003; Juric et al., 2008). Our valuefor the scale length of the gas disc is
in good agreement with the value measured by Kalberla & Dedes(2008): 3.75kpc. Notice that
we assume not only that the stellar disc is exponential, but that its scale length is unchanging.
Hence we are assuming that the disc forms simultaneously at all radii, rather than “inside-out”.
The remarkably large age estimated for the solar neighbourhood (atR = 3R∗) suggests simulta-
neous formation (Aumer & Binney, 2009, and references therein). However, our work could be
readily generalised to inside-out growth by makingRd a specified function of time (e.g. Naab &
Ostriker, 2006), but we reserve this extension for a later paper.
Our scheme for parameterising infall and flow depends on two parameters,fA and fB and is
easiest to explain by considering first the limiting cases inwhich one parameter vanishes.
Either of the algorithms of the last subsection specifies what the total gas mass should be at the
start of a timestep: this is either the prescribed constant or, when equation (2.6) is used, it is the
mass in the disc at the end of the previous timestep plus the amount that falls in during the most
recent timestep. Hence the mass that should be in each annulus at the start of a timestep follows
from the assumed exponential profile of the gas disc. Subtracting from this the mass that was
present after the previous timestep, we calculate the need,i.e. the amount of gas that has to be
added, of theith annulus∆Mi.
We fill annuli up with gas in sequence, starting with the innermost ring 0. WhenfB = 0 (“Scheme
A”) this annulus receivesfA∆M0 from the IGM, and grabs the balance,(1− fA)∆M0, from
annulus 1, wherefA ≃ 0.2 is a parameter of the model. Annulus 1 receivesfA∆M1 from the
IGM, and grabs the balance of its requirement,(1− fA)(∆M1 +∆M0), from annulus 2. The
updating of every annulus proceeds similarly, until the last annulus is reached, which covers its
entire need from the IGM. The characteristic of this “SchemeA” is the development of a large
flux of gas through the outer rings – an example is given by the full red curve in the upper panel
of Fig. 2.2. This flux transports inwards metals synthesisedin these rings and tends to deposit
them at intermediate radii, where the inward flux is diminishing.
When fA = 0 (“Scheme B”) annulus 0 obtainsfB∆M0 from the IGM and the rest from annulus
1. Annulus 1 now obtainsfB[∆M1+(1− fB)∆M0] from the IGM, and so on to the outermost
ring, which is again entirely fed by the IGM. The short dashedblue curve in the upper panel of
Fig. 2.2 shows a typical example of a mass flow through the discwith Scheme B. Whereas the
flow generated by Scheme A (red curve) increases monotonically from the centre, the Scheme-B
flow rises quickly with galactocentric distanceR near the centre but then peaks atR ≃ 5kpc. In
the outer region in which the inflow is small, the metallicityforms a plateau. The extent of this
plateau is controlled byfB: the largerfB, the smaller the radius at which the inflow rate peaks
and the further in the metallicity plateau extends.
In either of these schemes a fixed fraction of each annulus’s need is taken from the IGM, but the
definition of “need” is different in the two schemes: in Scheme B it includes the gas that was
taken from it by its inner neighbour, and in Scheme A it does not. In Scheme A only a fixed
fraction of the local need is provided by the IGM, so the flowFr in the disc continuously builds
up through the disc. In Scheme B, by contrast, a part of the flow required in Scheme A is met by
additional accretion. Consequently, if one wrote an equation for dFr/dr, a term−( fB∆r)Fr would
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Figure 2.2: Upper panel: The rate of flow of gas over the circleof radiusR induced by infall
Scheme A withfA = 0.6 (red curve), infall Scheme B withfB = 0.05 (blue short dashed curve),
and infall Scheme AB withfA = 0.35 and fB = 0.025 (green long dashed curve; the standard
model). Lower panel: the corresponding rates of accretion from the IGM per unit area of the
disc.
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appear, where∆r = 0.25kpc is the width of annuli, and this term drives exponential decay ofFr.
Scheme A enhances the metallicity of the middle section of the disc and causes the metallicity
gradient to be steepest towards the outside of the disc, Scheme B enhances the metallicity of the
inner disc and flattens the gradient at large radii.
In Scheme A, iffA is set too low, the flux of gas through the outer annuli becomesimplausibly
large in relation to the mass of gas that is in these annuli, and radial flow velocitiesvR>∼20kms−1

are predicted. In Scheme BfB can be quite small because, although the flow of gas through the
disc builds up more quickly at small radii, it peaks at a few kiloparsecs and then declines to
small values in the outer disc. If eitherfA or fB is large, the flow through the disc becomes
small and the metallicity of the solar neighbourhood becomes unrealistically large through the
accumulation of metals created at the solar radius and beyond.
Satisfactory fits to the data can be obtained only when bothfA and fB are non-zero In this
“Scheme AB” annulus 0 receives a mass( fA + fB)∆M0 from the IGM and grabs the balance
M01 = (1− fA − fB)∆M0 from annulus 1. Annulus 1 receives a massfA∆M1+ fB(∆M1+M01)
from the IGM and grabs the balance of its requirement from annulus 2, and so on. Notice that the
radial flow profile in Scheme AB is not simply the sum of the corresponding profiles for Schemes
A and B used alone. The green curve in the upper panel of Fig. 2.2 shows the radial flow profile
obtained with Scheme AB with the parameters of the standard model. In this model the radial
velocity of disc gas currently rises roughly linearly from zero at the centre to 1.3kms−1 at the
Sun. Beyond the Sun a plot of radial velocity versus radius gradually steepens to reach 5kms−1

at the edge of the disc.
For each accretion scheme, the lower panel of Fig. 2.2 shows the corresponding radial distribution
of accretion from the IGM.

Metallicity of the IGM

We have to prescribe the metallicity and alpha-enhancementof gas taken from the IGM. It is far
from clear how this should be done.
Quasar absorption line-studies reveal an early build up of heavy elements in the IGM (Pettini
et al., 2003). Moreover, the handful of high-velocity clouds for which metallicities have been
measured, have heavy-element abundances of order a tenth solar (van Woerden & Wakker, 2004).
Finally, the metallicities of the most metal-poor thick-disc stars are similar to the metallicities of
the most metal-rich halo stars, which suggests that the early disc was pre-enriched by pregalactic
and halo stars. We assume that throughout the simulation accreted gas has metallicityZ = 0.1Z⊙.
Given that the thick disc is alpha-enhanced (Venn et al., 2004), it is clear that when disc formation
starts, infalling gas must be alpha-enhanced. It is naturalthat this enhancement should decline
with time as Fe from type Ia SNe finds its way into the IGM. Indeed, in addition to gas that flows
out in the Galactic wind (Bland-Hawthorn & Cohen, 2003), type Ia SNe in dwarf spheroidal
galaxies will have contributed their Fe to the local IGM, andif the Magellanic Stream is made
of gas torn from the SMC, it will have been enriched with Fe fromSNe in the SMC. Thus we
expect the metallicity and alpha enhancement of the IGM to betime dependent and governed by
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the chemical-evolution histories of galaxies.
These considerations suggest making theα-enhancement of the IGM reflect that of an outer
annulus of the Galaxy; the chemical evolution of this ring acts as a proxy for the combined
chemical evolution of the many contributors to the chemicalevolution of the IGM. If the IGM
were assumed to mirror the outermost ring, itsα-enhancement would remain extremely low
because this annulus takes all its gas from the IGM, and passes what few heavy elements it
synthesises inwards. Hence the IGM must mirror an outer annulus but not the outermost. In our
models theα-enhancement of the IGM mirrors the annulus with radiusR = 12.125kpc. Since
yields ofα elements decline with increasing metallicity, the outer disc should beα-enhanced.

2.3.5 Churning

Transient spiral arms cause both stars and gas to be exchanged between annuli in the vicinity of
the corotation resonance. Such exchanges automatically conserve both angular momentum and
mass. Since these exchanges are driven by spiral structure,in which hot and extraplanar gas is
not expected to participate, churning is confined to stars and cold gas. We restrict exchanges
to adjacent rings but allow two exchanges per timestep, so within a timestep second-nearest
neighbouring rings exchange mass.
Further studies of spiral structure in high-quality N-bodysimulations are required to determine
how the probability of a star migrating varies across the disc. In the absence of such studies the
following dimensional argument suggests what the answer might be. Consider the probability
Pex that in a characteristic dynamical timeκ−1 (whereκ is the local epicycle frequency) a star
is involved in a resonant exchange across corotation. It is natural that a process dependent on
gravitational self-energy in the disc should scale with thesquare of the surface density. Toomre’s
Q = σκ/πGΣ , whereσ is the radial velocity dispersion, is a dimensionless variable, so we
conjecture thatPex ∝ 1/Q2. Our grid is uniform inR whereas an exchange across corotation
changesR by of order the most unstable wavelengthλcrit =σQ/κ. The number of swaps between
rings required to wander a distanceλcrit scales asλ 2

crit. Moreover, the number of ring-swaps in
time κ−1 scales asκ−1, so the ring-swap probability per timestepPring should beλ 2

critκ times
Pex. This argument yieldsPring ∝ σ2/κ. In realistic casesσ2 ∝ Σ andκ ∝ R, soPring ∝ ΣR ∝ M,
the mass of a ring. This argument suggests that we take the probability pi j that in a given half-
timestep a star or gas cloud in theith annulus is transferred to thejth annulus to be

pi j =

{

kchM j/Mmax for j = i±1

0 otherwise
, (2.7)

whereM j is the mass in cold gas and stars in thejth annulus andMmax= maxj(M j). This rule
ensures that the mass transferring outwards from theith annulus is proportional toMiMi+1, and
an equal mass transfers inwards, ensuring that angular momentum is conserved. The constant
kch is the largest transition probability for any annulus in a given timestep. It is treated as a free
parameter to be fitted to the data.
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Figure 2.3: The radial distribution of the guiding centres of 12Gyr-old stars that were born at
5 (red), 7.6 (green, long dashed) and 10kpc (blue, short dashed) when the churning fraction
kch = 0.25.

The procedure for distributing the metals released by a population of stars born in annulusi is
as follows. The probability that a star born in annulusi at timestepm is found to be in annulus
j at timestepn is equal to thei jth element of the product matrixpmpm+1× ·· ·pn. In practice
we recomputep only each five timesteps and approximatepm ×·· ·pm+4 by p5

m. Fig. 2.3 shows
the extent to which the guiding centres of stars are changed over the lifetime of the Galaxy when
kch = 0.25.

2.3.6 Blurring

In addition to changing their guiding-centre radii throughthe churning process, stars oscillate
around their guiding centres with steadily increasing amplitudes. Consequently, stars spend time
away from their guiding-centre radii. For simplicity, we assume in this section that the circular
speedvc is independent of radius and that the vertical motion can be ignored because it decouples
from motion in the plane.
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The fraction of its time that the orbit with energy and angular momentumE,L spends in a radial
interval(R,R+dR) is

dp =
dt
T

=
1
T

dR
vR

=
ΩR

π
dR

√

2(E −Φeff)
, (2.8)

whereT ≡ π/ΩR is the half period andΦeff(R,L) ≡ Φ(R)+L2/2R2 is the effective potential.
We need to average this over all stars with givenL. These stars have some distribution over the
energyE = 1

2v2
R+Φeff. It is expedient to decomposeE into the energyΦc(L)≡ Φ(Rc)+L2/2R2

c
of the circular orbit (with radiusRc) of angular momentumL and the random energyE ≡ E−Φc.
Following Shu (1969) we take the distribution function (DF)to be

f (E ,L) =
F(L)
σ2 e−E /σ2

, (2.9)

whereF(L) is a function to be determined. The DF (2.9) ensures that the radial velocity disper-
sion is approximately (but not exactly)σ . Normalizing f such that

∫

dLdJR f = 1, whereJR(E )
is the radial action, the probability that a randomly chosenstar lies in(R,R+dR) is

∫

dLdJR f dp.
Recalling that dLdJR = dLdE /ΩR and substituting forf and dp, we find that the number of stars
in the annulus is

dn(R)=
∫

dLdJR ( f dp)

=
NdR

π

∫

dL
F
σ2

∫ ∞

Φeff−Φc

dE
e−E /σ2

√

2(E +Φc−Φeff)
(2.10)

=
NdR√

2π

∫

dL
F
σ2e[Φc−Φeff]/σ2

∫ ∞

0
dx

e−x/σ2

√
x

,

whereN is the total number of stars in the system. The integral overx is simplyσ
∫

dt e−t/
√

t =√
πσ . Thus we can conclude that the probability per unit area associated with a star of givenL

is

P(R) =
dn

N2πRdR
=

K
σR

exp

[

Φc(L)−Φeff(R,L)
σ2

]

, (2.11)

whereK is chosen such that 1= 2π
∫

dRRP(R).
The parameterσ used in these formulae is actually smaller than the rms radial velocity disper-
sion, which is given by

〈v2
R〉=

√
2π

RΣ

∫

dLFσ exp[(Φc−Φeff)/σ2], (2.12)

where the stellar surface density is

Σ(R) =

√
2π
R

∫

dL
F
σ

exp[(Φc−Φeff)/σ2]. (2.13)
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For specified radial dependencies ofΣ and 〈v2
R〉, equations (2.12) and (2.13) can be used to

determine the functionsF(L) andσ(L) (Dehnen, 1999a). However, in the present application it
is notΣ(R) that we wish to specify, but the number of stars with guiding centres in each ring:

dN
dRc

= vcNtot
dN
dL

= vc

∫

dJR f (L,JR)

=
vcFNtot

σ2

∫

dE

ΩR
e−E /σ2

, (2.14)

whereNtot is the total number of stars in the disc. We adapt the technique described by Dehnen
(1999a) for determiningF(L) andσ(L) from equations (2.12) and (2.13) to the determination of
these quantities from equations (2.12) and (2.14). Specifically, we start from the values ofF(L)
andσ(L) that would hold in the epicycle approximation, whenΩR = κ independent ofE and

F(L) =
κ

vcNtot

dN
dRc

. (2.15)

Then at eachL we evaluate〈v2
R〉 from (2.12) and multiplyσ by the ratio of the desired value

to the value just calculated. Then we re-evaluateF from (2.14) and repeat until convergence is
obtained.
We now address the question of how〈v2

R〉 should depend on radius. The scale heightsh of galactic
discs are found to be largely independent of radius (van der Kruit & Searle, 1982), and forh ≪ R
(when the vertical dynamics can be considered one-dimensional) this finding implies that the
vertical velocity dispersion scales with the surface density asΣ1/2. If the ratio of the vertical and
radial velocity dispersionsσz/〈v2

R〉1/2 is independent of radius, as is often assumed (e.g. Kregel
& van der Kruit, 2005), then〈v2

R〉 ∝ Σ ∝ e−R/R∗. In the solar neighbourhood atR ≃ 3R∗ the
oldest stars haveσR>∼40kms−1, so this line of reasoning predicts that〈v2

R〉1/2>∼180kms−1 in
the central regions, which is implausibly large.
Evidently these naive arguments based on complete decoupling of planar and vertical motions are
inadequate for the old disc; we need a distribution functionthat treats the third integral properly.
Pending the availability of such a DF we have adopted the assumption that〈v2

R〉 ∝ e−R/1.5R∗,
which implies that atR∗ the old disc has〈v2

R〉1/2 ≃ 85kms−1, which is only slightly lower than
the velocity dispersion in the Galactic bulge (Rich et al., 2007).

From Binney et al. (2000) we take the time dependence of
√

〈v2
R〉(R0) at solar galactocentric

distanceR0 to be

√

〈v2
R〉(R0, t) = max

{

10,38

(

t +0.038Gyr
10.038Gyr

)0.33
}

kms−1, (2.16)

which is consistent with the data of Holmberg et al. (2007).
Fig. 2.4 shows blurring distributionsP(R) from equation (2.11) for three radii (5, 7.6 and 10kpc)
and two values of〈v2

R〉1/2 at the Sun, namely 25kms−1 and 40kms−1.
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Figure 2.4: The radial distributions of stars with guiding centres at 5 (red), 7.6 (green) and 10kpc
(blue) when at the Sun〈v2

R〉1/2 = 25kms−1 (full curves) and 40kms−1 (dashed curves).

Note that scatterings by spiral arms and molecular clouds that heat the disc, also change the an-
gular momentum of each star and therefore its guiding centre. Hence such scatterings contribute
to both churning and blurring.
Since churning moves the guiding centres of the stars themselves we first apply the churning
matrix and apply the blurring matrix afterwards.

2.3.7 Vertical structure

For comparison with observations of the solar neighbourhood we need to know the vertical dis-
tribution of stars near the Sun. We determine this by adopting a relationship between time and
vertical velocity dispersion (Binney et al. , 2000)

σz(τ) = max

{

4,25

(

τ
10Gyr

)0.33
}

kms−1. (2.17)
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Further assuming that stars of a given age form an isothermalpopulation, their vertical density
profile is

n(z) ∝ e−Φ(z)/σ2
z , (2.18)

whereΦ(z) is the difference in the gravitational potential between height z and the plane. This
potential is calculated for a model similar to those presented by Dehnen & Binney (1998b) but
with the thin and thick disc scaleheights taken to be 0.3 and 0.9kpc, the total stellar surface
density set to 35.5M⊙pc−2 with 3/4 of the stellar mass in the thin disc, and the gas surface
density set to 13.2M⊙pc−2 in conformity with Flynn et al. (2006) and Juric et al. (2008). The
disc scalelength is taken to beRd = 2.5kpc (Robin et al., 2003) and the dark halo density is set
such thatvc(R0) = 220kms−1.

2.4 The standard model

We now describe the properties of our standard model as a preliminary to explaining how these
properties depend on the input assumptions and the values ofthe various parameters. In the
standard model the accretion rate is given by equation (2.6); the values of the parameters for this
model are given in Table 2.1.
The red dashed curve in Fig. 2.5 shows the current metallicity Z of the ISM as a function of
radius. There is quite a steep outward decline in metallicity, the gradient in the vicinity of the
Sun being of order−0.11dexkpc−1. The solid red curve shows that [O/H] falls less steeply with
R than does [Z/H], having a gradient near the Sun∼ −0.083dexkpc−1. The shallower gradient
in oxygen reflects our use of metallicity-dependent yields.Although shallower gradients are
generally cited (e.g Rolleston et al., 2000) the data points in the figure are consistent with the
model. The data derive from Shaver et al. (1983) who assumedR0 = 10kpc and from Vilchez
& Esteban (1996) and Rolleston et al. (2000), who assumedR0 = 8.5kpc. To plot these data
on a consistent scale withR0 = 7.5kpc we have when possible recalculated the Galactocentric
distances from the heliocentric distances, taking the latter from Kharchenko et al. (2005) or
Loktin & Beshenov (2003) when possible. For some of the pointsin Vilchez & Esteban (1996)
and Rolleston et al. (2000) heliocentric distances were not available, so we simply reduced the
cited Galactocentric distance by 1kpc. The green line in Fig. 2.5 is the linear least-squares fit to
the data; its slope is−0.082dexkpc−1. Our gradient in [O/H] lies within the range of frequently
occurring values in Table 4 of Vila-Costas & Edmunds (1992), who assembled data for 30 disc
galaxies.
The upper panel in Fig. 2.6 shows the evolution ofZ for the cold ISM in a number of annuli –
the solar annulus is coloured red. The smaller the radius of an annulus, the higher its curve lies
in this plot because chemical evolution proceeds fastest and furthest at small radii. At small radii
the metallicity of the cold ISM continues to increase throughout the life of the Galaxy, whereas
at R>∼R0kpc, Z peaks at a time that moves earlier and earlier as one moves out, and declines
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Parameter Meaning Impact Value
Σcrit Kennicutt’s threshold surface density limited impact 0
M0 initial gas mass affects onlyN(Z) at [Z/H] <−0.7; from Hess diagram 3.0×109M⊙
M1 early infall mass affects onlyN(Z) at [Z/H] <−0.7; from Hess diagram 4.5×109M⊙
M2 long timescale infall mass to 12Gyr fixed by present mass 2.9×1010M⊙
b1 early infall timescale affects onlyN(Z) at [Z/H] <−0.7; from Hess diagram 0.3Gyr
b2 long infall timescale limited impact; estimated from Hess diagram and other work 14Gyr
fA Scheme A fraction of gas from IGM free parameter 0.36
fB Scheme B fraction of gas from IGM free parameter fixed by localgradient 0.025
kch churning amplitude free parameter 0.35
t0 delay before first type Ia SNe taken from literature 0.15Gyr
k−1 timescale for decay of type Ia SNe taken from literature 1.5Gyr
feject fraction of ejecta lost to Galaxy small impact; mainly affects metallicity scale 0.15−0.04
fdirect fraction of ejecta to cold ISM small impact limited to [Z/H] <−0.7 0.01
tcool cooling time of warm gas fixed by present mass of warm gas 1.2Gyr
Mwarm initial warm gas mass impact limited toN(Z) at [Z/H] <−0.7 5×108M⊙
ZIGM metallicity of the IGM limited toR > 12kpc; taken from literature 0.1Z⊙

Table 2.1: Parameters of the standard model. The infall rateis given by equation (2.6). The larger value offeject applies at
R < 3.5kpc.
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Figure 2.5: The metallicities of the current ISM in the standard model, [Z/H] (red dashed curve)
and [O/H] (red full curve), as functions of Galactocentric radius. Also measurements of the
metallicities of HII regions by Shaver et al. (1983) (dark blue), Vilchez & Esteban (1996) (black
crosses) and Rolleston et al. (2000) (light blue crosses). The green line shows the linear least-
squares fit to the measurements: it has a slope of−0.082dexkpc−1. The data points have been
updated and rescaled toR0 = 7.5kpc as described in the text. Where necessary points have been
shifted vertically by−8.93 to put them on the solar scale.

briefly before flattening out. This phenomenon reflects a combination of dilution by infalling
metal-poor gas and the inward advection of metals by the flow through the disc.
The lower panel in Fig. 2.6 shows the corresponding present-day metallicity distribution of solar-
neighbourhood stars. Although this is the distribution of stars currently in the solar annulus, it is
clearly made up of a series of curves, one for each annulus in the model. The curves for interior
annuli go from green to yellow as one goes forward in time, reflecting the fact that relatively
recently formed stars are much less likely to have moved a large radial distance than older stars.
Similarly, in the bottom part of the figure the colours go fromblue to green to yellow as one
moves towards the time axis, because then one is moving over curves for larger and larger radii,
where both the star-formation rate and the probability of scattering in to the solar radius are
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Figure 2.6: Upper panel: the metallicity of the cold ISM in each annulus as a function of lookback
time showing each fifth ring. The curve for the solar annulus is red. Lower panel: the present
density of solar-neighbourhood stars in the age-metallicity diagram. The colours encode the
logarithm of the density of stars.
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Figure 2.7: Full green curve: the surface density of the stellar disc at 11.7Gyr. Broken green line:
exponential fit to the inner part of this curve. Red curve: the surface density if stars remained
where they were born. Blue curve: surface density contributed by stars born in the first 0.8Gyr.
Broken blue line: linear fit to this curve.

low. Hence, regardless of stellar age, most solar-neighbourhood stars haveZ in a comparatively
narrow range centred on[Z/H]≃−0.1.
The full green curve in Fig. 2.7 shows the surface density of the stellar disc at 11.7Gyr, which is
roughly exponential. The red line shows what the surface density would be if stars remained at
their radii of birth. By construction this forms an exponential disc with a scalelength of 2.5kpc.
The broken green line shows that atR < R0 the disc approximates an exponential with a larger
scale length∼ 2.8kpc. The blue curve shows the surface density contributed by stars formed in
the first 0.8Gyr, which will beα-enhanced. This distribution deviates more strongly from an
exponential because radial migration is most important forold stars. Fitting an exponential to
this curve atR < R0 yields a scalelength 3.1kpc.
Fig. 2.8 reveals that thin and thick disc components can be identified within this overall envelope:
the upper panel shows that the vertical stellar density profile at the Sun is not exponential but can
be fitted by a sum of two exponentials. There is significant latitude in these fits and the fraction
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Figure 2.8: Upper panel: the volume density of stars atR = 7.6kpc as a function of height
(red), a fit (black dashed) and its decomposition into thin and thick components. Lower panel:
the volume density of stars at the current epoch atz = 0 (red),z = 0.75kpc (green dashed) and
z = 1.5kpc (blue short dashed).
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Figure 2.9: The predicted distribution of solar-neighbourhood stars in the ([Fe/H], [O/Fe]) plane.
The sample is obtained by using the selection function of theGCS survey as described in Section
2.5 below. The colours of points depend on the star’s azimuthal velocity: vφ < 179kms−1 blue;
179< vφ/kms−1 < 244 red;vφ > 244kms−1 green. The black curve shows the trajectory of the
solar annulus.

of stars that is assigned to each component varies with theirscalelengths. For comparison with
recent results of Juric et al. (2008) we present a fit with their value for the local thick disc fraction
of 13 per cent. This yielded scaleheights ofh1 = 335pc andh2 = 853pc, very well in the range of
their results. Note that the double-exponential density structure isnot caused by any pecularity
in star formation history, like a peak in early star formation, but is a consequence radial mixing
combined with the given vertical force field. However, precise characterisation of the vertical
structure must await dynamical models that employ a more accurate form of the third integral of
galaxy dynamics.

The lower panel of Fig. 2.8 shows that atz = 1.5kpc (where the thick disc is dominant) the stellar
distribution is less centrally concentrated than it is in the plane; if one were to fit an exponential
profile to the stellar density atz = 1.5kpc forR < 10kpc, the scalelength fitted would be larger
than that appropriate in the plane. Just this effect is evident in Fig. 16 of Juric et al. (2008).
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Fig. 2.9 shows the predicted distribution of solar-neighbourhood stars in the ([O/Fe], [Fe/H])
plane when a sample is assembled using the GCS selection function described in Section 2.5
below. Two ridge-lines are evident: at top left of the figure apopulation starts that stays at
[O/Fe]≃ 0.6 until [Fe/H]≃ −0.75 and then turns down towards(0,0), while a second larger
population starts at about(−0.75,0.25) and falls towards(0.2,−0.05). This arrangement of
points is very similar to that seen in Fig. 2 of Venn et al. (2004). The upper ridge-line is associ-
ated with the thick disc, and the lower ridge-line with the thin disc. In Section 2.9 we show that
such bimodal distributions in [O/Fe] are a natural consequence of the standard assumptions about
star-formation rates and metal enrichment that we have made. The structure isnot a product of
the double-exponential nature of the standard model’s infall law; the model with a constant gas
mass displays exactly the same structure. Breaks in the Galaxy’s star-formation history (Chiap-
pini et al., 1997) and accretion events (Bensby et al., 2005) have been hypothesised to account for
the dichotomy between the thin and thick discs. Our models reproduce the dichotomy without a
break or other catastrophic event in our model’s star-formation history. When comparing Fig. 2.9
with similar plots for observational samples, it is important to bear in mind differences in selec-
tion functions: Fig. 2.9 is for a kinematically unbiased sample, while most similar observational
plots are for samples that are kinematically biased in favour of “thick-disc” stars.
The full curve in Fig. 2.9 shows the trajectory of the solar-neighbourhood ISM. At low [Fe/H]
this runs along the ridge line of the thick disc, and it finishes on the ridge line of the thin disc,
but it is distinct from both ridge lines. The sharp distinction between this curve and the ridge
line of the thin disc make it very clear that the latter is formed through the migration of stars
into the solar neighbourhood,not through the chemical evolution of the solar neighbourhood
itself. In many previous studies it has been assumed that theridge line of the thin disc traces the
historical evolution of the local ISM. Fig. 2.9 shows that this assumption could be wrong and that
inferences regarding the past infall and star-formation rates that are based on this assumption are
not to be trusted.
In Fig. 2.9 the points are colour coded by their angular momenta/guiding centres: blue points are
for vφ < 179kms−1 (Rg < 0.81R0), red points are for 179kms−1 ≤ vφ ≤ 244kms−1 and green
points are forvφ > 244kms−1 (Rg > 1.1R0). At the low-metallicity end of the thin-disc ridge line
many points are green and few blue, while at the high-metallicity end the reverse is true. Thus
low-metallicity thin-disc stars tend to have guiding centresRg > R0, while high metallicity stars
haveRg < R0. Haywood (2008) has noted the same metallicity-velocity correlations in samples
of nearby stars. The thick disc contains stars from all threeradial ranges, but stars with smallRg

(blue) are most prominent at higher [Fe/H].
Fig. 2.10 shows the distribution of stars in the ([Z/H], vφ ) plane: the upper panel is for the
GCS stars and the lower panel is for the standard model. In bothpanels the highest density
of stars lies near(0,220kms−1) and the upper edge of the distribution rises as one moves to
lower metallicities. The metallicity gradient in the disc leads to the main cluster of stars sloping
downwards to the right. A significant difference between thetwo panels is that in the upper panel
there are more stars in the lower left region. This population is very much more prominent in
Fig. 5 of Haywood (2008), where a band of points runs from small vφ and [Z/H] up towards the
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Figure 2.10: Upper panel: the distribution of GCS stars in the([Z/H],vφ ) plane. Lower panel:
the prediction of the standard model.Colours and contours reflect the density on a logarithmic
scale with a 0.2 dex spacing for contours.
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main cluster. This band is made up of halo and thick-disc stars that are selected for in the samples
from which Haywood drew data. The other difference between Haywood’s Fig. 5 and the lower
panel of Fig. 2.10 is that Haywood’s main clump has a slightlyless pronounced slope down to
the right. It is likely that errors in the measurements of [Fe/H] have moderated this slope. The
GCS distribution shown in the upper panel of Fig. 2.10 is (especially on the high metallicity side)
dominated by overdensities around the rotational velocities of well-known stellar streams (e.g.,
the Hercules stream Dehnen, 1998). This pattern overlays the general downwards slope. The
model accounts well for the steeper edge of the density distribution at high rotational velocities,
which is the combined effect of lower inwards blurring and lower stellar densities from outer
rings.
The top panel of Fig. 2.11 shows that the stellar metallicitydistribution is less centrally con-
centrated than that of the cold ISM from which stars form. Three factors are responsible for
this result. First, the mean metallicity of stars reflects the metallicity of the gas at earlier times,
which was lower. This effect is most pronounced at the centre, where the metallicity of the ISM
saturates later than further out. Second, radial mixing, which flattens abundance gradients, has a
bigger impact on stars than gas because stars experience both churning and blurring. Third, the
net inflow of gas steepens the abundance gradient in the gas. Holmberg et al. (2007) have esti-
mated the stellar metallicity gradient from the GCS stars. When they select thin-disc stars they
find −0.09dexkpc−1, but when one excludes stars with [Z/H] < −0.7 (which ensures halo ob-
jects are removed), one obtains−0.11dexkpc−1. The gradient of the dashed red line in Fig. 2.11
at 7.6kpc is 0.10dexkpc−1 in excellent agreement with the GCS data.
The lower panel of Fig. 2.11 shows the breadth of the metallicity distribution at three radii. These
distributions have full-width at half maximum around 0.35dex and are significantly offset to each
other by 0.25dex.
Fig. 2.12 shows howα-enhancement varies in time and space, in stars and gas. Naturally, [O/Fe]
declines with time in both the ISM and in the stellar population, and at a given time is higher in
the stars than the gas. [O/Fe] generally increases outwardsbut at 12Gyr in both stars and gas
it attains a plateau atR>∼10kpc, with[α/H] ∼ 0.2 in the gas. The existence of the plateau is a
consequence of the rule that in the IGM [O/H] is the current value in the disc atR ≃ 12kpc; gas
with the givenα-enhancement rains on the disc atR<∼20kpc, is enriched by supernovae of both
types and a few gigayears later arrives atR = 12kpc with its originalα-enhancement. This level
is set by the metallicity-dependent yields we have employed.
Fig. 2.13 shows theB, R andI-band absolute magnitudes of the standard model as functions of
time. TheB-band luminosity rises quickly to a shallow peak around 5Gyrand then commences
a very slow decline. Emissions in theR-Band are almost constant at the present time, while
I-band luminosities continue to rise throughout the Galaxy’s life because additions to the stock
of long-lived stars outweigh deaths of relatively short-lived and predominantly blue stars. In our
model the Galaxy reaches an I-Band magnitude of around−22.7 which is exactly the result one
would expect for a disc galaxy with a rotation velocity of 220kms−1 (e.g. Pizagno et al., 2005)
Fig. 2.14 shows theU −B and B− I colours of the disc att = 1.5, 4.5, 8.4 and 12Gyr. As
expected, the disc reddens at a declining rate throughout its life. There is at all times a significant
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Figure 2.11: Upper panel: mean metallicities of stars (dashed) and cold ISM (full) as functions of
R at the present time (red) and at 1.5 Gyrs (blue). Lower panel:the distributions over metallicity
of stars currently atR = 5kpc (blue), 7.6kpc (red), and 10kpc (green).
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Figure 2.12: Full lines: [O/Fe] in the cold ISM after 1.5Gyr (blue) and 12Gyr (red). Dashed
lines: Mean [O/Fe] of stars after 1.5Gyr and 12Gyr.

colour gradient betweenR = 8 and 16kpc that make the disc’s edge about 0.2mag bluer inB− I
than its centre.
Fig. 2.15 shows that radial migration causes the dependenceof velocity dispersion on time for
stars that are currently in the solar neighbourhood to differ materially from the acceleration
law (2.17) that determines the time dependence ofσz for stars that are born at given radius.
The outward migration of stars brings to the solar neighbourhood stars that carry with them the
large velocity dispersions characteristic of their placesof birth. The impact that these migrants
have onσz for stars of a given age increases with age, so at high agesσz increases faster than
equation (2.17) predicts. Least-squares fits ofσz ∝ tβ to the red and green curves in Fig. 2.15
yield β = 0.53 and 0.44, respectively. Empirically the photometrically complete portion of the
Hipparcos catalogue shows that the best power-law fits to therate of increase ofσz yield β ≃ 0.45
(Just & Jahreiss, 2007; Aumer & Binney, 2009). From a theoretical standpoint, this result has
hitherto been puzzling because the largest exponent that can be obtained from the dynamics of
star scattering is 1/3 (Binney & Lacey, 1988). Such studies treat the accelerationas a local
process. Our result suggests that the conflict between theory and observation is attributable to
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bands as functions of time. No allowance has been made for obscuration.

violation of this assumption.

2.5 Fitting the model to the solar neighbourhood

A major constraint on the models is provided by comparing themodel’s predictions with samples
of stars observed near the Sun. To make these comparisons, wehave to reproduce the selection
functions of such samples, which proves a non-trivial job.
The GCS is an important sample, and for each model we calculatethe likelihood of this sample.
Nordstr̈om et al. (2004) obtained Strömgren photometry and radial velocities for a magnitude-
limited sample of 16682 F and G dwarfs, nearly all of which have good Hipparcos parallaxes.
From the photometry they estimated metallicities and ages.There has been some debate about
the calibration of the metallicities and ages (Haywood, 2006; Holmberg et al., 2007; Haywood,
2008). Recently the re-calibrated data from Holmberg et al. (2007) became available and it is to
these data that we have compared our models. We compare theirmetallicities ([Me/H]) to our
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Figure 2.15: Velocity dispersion of solar-neighbourhood stars as a function of age. Red curve:
σz for all stars in the solar annulus. Green (long dashed) curve: σz for stars within 100pc of the
Sun. Blue (short dashed) curve:σz for stars born in the solar annulus.

[Z/H] as it is not entirely obvious to what extent alpha enrichment enters into their measurements.
Since assigning ages to individual stars is very difficult, we have concentrated on matching the
distribution of stars in the(MV ,Teff,Z) space from which ages are derived.
For each metallicity we construct a volume-limited stellarnumber density of stars in the
(MV ,Teff) plane by considering each annulusj, and calculating the fraction of each popula-
tion in this annulus that will be in the solar neighbourhood.For given absolute magnitude, the
probability that a star will enter the sample is

W (rmax) =
∫ rmax

0
dr r2

∫

d2Ω n(z), (2.19)

where the space density of starsn(z) is assumed to be plane parallel and given by equation (2.18).
For the GCS selection function we use the approximateb− y colour rules from Nordstr̈om et
al. (2004) – a more sophisticated selection function could in principle be constructed, but it is
not possible from the published data. At each colour, the appropriate selection functionφ is
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Table 2.2: Magnitudes defining the Geneva–Copenhagen selection function
b− y 0.21−0.25 < 0.344 < 0.38 < 0.42 > 0.42

v1 7.7 7.8 7.8 7.8 8.2
v2 8.9 8.9 9.3 9.3 9.9

characterised by two apparent magnitudesv1 andv2 listed in Table 2.2:φ declines linearly from
unity at magnitudes brighter thanv1 to zero fainter thanv2. φ vanishes forb− y bluer than 0.21.
For b− y redder than 0.38,φ is reduced by a factor 0.6.

The selection of Nordström et al. (2004) is designed to exclude red giant branch (RGB) stars
from the data set. However, some of these stars are still in the sample, while the sample is biased
against stars just below the giant branch. We take out of consideration the RGB itself and we
downscale the theoretically expected population density near the starting point of the red giant
branch by a factor of 4 to reconcile it with the data. Since thenumber of RGB-stars in the GCS
is not large anyway, the loss of information is small. We alsoremoved from the dataset three
objects that are far too faint to be attributed to the main sequence. The theoretical distributions
are convolved with a Gaussian of dispersion 0.1dex in [Z/H] to allow for measurement errors.

Fig. 2.16 compares predicted (lower panel) and observed (upper panel) Hess diagrams for the
GCS stars. As discussed by Holmberg et al. (2007), the ridge-line of the main sequence in the
GCS data is significantly displaced from that predicted by isochrones. We have eliminated the
effects of this offset on Fig. 2.16 in the simplest possible way, namely by decreasing all model
values of log(Teff) by the value, 0.015, that yields the closest agreement between the theoretical
and observation main sequences. After this correction has been made, the agreement between
the theoretical and observational Hess diagrams shown in Fig. 2.16 is convincing though not
perfect. The original conception had been to determine the model’s parameters by maximising
the likelihood of the GCS stars in the model density in(MV ,Teff,Z) space, but confidence in
this plan was undermined by (i) the need for an arbitrary alignment of measured and theoretical
values ofTeff, and (ii) the extent to which the likelihood of the data depends on the uncertain
GCS selection function. Notwithstanding these reservations, we are encouraged that the standard
model maximises the likelihood of the data at an age,∼ 11Gyr, that agrees with other estimates
of the age of the solar neighbourhood (Aumer & Binney, 2009, and references therein).

The full red curve in Fig. 2.17 shows the metallicity distribution of stars predicted by the stan-
dard model, and green points show the GCS data. The agreement is excellent. At the lowest
metallicities theory predicts slightly too few stars, but the uncertainties in both the theory and the
data are large in this limit and the theory does not include halo stars, so it should under-predict
the data at[Z/H]<∼ −1.
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Figure 2.17: The metallicity distribution of GCS stars (green points) and the corresponding pre-
diction of the standard model (full red curve). The broken blue curve shows the model that differs
from the standard model only in the elimination of churning and radial gas flows. The broken
pink curve shows the model with neither churning nor blurring. The lower panel shows the same
data but with a logarithmic vertical scale to reveal structure in the wings of the distribution.
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2.6 General trends

We now discuss aspects of how the observable properties of a model depend on its parameters,
and what is required to achieve fits of the quality seen in Figs2.5 and 2.17.
Table 2.1 lists the model’s 16 parameters; the third column explains whether the parameter is
fitted to the GCS data or taken from the literature, and indicates the sensitivity of models to that
parameter. Five parameters (M0,M1,b1, fdirect,Mwarm) significantly affect only the distribution
of stars at [Z/H] < −0.7. Six other parameters (M2, t0,k−1, tcool,ZIGM) are fixed by observed
properties of the Galaxy other than the solar-neighbourhood stellar distribution. The remaining
five parameters are the critical surface density for star formationΣcrit, the long infall timescale
b2, the accretion parametersfA and fB and the churning strengthkch. We shall see thatfB is
effectively set by the metallicity gradient in the gas, thatb2 is effective determined by the local
Hess diagram, and that the value ofΣcrit is unimportant providing it is small (we have included
this parameter only for consistency with earlier work; the models do not want it). Consequently
the fit of the model to the data shown by the red curve and the green points in 2.17 is obtained
by adjusting justfA andkch.
The number of stars more metal poor than [Z/H] ∼−1 depends sensitively on the thermal struc-
ture of the early ISM. Most previous studies (exceptions include Thomas et al., 1998; Samland
& Gerhard, 2003) have used only one phase of the ISM. Introducing the warm component of the
ISM delays the transfer of metals to the star-forming cold ISM by ∼ 1Gyr, thus increasing the
number of extremely metal-poor G dwarfs. Our first models initially had no warm gas, with the
result that at early times the mass of warm gas was proportional to time and the metallicity of the
cold gas rose quadratically with time. These models had an over-abundance ofvery metal-poor
stars. These experiments led to the conclusion that pregalactic and halo stars endowed the disc
with warm, metal-rich gas at the outset. Even at late times, the existence of the warm ISM delays
the introduction of freshly-made metals into stars, and thus in concert with the gas flow through
the disc steepens the metallicity gradient in the stellar disc; eliminating the warm component
raises the metallicity of the solar neighbourhood and beyond by∼ 0.1dex.
The metallicity of infalling gas only affects the structureof the disc atR>∼12kpc. Lowering
ZIGM steepens the metallicity gradient atR > R0.
It is instructive to consider the case in which blurring is included but churning is turned off
by settingkch = 0 and radial flows are eliminated by ensuring thatfA + fB = 1 so every ring’s
need is fully supplied from the IGM. The broken blue curve in Fig. 2.17 shows the present-day
metallicity distribution that this model predicts for the GCS. The peak of the distribution is much
narrower than in the standard model, and there is a striking deficiency of metal-rich stars. The
broken pink curve shows the effect of also turning off blurring: the deficiency of metal-rich stars
becomes even more striking but there is negligible change onthe metal-poor side of the peak.
Reducing the current SFR by making the infall rate a more rapidly declining function of time
shifts the peak of the distribution to higher metallicitiesby reducing the relative strength of recent
inflow and thus the supply of fresh, metal-poor gas. The use ofan IMF that is steeper in the low-
mass region, as has been suggested by some studies, reduces the mass of metals that is locked
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up in low-mass stars and increases the metal production by each generation. The metallicity in
such a regime is accordingly higher, but the shape of the distribution does not change. Since
changes in the IMF at the high-mass end, which is equally uncertain, can produce compensating
variations in yields, loss rates, etc., we stayed with the traditional approach via the Salpeter IMF.
In all interesting models the metallicity of the local ISM saturates early on. The saturation level
depends on the pattern of gas flow through the disc, and on the current SFR relative to the mean
rate in the past: the faster the decline in the SFR, the higher the current metallicity. Naturally
the stars of the solar neighbourhood are on the average younger in models with a constant gas
mass than in models in which the infall rate is declining according to equation (2.6). This relative
youth is reflected in the structure of the local Hess diagram.We reject the model with constant
gas mass because it assigns a significantly smaller likelihood to the Hess diagram of the GCS
stars than does a model based on equation (2.6).

2.6.1 Selecting the standard model

All our models have quite strong metallicity gradients in both stars and gas (Figs 2.5 and 2.11).
Since the metallicity of the central gas is enhanced by radial gas flow, and models with large
fB have larger central flows than models with largefA and vice versa at large radii (Fig. 2.2),
enhancingfB steepens the metallicity gradient at smallR and diminishes it at largeR.
Eliminating churning and radial gas flows (by settingkch= 0, fA + fB = 1) dramatically reduces
the metallicity gradient within both the stellar and gas discs: at the present epoch the gradient
in the gas near the Sun falls from−0.11dexkpc−1 to −0.01dexkpc−1. Increasing the churning
amplitudekch both increases the width of the peak in the predicted solar-neighbourhood metal-
licity distribution (Figs 2.11 and 2.17) and reduces the gradient in the mean metallicity of stars
at R<∼R0.
Fig. 2.18 shows how the likelihood of the GCS metallicity distribution plotted in Fig. 2.17 varies
with fA, fB andkch. In the upper panel favoured models (with large symbols) liealong a line
that slopes down and to the right. Along this line a decrease by 0.01 in fB is compensated by an
increase infA by∼ 0.08.
As one moves down the upper panel of Fig. 2.18, the steepness of the metallicity gradient
near the Sun increases, and the models withfB = 0.015 have local gradients steeper than
−0.12dexkpc−1, which may conflict with the data. Models higher up the panel have smaller
local metallicity gradients and require larger values ofkch to bring a sufficient variety of stars
to the solar neighbourhood. Models to the right of the panel have smaller inward flows of gas,
leading to local metallicities that rise faster in time and they match the GCS metallicity distri-
bution at younger ages, especially ifkch is large so metal-rich stars migrate to the Sun relatively
rapidly. The structure of the local Hess diagram for either GCS stars (Fig. 2.16) or Hipparcos
stars (Aumer & Binney, 2009) implies that the solar neighbourhood is not younger than 9Gyr, so
when the age is smaller than 9Gyr the model is marked by a crossin Fig. 2.18. Models adjacent
to the crosses do not violate the 9Gyr limit but are nonetheless disfavoured because their local
Hess diagrams yield relatively low likelihoods for the GCS sample.
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Figure 2.18: The likelihood of the GCS metallicity distribution in models with infall rates given
by equation (2.6). Upper panel: the values of the infall parametersfA and fB are given by the
locations of the symbols, and the value ofkch is indicated by the number of sides of the polygon:
3, 4, 5, . . . forkch = 0.0, 0.1, 0.2, . . .. The size of the polygon increases linearly with the log
likelihood of the data, models with ages smaller than 9Gyr are marked with crosses. Lower panel:
the likelihoods of models withfB = 0.025 and varying( fA ,kch). In this panel the size of a symbol
is a more sensitive function of likelihood than in the upper panel. Hexagons indicate models with
best-fit ages higher than 12.6Gyr, models with best-fit ages below 9.6Gyr are crossed.
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Four factors make it difficult to confine narrowly the required value ofkch within the part of
Fig. 2.18 that has large symbols: (i) churning affects mainly the width of the metallicity distri-
bution, which has less impact on the likelihood than the location of its peak; (ii) churning, which
is strongest in the inner regions of the disc, tends to saturate near the centre in the sense that
old stars become fully shuffled; (iii) the GCS sample is biasedagainst old and highly dispersed
populations of stars, so where churning has the strongest effect, the observational signature is
weak; (iv) the required churning strength is sensitive to the local metallicity gradient which is
not very well constrained by observations.
In our models there is no azimuthal variation in the metallicity of gas at a given radius, as is sug-
gested by recent observations (see Nieva & Przybilla, 2008), which yield very small to negligible
inhomogeneity of the ISM at a given radius. The effect of relaxing this assumption can be gauged
by increasing the dispersion in the measured metallicitiesof a given population of stars: if there
is intrinsic dispersion in the metallicity of the ISM in a given annulus, the measured metallicities
of stars formed from it will reflect both this dispersion and measurement errors. The largest in-
trinsic dispersion in the metallicity of the ISM that would appear to be compatible with the data
plotted in Fig. 2.5 is∼ 0.1dex. When we combine this with measurement errors of 0.1dex, we
can obtain a fit to the GCS data of Fig. 2.17 that is only slightlyworse than that provided by the
standard model by loweringkch from 0.25 to∼ 0.1.
We have studied models with several values of the mass-loss parameterfeject and concluded that
up to the largest values studied (feject= 0.15 atR < 3.5kpc and 0.05 elsewhere)feject does not
have a large effect on the model’s observable properties, and is anyway degenerate with the still
uncertain nucleosynthetic yields. However, increasingfeject makes it slightly easier to find an
acceptable model, reflecting the fact that the yields we are using lie at the upper limit of the
yields that are consistent with measured metallicities.
The upper panel of Fig. 2.19 shows the effect on the fit to the GCSmetallicity distribution of
using a non-zero value of the threshold gas density,Σcrit, below which the SFR declines steeply.
RaisingΣcrit from zero to 2.5M⊙pc−2 changes the model prediction from the red curve of the
standard model to the blue curve; the distribution is now wider and peaks at lower metallicities.
The pink dotted curve shows the result of maximising the likelihood of the data subject to the
constraintΣcrit = 2.5M⊙pc−2. In this model fA is increased (to 0.44) andkch is decreased (to
0.20) relative to the standard model. The new model provides a slightly worse fit to the GCS
data than the standard model, but, as the lower panel reveals, there is a problem with using a
non-zero value ofΣcrit: with minimal star-formation in the outer disc, the metallicity gradient
of the ISM steepens near the edge of the star-forming regions, while further out the metallicity
becomes constant at the intergalactic value. The data show no sign of this plateau, and are
probably incompatible with a plateau as low as[Z/H] = −1. Values ofΣcrit > 2.5M⊙pc−2 are
incompatible with the data because they bring the edge of thestar-forming disc too close to the
Sun.
By considering the likelihoods of both the Hess diagram and the metallicity distribution of GCS
stars, and our prejudices regarding the proper value offeject, we chose the model specified by
Table 2.1 as the standard model. With this model the likelihood of the GCS metallicity peaks at
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Figure 2.19: Upper panel: the data points are the GCS counts and the red curve is the stan-
dard model. The broken blue curve shows the effect on this model of raisingΣcrit from zero to
2.5M⊙pc−2. The pink dotted curve shows that a good fit to the data can be obtained for this
value ofΣcrit. Lower panel: measurements of the metallicity of the ISM andthe predictions of
the models shown above.
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age 11.7Gyr.

2.7 Relation to other work

Chemical evolution models of the Galaxy have a long history and a large literature. It would
be inappropriate to attempt to review this literature in this section. Instead we highlight crucial
differences with work that has most in common with ours, and relate our work to the analysis of
the solar neighbourhood of Haywood (2008).

2.7.1 Comparison with earlier models

Some of the best known models of Galactic chemical evolutionare those in Chiappini et al.
(1997) and its successors Chiappini et al. (2001) and Colavitti et al (2008). In each case the
disc is made up of annuli that exchange neither stars nor gas.Star-formation is driven by a
Kennicutt law similar to equation (2.1). Chiappini et al. (1997) introduced a time-dependent
infall rate that is superficially similar to (2.6) but differs from our infall rate in two important
respects. First, the exponential with the longer time-constant is not turned on until 2Gyr after the
start of Galaxy formation with the consequence that star formation periodically ceases during the
interval 1Gyr< t < 2Gyr. Second, Chiappini et al. (1997) make the time constantb2 a linearly
increasing function of radius that vanishes atR = 0.86kpc (or 1.2kpc in Chiappini et al., 2001),
whereas hereb2 is constant. If we were to follow the prescription of Chiappini et al., our inner
disc/bulge would become older, and a smaller churning rate would be required to bring stars
more metal-rich than the local ISM to the solar neighbourhood. An outwards-increasing infall
timescale enhances the metallicity gradient because metallicities are close to their equilibrium
values, and these reflect the ratio of current to past SFRs.
Chiappini et al. (1997) adjusted their model’s free parameters to optimise its fit to the G-dwarf
metallicity distribution for stars in the solar annulus that was determined by Rocha-Pinto &
Maciel (1996) from 287 stars that lie within 25pc of the Sun. Fig. 2.20 illustrates the difference
between the metallicity distributions of stars near the Sunand in the entire solar annulus: the
full red curve shows the standard model’s prediction for themetallicity distribution of GCS stars
from Fig. 2.17, while the long-dashed green curve shows the corresponding distribution in the
whole annulus. The distribution for the annulus is much broader than that for the GCS because
stars with metallicities far from that of the local ISM are typically fast-moving and likely to be at
highz. Rocha-Pinto & Maciel (1996) transformed their measured distribution for the local sphere
to the modelled global distribution using correction factors estimated by Sommer-Larsen (1991),
which depend on the local gravitational potential and the velocity distributions of stars of each
metallicity. It is clearly more satisfactory to use internally generated values of these distributions
to predict the metallicity distribution in the observed volume around the Sun than to infer the
annular distribution from the measured one using external estimates of the velocity distributions.
Moreover, the short-dashed blue curve in Fig. 2.20 shows theprediction of Chiappini et al. (1997)
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Figure 2.20: Full red curve: the metallicity distribution predicted by the standard model for the
GCS stars. Long-dashed green curve: the prediction of the same model for the distribution of the
whole solar annulus. Short-dashed blue curve: the prediction of Chiappini et al. (1997) for the
solar annulus.

for the solar annulus. It declines much more steeply at high metallicities than the blue curve,
predicting far too few metal-rich stars.
The scale of the discrepancy between the blue and the green curves illustrates that a model that
provides an adequate fit to the data of Rocha-Pinto & Maciel (1996) is likely to be incompatible
with the GCS stars. This discrepancy is partly due to problemswith the calibration of the under-
lying dataset: Haywood (2002) and Twarog (2002) pointed outthat the metallicity calibrations
of Schuster & Nissen (1989) underlying those datasets severely underestimate the metallicities
of metal-rich stars. This underestimation makes the decline in the number of stars at [Fe/H]> 0
steeper than it should be, and thus makes it easier for the data to be fitted by traditional models
of chemical evolution, which predict a sharp cutoff at high [Fe/H]. Apart from its superior cal-
ibration, the GCS sample is 50 times larger than that used by Rocha-Pinto & Maciel (1996), so
its statistical errors are much smaller and it is a more challenging distribution to fit.
In the models of Chiappini et al. (1997), star formation ceases entirely when the surface density
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of gas falls belowΣcrit, while in our modelsΣcrit merely marks an increase in the rate of decline of
the SFR with decreasing gas density. While a cogent argument can be made for a rapid decline in
the SFR at low gas densities, it is hard to justify a discontinuity in the rate. Chiappini et al. (2001)
conclude that a non-negligible value ofΣcrit plays an essential role in fitting the data. In fact,
they setΣcrit = 7M⊙pc−2, with the consequence that star formation in the solar neighbourhood
was constantly stopping and starting, both during the first 2Gyr and the last 4Gyr of Galactic
history (see their Fig. 4). Since the metallicity of the ISM declines when star formation has been
switched off, this erratic behaviour broadens the stellar metallicity distribution. In our models
the SFR is steady and in fact settingΣcrit = 7M⊙pc−2 would result in almost no stars forming
atR>∼10kpc because the flow of gas through the disc would prevent the surface density building
up to 7M⊙pc−2. Hence in our models star-formation can occur at large radiionly if Σcrit is set to
a small or vanishing value. An important difference betweenour models and those of Chiappini
et al. (2001) is that in our models the SFR is a smooth functionof time and the bimodality in
[α/Fe] is achieved without a dip in the star-formation rate.
Chiappini et al. (1997) give for the inner and outer parts of their models the radial gradients in
the abundances of several elements. These gradients are largest in the inner regions, but even
there they are much smaller than in our models: for example at12Gyr the inner gradients of
[O/H] and [Fe/H] are−0.023 and−0.027dexkpc−1 compared to values∼−0.08dexkpc−1 and
∼−0.11dexkpc−1 obtained here. Our larger gradients are a direct consequence of the advection
inwards of the products of nucleosynthesis. The GCS stars show a similar gradient in [Z/H]:
Holmberg et al. (2007) derive a gradient of−0.09dexkpc−1.
Colavitti et al (2008) used infall rates measured from simulations of clustering cold dark matter
(CDM) in slightly updated models of Chiappini et al. (1997). Noempirically determined in-
fall rate gave such satisfactory results as the earlier double-exponential rate. The models were
again compared to the metallicity distribution of Rocha-Pinto & Maciel (1996) and in most cases
provided inadequate fits to the data. The empirically measured infall rates are very irregular in
time, with the result that the model experiences powerful bursts of star formation. These lead
to large excursions in the predicted plots of [O/Fe] versus [Fe/H] for which there is no evidence
in the data. Moreover, studies of the past SFR in the disc showno signs of major bursts of star
formation a few gigayears ago. The disappointing results ofthis study suggest that the rate at
which gas joins the disc is not simply the ratio of masses of baryons and dark-matter times the
dark-matter accretion rate. In fact, the wealth of evidencethat the majority of baryons are still
in the intergalactic medium (Persic & Salucci, 1992; Fukigita et al., 1998) is a clear indication
that galaxies do not acquire gas as fast as this naive calculation suggests; rather gas is stored
in the warm-hot intergalactic medium (WHIM) and from there accreted at a still uncertain rate.
It seems unlikely that chemical evolution models will be successfully coupled to cosmological
clustering simulations until we have understood the complex interface between the WHIM, cold
infall and galactic fountains.
Naab & Ostriker (2006) determined the infall rate by assuming that the surface density of the
disc is always exponential, but with a scale length that is proportional tovc/H, wherevc is the
Galaxy’s circular speed (taken to be constant) andH(t) is the Hubble parameter. The infall
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rate at all times and places was fixed by assuming that the central surface density of the disc is
constant at its current value. The model’s observables werecalculated by using the Kennicutt
law (2.1) to convert gas to stars. A very simple approach to chemical evolution was employed, in
which material does not move between annuli and only the overall metal contentZ was followed.
In these models the metallicity gradient in the ISM becomes less steep over time, and is now
∼−0.04dexkpc−1. Their model predicts for the solar neighbourhood fewer metal-rich stars and
more metal-poor stars than are in the GCS.
In all these models, solar-neighbourhood stars should satisfy a well defined metallicity-age rela-
tion, and the G-dwarf metallicity distribution is simply the result of combining this relation with
the SFR-age relation. As we have seen, the observed width of the local metallicity distribution
is approximated by exploiting irregular time evolution of the metallicity of the local ISM (cf.
also Portinari et al., 1998). As Fig. 2.9 illustrates, our models solve this problem in an entirely
different way, and using a simpler history of star formation.

2.7.2 Haywood’s analysis of the solar neighbourhood

Haywood (2006) and especially Haywood (2008) has critically re-examined the age-metallicity
distribution of the GCS stars and concluded that the data are only consistent with the existence of
a well defined age-metallicity relation for disc stars younger than∼ 3Gyr; for such young stars
the spread in [Fe/H] is consistent with the expected dispersion in the metallicity of interstellar
gas at a given radius. At ages larger than 3Gyr the width of themetallicity distribution is larger
than can be accounted for by measurement errors and inhomogeneity of the ISM. In particular,
there are stars with ages∼ 5Gyr that have [Fe/H]= 0.5, and stars with ages< 7Gyr that have
[Fe/H]=−0.5. The older the age bracket that one examines, the wider the range of metallicities
present. Our predicted age-metallicity distribution (Fig. 2.6) is in good agreement with that
derived by Haywood (2008).
Haywood (2006) finds that when his revised ages are used for GCSstars, the metallicities of
thick disc stars increase as their ages decrease. That is, these stars point to rapid self-enrichment
of the thick disc. In fact, Haywood argues that the thick discis not the relic of some captured
satellite(s) but an integral part of the Galaxy’s disc and has played a central role in the chemical
evolution of the thin disc. Chemical evolution models shouldtreat the disc as a whole, not just
individual parts. Our results strongly underline this conclusion from a theoretical perspective.
The metallicity-age plot shown in Fig. 1(b) of Haywood (2008) is satisfyingly similar to the lower
panel of our Fig. 2.6: in both figures the stellar density is highest around (τ = 2Gyr, [Fe/H] =
−0.1) and in this region the ridge line gradually drops to the right. At older ages the distributions
become broader, being confined by [Fe/H]∼ 0.4 and−0.5. At ages greater than 10Gyr both
distributions reach down to [Fe/H]= −1. In fact the small differences between our figure and
that of Haywood are readily accounted for by the substantialerrors in measured stellar ages.
This fit is remarkable because the model parameters were chosen without reference to measured
stellar ages.
An argument sometimes advanced for a dichotomy between the thick and thin discs is the ex-
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istence of two sequences in the([α/Fe], [Fe/H]) plane (Fig. 2.9). This diagram suggests that
the last thick-disc stars to form had higher abundances thanthe first thin-disc stars to form. To
explain this finding in the context of a conventional chemical-evolution model, sudden dilution
of the ISM by a massive gas-rich accretion is required (Bensbyet al., 2005; Reddy et al., 2006).
Against this proposal Haywood (2006) objects that the bulk of the oldest thin-disc stars have
[Fe/H]≃ −0.2 and there is no evidence that the most metal-poor thin-discstars are particularly
old. Our models show that the observed structure of the([α/Fe], [Fe/H]) plane arises naturally
when radial migration is allowed. Haywood (2008) examined the orbital parameters of stars
of various metallicities and showed that local thin-disc stars with metallicities that overlap the
metallicity range of the thick disc have higher angular momenta than more typical thin-disc stars.
Similarly, he found that stars in the high-metallicity tailof the local metallicity distribution have
low angular momenta. Even though churning could in principle eradicate the correlation between
angular momentum and metallicity, our models reproduce these correlations (Figs 2.9 and 2.10)
because blurring makes a sufficiently large contribution tobringing these chemically anomalous
stars near the Sun.
Ivezic et al. (2008) also argue that in the SDSS data the kinematic properties of the thick disc
evolve continuously with distance from the plane in a way that suggests that the thick disc joins
continuously to the thin disc. By contrast, Veltz et al. (2008) argued for a clean break between
the thin and thick discs on the basis of shallow local minima in the density of 2MASS stars
n(z) in seen at the Galactic poles as a function of photometric distancez. As Veltz et al. (2008)
show, minima inn(z) are not expected if the disc is a superposition of two exponential struc-
tures, but the minima yield a clean discontinuity in the distribution of velocity dispersions when
multi-component isothermal distribution functions are used to model the data. The very unex-
pectedness of the minima makes the modelled break extremelyclean. It will be interesting to see
whether the distribution of measured radial velocities of stars in the RAVE survey substantiate
these model velocity distributions.

2.8 Conclusions

It is now more than forty years since the theory of stellar evolution attained the level at which
it became possible to model the chemical enrichment of the ISM. From the beginning of that
endeavour measurements of the abundances of individual solar-neighbourhood stars have played
a key role because a star preserves like a time capsule the state of the ISM at the remote epoch
of its formation. Considerable theoretical and observational efforts have been devoted to probing
the history of the Galaxy with this connection.
Half a century ago, Roman (1950, 1954) and others discovered the connection between the kine-
matics and chemistry of stars, yet curiously little has beendone to include kinematics in models
of chemical evolution. The general presumption has been that each annulus of the disc evolves
independently of others, and the well-known correlations between chemistry and kinematics can
be understood as arising through the stochastic acceleration of stars: older stars tend to have
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larger random velocities and lower metallicities. No effort was made to develop greater diagnos-
tic power by simultaneously modelling chemistry and kinematics.
The continued use of mutually independent annuli by modellers of chemical evolution is surpris-
ing given that it was from the outset recognised that many stars are on significantly non-circular
orbits that each radial half-period cover more than a kiloparsec in radius. In fact, it has generally
been assumed that the radial velocity dispersion within thedisc rises as one moves inward to
values that lead to radial excursions of several kiloparsecs (see Fig. 2.4). Moreover, observations
have long indicated that galactic discs have significant metallicity gradients (e.g. Vila-Costas &
Edmunds, 1992; de Jong, 1996), so radial migration of stars is bound to leave a signature on
the metallicity distribution of solar-neighbourhood stars. We have called this aspect of radial
migration “blurring”.
The present study owes its impetus to the discovery by Sellwood & Binney (2002) that radial
migration is a more potent process than mere blurring: the dominant effect of transient spiral
arms is not to heat the stellar disc as had been supposed, but to cause stars either side of corotation
to change places without moving to eccentric orbits (“churning”). Sellwood & Binney (2002)
did not demonstrate that gas participates in churning, but they argued that it must on dynamical
grounds, and Roskar et al. (2008a) found evidence that this was the case in their N-body–SPH
simulations of galaxy formation. Since churning is an aspect of spiral structure that canonly
be probed through its impact on chemical evolution, we wanted chemical-evolution models that
included churning, and logically it was natural to extend these models to include both blurring
and radial gas flows.
An ingredient of our models that might be controversial is the introduction of radial gas flows.
We have absolutely no reason to expect that the infall profileis exponential, so if discs are to
be exponential this must be the result of flows through the discs redistributing mass within the
disc. In fact, as gas streams through spiral arms it dissipates energy in shocks that is ultimately
gravitational energy that becomes free as the gas surrenders angular momentum to the stars and
drifts inwards. Hence at some level inward gas flows are mandatory (Lacey & Fall, 1985).
Unfortunately, the theory of galaxy formation has yet to advance to the point at which it can
prescribe the spatial and temporal structure of gas accretion, so it is necessary to parametrise
accretion in some way. The accretion process must be constrained to result in the formation
of the observed stellar and gaseous discs. Our accretion Scheme AB satisfies this constraint
for all values of the parameters, but it is inevitably acausal in that the formation mechanism is
being driven by its known outcome. While its acausality is unattractive, Scheme AB is a flexible
parametrisation that enables us to form exponential discs for a variety of different assumptions
about the radial density of infalling gas, and the resultingradial profiles of infall and gas-flow
(Fig. 2.2) are entirely plausible.
The impact that radial migration has on the local metallicity distribution obviously varies with the
magnitude of the metallicity gradient in the ISM, which in turn depends on the gas flow within
the disc and therefore the radial infall profile. For this reason the most important parameters of
our models arefA and fB, which control the distribution of infalling gas.
The models provide good fits to the GCS counts of stars as functions of [Fe/H],MV , Teff and
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stellar age, as well as reproducing the correlations between tangential velocity and abundance
patterns that have been pointed out by Haywood (2008). Thesefits are achieved by churning,
blurring and radial flows working together. They depend on the existence of an appreciable
metallicity gradient in the ISM, which is established by theradial flow of gas, and they depend
on radial mixing of stars by blurring and churning. The steeper the metallicity gradient in the
gas, the smaller the effect of churning can be, but for any observationally consistent metallicity
gradient, churning has a non-negligible role to play.
The models describe the coevolution of the thick and thin discs, and presume that thick-disc
stars were formed in the Galaxy rather than accreted from outside. Given the simplicity of our
assumptions, the extent to which a dichotomy between anα-enhanced thick disc and a solar-type
thin disc automatically manifests itself in the models is remarkable. In particular, in the solar
annulus the distributions of [O/H] at given [Fe/H] are bimodal in the range of [Fe/H] associated
with the overlap of the two discs (Fig. 2.9), the vertical density profile can be represented at
the sum of two exponentials, and atR < R0 the radial density profile becomes flatter at lager
distances from the plane (Fig. 2.8). None of these characteristics is dependent on our choice of
a double exponential for the time dependence of infall: a model in which the gaseous mass, and
therefore star-formation rate, is held constant also has these features. They are consequences of
the∼ 1Gyr timescale of type Ia supernovae and the secular heatingand churning of the disc.
The models assume that scattering of stars increases the velocity dispersion of a coeval pop-
ulation ast1/3, but the models go on to predict that within the solar neighbourhood velocity
dispersion increases as a higher power of age, roughlyt0.45 in agreement with what is found
from Hipparcos stars with good parallaxes. This finding may reconcile scattering theory, which
cannot readily explain an exponent in excess of 1/3, with observations. The key point is that
radial mixing brings to the solar neighbourhood stars born at small radii, where the velocity
dispersion is undoubtedly large.
The nucleosynthetic yields from each generation of stars are still significantly uncertain. Our
philosophy has been to use standard values from the literature rather than exploit uncertainties in
the yields to tune the models to the data. The yields we are using are in the upper region of those
that can provide adequate fits to the data, with the consequence that increasing the value of the
mass-loss parameterfeject, which is degenerate with the magnitude of the yields, makesit easier
to fit the data. Our yields are surely not exactly right and consequently some of the properties the
models derive from them will be in error. On account of these uncertainties we have suppressed
the predictions of our code for the abundances of certain elements, most notably carbon.
The discovery that three-dimensional, non-equilibrium models of the solar atmosphere require
the metal abundance of the Sun to beZ⊙ = 0.012−0.014 (Grevesse et al., 2007) poses a major
problem for this field. A prerequisite for successful chemical modelling is a consistent metallicity
scale for both stars and the ISM. At present the only consistent scale is the traditional one on
which Z⊙ = 0.019, so this is the one we have used.
If a new scale were established on which all metallicities were significantly lower, viable models
could be produced by lowering the yields. A straightforwardway to do this would be to lower
the maximum mass in the IMF: reducing this mass from 100M⊙ to 50M⊙ would reduce yields
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by ∼ 30 percent in line with the proposed reduction inZ⊙. The oxygen yield would come down
fastest, reducing [O/Fe] by∼ 0.2dex.
Although we believe that this study represents a significantadvance on all previous models of
Galactic chemical evolution, it is highly imperfect. Some major weaknesses of our work are the
following.

1. We have assumed that the probability of mass interchange between rings is proportional
to the product of the rings’ masses. This probability reflects the number and intensity of
spiral feature with corotation at that radius, and should bea function of both mass and
velocity dispersion. A further study of self-gravitating discs similar to that of Sellwood &
Binney (2002) would be necessary to determine this function.

2. We have assumed that the vertical and radial motions of stars decouple. This assumption
has a significant impact on both the relation between age and velocity dispersion in the so-
lar neighbourhood and on the predicted vertical density profile in the solar annulus, which
is interesting in itself and impacts on the selection function of GCS stars and thus on our
choice of standard model. The assumption is unjustifiable for stars on eccentric orbits,
which do play an important role in the model fits. Unfortunately, a sounder treatment is
impossible until a better approximation to the third integral of Galactic dynamics is avail-
able. It is our intention to resolve this problem through “torus modelling” (e.g. McMillan
& Binney, 2008).

3. Our models include radial mixing of gas through churning and viscous inspiralling, but do
not include radial redistribution of gas by the Galactic fountain (e.g. Benjamin & Danly,
1997). A significant body of evidence indicates that star formation drives neutral hydrogen
to kiloparsec heights above the plane. NGC891, which is not dissimilar to the Galaxy, has
∼ 25 per cent of its neutral hydrogen more than 1kpc from the plane (Oosterloo et al.,
2007). This extraplanar gas must move over the plane on nearly ballistic trajectories, and
in the absence of interaction with the corona (gas at the Galaxy’s virial temperature∼
2×106K), the gas must return to the plane further out than its pointof ejection. However,
observations suggest that neutral gas above the plane is actually flowing inward rather
than outward, presumable as a result of interaction with thecorona (Fraternali & Binney,
2008). The mass of extraplanar gas is so large and the timescale for its return to the plane
so short that whichever way this gas flows, it has a considerable potential for radially
redistributing metals. Extraplanar gas must be ejected from the disc by supernova-heated
gas that is probably highly metal-rich. Some of this gas willbe lost to the Galaxy as we
have assumed, but some of it will return to the plane with infalling gas. Again there is
potential here for significant radial redistribution of metals that has been ignored in the
present study.

4. Our treatment of the inner Galaxy is unacceptably crude inthat we have replaced the
bar/bulge with a disc. Unfortunately introducing the bar opens a Pandora’s box of com-
plexities, and at the present time is probably only feasiblein the context of a particle-based
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model such as those of Samland & Gerhard (2003) and Roskar et al. (2008b). Our hope is
that our imaginary central disc has a similar impact on the chemodynamical state of the lo-
cal disc to the combined impact of the giant star-forming ring atR≃ 4kpc, the gas-deficient
region interior to this ring and the star-formingx2 disc atR<∼200pc.

From this list of shortcomings of our models it is clear that we are still far from a definitive
account of the Galaxy’s chemical evolution. We shall be satisfied if we have convinced the
reader that the interplay between dynamics and chemistry isso tight at to be indissoluble. This
fact is at one level inconvenient because it undermines the value of conclusions drawn from
traditional models of chemical evolution. But at another level it represents an opportunity to
learn more. The connection between the kinematics of stars and the compositions of stars and
gas, which can be measured in great detail, involves three areas about which we are too ignorant:
the distribution of dark matter within and around the Galaxy, the Galaxy’s history of assembly,
and the nature of the Local Group’s IGM. By building dynamicalmodels of the Galaxy that have
chemical evolution built in to the basic structure, we should be able to make decisive progress
with one of the major problems of contemporary astronomy.
We thank M. Haywood, J.-U. Ness and A. Riffeser for fruitful discussions. R.S. acknowledges
material and financial support from the Studienstiftung desDeutschen Volkes and Stiftung Max-
imilianeum and the hospitality of Merton College Oxford, where this work began.

2.9 Appendix: Origin of bimodal [O/Fe] distributions

We provide an analytic model of the development of the bimodal distributions of [O/Fe] evident
in Fig. 2.9. We assume that star formation starts att = 0 and that the SFR is∝ e−Kt for t > 0.
Consistent with equation (2.5), we assume that a coeval groupof stars formed att ′ generates a
rate of type Ia supernovae that vanishes fort < t ′+ t0 and is subsequently∝ e−k(t−t ′). Then given
that the rate of core-collapse SNe is proportional to the SFR,the rate of production of Fe is

dMFe

dt
=

{

be−Kt for t < t0
be−Kt + c

∫ t−t0
0 dt ′e−Kt ′e−k(t−t ′) for t ≥ t0

, (2.20)

whereb andc are constants. Integrating this production rate, we obtainthe iron mass at time
t > t0 as

MFe(t)= b
1−e−Kt ′

K
(2.21)

+
c

k−K

(

e−(k−K)t0 e−Kt0 −e−Kt

K
− e−kt0 −e−kt

k

)

.

In the approximation that SNIa do not contributeα elements, and that the delay in the production
of these elements by a stellar population is≪ 1/k, the mass ofα elements isMα =(1−e−Kt)a/K
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Figure 2.21: The distribution ofα abundances predicted by equation (2.21).

wherea is a constant. Then equation (2.21) predicts thatα ≡ Mα/MFe equalsa/b for t ≤ t0 and
then drops rapidly towards its asymptotic value,

α(∞) =
b
K
+

c
Kk

e−kt0. (2.22)

Fig. 2.21 plots the distribution att = 13Gyr of stars overα when the initial and asymptotic
values ofα are set to 0.4 and 0.2 and the other parameters areK = 1/7Gyr, k = 1/1.5Gyr and
t0 = 0.3Gyr, which allows 0.15Gyr for white dwarfs to form and 0.15Gyr for them to accrete
prior to deflagrating.



Chapter 3

Origin and structure of the Galactic
disc(s)1

3.1 Abstract

We examine the chemical and dynamical structure in the solarneighbourhood of a model Galaxy
that is the endpoint of a simulation of the chemical evolution of the Milky Way in the presence of
radial mixing of stars and gas. Although the simulation’s star-formation rate declines monotoni-
cally from its unique peak and no merger or tidal event ever takes place, the model replicates all
known properties of a thick disc, as well as matching specialfeatures of the local stellar popula-
tion such as a metal-poor extension of the thin disc that has high rotational velocity. We divide
the disc by chemistry and relate this dissection to observationally more convenient kinematic
selection criteria. We conclude that the observed chemistry of the Galactic disc does not provide
convincing evidence for a violent origin of the thick disc, as has been widely claimed.

3.2 Introduction

Our Galaxy’s stellar disc was first divided into two components because the vertical density pro-
file derived from star counts could be fitted by a superposition of two exponentials but not by a
single exponential (Gilmore & Reid, 1983). Further investigations revealed a thick-disc compo-
nent that was characterised by a high velocity dispersion, high α enrichment and a remarkably
old age. Many authors consider the thick disc to be a relic of aturbulent era of Galactic history
in which the thick disc formed from accreted satellites and/or a thin disc was violently heated by
one or more merger events (for a discussion see e.g. Reddy et al., 2006). A violent origin of the
thick disc is strongly supported by traditional models of chemical evolution (see e.g. Chiappini
et al., 1997). These models require a period of rapid star formation early in the life of the disc,
followed by a period in which star formation effectively ceased in which the interstellar medium

1 Content and text of this chapter have almost identically been published as Schönrich & Binney (2009b).
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could be enriched with iron by SNIa and the overall metallicity level could be brought down by
accretion of metal-poor gas.
In an earlier paper (Schönrich & Binney, 2009a, hereafter SB09) we showed that when oneal-
lows for radial mixing, which is an unavoidable consequenceof spiral structure (Sellwood & Bin-
ney, 2002; Roskar et al., 2008a), a two-component disc arisesnaturally in the simplest model, in
which the star-formation rate (SFR) is a monotonically declining function of time from its global
maximum. In this paper we examine in greater depth the contents of the model’s solar neigh-
bourhood, especially its characteristic stellar populations. We identify the solar-neighbourhood
signatures of the thin and thick discs and analyse the relationship between the chemistry and
kinematics of nearby stars. This exercise enables one to understand better the relationship be-
tween the underlying nature of the thin and thick discs and samples of stars that have been
selected by kinematic, chemical or spatial criteria. A better understanding of this relationship
is of considerable practical importance because substantial allocations of telescope time are cur-
rently committed to spectroscopic surveys (SEGUE, RAVE, HERMES, WFMOS, Gaia) that are
designed to unravel the nature and history of the thick disc,and a clear picture will not emerge
from these surveys without a secure understanding of selection effects.
The paper is structured as follows. In Section 2 we summarisethe physics that underlies
the model and analyse its prediction for the disposition of solar-neighbourhood stars in the
([Fe/H], [α/Fe]) plane. We identify the thin and thick discs within this plane, and show how
the kinematics and ages of stars vary within the([Fe/H], [α/Fe]) plane. The structures we iden-
tify seem to have all the properties expected of the Galaxy’sthin and thick discs. In Section 3 we
explore the extent to which stars can be successfully assigned to the thin and thick discs by kine-
matic selection. We show that this process cannot be clean. Finally in Section 4 we sum up and
relate the characteristics of the features we have identified to the formation history of our model.
Since the SFR in the model has been monotonically decreasingfrom its global maximum, and
no merger or tidal event has ever occurred in it, we conclude that, contrary to widespread belief,
features of the Galaxy, such as the overlap in [Fe/H] of the thin and thick discs do not in fact
constitute convincing evidence for a violent origin of the thick disc.

3.3 The model

3.3.1 Physical inputs

The SB09 model is the endpoint of a simulation of chemical evolution within a disc in which
the star-formation rate, which is controlled by the surfacedensity of the ISM as in the Kennicutt
(1998) law, declines monotonically with time from a unique global maximum. The gas disc
always has an exponential surface density with scale length3.5kpc so that by the Kennicutt
law the young stellar disc has an exponential surface density with scale length 2.5kpc. The
assumptions regarding the (universal) initial mass function, stellar lifetimes and yields are also
taken from the literature. The only novel features are a radial flow of gas within the disc and radial
migration of stars. The latter occurs both because over timestars change their angular momenta



64 CHAPTER 3. ORIGIN AND STRUCTURE OF THE DISC(S)

0

100

200

300

400

500

600

700

800

900

 0  2  4  6  8  10  12  14

nu
m

be
r 

of
 s

ta
rs

R/kpc

whole annulus

modelled GCS

Figure 3.1: The distribution of birth radii of stars in the model GCS sample (green dashed line)
and of all stars in the solar cylinder (solid red line).

(“churning”) and because they move on orbits that become increasingly eccentric and inclined
to the Galactic plane (“blurring”). Traditional models of Galactic evolution have ignored these
effects although it has always been evident that blurring occurs. The importance of churning
was only realised when Sellwood & Binney (2002) found that even weak spiral structure in N-
body simulations causes stars to shift their guiding centres by a kiloparsec and more in a single
dynamical time. These motions, which arise when a star is at the corotation resonance with
a spiral arm, do not heat the disc, so they come to light only when the angular momenta of
individual stars are followed. In the model the extent of churning is governed by a parameterkch
that could be determined from N-body models if we knew the past strength of spiral structure.
SB09 determinedkch by fitting the model to the distribution of solar-neighbourhood stars in
[Fe/H]. The radial dependence of churning strength was taken to be proportional to the product
of surface density and radiusΣR, following an argument based on disc instabilities.
The dashed green line in Fig. 3.1 shows the distribution of birth radii of stars in the model GCS
sample. Because the GCS stars lie near the plane, the fraction of these stars that are young is
higher than the fraction of young stars in the entire solar cylinder. This bias towards young stars
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Figure 3.2: The metallicity distribution of solar-neighbourhood stars: data points from Holm-
berg et al. (2007); red curve the SB09 model. For the model total metal abundance is plotted
horizontally, while for the data the plotted quantity is thephotometric metallicity indicator given
in Holmberg et al. (2007).

leads to the distribution of birth radii of GCS stars being narrower than the distribution of birth
radii for all stars in the solar cylinder, which is show by thefull red curve in Fig. 3.1. The
difference between the two distributions is largest for stars born at<∼5kpc because those inner
disc stars have larger vertical velocity dispersions and therefore larger scaleheights.
Hot gas was assumed to be too far from the disc to take part in churning, while the cold gas and
stars were assumed to be equally involved in this process. Itis likely that these assumptions ex-
aggerate the impact of churning on old stellar populations,which have high velocity dispersions,
relative to its impact on young stellar populations. Since there is as yet no basis for quantify-
ing the impact of velocity dispersion on churning rate, the model of Paper I avoids additional
undetermined parameters by ignoring this possibility.
The flow of gas within the disc enables the surface density of star formation to be an exponential
function of radius even though the rate at which accreted gasjoins the disc does not necessarily
vary exponentially with radius. The surface density of inflow of metal-poor gas and the flow of
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gas within the disc are jointly controlled by two parameters, fA and fB, which substitute for a
knowledge of the radial profile of cosmic infall. Attempts toobtain the latter from simulations
(e.g., Colavitti et al, 2008) have not been successful, probably because much of the gas that joins
the disc spends a significant time after infall in the warm-hot intergalactic medium (WHIM).
Hence at the present time we must parametrise the infall in some way. SB09 found thatfB is
effectively set by the measured oxygen gradient in the ISM, and fA was fitted alongsidekch to
the local metallicity distribution of stars. Fig. 3.2 showsthe fit that was obtained to data for
∼ 10000 non-binary stars in the Geneva–Copenhagen survey (Nordstr̈om et al., 2004; Holmberg
et al., 2007, hereafter GCS).
The random velocities of stars formed at a given radius are assumed to increase with ageτ asτ1/3

in line with the predictions of both theory (Jenkins, 1992) and studies of the solar neighbourhood
(Just & Jahreiss, 2007; Aumer & Binney, 2009). We have modifiedthe Scḧonrich & Binney
(2009a) model very slightly by increasing the〈v2

R〉1/2 of a 10Gyr-old population of local stars
from 38kms−1 (cf Dehnen & Binney, 1998b) to 45kms−1. This increase brings the〈v2

R〉1/2

for the entire GCS sample into line with the observed value. Inconcordance with observations
(e.g. Lewis & Freeman, 1989) the square of the intrinsic velocity dispersion at a given age is
assumed to scale with radius as e−R/1.5R∗, whereR∗ = 2.5kpc is the scale-length of the stellar
disc, so〈v2

R〉1/2 ≃ 90kms−1 atR = R∗. The square of the vertical velocity dispersion component
is assumed to show a slightly steeper rise (implying approximately constant scaleheight) being
proportional to e−R/R∗.

3.3.2 Predictions of the model

The merit of the SB09 model is that it tracks the kinematics of stars in addition to their chemistry.
Observations always have a kinematic bias of some kind, either because they are restricted to
stars that lie near the Sun and therefore the plane, a region favoured by stars with small vertical
velocity dispersions, or (as in Juric et al., 2008; Ivezic etal., 2008) because they focus on faint
stars that are far from the plane, or because an explicit high-velocity criterion is applied in order
to reduce contamination of a thick-disc sample by thin-discstars. A model that includes both
chemistry and kinematics is essential for the interpretation of a kinematically selected study.
The SB09 model makes predictions for the global structure of the Galaxy’s stellar and gas discs,
but in this paper we focus on the solar neighbourhood, and especially the stars that happen to
lie within 100pc of the Sun. This volume is of particular interest because within it G-dwarfs
are bright enough to have good Hipparcos parallaxes, measured radial velocities, and in a few
cases medium-to-high resolution spectra from which detailed chemical abundance patterns can
be extracted. The GCS provides space velocities, surface gravities and metallicities for this
volume, and detailed abundance analyses have been carried out for much smaller subsets of
stars (Fuhrmann, 1998; Bensby et al., 2003; Venn et al., 2004;Bensby et al., 2005; Gilli et al.,
2006; Reddy et al., 2006). Because the GCS sample is essentiallymagnitude limited, it is not
representative of the volume typically simulated by modelsof chemical evolution, namely a
cylindrical annulus around the disc. In particular, thick-disc stars are under-represented within
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Figure 3.3: Logarithmic stellar densities for a simulated GCS stellar sample in the
([Ca/Fe], [Fe/H]) (top) and([O/Fe], [Fe/H]) planes. Contours have a 0.5dex spacing. Black
lines track the development of the cold ISM in annuli of radiiof (from right to left) 2.5,5.0,7.5
and 10kpc.



68 CHAPTER 3. ORIGIN AND STRUCTURE OF THE DISC(S)

the GCS relative to a cylindrical annulus. The SB09 model provides an arena in which the impact
of this bias can be assessed.
Fig. 3.3 shows the densities of simulated GCS stars in the([Fe/H], [Ca/Fe]) (upper) and
([Fe/H], [O/Fe]) planes. Trajectories of the cold ISM at galactocentric radii of 10,7.5,5,2.5kpc
(from left to right) are indicated by black lines. The ISM starts at early times with low metallicity
and highα enhancement at the top left of each panel. As the gas is enriched with metals, each
trajectory moves to the right. With the onset of SNIa, the composition of stellar yields shifts
towards iron, so[α/Fe] decreases and the trajectories move downwards. Eventuallythe ISM
approaches a steady state in which additional enrichment isbalanced by the infall of fresh metal-
poor material from the IGM. Since the delay of SNIa-enrichment is assumed to be independent
of environment, the time at which trajectories first move downward is independent of radius. By
the fact that the timescale of SNIa-enrichment does not varywith radius either, the ISM trajec-
tories tend to be nearly aligned. Thus the point of turndown is at higher metallicities (further to
the right) for populations closer to the Galactic centre, where the ISM is enriched faster by more
intense star formation relative to the present gas mass.
The colours and green contours in Fig. 3.3 show the density ofstars within each plane. In each
panel two ridges of high density are apparent – one at high[α/Fe], which we call the metal-poor
thick disc and one at low[α/Fe], which is associated with the thin disc. Crucially, the thin-disc
ridge runs at a large angle to the black trajectories of the ISM. Thus the thin-disc ridge in no
sense traces the chemical history of the thin disc; instead it reflects the spread in radii of birth
of local stars, which gives rise to a spread in [Fe/H] by virtue of the metallicity gradient within
the ISM (which is larger in the SB09 model than in traditional models of chemical evolution). In
a similar manner the thick-disk ridge follows the evolutionof all rings at low metallicities, but
stretches significantly to higher [Fe/H] than the point at which the solar annulus leaves it.
The depression in the stellar density between the ridges in Fig. 3.3 is a consequence of the rapid
downward motion of all trajectories after the onset of SNIa,and of the ISM approaching a steady
state as it enters the thin-disc ridge line; relatively few stars are formed at intermediate values of
[α/Fe]. Variations in the timescales of enrichment will change thedepth of the depression – for
example, a shorter timescale for the decay of SNIa progenitors will cause trajectories to move
downwards faster, leading to fewer stars in the intermediate region. Our models use a prescrip-
tion for SNIa that is standard for models of chemical evolution, with no SNIa until 0.15Gyr after
star formation, and then an exponential decay in the rate of SNIa with time constant 1.5Gyr.
Mannucci et al. (2006) suggest that∼half SNIa explode promptly (within 0.1Gyr of star for-
mation) and the rest explode at a rate that declines exponentially with time constant 3Gyr. The
existence of prompt SNIa would not materially affect our work as long as a significant fraction
of SNIa are in the population with a long time constant, sincethe prompt SNIa will lower the
alpha-enhancement level of the thick disc component, but not affect the evolution between the
two density ridges in the abundance plane. Förster et al. (2006) showed that timescales are very
weakly constrained by SNIa counts due to uncertainties in the star-formation histories.
Since both Ca and O areα-elements, the distributions in the upper and lower panels of Fig. 3.3
are qualitatively similar, and O will be the onlyα-element explicitly discussed below.
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Figure 3.4: The structure of a simulated sample of GCS stars inthe ([Fe/H], [O/Fe]) plane.
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to be 220kms−1. Black lines give the trajectories of the cold ISM during the model Galaxy’s
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As Haywood (2008) has pointed out, the principal tracers of radial mixing are the large dis-
persion in the metallicities of stars in the solar neighbourhood and the strong increase in this
dispersion with age, which is caused by immigration of high-metallicity stars from inwards and
low-metallicity stars from outwards. In fact, as SB09 demonstrated, it is impossible to fit the
shape of the local metallicity distribution under plausible assumptions without radial mixing.
As well as generating a large dispersion in the metallicities of old stars, radial migration has a
big impact on the interdependence of kinematics and chemistry. This impact is illustrated by
Fig. 3.4, which is another plot of the([Fe/H], [O/Fe]) plane, but now with colour indicating the
mean rotation velocity of stars at each point – blue indicates low rotation velocities and red large
ones. We see that at any given value of[α/Fe], there is a tight correlation between [Fe/H] and
rotation velocity in the sense that high [Fe/H] implies low rotation velocity because stars with
high [Fe/H] are migrants from small radii and tend to be deficient in angular momentum, while
stars with low [Fe/H] are migrants from large radii. The black lines that show the trajectories
of the ISM almost constitute contours of constant mean rotation velocity, but there is a barely
perceptible tendency for the rotation velocity to decreaseas one moves up along a black line.
While the correlation between [Fe/H] and rotation velocity seen in Fig. 3.4 is qualitative con-
sistent with stars being scattered to more eccentric orbitswhile retaining their angular momenta
(“blurring”), quantitatively changes in angular momentum(“churning”) play a big role in struc-
turing Fig. 3.4. While churning does occasionally move the guiding-centre radius of a star from
Rg < R0 to Rg > R0 and thus increase the mean rotation speed at large [Fe/H], the dominant ef-
fect of churning is to move guiding centres fromRg ≪ R0 to Rg < R0 such that avery metal-rich
star is found in the solar neighbourhood at a relatively low rotation velocity. To illustrate the
impact of churning quantitatively, if angular momentum were conserved, the population born
5kpc from the Galactic centre would havevφ ∼ 150kms−1, while stars born at 10kpc would
havevφ ∼ 300kms−1. In the simulated sample, the mean speeds associated with these radii of
birth are actually 200kms−1 and 240kms−1.
Churning substantially increases the chemical heterogeneity of the stars that one finds near the
Sun with a givenV velocity: if high-α, high-[Fe/H] stars were brought to the Sun only by
blurring, then all stars with a givenV and therefor angular momentum would have identical
chemistry. By changing the angular momenta of stars, churning ensures that stars of a given
chemical composition are seen near the Sun over the whole range inV .
In Fig. 3.4 the density of stars is indicated by white contours, which are spaced by 1dex. The
very top edge of the populated region is shaded blue, indicating low rotation velocities. Thus
the highest-α stars form a structure with a large asymmetric drift. This fact reflects the large
velocity dispersion of these stars, and the increased opportunity for migration enjoyed by this
old population. Note that in this region of the diagram the colour rapidly changes to red as one
moves downwards. Hence there is also a population of high-α stars that have large rotation
velocities. These are typically slightly less old stars that formed outside the solar radius. The
thin-disc ridge line at lowα enhancement ranges from the strongly trailing at high metallicities
to high rotational velocities and slightα enhancement at low [Fe/H], as found observationally
by Haywood (2008).
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Figure 3.5: Same as Fig. 3.4 with colour coding for age and 0.5dex spacing for density contours.
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In Fig. 3.5 the contours show stellar density in increments of 0.5dex and colours encode the
mean age of stars, with blue implying youth. Naturally the oldest stars are high up, in the region
of high [α/Fe]. Right at the top, lines of constant age run almost horizontally. As one descends
the diagram, lines of constant age slope more steeply down tothe right as a result of the more
rapid decline in[α/Fe] at small radii. The youngest stars both from outer and from inner rings
have yet to reach the solar neighbourhood in significant numbers, so in Fig. 3.5 several white
contours are crossed as one moves along the thin-disc ridge from the location of the solar-radius
ISM.
In Fig. 3.6 both colours and contours (10kms−1 spacing) show the velocity dispersionσU of stars
of a given chemical composition. The structure of the figure is the product of two mechanisms:
(i) The velocity dispersion of stars born at any given radiusscales with the third power of age,
so older stars have larger velocity dispersions than younger stars born at the same locations.
Consequently, in the figure velocity dispersion tends to increase from bottom to top. (ii) Velocity
dispersion increases inwards, so stars that have reached the solar neighbourhood from small radii
of birth have larger velocity dispersions than stars that have reached us from large radii. When
this fact is combined with the fact that for any given date of birth more metal-rich stars are born
at smaller radii, a steep rise inσU from left to right arises in Fig. 3.6. This plot suggests thatwe
should include the region of high velocity dispersion alongthe upper right part of the populated
region in the thick disc.
Since the single populations have – according to their ages and places of birth – different verti-
cal dispersions, the older populations and those coming from inner radii will have higher scale
heights and so reduced weights in a local sample. However, these populations dominate the com-
position high above the Galactic plane. The upper panel of Fig. 3.7 depicts the iron abundance
distributions of the stars at different heights above the plane. Both tails of the distribution are
strengthened as one moves away from the plane. The growth in the proportion of metal-rich
stars with|z| is at first unexpected, but is a natural consequence of the higher vertical velocity
dispersion of stars in the inner disc. Notwithstanding the growth of the metal-rich wing of the
metallicity distribution, the mean metallicity falls withincreasing|z| by more than 0.2dex, while
the dispersion increases from below 0.3dex to 0.5dex. We expect the model, however, to un-
derestimate the vertical metallicity gradient on account of our assumption that a star inherits the
velocity dispersion of the galactocentric radius at which it was born. A better model would take
account of the actual migration paths of stars – how long eachstar spent with its guiding centre
at each radius. It would predict smaller scale heights for populations of stars born in the inner
disc. Thus the model might predict too high a fraction of high-metallicity stars to high altitudes.
The metallicity distribution at high altitudes depends on the weakly constrained early evolution
of the disc and on details of mixing, so comparisons with observational data would provide
valuable constraints on these less secure aspects of the model. Unfortunately, such comparisons
are not feasible at present. In particular, we cannot compare with the SDSS data of Ivezic et
al. (2008) because their metallicity determination breaksdown above [Fe/H]∼ −0.5dex. The
model however has a constant mean rotational velocity in themetallicity range probed by the
SDSS survey, in line with the data of Ivezic et al. (2008).
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Figure 3.6: Velocity dispersions (in kms−1) as functions of position in the([Fe/H], [O/Fe])
plane. The graph is derived for a solar-neighbourhood sample by measuring the velocity dis-
persions of the populations with a specific chemical fingerprint. Two effects act on the velocity
dispersion: The dependence on age mostly induces a top-downgradient following the evolution
lines of the ISM. In the perpendicular direction (left-right) velocity dispersion increases with
decreasing galactocentric radius. The low dispersion of the Galactic thin disc is visible on the
lower left side, girded by a high dispersion band running from top left to bottom right.
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Figure 3.7: The model’s stellar metallicity distributionsat different heights above the plane at
R0. Here we avoided implying a specific selection function by using the mass of a specific
population to determine its weight in the distribution. Thediagrams are unsmoothed and the
scatter comes from the radial (0.25kpc) and temporal (30Myr) resolution of the model. Upper
panel: distributions of iron abundance. Lower panel: distributions of relative oxygen abundances.



3.3. THE MODEL 75

The lower panel of Fig. 3.7 shows the[O/Fe] distributions at different heights. It reveals the
bimodal structure that motivates the division of the disc into two. The exact shape of the two
peaks as well as the number of stars in between depend on assumptions about gas enrichment
and the behaviour of SNIa, but the bimodality of the distribution is a fundamental prediction
of the model, as was shown in the appendix of SB09. The increasing bias to high ages as|z|
increases is reflected in the growing strength of the high[O/Fe] peak relative to the low[O/Fe]
peak associated with the thin disc.

3.3.3 The disc divided

There are principally two strategies by which the disc has classically been dissected: by kine-
matics and by chemistry. We caution that different selection procedures do yield intrinsically
different samples and that in general these are not equivalent. We shall see that these selection
differences, which account for the spread by almost an orderof magnitude in estimates of the
relative local densities of the thick and thin discs, are readily understood in the context of our
model. In each scheme criteria are set that define both thin and thick disc components, while
stars that meet neither criterion are here assigned to an “intermediate population”. We turn first
to chemical selection and then in the light of this assess thequality and effects of kinematical
criteria.
The dots and crosses in the upper panel of Fig. 3.8 show a realisation of a GCS-like sample of
stars in the model. The ridge of the thin disc is evident, as isa ridge of metal-poor thick-disc
stars at [Fe/H]<∼−0.65 and[O/Fe]∼ 0.6. We consider the thin disc to consist of all stars that lie
within the black lines around this ridge. Less clear is the extent of the thick disc at [Fe/H]>∼−0.6.
Guidance is provided by plotting in green the locations of those stars in the realisation that satisfy
the kinematic selection criteria of Bensby et al. (2003) to belong to the thick disc. A few of these
stars lie in the region reserved for the thin disc; this phenomenon illustrates the inability of any
kinematic selection criteria to separate cleanly the thin and thick discs – see§3.4 below. In light
of the distribution of green crosses in Fig. 3.8, we define thethick disc to consist of all stars that
lie either above the horizontal line at[O/Fe] = 0.56 or to the right of the sloping line, which has
the equation

[O/Fe] = 0.56−0.55([Fe/H]+0.8) . (3.1)

The lower panel of Fig. 3.8 shows the chemical compositions of stars in three large observational
programs. These studies used different selection criteria– Bensby et al. (2005) kinematically
selected for thick-disc stars, while Gilli et al. (2006) studied stars with planets, so their stars are
all metal-rich.
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Figure 3.8: Upper panel: a scatter plot for a GCS-like measurement of solar-neighbourhood stars
in the ([Fe/H], [O/Fe]) plane. Red dots mark positions of stars, while green crosses mark stars
that are selected to the thick disc via the kinematic selection scheme. Lines mark possible criteria
to dissect the data with a chemical classification scheme in the ([Fe/H], [O/Fe]) plane. Lower
panel: the locations in the([Fe/H], [α/Fe]) plane of stars with spectroscopically determined
chemical compositions from Bensby (2005), Gilli (2006) and Reddy (2006).



3.3. THE MODEL 77

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-150 -100 -50 0 50

de
ns

ity

VLSR/(kms-1)

thin disc
thick disc
intermediate pop

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12

nu
m

be
r

age/Gyrs

thin disc
thick disc
intermediate pop

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60 70 80 90 100

de
ns

ity

intrinsic velocity dispersion/(kms-1)

thin disc
thick disc

intermediate pop

Figure 3.9: The top two panels show the dis-
tribution of stars from the three chemically se-
lected populations inV velocity and age. The
bottom diagram shows the distribution of stars
by the velocity-dispersion parameter of the co-
hort to which they belong – see the descrip-
tion in text. The populations are the thin disc
(green), the intermediate population (blue) and
the thick disc (red). The curve showing the
age distribution of the thin disc has been scaled
down by a factor of 10 relative to the curves
for the other two components. In the other
panels each curve is separately normalised to
unity. The steps in the age distribution are arti-
facts arising from the model’s radial resolution
(0.25kpc); a step is produced as an individual
ring passes over the selection criterion.
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Figure 3.10: As Fig. 3.9 but with the thick
disc split into its metal-weak (purple) and -rich
(red) parts, the latter being defined to comprise
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The top and centre panels of Fig. 3.9 show the distributions of rotation velocity (top) and age
(centre) within the thin disc (green), the thick disc (red) and the intermediate population (blue)
when the local stellar population is divided in this way. In the top panel the thick disc stands
out for the extent to which itsV -distribution extends to lowV . However, its peak lags circular
rotation by only∼ 10kms−1 because it has a significant extension toV > 0. On account of its
long tail, the average asymmetric drift of the thick disc is∼ 22.5kms−1, which is slower than
that of the thin disc by∼ 18kms−1. The intermediate population is much more symmetrically
distributed inV and, like theV -distribution of the thin disc, peaks nearV = 0 with an average
drift of ∼ 10kms−1. Note that these velocities are relative to the local standard of rest (LSR),
rather than the Sun, which is rotating faster than the LSR by∼ 5kms−1 (cf. Dehnen & Binney,
1998b). Hence relative to the Sun, the asymmetric drift of the thin disc is∼ 10kms−1.
Haywood (2008) showed that the population with moderateα enhancement is a superposition of
stars that either combine lower metallicity (at fixed[α/Fe]) with fast rotation, or higher metallic-
ity with lower rotation. The former sub-group bear a clear outer-disc signature, while the latter
sub-group one associates with the thick disc by virtue of their slow rotation. Higher metallicities
at given[α/Fe] point to a flatter trajectory in the([α/Fe], [Fe/H]) plane of the relevant ISM,
i.e. to faster metal-enrichment before SNIa started to explode. Such fast enrichment is to be
expected in the dense inner disc. Thus the structure found byHaywood (2008) is an inevitable
consequence of chemical evolution in the presence of radialmixing.
The middle panel of Fig. 3.9 shows that essentially all thick-disc stars are older than 6Gyr. Most
stars of the intermediate population are also this old, but whereas the modal age of the thick disc
exceeds 10Gyr, no stars in the intermediate population are older than 10Gyr. The sharp rise in
the number of thick-disc stars at∼ 10Gyr, just where the number of stars in the intermediate
population plummets, is very striking. The purple curve in the central panel of Fig. 3.10 clarifies
the cause of this feature by showing the age distribution of stars that have[O/Fe] > 0.56 (the
horizontal boundary in Fig. 3.8) and [Fe/H]<−0.8. We see that all these metal-poor, highlyα-
enhanced stars are older than 10Gyr, so the significance of a 10Gyr age is that older stars formed
before SNIa started to enrich the ISM with iron. The purple curve in the top panel of Fig. 3.10
shows that the modal rotation velocity of these high-α stars is not far from circular. That is, the
metal-poor thick disc has a smaller asymmetric drift than the portion of the thick disc that lies to
the right of the division line in Fig. 3.8 (red curves in Fig. 3.10), which we henceforth refer to as
the metal-rich thick disc because all its stars have [Fe/H]>−0.8. This metal rich portion has an
average asymmetric drift of∼ 35kms−1, which is 30kms−1 below the mean rotation velocity of
the thin disc.
The green curve in the central panel of Fig. 3.9 shows that allthin-disc stars are younger than
7Gyr and the rate of their formation appears to rise rapidly towards a peak at∼ 1.5Gyr. In
reality the SFR in the disc was monotonically declining throughout this period, so this apparent
rise is entirely a selection effect. Several factors contribute to the detailed shape of the thin-disc
age distribution in Fig. 3.9, including the restriction of the sample to a volume near the Galactic
plane (which disfavours old stars) and the brightening of stars as they begin to turn off the main
sequence (which accounts for the peak at∼ 1.5Gyr).
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The bottom panels of Figs. 3.9 and 3.10 show decompositions of each population into isothermal
cohorts. A decomposition is possible because in the model each cohort of stars (stars formed at
a given time and place) has a steadily increasing velocity dispersion. The plotted decomposi-
tions show the distribution of the current velocity dispersions for the cohorts that make up each
population, weighted by the fractional contribution of thecohort to the population.
In Fig. 3.9 the isothermal decompositions of the thin disc (green) and intermediate population
(blue) are similar except that the distribution for the intermediate population is shifted to the right
by ∼ 20kms−1. The isothermal decomposition of the thick disc is bimodal.The purple curve
in the bottom panel of Fig. 3.10 shows that the peak of this curve around 40kms−1 is associated
with the metal-poor thick disc. So within our model the bulk of the metal-poor thick disc has
smaller velocity dispersions than are found in the metal-rich thick disc. This chimes with the
higher characteristic V velocities of the metal-poor thickdisc in indicating that it is cooler and
faster rotating than the metal-rich thick disc. The tail to high dispersions in the decomposition of
the thick disc is contributed by a small number of very old stars that were formed at small radii,
where the velocity dispersion is currently large.
By fitting the model’s vertical density profile with the sum of two exponentials in|z|, SB09
concluded that in the model a fractionfthick ∼ 0.13 of solar-neighbourhood stars belong to the
thick disc; it followed that of order one third of the entire disc mass is contributed by the thick
disc. These numbers were in good agreement with the conclusions that Juric et al. (2008) and
Ivezic et al. (2008) drew from SDSS counts of stars>∼1kpc from the plane. Using the present
chemical decomposition into thin and thick discs, we findfthick ∼ 0.14. In principle this number
does not have to agree with the value obtained from the density profile. It does agree well because
at |z|>∼1kpc the disc is dominated by stars that have thick-disc chemistry (Fig. 3.7).
Fig. 3.11 shows the vertical density profiles of the thin disc(green), thick disc (red) and the entire
disc (blue). Fits of exponentials to the density profiles yield scale heights of 268pc for the thin
disc and and 822pc for the thick disc. The two components of the latter have scale heights 690pc
for the metal-poor thick disc and 890pc for the metal-rich component. All components show
more or less exponential profiles. The metal-poor thick dischas the strongest deviations from an
exponential due to its being a mix of very old stars from all over the disc with radically different
intrinsic velocity dispersions. When a sum of exponentials is fitted to the measured vertical
profile of the Galactic disc, good fits can be obtained with quite a wide range of scale heights on
account of a correlation between the scale heights of the twodiscs and their normalisations. The
fits above to our individual discs are within the range of observationally acceptable scale heights
(e.g., Juric et al., 2008), consistent with the thick disc identified by Juric et al. being close to what
we have identified in the model using totally different criteria.

3.3.4 Inside-out formation?

For simplicity the SB09 model does not accelerate the formation of the disc at small radii relative
to large radii, as is required by the popular “inside-out” model of disc formation. If the model
were adjusted to include inside-out formation, the main change would be to the metal-poor thin
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Figure 3.11: The vertical density profiles of the total disc (blue), thin disc (green), thick disc
(red), the metal poor thick disc component (purple) and the metal rich thick disc (orange). The
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z = 400pc andz = 3000pc):hthin = 270pc,hthick = 820pc,hpoorthick = 690pc andhrichthick =
890pc.

disc, which would lose parts of its high-V wing. Hence the inside-out scenario could be put in
doubt by demonstrating that theV distribution of the high-α stars extends significantly toV > 0,
and that many high-V stars have ages in excess of 10Gyr. Further inside-out formation could
give rise to some alpha enhanced, relatively metal-poor stars younger than∼ 10Gyr by the later
onset of star formation in outer rings. Neither the thin discnor the metal-rich thick disc would
be strongly affected by the introduction of inside-out formation.

3.4 Kinematic division of the disc

Because it is much easier to measure the velocity of a star thanto determine its chemical compo-
sition (particularly itsα-enhancement), nearly all analyses select stars kinematically. Our model



3.4. KINEMATIC DIVISION OF THE DISC 81

provides an arena in which we can examine the extent to which kinematically selected samples
of each component will be contaminated with stars from othercomponents.
Samples of local stars such as those of Venn et al. (2004) and Bensby et al. (2005) are kinemat-
ically divided into thin and thick-disc stars with the aid ofmodel distribution functions for each
component: as described in Bensby et al. (2003), each star is assigned to the component whose
DF is largest at the star’s velocity. Both DFs are of the type introduced by Schwarzschild (1907),
namely

f (U,V,W ) = k fi exp

(

− U2

2σ2
U

− (V −Vasym)
2

2σ2
V

− W 2

2σ2
W

)

(3.2)

where all components are with respect to the Local Standard of Rest,k = (2π)−3/2(σU σV σW )−1

is the standard normalisation constant,fi is the relative weight of the population. The dispersions
σi assumed for the thick disc are larger than those assumed for the thin disc, so high-velocity stars
tend to be assigned to the thick disc. BecauseVasymm is assumed to be∼ 30kms−1 larger for
the thick disc than the thin, stars with lagging rotation velocities and therefore guiding centres
at R < R0 also tend to be assigned to the thick disc. This effect is reinforced by the fact that the
dispersions must increase inwards, so stars with guiding centers well insideR0 are also likely to
be high-velocity stars. Consequently the “thick disc” starsin Venn et al. (2004) and Bensby et al.
(2005) tend to belong to the inner disc. In the context of our model this fact explains why Bensby
et al. (2003) found a long tail of “thick disc” stars that havehigher [Fe/H] at a given[α/Fe] than
the “thin-disc” stars.
We examine the effectiveness of kinematic selection in two ways. First, in each panel of Fig. 3.12,
we plot the distribution in a Toomre diagram of each of the components that we have identified
chemically. Subsequently, in Figs 3.14–3.16 we examine thedistributions in the([α/Fe], [Fe/H])
plane of model stars that have been kinematically identifiedas belonging to the thin or thick disc.
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Fig. 3.12 shows the Toomre diagrams for the thin, thick and intermediate components, respec-
tively. In Fig. 3.12 all densities are separately normalised to unity, while Fig. 3.13 shows the
density ratios of components in the Toomre diagram. The extensive overlap of the chemically-
selected populations in the Toomre diagram is striking, buta natural consequence of the approx-
imately Gaussian nature of the distribution functions of each component, which implies that the
density of thick-disc stars peaks at velocities close to theLSR, which is where the thin disc is
dominant. Consequently, no kinematic selection of stars from a particular chemical component
can be very clean. This point is underlined by the white curves in Figs. 3.12 and 3.13, which are
such that Bensby et al. (2003) classified stars with2 W = 0.55U as thick-disc if they lay outside
the outermost white curve and thin-disc if they lay inside the innermost curve. The top panel in
Fig. 3.12 shows that this criterion does exclude most thin-disc stars from a thick-disc sample.
However, the upper two panels of Fig. 3.13 imply substantialcontamination of the thick disc: in
these panels red indicates a region where most stars are not thick disc stars, yet at lower right
red extends significantly beyond the outermost white curve in both panels. From Fig. 3.12 it is
evident that a slightly cleaner kinematic separation couldbe obtained if a non-Gaussian distribu-
tion function were used in place of (3.2), but the main problem with kinematic selection is the
extensive overlap of the components in velocity space.
From the centre panel of Fig. 3.12 we see that a large fractionof the thick disc is also excluded
from a kinematically selected sample of thick-disc stars, and many of the excluded stars will be
assigned to the thin disc because they lie within the region reserved for the thin disc.
Fig. 3.14 shows the probabilities used by Bensby et al. (2003)for a star to be assigned to the
thin (upper panel) and thick (lower panel) discs. The probability of being assigned to the thin
disc is large in a broad swath that runs from[O/Fe] = 0.6 and [Fe/H]=−1.2 down to the lower
edge of the populated region of the diagram, and then on to solar [Fe/H] and above. Thus the
kinematically selected thin disc includes high-α stars in contrast to our chemically selected thin
disc. Kinematic selection does not confine the thin disc to stars near the ridge-line of the chemical
thin disc because the low velocity dispersions and high rotation velocities characteristic of large
radii cause most stars formed at large radii to be kinematically assigned to the thin disc. Stars
in the more metal-rich flank of the chemical thin-disc ridge tend to be assigned partly to the
intermediate population, or even (for the highest metallicities/innermost rings of origin) to the
thick disc.
In Fig. 3.14 the probability of a star being assigned to the thick disc is high along the sloping
upper edge of the populated region of the([Fe/H], [α/Fe]) plane. Consequently, the Bensby et
al. (2003) kinematic criterion for being a member of the thick disc does pick stars that belong
to the thick disc by our chemical definition. However, the density of stars actually assigned to
the thick disc by the kinematic criterion, which is shown in Fig. 3.15, extends below the sloping
dashed line in Fig. 3.8 because the density of stars assignedto the thick-disc is the product of
the assignment probability plotted in Fig. 3.14 and the density of stars in the([Fe/H], [α/Fe])

2 For general values ofW/U the Bensby et al. (2003) kinematic selection criterion, which is three-dimensional,
cannot be plotted in a Toomre diagram because the latter is two-dimensional. Hence we choose the approximate
ratio of the dispersion components for our graphs.
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Figure 3.14: Selection probabilities using the kinematic selection function of equation (3.2) for
the thin (upper panel) and thick disc (lower panel). Blue contours give lines of same selection
probability for a star at a certain chemical composition with levels running from 0.01 to 0.91
with a 0.1 spacing for the thin disc and from 0.01 to 0.61 with a0.05 spacing for the thick disc.
Colours encode the selection probability and the green contours show lines of the model’s entire
disc population density at a 0.5 dex spacing.
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Figure 3.15: Green lines show the density contours in the ([Fe/H], [O/Fe]) plane of the entire
disc population with a 0.3dex spacing. Colours and blue contours show the absolute density of
stars selected kinematically according to equation (3.2) to the thick disc with 0.3dex contour
spacing.

plane, which declines steeply as the edge of the populated region is approached. In fact the ridge
of kinematically-selected thick-disc stars leaves the upper edge of the populated region at the
α-enhancement turnoff and then runs downwards parallel to the thin-disc ridge at an offset of
≃ 0.3dex in [Fe/H], just as reported by Bensby et al. (2003) and Venn et al. (2004). Moreover,
the zone of thick-disc stars merges with the thin-disc population at [Fe/H]≃ 0, which was one
of the main findings of Bensby et al. (2003).
The upper panel of Fig. 3.16 shows the age distributions of the kinematically-selected compo-
nents, and should be compared with the middle panel of Fig. 3.9. When kinematically selected,
the thin disc has a long tail of very old stars. Conversely, theage distributions of the thick disc
and especially the intermediate population extend to much younger ages when these components
are kinematically selected. It is inevitable that a kinematically selected thin disc will contain old
stars that properly belong to either the thick disc or the intermediate population because stars
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Figure 3.16: Upper panel: model age distributions for the three kinematically selected compo-
nents in the model. As in Figures 3.9 and 3.10 the curve for thin disc has been lowered by a
factor of 50 and that for the intermediate population by a factor 5 relative to the curve for the
thick disc. Lower panel: the distribution of measured ages of GCS stars given by Haywood
(2008) with stars kinematically assigned to components using the Bensby (2003) criteria. Stars
with age younger than 0.5Gyr are not taken into consideration due to high errors. Whenthe ages
published by Holmberg et al. (2007) are used, the lower paneldoes not change significantly.
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with small velocities relative to the LSR must be assigned tothe thin disc, yet any plausible
distribution function for the thick disc will be significantly non-zero at such velocities. The as-
signment of young stars to the intermediate population reflects the red colour in the lower right
corner of the centre panel of Fig. 3.13 that was discussed above.
The lower panel of Fig. 3.16 shows histograms of the ages of GCSstars in Haywood (2008)
when stars are assigned to components using the kinematic criteria of Bensby et al. (2003) – the
corresponding histograms of the ages given by Holmberg et al. (2007) is very similar. Clearly the
histograms are badly distorted by errors in the ages, which scatter stars to unrealistically large
ages, so the horizontal scale of the lower panel is nearly twice that of the upper panel. None the
less, the lower panel seems to be as consistent with the upperpanel as the large errors permit.
The numbers of model stars in the solar neighbourhood that are kinematically assigned to the
three components analysed in the upper panel of Fig. 3.16 is thin : intermediate : thick= 1 :
0.099 : 0.0239. The same ratios for the observational sample analysedin the lower panel of
Fig. 3.16 are 1 : 0.085 : 0.029 in satisfactory agreement with the model’s prediction,but the
agreement is actually better than this comparison suggests, when one accounts for the difference
between the selection functions used to select the observedstars in the lower panel of Fig. 3.16.
If we use the GCS sample without binaries, which our selectionfunction was designed for, the ra-
tios are changed to 1 : 0.095 : 0.029. When we further remove likely halo stars, the observational
thick disc fraction shrinks to∼ 0.025. Indeed, the fraction of the local column of thick-disc stars
that resides near the Sun is sensitive to the distribution ofW velocities. The latter is not tightly
constrained because one of the least satisfactory aspects of the model is the absence of dynam-
ical coupling between horizontal and vertical motions, which obliges one to make an arbitrary
assumption about the variation with random velocity in the shape of the velocity ellipsoid. It is
worth noting that the model probably has more metal-rich stars high above the Sun than it should
have as a consequence of our assumption that high-velocity stars are as susceptible to churning
as low-velocity stars.

3.5 Conclusions

The thick disc is the Proteus of Galactic physics: dependingon which questions you ask it
changes its shape. Although it has been identified both by itsextended vertical density profile
and its distinct kinematics, it is most usefully characterised chemically, not least because chem-
ical composition is a permanent feature of a star, whereas distance from the plane and peculiar
velocity are ever-changing properties. Moreover, chemical composition is intimately connected
to the time and place of the star’s birth.
The determination of the chemical composition of large numbers of old main-sequence stars is
feasible only for samples of nearby stars. Unfortunately, the nearby stars constitute a strongly
biased sample of the whole Galactic disc. It is absolutely essential to interpret the statistics
of the solar neighbourhood in the context of these biases. Wehave used our model Galaxy to
explore these biases, and in particular the relationship between the components one obtains by
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assigning stars to them on the basis of their kinematics or their chemistry. A very straightforward
conclusion is that kinematic selection inevitably mis-allocates many stars, both adding old stars
to the thin disc and young stars to the thick disc.
We have shown that our model provides a consistent interpretation of observations of the so-
lar neighbourhood in which components are identified as regions of the([Fe/H], [α/Fe]) plane.
Thin-disc stars lie in a narrow ridge of high density between[Fe/H]∼−0.65 and [Fe/H]∼ 0.15
that forms part of the lower edge of the populated part of the([Fe/H], [α/Fe]) plane. The metal-
rich thick disc occupies a broader swath of the([Fe/H], [α/Fe]) plane that runs parallel to the
downward-sloping ridge of the thin disc and∼ 0.3 in [O/Fe] higher. The metal-rich thick disc
extends in [Fe/H] from∼ −0.9 to well above 0, where it merges with the thin disc. At its low-
metallicity high-α end, the metal-rich thick disc touches the metal-poor thickdisc, in which
[O/Fe] ≃ 0.63±0.5 and [Fe/H] goes at least down to∼ −1.4. There is an “intermediate pop-
ulation” of stars that in the([Fe/H], [α/Fe]) plane lie between the thin and thick discs, but the
density of such stars in the([Fe/H], [α/Fe]) plane is relatively low. Thus the two discs are well
defined structures.
Thin-disc stars are all younger than 7Gyr and are on fairly circular orbits. Their values of [Fe/H]
and rotation velocityV are correlated in the sense that higherV implies lower [Fe/H]. The stars of
the metal-rich thick disc are nearly all older than 8Gyr. Most are on significantly non-circular or-
bits with guiding centres insideR0 and a significant number haveV <−100kms−1. Specifically,
the metal-rich thick disc can be considered to be a superposition of isothermal components with
radial velocity dispersions between 50 and 80kms−1, strongly peaked around 60kms−1. The
metal-poor thick disc consists exclusively of stars older than 10Gyr. Its stars have on average
more angular momentum and smaller velocity dispersions than the stars of the metal-rich thick
disc. Among the population of stronglyα-enhanced stars there is (cf. Fig. 3.4) an extremely
strong negative correlation betweenα andV .
Meléndez et al. (2008) remarked that the thick disc has similar properties to the Galactic bulge.
This conclusion is natural in the context of our model, in which the metal-rich thick disc is made
up of stars that have migrated to the Sun from the inner disc, where rapid early star formation en-
riched the ISM to significant metallicities before SNIa began to lower[α/Fe]. It is to be expected
that many of the stars that formed alongside the thick-disc stars of the solar neighbourhood are
now bulge stars.
Perhaps the most uncertain aspect of the modelling is our assumption that a star’s probability of
being “churned” to a different angular momentum is independent of the star’s random velocity.
Since Sellwood & Binney (2002) did not investigate the dependence of churning probability on
random velocity, our assumption could be significantly in error, and it is not implausible that stars
with large random velocities have low churning probabilities. In this case the thick disc would
be less radially mixed than our model predicts. We will shortly investigate the dependence of
churning probability on random velocity.
Given our model’s success in synthesising studies of the Galactic disc into a coherent picture, it
is useful as it stands regardless of the theoretical considerations that motivated its construction.
However, it was not made by searching an extensive parameterspace for a model that would fit
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the studies described here. Rather it was made by building a code that combined standard chem-
ical evolution modelling with a model of dynamical evolution that reflects the understanding of
how spiral structure works that Sellwood & Binney (2002) gained from N-body models and ana-
lytical dynamics. Its two free parameters were determined from the model’s fit to the metallicity
gradient in the ISM and to the metallicity distribution of the GCS stars given in Nordström et
al. (2004) and Holmberg et al. (2007). Hence we consider the model’s ability to reproduce the
data sets of Fuhrmann (1998), Bensby et al. (2003, 2005), Vennet al. (2004) Reddy et al. (2006),
Haywood (2008), Juric et al. (2008) and Ivezic et al. (2008) is remarkable and suggests that it
has a sound physical basis.
The key respect in which the model goes beyond traditional models of chemical evolution is its
inclusion of radial migration by stars and inward flow by gas.Inward flow of gas is important
for the model’s success because it establishes a much steeper metallicity gradient than traditional
models produce. The radial migration of stars is absolutelykey, because it structures the thick
disc. Moreover it explains the significant spread in [Fe/H] within the local thin disc, and the
correlation that Haywood (2008) identified between [Fe/H] andV .
The discovery that the thick disc overlaps the thin disc in [Fe/H] presented a challenge to con-
ventional models of chemical evolution because it implies that there are thick disc stars that have
both [α/Fe] and [Fe/H] higher than in some thin-disc stars. The lower values of[α/Fe] in the
thin-disc stars imply earlier times of birth, so how come [Fe/H] is lower? The conventional re-
sponse to this challenge it to suppose that some violent event led to a suspension of star formation
in the disc, and that during this hiatus a massive injection of metal-poor gas lowered [Fe/H] in the
ISM (Chiappini et al., 1997, 2001). An objection to this scenario is that many other galaxies have
thick discs with similar properties to ours (Yoachim & Dalcanton, 2006), so thick-disc forma-
tion should not require special circumstances. We do not press this argument but would strongly
make the point that a model of chemical evolution that includes onlyessential physics and has a
single, early, maximum in the star-formation rate and a monotonically rising value of [Fe/H] at
each radius automatically produces a thick disc with just the properties observed locally. In fact
anα-enhanced thick disc forms because the speed at which [Fe/H]rises declines as one moves
outwards, so the value attained by [Fe/H] when SNIa start to lower [α/Fe] increases inwards.
Spiral structure and the Galactic bar scatterα-enhanced stars formed at small radii onto more
eccentric and more inclined orbits and even scatters some ofthem onto orbits of sufficiently high
angular momentum that they are found in the solar neighbourhood. Readers who want to believe
in a violent origin of the thick disc may continue to do so. But they should be aware that the
simplest model of the chemo-dynamical evolution of the discthat includes all relevant physics
reproduces the data. Hence there is absolutely noevidence that the thick disc has a violent origin.
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Chapter 4

Local Kinematics and the Local Standard
of Rest1

4.1 Abstract

We re-examine the stellar kinematics of the Solar neighbourhood in terms of the velocityv⊙
of the Sun with respect to the local standard of rest. We show that the classical determi-
nation of its componentV⊙ in the direction of Galactic rotation via Strömberg’s relation is
undermined by the metallicity gradient in the disc, which introduces a correlation between
the colour of a group of stars and the radial gradients of its properties. Comparing the lo-
cal stellar kinematics to a chemodynamical model which accounts for these effects, we obtain
(U,V,W )⊙ = (11.1+0.69

−0.75,12.24+0.47
−0.47,7.25+0.37

−0.36)kms−1, with additional systematic uncertainties
∼ (1,2,0.5)kms−1. In particular,V⊙ is 7kms−1 larger than previously estimated. The new
values of(U,V,W )⊙ are extremely insensitive to the metallicity gradient within the disc.

4.2 Introduction

The Sun’s velocityv⊙ with respect to the Local Standard of Rest (LSR)2 is required to transform
any observed heliocentric velocity to a local galactic frame. Since this transformation is often
necessary for scientific interpretation of observed velocities in terms of Galactic structure, the
determination ofv⊙ is a fundamental task of Galactic astronomy. The radial and vertical compo-
nentsU⊙ andW⊙ of v⊙ are straightforwardly obtained from the mean heliocentricvelocities of
several different groups of Solar-neighbourhood stars:U⊙ andW⊙ are simply the negative radial

1 Content and text of this chapter have been published almost identically in Scḧonrich, Binney & Dehnen (2010).
A more popular description and explanation can be found in Schönrich (2010).

2 The LSR is the rest frame at the location of the Sun of a star that would be on a circular orbit in the gravita-
tional potential one would obtain by azimuthally averagingaway non-axisymmetric features in the actual Galactic
potential.



4.2. INTRODUCTION 91

and vertical components of these means3.
The componentV⊙ of v⊙ in the direction of Galactic rotation is much harder to determine, be-
cause the mean lag with respect to the LSR, the asymmetric drift υa, depends on the velocity
dispersionσ of the respective stellar population. The classical solution to this problem exploits
the empirical linear relation between the negative mean heliocentric azimuthal velocity of any
stellar sampleυs = υa+V⊙ and itsσ2 (Strömberg, 1946). Hence, a straight-line fit yieldsV⊙ as
the value ofυs for a hypothetical population of stars on circular orbits, for whichσ = 0.
The theoretical underpinning of this method is the asymmetric drift relation (see Binney &
Tremaine, 2008, eq. 4.228)

υs −V⊙ = υa ≃
υ2

R

2υc

[

σ2
φ

υ2
R

−1− ∂ ln(νυ2
R )

∂ lnR
− R

υ2
R

∂ (υRυz)

∂ z

]

, (4.1)

whereR is Galactocentric cylindrical radius,z the height above the plane,υc the circular speed,
andν the number density of stars, while a bar indicates aν-weighted local mean. The equation
applies separately to each relaxed stellar population, forexample to M stars or G stars. The
idea behind the classical determination ofV⊙ is that the square bracket in equation (4.1) takes
essentially identical values for each stellar population,with the consequence that a plot ofυs

againstυ2
R should be linear.

Dehnen & Binney (1998, hereafter DB98) applied this method to asample of∼15000 main-
sequence stars from the Hipparcos catalogue and their valueof V⊙ = (5.25±0.62)kms−1 has
been widely used. Recent re-determinations using an improved reduction of the Hipparcos data
(van Leeuwen, 2007) confirm the DB98 value though with reducederror bars (van Leeuwen,
2007; Aumer & Binney, 2009).
However, two recent studies call the DB98 value forV⊙ into question. Binney (2010, here-
after B10) fitted distribution-function models (a) to velocity distributions inferred by Ivezic et al.
(2008) from proper motions and photometric distances of stars in the Sloan Digital Sky Survey,
and (b) to the space velocities of F and G in the Geneva-Copenhagen Survey (GCS, Nordström et
al., 2004). The GCS stars are a subset of the Hipparcos stars (analysed by DB98) for which radial
velocities have been obtained. B10 was able to obtain satisfactory fits to these data only ifV⊙
was larger than the DB98 value by∼ 6kms−1, about ten times the formal error onV⊙. Another
body of evidence against the DB98 value forV⊙ originates from radio-frequency astrometry of
masers in regions of massive-star formation (Rygl et al., 2010; Reid et al., 2009a). If the DB98
value forV⊙ is correct, these sources systematically lag circular rotation by∼ 17kms−1 (Reid et
al., 2009a). Such a high systematic lag is unexpected for young stars and McMillan & Binney

3 According to the above definition, the LSR’s radial and vertical motion w.r.t. the Galactic centre vanish. Therefore,
the determination ofU⊙ andW⊙ from such means implicitly assumes that the Solar neighbourhood as a whole does
not move radially or vertically w.r.t. the Galaxy. That suchmotions are at most small is suggested by the proper
motion of Sgr A⋆ (Reid & Brunthaler, 2004) and the mean radial velocity of thestars orbiting it (e.g. Reid et
al., 2007). Moreover, such motions should also obey an asymmetric-drift like relation (see below), i.e. the mean
velocities depend systematically on velocity dispersion,which is not observed.
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(2010) argued that a more plausible interpretation of the data is obtained ifV⊙ exceeds the DB98
value by∼ 6kms−1.
This paper does two things: (i) it explains why the approach to the determination ofV⊙ by DB98
and subsequent studies is misleading, and (ii) it determinesV⊙ from similar data but a different
methodology. Both these tasks are accomplished with the helpof a particular chemo-dynamical
model of the Galaxy, that of Schönrich & Binney (2009a, hereafter SB09a), but the points that
we make are general ones and the role played by the SB09 model isessentially illustrative. In
Section 4.3 we show that a metallicity gradient in the disc gives rise to distributions of mean az-
imuthal velocity and velocity dispersion within the colour-magnitude plane that are much more
complex than one naively expects, and we show that these distributions invalidate the methodol-
ogy of DB98. In Section 4.4 we re-estimateV⊙ by fitting the entire velocity distribution of the
GCS stars to the distribution predicted by the SB09 model without reference to the Strömberg
relation.

4.3 Kinematics in colour and magnitude

DB98 divided their sample of Hipparcos main-sequence stars into populations with different
velocity dispersions by binning inB−V colour because colour is correlated with age and therefore
with velocity dispersion. To examine the relation between colour, mean rotation velocity and
velocity dispersion for stars near the Sun, we employ the SB09a model of the Galactic Disc.
This model describes the chemodynamical evolution of the thin and thick Galactic discs and
is a refinement of models pioneered by van den Bergh (1962) and Schmidt (1963). The disc
is divided into 80 annuli, within each of which the chemical composition of the ISM evolves in
response to the ejection of material by dying stars, while stars form continuously with the current
composition of the ISM. The new features of the model are (a) stochastic stellar accelerations
accounting for heating processes; (b) radial stellar migration accounting for both non-circular
orbits and guiding-centre shifts caused by stochastic resonant scattering off spiral arms (Sellwood
& Binney, 2002); and (c) transfer of gas between annuli, both as result of resonant scattering
by spiral arms and as a result of a secular tendency of gas to spiral inwards through the disc.
Surprisingly, the model contains both thin and thick discs that are consistent with the available
observational constraints (Schönrich & Binney, 2009b).
Fig. 4.1 shows the model kinematics in the colour-magnitudediagram. Each point in colour-
magnitude space defines a separate sub-population whose asymmetric drift υa ≡ υc− υϕ and
radial velocity dispersion are plotted via colour coding, such that dynamically cold and warm
populations are shown with blue and red shades, respectively. The region in the colour-magnitude
diagram shown in this figure corresponds to the cuts used by DB98 to define their sample.
Our naive expectation is that as we proceed down the main sequence from its blue end towards
the main-sequence turnoff atB−V ∼ 0.6, we encounter successively older stars with lower mean
rotation velocities and higher velocity dispersions, so inboth panels of Fig. 4.1 the shading
should become redder as we move from left to right along the main sequence. The pattern
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Figure 4.1: The variation with colour and magnitude of the asymmetric driftυa (top) and radial
velocity dispersion (bottom) in the SB09a model of the Solar neighbourhood. Shown is the range
of colours and magnitudes used by DB98 to generate their main-sequence sample. Note that the
number density of stars is highly non-uniform across the region shown.
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Figure 4.2: The asymmetric drift (top) and radial velocity dispersion (bottom) for stellar samples
of given B−V colour drawn from the model thus simulating the effects of the Hipparcos and
DB98 selection criteria.

actually found in Fig. 4.1 is more complex. Most notably, there is a pronounced velocity gradient
across the lower main sequence. In the range 0.6 < B−V < 1 the lower edge of the main
sequence is dynamically warm (orange in Fig. 4.1) on accountof subdwarfs, which are metal-
poor and therefore old with large velocity dispersions and low mean rotation rates. The number
of these subdwarfs is small, however, so they will not have a significant impact on a sample
binned by colour alone. More significant is the orange shading on the upper edge of the lower
main sequence, which reflects the metallicity gradient within the disc: as metallicity increases,
the main sequence shifts to the right, so in the upper panel the orange upper edge of the main
sequence implies that the more metal-rich stars of the Solarneighbourhood are rotating more
slowly because they formed atR < R0. To the left ofB−V ≃ 0.5 this trend is weakened by
contributions from old, sometimes metal-poor populationswhose isochrones move up through
this region. Still the more metal-rich main-sequence starswith smaller guiding centre radii give
rise to slightly higher dispersions and asymmetric drifts to the red side of the main sequence.
The upper panel of Fig. 4.1 shows that in the crucial colour range 0.4< B−V < 0.6, the asym-
metric drift is a complex function of colour and absolute magnitude because in this region stars
of widely differing ages and metallicities are found as a result of old, metal-poor isochrones
intersecting younger, metal-rich isochrones.
The horizontal branch is clearly visible on both panels of Fig. 4.1 as an almost horizontal feature
just belowMV = 0. It is less pronounced in the upper panel because the blue end of the horizontal
branch contains metal-poor stars, which tend to have large guiding-centre radii and therefore low
υa even at largeυ2

R .

Fig. 4.2 shows the asymmetric driftυa and velocity dispersionυ2
R obtained when stars are binned

by colour alone. The lower panel can be compared with corresponding observational plots in
DB98 and Aumer & Binney (2009). The model reproduces the structure of the data very well
– in particular, the steepening in the slope aroundB−V = 0.4 and the flatness redwards of
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Figure 4.3: Green squares: the asymmetric drift for synthetic stellar sub-samples defined by
B−V colour plotted against their radial velocity dispersion squared for the SB09a model. The
red dots: the same relation obtained from a model with only one chemical composition (solar).
Blue data points: the values of Aumer & Binney (2009) shifted by11kms−1 and with the radial
velocity dispersion increased by 7%. Purple line: a linear fit to the Hipparcos points in the range
of υ2

R used by DB98.

B−V = 0.6. The peak in velocity dispersion seen in the lower panel of Fig. 4.2 is much less
evident in Fig. 2 of Aumer & Binney (2009) but can be traced in their σR andσz data. Note that
the rise withB−V in υ2

R for B−V < 0.4 is not accompanied by any change inυa. This unexpected
phenomenon arises because at these colours the contribution of old metal-poor stars is increasing
with B−V , and because we see many of these stars near pericentre, theyhave small asymmetric
drifts despite their large random velocities.
Since at its bright end the Hipparcos sample is close to beingvolume limited, the relative number
of horizontal-branch stars is small and the complex structure above the main sequence in Fig. 4.1
has no significant effect in Fig. 4.2.
In Fig. 4.3, the squares show the resulting plot of the asymmetric drift υa against velocity disper-
sion squared for the synthetic samples of Fig. 4.2; they do not lie on a straight line. The red dots
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show the plot one obtains if all stars are assigned solar metallicity. These dotsdo lie on a good
approximation to a straight line.4 The effect of re-assigning stars with large guiding-centreradii
from solar metallicity to their true, low metallicities is to move them from redder to bluer bins.
Since these stars have small or even negative values ofυa on account of the metallicity gradient
in the disc, the transfer reducesυa for the young, bluer bins and increases it in the old, redder
bins. Consequently, the transfer morphs the near-straight line of the red points into the curve
defined by the green squares.
DB98 estimatedV⊙ by fitting a straight line to the observational analogue of Fig. 4.3, which is
a plot of the solar velocity relative to a colour-selected group of stars versus the squared veloc-
ity dispersion of that group. The blue data points in Fig. 4.3show such data for the Hipparcos
sample in the re-analysis of Aumer & Binney (2009) after subtracting 11kms−1 from each value
of solar velocity. We see that forυ2

R
>∼ 600[kms−1]2 the Hipparcos data define the same straight

line as the green crosses from the model. This straight line intercepts theυa axis at∼−7kms−1

rather than 0, causingV⊙ to be underestimated by this amount. Forυ2
R
<∼ 400[kms−1]2 the Hip-

parcos data points in Fig. 4.3 deviate from this straight line, but DB98 ignored samples with very
low velocity dispersion on the grounds that such samples maynot be in dynamical equilibrium.
Indeed, both dissolving star clusters and the non-axisymmetric gravitational potentials of spiral
arms are liable to distort the kinematics of stellar sampleswith low random velocities such that
equation (4.1) does not hold.
The failure of the synthetic samples to follow a straight line in Fig. 4.3 implies that the square
bracket in the asymmetric drift relation (4.1) does depend on colour: it varies by a factor∼ 4
in the colour range 0.4< B−V < 0.6 as demonstrated in Fig. 4.4. A significant contribution to
the value of the bracket comes from the first derivative term,which is smallest for metal-poor
populations because their densitiesν decline more slowly outwards on account of the metallicity
gradient in the disc. Physically, including metal-poor, thin-disc stars decreasesυa because such
stars typically visit the Solar neighbourhood at pericentre, where they haveυφ > vc.

4.4 determining the Solar motion from the Velocity distribu-
tion

In view of the argument just presented, that the classical procedure cannot yield a reliable value
of v⊙, we now estimatev⊙ by fitting the observed distributions of heliocentric velocities to the ve-
locity distribution of the SB09a model. That is, we seek the offset−v⊙ from the circular velocity
at which the model velocity distributions provide the best match to the distribution of observed
heliocentric velocities. B10 used an analogous procedure toargue thatV⊙ ≃ 11kms−1; however,
the model distributions he used were obtained from analyticdistribution functions rather from
a model of the Galaxy’s chemical evolution. By using velocitydistributions that reflect much

4 The slight deviation from a straight line of the model without metallicities is an effect of the approximations in
SB09a and leads to a small underestimation of the real metallicity bias by the model.
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Figure 4.4: Asymmetric drift velocity divided by squared velocity dispersion for synthetic
colour-selected samples using the SB09a model. This ratio should be proportional to the square
bracket in equation (4.1).

prior information about the chemodynamical history of the Galaxy in place of simple analytic
functions, we hope to achieve a closer fit to the observed velocity distributions and therefore
determine the requisite offset−v⊙ with greater precision.
In Fig. 4.5 the points with (Poisson) error bars are for a subsample of GCS stars for which
Holmberg et al. (2007, 2009) give reliable metallicities; thirty likely halo stars have been removed
by requiring[Fe/H] > −1.2. This criterion is slightly stricter than that used in SB09bfor the
determination of the in-plane dispersion parameter (σR of a 10Gyr old local population), such
that we now use a marginally smaller value, 43kms−1, while lowering the vertical dispersion
parameter to 23kms−1. The curves in Fig. 4.5 show the model distributions when offset by
−v⊙ = (11.10+0.69

−0.75,12.24+0.47
−0.47,7.25+0.37

−0.36)kms−1 – we used cubic splines to interpolate between
individual data points provided by the model in theV component and determined the offset by
maximising the likelihood of the data given the model. We used only five parameters for all three
distributions: the two dispersion parameters and the threecomponents of Solar motion, yet the fit
is of good quality. The small fluctuations of the data around the modelV and to a lesser extentU
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Figure 4.5: Curves: The model distributions predicted by theSB09a model in theU , V and
W components of velocity (from top left to bottom). Data points with Poisson error bars: the
observed distributions of the GCS stars shifted by our estimate of v⊙ to optimise the fit of the
data.

distributions are readily accounted for by the well known stellar moving groups (Dehnen, 1998),
likely caused by the dynamical influence of the Galactic bar and spiral structure (Dehnen, 1999b;
De Simone et al., 2004; Antoja et al., 2009; Minchev et al., 2009).

A significant advantage of determiningv⊙ from the entire sample, as in this section, rather than
from subsamples as done in the past, is the robustness of the result to changes in the modelled
metallicity gradient. In fact, eliminating the model’s metallicity gradient changesV⊙ by less than
0.1kms−1.

One should note that the quoted errors on the components ofv⊙ are purely formal. Sources of
additional systematic error include the possible presenceof halo stars in the sample, the dynami-
cal approximations used in constructing the model, and the effects of stellar streams, which have
a big impact on the observed distribution of stars near the circular velocity but are completely
excluded from the model. Fortunately the likelihood of the data used here is not particularly
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sensitive to the fit of the data to the model around the peak density. In view of these uncer-
tainties we roughly estimate systematic errors of∼ (1,2,0.5)kms−1, assuming thatU andW
are mostly affected by distortions by streams andV showing even more structure and having an
additional uncertainty from the modelling. This is in perfect agreement with previous estimates
as regardsW⊙ and slightly higher inU⊙ compared to the DB98 value, which can be traced back
of the larger influence of the Hercules stream at∼ −30kms−1 (lowering the estimate) on their
statistics. However, it differs significantly from the value forV⊙ ≃ 5.2±0.5kms−1 obtained by
the classical technique (DB98, Aumer & Binney, 2009). Our value forV⊙ is in good agreement
with V⊙ ≃ 11kms−1 proposed by B09. Given the residual uncertainties ofv⊙, it is question-
able whether the standard practice of “correcting” observed (heliocentric) velocities for the Solar
motion is useful, at least the adopted value should be explicitly provided.

4.5 Conclusions

The metallicity gradient in the Galactic disc causes a systematic shift in the kinematics especially
near the turnoff region. By the relationship between the colour and metallicity of a star, the more
metal-rich populations, with on average lower angular momentum and thus higher asymmet-
ric drifts, are displaced relative to their metal-poor counterparts, which have lower asymmetric
drifts. When stars are binned by colour, the metallicity gradient in the Galactic disc prevents the
relationship between mean rotation speed and squared velocity dispersion taking the linear form
predicted by a naive application of the Strömberg relation. This breakdown in the conventionally
assumed linearity invalidates the traditional technique for determining the Sun’s velocity with
respect to the LSR, which involves a linear extrapolation to zero velocity dispersion of the em-
pirical relation between the mean velocity and squared velocity dispersion. Moreover the SB09a
model predicts that a treacherous linear relationship underestimating the solar azimuthal motion
by∼ 7kms−1 will be mimicked redwards of the onset of the turnoff region,coinciding well with
the behaviour observed in the Hipparcos data.
The Sun’s velocity with respect to the LSR may be alternatively determined from the velocity
offset that optimises a model fit to the observed velocity distribution. Using the velocity distri-
bution predicted by the SB09a model of the chemodynamical evolution of the Galaxy, we find
v⊙ = (11.1+0.69

−0.75,12.24+0.47
−0.47,7.25+0.37

−0.36)kms−1 and roughly estimate the systematic uncertainties
as∼ (1,2,0.5)kms−1. The radial and vertical components of this value ofv⊙ agree with earlier
estimates, but theV component is larger than the widely used value of DB98 by∼ 7kms−1.
This is in nice concordance with the model expectations for the systematic error arising from
naively using the Str̈omberg relation and in good agreement with the value obtained by B09 us-
ing a similar method but with a less sophisticated distribution function. Curiously it agrees well
with the resultV⊙ ∼ 10−13kms−1 obtained by Delhaye (1965) using the classical method with
pre-Hipparcos data.
In this paper we have relied heavily on the SB09a model, so the question arises of how vulner-
able our argument is to the model’s shortcomings. Our critique of the classical approach to the
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determination ofv⊙ is secure so long as the disc has significant age and/or metallicity gradients.
It is beyond question that such gradients exist, so the classical technique is certainly unreliable.
Our proposed value ofV⊙ is essentially independent of the assumed metallicity gradient, but
does have some sensitivity to the dynamical approximationsused in making the SB09a model –
plausible variations of how one handles the secular acceleration of stars lead to changes in the
estimated value ofV⊙ by 0.5 to 1kms−1. Modest reassurance that the error of our value ofV⊙ is
less than 2kms−1 is furnished by the fact that B10 favoured the same value usinga distribution
function that takes no account of the age and metallicity gradients in the disc. Consequently, our
result is probably not sensitive to the assumptions about star formation and chemical evolution
made by SB09a. However, as we develop more elaborate models ofthe Galaxy which fit a wider
range of data, in particular more distant stars, we anticipate further small revisions in the value
of V⊙.
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Chapter 5

Observations and Applications

5.1 Abstract

This chapter collects some of the observational tests and their discussions on implications for
the model as well as a short description of Bayesian models forgetting spectroscopic parameters
that resulted from our work on Bayesian age determinations. The trend of azimuthal velocities
against metallicities in the thin disc is discussed, showing that a shallow slope is a sign for
stronger radial mixing, while a steep slope would be a consequence of missing migration. We
demonstrate that mixing appears to be stronger than originally derived from the Scḧonrich &
Binney (2009a) model. This can be traced back to the rather high radial metallicity gradient used
for calibration. We show that eccentricity distributions should be disfavoured as an indicator for
the history of the disc. Further we show observational evidence for migration in the metallicity
plane of the new GCS as well as the confirmation for the predicted kinematic structures in the
colour magnitude diagram of the Hipparcos data. We concludeby a short determination of the
Solar birthplace.

5.2 About the trend in azimuthal velocities

Triggered by the findings in Chapter 3 some research has been undertaken to discover some
of the features that had been predicted in the abundance plane. One of the most interesting
features is a trend in mean azimuthal velocity of stars with increasing metallicity for objects
belonging chemically to the thin disc. While the Schönrich & Binney (2009a) model cannot
make a firm prediction about such trends for the high[α/Fe] stars that formed at early epochs,
where it is not constrained yet what the radial abundance gradient and the radial behaviour of
star formation really looked like, it makes very firm predictions about the trend with metallicity
for the younger, low[α/Fe] stars: Those objects should show a significant downtrend of mean
azimuthal velocity with metallicity, deriving from the radial abundance gradient of the young
stars. With radial migration those objects then become shuffled around in angular momentum,
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but the populations should still contain some residual information on where they were born: as
stars from the inner Galaxy get scattered to larger angular momenta from where they can visit
the solar neighbourhood, the metal-rich population is preferentially concentrated towards the
inner Galactocentric radii, while the metal-poor outer disc populations are preferentially at large
angular momentum. The explanation in Schönrich & Binney (2009b) focused on the fact that
radial migration is largely responsible for us being able tofind those migrated objects in large
numbers at all, but unfortunately evoked the widespread misconception that radial migration is
responsible for this gradient. This is not true, because in truth radial migration weakens the
observed trend as can be made clear by considering two extreme cases: Assume a young disc
radial abundance gradient of−0.06dex/kpc (see Luck & Lambert, 2011). In the first extreme
case we assume that stars only get blurred, i.e. they do not change their angular momentum.
Holding gradient and metallicity constant, we can write this as:

[Fe/H](R) = [Fe/H]0+
d[Fe/H]

dR
(R−R0) (5.1)

whereR0 and [Fe/H]0 denote the Solar Galactocentric radius and the local metallicity. Assuming
a disc with constant rotation velocity ofVc = 233kms−1 we can then replace the galactocentric
radiusR using angular momentum conservation and resolve the linearrelationship for the local
azimuthal velocityV :

Vφ ([Fe/H]) =Vc

(

1+
[Fe/H]− [Fe/H]0

R0

dR
d[Fe/H]

)

(5.2)

and we obtain for the slope inVφ (on the quite meagre baseline in metallicity that would be
observable.

dVφ

d[Fe/H]
=

VcdR
R0d[Fe/H]

=−474kms−1/dex (5.3)

and for the values used in Schönrich & Binney (2009a) the result would be aboutdVφ/d[Fe/H]∼
−300kms−1/dex, largely due to the steeper metallicity gradient assumed there. Measurement
errors in metallicity would blur out the baseline and reducethe measured gradient, but this will
not remove the stark contrast to what is observed in the data,as well as contributions from age-
dependent evolution of the Galactic disc can hardly remove all difference on the super-solar
metallicities. Radial migration with its redistribution inangular momentum, however, does a
huge change to this relation: If we assume the other extreme case of complete radial mixing,
the gradient will vanish, as the distribution of populations does not depend any more on where
the stars have been born. So we see that in general radial migration reduces the gradient and is
both detectable by the expansion of the baseline in metallicity and by the reduced gradient. The
presence of a weak velocity-metallicity correlation in data confirms that there is considerable
radial migration, but the mixing is not complete.
Let us examine those trends a bit on a real data set. From the model of Scḧonrich & Binney
(2009a) we expect that the thick disc velocities are likely to destroy or remove any trend in the
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Figure 5.1: The metallicity plane in[Mg/Fe] versus [Fe/H] of the Borkova et al. sample. The
depopulated region in the data advises a cut somewhere between[Mg/Fe] = 0.14 and[Mg/Fe] =
0.18 where we set the cut.

mean azimuthal velocities with mean metallicities. In the model they cancel out at intermediate
metallicities, because the downtrend for the younger low[α/Fe] stars is compensated for by the
increasing number of high asymmetric drift, high[α/Fe] stars of the chemical thick disc towards
lower metallicities. In the lower metallicity regime ([Fe/H] <−1.0) we even encounter a mildly
positive slope in the model, because of some peculiarities in early disc formation that will be
discussed in an upcoming paper. In this light it is essentialto get a clean cut in the metallicity
plane, removing the high[α/Fe] population. The following exercise was first presented at the
IAU assembly, but concerning the need for re-interpretation it seems appropriate to show it again.
Fig. 5.1 shows the metallicity plane as defined by[Mg/Fe] as alpha element against [Fe/H] in
the Borkova & Marsakov (2005) sample. This sample is a homogenised compilation of high
resolution spectroscopic data from different major studies of local stars, like the Bensby et al.
sample (Bensby et al., 2005), the Fuhrmann sample (Fuhrmann,2004) or the Reddy et al. sample
(Reddy et al., 2003, 2006). One should keep in mind a major caveat against over-interpretation
of any data we use here: Almost all local high resolution datahave strong kinematic selection
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biases for increasing or decreasing the number of selected thin/thick disc stars. It should also
be kept in mind that because of the strong correlations between single velocity components
and also (as laid out in Chapter 3) between metallicities and kinematics, any such sample is
uncontrollably biased both in metallicities and in velocity space. Yet it seems interesting to at
least look at the trends. As advocated by the depopulated region at intermediate[Mg/Fe] we
cut the sample to keep only objects with[Mg/Fe] < 0.18, to get a chemical thin disc selection.
In light of the observational errors there might be some residual contamination, which seems to
be confirmed when we measure the gradient of metallicity against angular momentum: Since
the local azimuthal velocities can be translated directly into the angular momentum of those
stars and let us this way estimate the stellar guiding centreradii, a local sample can be used
as a good indicator of the radial abundance gradient. For ourcut we estimated[Fe/H]/dR =
−0.04dex/kpc a value that rises up to−0.1dex/kpc depending on how much of the low angular
momentum regime we remove from the sample and how far down in[Mg/Fe] we move the cut
(the radial gradient increases mildly for stricter selections which indicates that we are tossing out
some residual old stars). Interestingly this gradient is a bit higher than in the Luck & Lambert
(2011) data, but this should not be taken too seriously in thelight of the diverse biases in our
sample.

The trend of mean heliocentricV velocity against metallicity in the low[Mg/Fe] subsample is
examined in Fig. 5.2. A linear fit (green line) yields a highlysignificant slope ofdVφ/d[Fe/H]=
(−31.5±4.2)kms−1/dex and is plotted onto the data. The observed trend is a bit higher than
what was found by Lee et al. (2011) - this can most likely be traced down to the larger[α/Fe]
errors of the SEGUE (Yanny et al., 2009) sample with its low resolution spectra that likely results
in larger contamination of the low[α/Fe] part with high[α/Fe] stars. Surprisingly our finding
is not consistent with the result of Navarro et al. (2011) on essentially the same data. The same
result as with the linear fit is seen from the binned means, where we divided the sample into
0.1dex wide subsets. At the same time we plot the dispersions for each bin (purple line). We
can compare this with the qualitative predictions of the different chemical evolution models: In
classical chemical evolution models (e.g. Chiappini et al.,2001) the thin disc density ridge is
created by the local population running along this ridge from low to high metallicities. This
implies a significant age trend in metallicity and hence via the age-metallicity relation the most
metal poor stars should show the highest velocity dispersions with a clear downtrend towards the
metal rich objects. This is not observed, while the data are consistent with the behaviour in the
radial migration models that would favour a rather flat behaviour of dispersions with metallicity.
Similarly the mean V velocity trend is hard to explain in the classical framework, but straight
forward in the framework of radial migration models. Yet there is a little problem: The trend of
V velocities with metallicity is considerably higher in themodel (predicting up to 50kms−1/dex)
than it is in the data.

When we look at the above implications of the velocity gradient on metallicities, it becomes clear
what went wrong in Scḧonrich & Binney (2009a). When we set the radial abundance gradient
in the model, we had to rely on older abundance gradient data that now seem to have indicated a
too steep abundance gradient. At least it is significantly steeper than the value derived by Luck
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Figure 5.2: Kinematics versus metallicities in the Borkova dataset in the subsample of stars with
[Mg/Fe] < 0.18 (red data points). The blue line gives the linear fit of the sample compared
to the binned heliocentric mean velocities shown in green. The purple line shows the velocity
dispersions.

& Lambert (2011). The overestimated gradient places one of the main findings of the first paper
on firm grounds, namely that radial migration is necessary for explaining the local metallicity
distribution. Yet, it appears that with the too steep gradient we underestimated the need for stellar
radial migration: The lower the gradient is the farther stars need to migrate to yield the same
width of the metallicity distribution. Strengthened migration should then result in a shallower
slope of velocities with metallicity. As a side effect the stronger migration would result in a
locally stronger and larger scale-height thick disc. The standard model from Schönrich & Binney
(2009a) was already rather on the upper edge on how strong thethick disc may be. Again things
fit together as on the decision between vertical energy and vertical action as conserved quantity
Scḧonrich & Binney (2009a) decided for vertical energy. Solway et al. (in prep) and also the
recent paper of Bird et al. (2011) showed that vertical actionis rather conserved than vertical
energy. This will deliver some reduction in thick disc scaleheights that can balance the stronger
thick disc arising from increased radial migration. An impediment to modelling has so far been
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Figure 5.3: The eccentricity distribution from Schönrich & Binney (2009a) at different altitudes
above the plane at Solar Galactocentric radius. We used simple population masses, i.e. no
selection function was applied.

that despite its advantages the classic adiabatic approximation and also adiabatic modelling of
stellar populations as put forward in Binney (2010) violate total energy conservation. After
we found a simple solution to this problem in Schönrich & Binney (2011) by introduction of
the adiabatic potential that corrects the horizontal potential for the lost energy (which results
in pushing the high vertical energy orbits back to the outer disc compensating locally for some
of the difference between isothermal approximations and the adiabatic approximation), we are
currently running a recalibration of the model for getting amore definitive answer.

5.2.1 About eccentricity distributions

In recent studies starting with Sales et al. (2009) and e.g. later Lee et al. (2011) the comparison
of eccentricity distributions has become a frequently usedtool to assess possible scenarios for
the history of the Galactic disc. Fig. 5.3 shows the eccentricity distribution from the Scḧonrich
& Binney (2009a) model without change of any parameter and applying no selection function,
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i.e. using the population masses as weight. The result looksquite similar to Lee et al. (2011),
yet we do not want to book this as a win, as we would like to advocate against the use of eccen-
tricity distributions for several reasons: First of all it is counter-intuitive to quench all the ample
information we have into a single quantity that only gives a distorted picture on important things
like the angular momentum distribution of the disc. As a minor other point there needs to be per-
formed a real propagation of distance, proper motion and line-of-sight velocity errors that to date
does not appear to have been fully performed (this would be a very time-consuming exercise,
because in contrast to simple velocity space the errors haveto be calculated on the orbital model
from which the eccentricities must be derived). More important the derived eccentricity values
depend on the assumed potential, which governs the orbit extension of a star derived from its es-
timated position and velocity. The Achilles heel of the method that comparisons of eccentricities
utilise a different potential for the calculation of orbitsthan the theoretical models they compare
to, has in most cases been neglected. One may of course argue that eccentricities express the
general circularity of orbits in the different approaches.To some part this is true, but there a far
more vigorous problem: The heating in models and even principle heating mechanisms are very
weakly constrained (see e.g. the discussion in Aumer & Binney, 2009). Locally the eccentricities
are quite directly related to azimuthal velocities in that high asymmetric drifts or respectively low
rotational velocities imply large eccentricities. So we see the large uncertainty in the expected
eccentricities by looking at the major changes in Fig. 6.2 that are induced by moderate variation
in the assumed parameters of the disc. For example heating upthe inner disc of the Galaxy a bit
more, which is covered either by heating from a bar or respectively simply in the uncertainties
intrinsic to molecular clouds as source of random energy, the number of high eccentricity visitors
from the inner disc largely increases. This would in the one-dimensional comparison be nearly
indistinguishable from high eccentricity stars contributed e.g. by a minor merger in the outer
regions of the disc. Summed up we see that a large range of eccentricity distributions can be
explained just by uncertainty in heating and potential, butmoreover the sole use of eccentricity
distributions hides a lot of valuable information.

5.3 The metallicity plane as seen by the new GCS

In their recalibration of the Geneva-Copenhagen Survey (hereafter GCS, Nordström et al., 2004;
Holmberg et al., 2007) Casagrande et al. (2011) were able to derive tentative[α/Fe] esti-
mates from Str̈omgren photometry. This opened new perspectives to test thepredictions of the
Scḧonrich & Binney (2009a) model on the GCS that is now the largest unbiased sample with
some indication of[α/Fe] abundances and highly reliable kinematics. As a recalibration of the
model is still ongoing we have to limit ourselves to a qualitative discussion where we show the
main structures in the metallicity plane of the Geneva-Copenhagen Survey, but postpone a real
quantitative examination. All details on he derivation of parameters can be found in Casagrande
et al. (2011) and will not be discussed here.
Fig. 5.4 gives an overview of the metallicity plane in the “good subsample”, i.e. stars with
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Figure 5.4: Average age in the metallicity plane ([α/Fe] versus [Fe/H] of the GCS. The colour
codes the mean age determinations in Gyrs.

infrared photometry available, so that the stars have good parameters and especially a sen-
sible [α/Fe] estimate. For getting the mean ages, we searched for each star in the plane its
hundred closest neighbours and evaluated the mean age from the age expectation values using
BASTI (Pietrinferni et al., 2004) isochrones. The age determinations are described in more detail
Casagrande et al. (2011). Although the plane covers the main features we see some weaknesses.
At first the age determinations are quenched down to a maximumof 8Gyr. This is mostly caused
by stars with very uncertain age determination (e.g. when they lie on the red part of the main
sequence) that then are assigned mean ages of about 6Gyr. Yetthe expected features are in place:
The high[α/Fe] stars are very old in contrast to the low[α/Fe] stars that are very young. In the
low [α/Fe] part there does not appear to reside a strong dependence of age on metallicity, which
is much in favour of radial migration models that can allow for the stars on the thin disc ridge
line to be relatively young without significant trend. Classical chemical evolution models would
require older ages on the metal poor side compared to the metal rich side, because the model has
to evolve from metal poor to metal rich slowlier than radial migration models, where the width
of the thin disc ridge line is formed by immigrants from otherparts of the disc. As a word of
caution the ages are the weakest constraint, because it is not clear if the isochrones show a robust
metallicity dependent reddening, which can produce wrong age trends against metallicity. Rather
than a constraint on chemical evolution models this plot is aconsistency check for the[α/Fe] es-
timates, although they are of course far from perfect: It is clearly visible that there is no real gap
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Figure 5.5: Left panel: Average asymmetric drift (in kms−1) in the metallicity plane ([α/Fe]
versus [Fe/H] of the GCS. Right panel: Average velocity dispersion (in kms−1).

in densities between the thick and thin disc components, which is a consequence of the[α/Fe]
determination uncertainties. Was the error in the determinations larger than expected, we would
not see the clear distinction in ages along the plot. On the side of ages it is also worth mentioning
that Bensby et al. (2007) find the lowest ages near solar metallicity with both metal-poor and
metal-rich stars tend to be slightly older, which would be very reasonable in the framework of
radial migration, where those objects require a little bit of time to reach the solar neighbourhood.
The results of Fig. 5.5 confirm very nicely our findings from Section 5.2. On the low[α/Fe] side
we find a region of almost constant velocity dispersions

√
S2 in [Fe/H], which is in stark contrast

to what would be predicted in the framework of classical chemical evolution models, but is very
well in the range of the expectations from Schönrich & Binney (2009b). The region of high
velocity dispersions wraps nicely around the thin disc at the edge of high[α/Fe], high [Fe/H]
values, i.e. we can clearly identify the high metallicity tail of the thick disc as suggested by the
studies of Bensby et al. (e.g. Bensby et al., 2003, 2005). The expansion of the high dispersion
regime towards lower[α/Fe] values for the most metal poor stars is caused by a very low number
of extreme objects and might be a contamination by relatively metal-rich halo objects. The left
panel of Fig. 5.5 also confirms that the trends that we have seen in the Borkova & Marsakov
(2005) sample were not a result of kinematic biases. At all[α/Fe] values (apart from the highest
[α/Fe], where the thick disc ridge line bends to the left) we see a robust downtrend of mean
azimuthal velocity with increasing metallicity.

5.4 A hot spot in kinematics

The most exciting result from the new GCS is shown in Fig. 5.6. Radial migration models predict
that on the metal rich low[α/Fe] side of the metallicity plane we should see young populations
that have quite low velocity dispersions, but that have migrated just far enough outwards so that
they can be seen in local samples at high asymmetric drift. Interms of the asymmetric drift
relation discussed in the previous chapter this means that they have a very strong radial density
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Figure 5.6: Left panel: Average asymmetric drift (in kms−1) divided by the average velocity
dispersion in the metallicity plane ([α/Fe] versus [Fe/H] of the GCS.

gradient in the solar neighbourhood and should thus have a very low asymmetric drift to disper-
sion ratio. And indeed this “hot spot” can be spotted Fig. 5.6, where we plot the mean difference
to the suspected circular velocity divided by the squared velocity dispersion of the population:
The stars with high [Fe/H] and low[α/Fe] values show an extreme ratio of asymmetric drift to
velocity dispersion. The same could already be guessed fromthe Borkova et al. sample, where
the asymmetric drift increases with metallicity, while thedispersion does not experience notable
change, however, with the new GCS we have this result free of a possible kinematic bias. As it
should be expected the stark contrast between high and low metallicity populations gets reduced
towards higher[α/Fe] values, although we cannot very well disentangle how much ofthis might
be a consequence of the uncertainty in[α/Fe] estimates. This inhomogeneity is also a wel-
come confirmation to the prediction from Chapter 4 that local populations have highly different
constants in the asymmetric drift relation.
Despite the importance for the determination of the Local Standard of Rest, the predictions from
Chapter 4 stayed essentially untested so far. However, afterhaving seen the trends in the metal-
licity plane we can already be sure that we will see strong signals when we examine the colour-
magnitude diagram. Fig. 5.7 shows the kinematics in the colour-magnitude diagram of the Aumer
& Binney (2009) subsample of the Hipparcos data (van Leeuwen,2007), that was kindly pro-
vided by M. Aumer. For each star we took the closest 150 neighbours in a mildly elongated
ellipse oriented parallel to the main sequence. This provedto be the best compromise between
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additional blurring of our data that are already affected bythe parallax and hence magnitude er-
rors of Hipparcos as well as photometry errors and scatter inthe results by too small subsample
sizes. In the top panel we display the mean asymmetric drift and in the bottom panel the meanU
velocity dispersion. The similarity of the results to the equivalent plots in Chapter 4 is surprising.
As predicted from the Schönrich & Binney (2009a) model we do not see at all a uniform increase
of asymmetric drift and dispersion towards redder colours,but there is a lot of fine structure. In
the lower panel we can even see the relatively cool main sequence of lower metallicity disc stars
quenched between the hotter high metallicity stars and the sub-dwarfs (visible towards the red
at B−V > 0.45). The fainter/bluer objects with higher dispersion are the sub-dwarfs, while on
the red side we encounter the metal-rich stars. We can as wellsee the kinematically hot spot of
the older high metallicity turn-off accompanied by relatively high asymmetric drift values (at the
“knee” in the plot aroundB−V ∼ 0.65). This hot region can be held responsible for the mild
overshooting that was encountered by Aumer & Binney (2009) intheir pure colour binning near
Parenago’s discontinuity in some velocity components and that is also featured in the predic-
tions of Scḧonrich, Binney & Dehnen (2010). The peak asymmetric drifts and dispersions stay
a little bit behind what might at first glance be expected fromthe models, but we have to take
into account that the extreme velocities appearing in the models also come in very low number
densities so that they are buried in the error tails (with typical Hipparcos parallaxes the absolute
magnitude has a notable error) of their neighbouring populations. In light of these difficulties it is
already surprising that we can detect the cooler main sequence part between its hot counterparts.
Interestingly we can even see the negative asymmetric driftvalues or respectively high azimuthal
velocity values of the metal poor populations on the blue side of the turn-off region. Similarly the
“hot valley” of slightly lower angular momentum/kinematically hotter stars located red-wards of
the main sequence rising towards higher luminosities showsa tentative imprint to these data.

As the non-constant coefficient in the Strömberg equation or respectively asymmetric drift rela-
tion basically describes the radial density gradient of a population, it is not useless as one might
conclude from the failure in the determination of the Solar velocity, but it is a valuable indica-
tor to identify subpopulations in a sample. In Fig. 5.8 we seeon the luminous blue end of the
Hipparcos sample a young population with high asymmetric drift to dispersion ratio that follows
nicely a very metal-rich young isochrone. To its red side we see a population that obviously
comes from outer radii and hence we can now clearly see the reason for the pronounced wiggles
that were found on a pure colour selection by Dehnen & Binney (1998b) and later by Aumer &
Binney (2009): they are simply young open clusters dominating the blue end of the colour mag-
nitude diagram with substructure. Red-wards ofB−V ∼ 0.3 (as can be expected from the source
terms losing importance in the Jeans equations as stellar ages increase) we see a very well mixed
sample. But again the expected structures are confirmed: Fromblue to red (or respectively from
faint to bright) across the main sequence the ratio of asymmetric drift to squared radial velocity
dispersion increases as the radial density gradient steepens for the more metal rich inner disc
populations.

Although all these results look stunningly similar to the theoretical predictions we would like to
put some words of caution: Especially inside-out formationcan be a second reason apart from



5.5. A BAYESIAN METHOD FOR SPECTROSCOPY 113

-0.2  0  0.2  0.4  0.6  0.8  1

 6

 4

 2

 0

-2

V
m

ag

B-V

-0.01
-0.005

 0
 0.005

 0.01
 0.015

 0.02
 0.025

Figure 5.8: The coefficient of the Strömberg equation, in our case dividing the asymmetric drift
by the squared radial velocity dispersion.

the metallicity gradient that can be held responsible for the observed structure, so a definitive
interpretation will require deeper and more quantitative analysis than the presented as well as
detailed and improved models on the theoretical side.

5.5 A Bayesian method for spectroscopy

5.5.1 Introduction

This work is a further development from the Bayesian age determination that I developed for
the recalibration of the GCS (Casagrande et al., 2011). Havingall those algorithms already
at hand we decided that it would be a pity to let the machinery stay unused and developed it
towards an area where it can help improve the uncertain parameter determinations: low resolution
spectroscopy. With the advent of large spectroscopic surveys, spectroscopic analysis has at least
partly experienced a shift from analytic craftsmanship in resolving the spectroscopic jigsaw by
hand and experience to the development of large automatic pipelines that are required to cope
with the huge amount of data. Many of these surveys, particularly RAVE (Steinmetz et al.,
2005), SDSS/SEGUE (Yanny et al., 2009) and LAMOST work in a regime of low to intermediate
resolution spectroscopy with mostly moderate signal to noise ratios, where the determination of
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stellar parameters is uncertain. Although a lot of work has been invested into the development of
the RAVE (e.g. Zwitter et al., 2008) and SEGUE (e.g. Lee et al.,2008a,b) another development
in stellar astrophysics that would naturally fit into these automatic knowledge machines has been
left out.
Following the use of probabilistic schemes or respectivelyBayesian analysis in other fields
of astrophysics, those methods were pioneered by Jørgensen& Lindegren (2005) and Pont &
Eyer (2004) for stellar astrophysics in order to gain more reliable age estimates to especially
the Geneva-Copenhagen Survey (Nordström et al., 2004) that are particularly devoid of biases
arising from naive age analysis like the terminal age bias: Stars on short-lived stages in stellar
evolution, i.e. rare objects are unphysically overrepresented in the analysis results, if no proper
weighting function (or respectively the wrong one, as no weighting means a constant weight)
has been applied to the isochrones. A good description of Bayesian analysis to fix also other
parameters like the absolute magnitude (and hence distancemodulus) can be found in Burnett &
Binney (2010).
In the following draft we aim to develop a probabilistic scheme to directly exploit our a priori
knowledge in combination with spectroscopic analysis and photometric parameter calibrations,
especially via the infrared-flux-method (IRFM Casagrande et al., 2010).

5.5.2 Probabilistic Approach

General Approach

Spectroscopists usually quote on their analysis the best-fit parameters on their quantities plus
some error margin. Yet this is only a subset of the information that can actually drawn from
their analysis - it would only be if the errors on the stellar parameters were not correlated, i.e. if
Cov(Teff, [Fe/H]) = 0. This is by far not true - the errors are highly correlated bythe underlying
physics. The stellar effective surface temperature Teff and also surface gravity log(g) do affect
the ionisation equilibria, the atomic level populations, etc., and hence spectral line strengths
and inferred elemental abundances. Hence the metallicity estimate will be a function on those
two variables, while it affects their values by itself. The strong correlation between estimated
temperature and metallicity is found everywhere in literature and can e.g. be guessed from figs.
6 and 7 in Zwitter et al. (2008), or fig. 12 in Siebert et al. (2011). So the quantity handling all
the available information are not the single best-fit values, but the multidimensional probability
distribution of the stellar parameter estimates on the given spectrum:

Psp([Fe/H],Teff, log(g), [α/Fe],Xsp) (5.4)

whereXsp sums up all the spectral parameters not listed in this course, e.g. micro-turbulence
- if not a 3D model atmosphere is run (see a discussion of advanced spectroscopic analysis in
Asplund, 2005b), that does not require this parameter - , rotational velocity of the star, reddening,
etc.
Yet, as discussed by Asplund (2005a) in view of the IRFM, spectroscopy is not the only thing
we know: We also have photometric information about the examined objects, with Hipparcos
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and Gaia knowledge about their parallaxes and hence distances, strong constraints by stellar
evolution and a priori knowledge on stellar parameters, i.e. expectations about the IMF or stellar
ages. The latter become particularly important for surveyswith low to intermediate spectral
resolution and for large samples as a quality control. So what needs to be done and unfortunately
has not been undertaken before is the design of a scheme to optimally combine those different
sources of information. Let’s first go to stellar evolution and some a priori knowledge: Stellar
evolution models give very firm constraints on the possible loci of stars in parameter space: In
simple models their parameters are a simple function of their initial mass, metallicity and age:

(Teff, log(g),C) = f ′(Mi, [Fe/H], [α/Fe],τ), (5.5)

whereC denotes the full information by the absolute magnitude and colours of stars. This relation
provides in theory a very accurate mean of discarding major parts of the parameter space of
spectroscopic results.
As has been shown by various sources (e.g. Chieffi et al., 1991;Chaboyer et al., 1992), the dif-
ferent metallicity indicators can moreover be replaced by an effective [Me/H] without significant
accuracy. In an ideal world stellar evolution would hence give us a three-dimensional region
in parameter space, where stars can reside, which before theisochrone turnoff with its age de-
pendence even collapses into a two-dimensional sheet. In reality those predictions are affected
uncertainties in atmosphere models, in the modelling of thestellar interior (see e.g. Magic et al.,
2010) and in a couple of initial parameters (Charlot et al., 1996), particularly the initial helium
problem particularly on the metal poor side (Casagrande et al., 2007). This should be accounted
for by broadening the above relation. In a simple way speaking in the formalism of Burnett &
Binney (2010) this can be achieved by augmenting the observable errors a bit. In this case it
will be advisable to work with variable errors: While stellarmodels are very precise on the upper
main sequence, their reliability deteriorates towards thecoolest and evolved objects, i.e. M dwarf
and the giant branches.
Using the mapping given by stellar evolution models, we can write down the probability distri-
bution:

P(Teff, log(g),C) = G′(σ)◦
◦
∫

f ′(Mi, [Fe/H], [α/Fe],τ)
·Pp(τ,Mi, [Fe/H], [α/Fe],X)dMid[Fe/H]d[α/Fe]dX (5.6)

wherePp(τ,Mi, [Fe/H], [α/Fe],X) sums up our a priori information on these quantities and the
result gets convolved withG′(σ), taken as described above to be some Gaussian broadening
according to the error vectorσ = (σTeff,σlog(g),σC). In case we want to accommodate a Galactic
model, one would need to further work in the distance distribution and the distance modulus for
the sample.
On the left hand side we must now attain the parameter space that we need for compatibility
with the spectroscopic results (i.e. we need a probability distribution in the same dimensions):
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Replace the functionf ′ by an extension off ′ that is equivalent withf ′ on (Teff, log(g),C) space
and is an identity mapping on the other parameters (and do so in parallel withG′):

P([Fe/H], [α/Fe],Teff, log(g),Mi,τ,C,X) = G(σ)◦
◦
∫

f (Mi, [Fe/H], [α/Fe],τ)
·Pp(τ,Mi, [Fe/H], [α/Fe],X)dMid[Fe/H]d[α/Fe]dX (5.7)

This entity looks evil, but it is not. We can gain it by a simpleweighted (via our priors) integral
over the isochrones and any condition we impose upon our parameter set can be gained by
multiplying the corresponding probability function onto Pand then (like in Burnett & Binney,
2010) normalising the sum to one, after we have integrated out all dimensions we do not like. So
we can get the probability distribution in our favourite parameter space:

Pi([Fe/H], [α/Fe],Teff, log(g)) =
∫

P([Fe/H], [α/Fe],Teff, log(g),Mi,τ,C,X)dMidτdCdX (5.8)

Once this is established, we can combine the spectroscopic information with the stellar evolution
and a priori knowledge by a simple multiplication:

P′ = PspPi (5.9)

Isochrone sets and priors

To get some rudimentary grip on the uncertainties in stellarmodels we make use of two indepen-
dent data sets: A dense grid drawn from the web interface of the Padova isochrones (Bertelli et
al., 2008, 2009) and a dense grid of BASTI isochrones (Pietrinferni et al., 2004, 2006, 2009) that
was kindly provided by S. Cassisi for our own probabilistic age determinations in Casagrande et
al. (2011). The Padova sample consists of isochrone data sets at 56 metallicities ranging from
Z = 0.0001 toZ = 0.07. Their solar metallicity is at the Grevesse & Sauval (1998) estimate
of Z⊙ = 0.017, while the price they have to pay for the closer proximityto recent estimates
(Asplund et al., 2009) is a rather low solar (Y⊙ = 0.26) and hence at a standard∆Y/∆Z too
low primordial helium abundance compared to standard Big BangNucleosynthesis (Steigman,
2010) (another point might be their lack of diffusion, whichacts in the same direction). In the
query we hence had to limitY > 0.23, where their grid ends. We applied a dense age spacing
of 0.01dex or respectively 2.3%. The BASTI isochrones still use the (Grevesse & Noels, 1993)
solar metallicity and we apply their standard helium abundances. We have 20 metallicity bins
from Z = 0.0001 toZ = 0.04 and an age spacing of at maximum 100Myr.
As initial mass function we apply the Salpeter (1955) IMF, with the usual exponentα = 2.35,
any other IMF of desire can be readily implemented and testedfor.
It would be tempting to use a more specific age prior or even age-metallicity relation, but this
would raise concerns about that results might be influenced by prejudices on the age of stellar
components. Many studies make firm conclusions that the oldest populations in the Galaxy
exceed 10Gyr in age (cf. Aumer & Binney, 2009; Schönrich & Binney, 2009a). Hence we use a
simple flat age distribution between 0 and 14Gyr as a prior.
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Photometric calibration

The isochrones are a splendid tool to cut out unphysical parameter space. Yet if using isochrone
colours we would inherit the vulnerabilities and uncertainties of model atmospheres and synthetic
colours. It can thus be appropriate and currently appears the more reliable way to ignore the
colour information on the isochrones and exploit it insteadby well-calibrated empirical relations.
These are delivered by the infrared-flux method (IRFM, Blackwell & Shallis, 1977; Casagrande
et al., 2010). In addition the remaining colour informationcan be scanned for information on
reddening, metallicity, alpha enhancement or in some casesgravity. Photometric calibrations are
a vastly used tool and if parameters apart from Teff are required, narrow band filter systems like
Strömgren or Washington photometry contain the best information. Yet some tentative estimates
can be derived from broad band photometry as well. Overall, photometric methods deliver a
third probability distributionPph(Teff, log(g), [Fe/H], [α/Fe]). Again this can be combined with
the two other sources to the final probability distribution

Pf = PspPiPph, (5.10)

from which our improved parameter estimates can be drawn. The photometrically derived tem-
peratures are generally of a quality excelling that of spectroscopic ones in their scatter and their
zero points: It was shown in previous studies (Casagrande et al., 2011) that photometric tem-
peratures from the IRFM are (apart from the most metal poor objects) in sound agreement with
stellar evolution models.

5.5.3 Photometric method of getting temperatures

Photometry can be a powerful method to derive stellar parameters (Bessel, 2005). In fact, each
colour convolve the information enclosed by a stellar spectrum over the considered filter trans-
mission curve. Selecting filters over regions of a spectrum primarily sensitive to certain physical
parameters, it is thus possible to derive the latter to a certain accuracy (see e.g. Asensio Ramos
& Allende Prieto, 2010, for a generalisation of this idea). Atypical example is provided by
the intermediate band Strömgren system, through them1 andc1 indices. Those are designed
to measure the depression owing to metal lines around 4100Å and the Balmer discontinuity,
respectively, making the two indices ideal estimators of metallicity and surface gravity in late
type stars. In contrast, focusing on spectral region relatively unaffected by line blanketing can
give important information on Teff, as e.g. theb− y index (to remain on the Strömgren sys-
tem). However, broad-band colours are usually more useful to estimate Teff; notice though that
colours per se are not analytically related to the stellar effective temperature, metallicity or other
physical parameters. Relations linking stars of known physical parameters to their colour indices
must be constructed. Those can be obtained e.g. from synthetic colours and the underlying Teff
of the models used, but the resulting calibration is very vulnerable to the uncertainties in the
adopted theoretical fluxes. Similarly, colour-temperature calibrations obtained employing spec-
troscopic Teff intrinsically carry the uncertainties which plague spectroscopic Teff estimates. To
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Figure 5.9: Differences in temperatures between IRFM derived temperatures and RAVE (top left)
as well as three colour calibrations in different colour bands. It can clearly be seen that even on
pure infrared colours (for obvious reasons they lose accuracy on hot stars) the colour calibration
gives some value added with the best information contained of course in a combination of in-
frared and visible. Good visible photometry would hence boost the reliability of temperatures in
RAVE. The slight trends at higher temperatures in the colour calibrations derive from the use of
unchanged, old relationships that are not yet calibrated inthat temperature range for this sample
and can hence be removed from the sample.

this respect, only few methods are really empirical. One resorts on stars with measured angu-
lar diametersθ , where the effective temperature can be derived from the fundamental relation

FBol =
(θ

2

)2σT 4
eff. Howeverθ can be measured only for nearby stars, thus limiting the calibra-

tion to solar metallicity stars. In addition, nearby stars are so bright to be saturated in most of the
recent systems (such as e.g. 2MASS or SDSS), which are instead heavily used for the purpose
of Galactic investigations. The IRFM provides another empirical way of determining Teff, using
multiband optical and infrared photometry to recover the bolometric FBol and infraredFIR flux
of each star and using the analytical relation linking Teff to the ratioFBol

FIR
. Taking into account
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photometric zero point uncertainties and random photometric errors, reliable estimates on the
uncertainties on the derived Teff can also be obtained. Improved reddening estimates would be
beneficial, e.g. via known calibrations usingHβ photometry (e.g. Karatas & Schuster 2010). A
comparison on a GCS star sample between RAVE, the IRFM and singlecolour calibrations can
be seen in Fig. 5.9. We will soon see if our method can really improve on the stellar parameters
compared the standard pipeline results.

5.6 The Origin of the Sun

At least since the paper of Wielen et al. (1996) the birthplace of the Sun as been an open question
in astrophysics. As the Sun was believed to be more metal-rich than the Solar Neighbourhood it
was believed that the Sun was born considerably inside the current solar radius. The common line
of argument is as follows: Assume that the composition of theinterstellar medium, i.e. absolute
value and radial gradient, has not changed significantly changed during the lifetime of the Sun,
measure the offset between the Solar metallicity and the local interstellar medium, divide by
the radial abundance gradient and you get an estimate for thebirthplace of the Sun, in the case
of Wielen et al. (1996) with an adopted radial metallicity gradient ofd[Fe/H]/dR = (−0.09±
0.02)dex/kpc and a metallicity difference of∆ [Fe/H]=(0.17±0.04)dex this resulted in placing
the birthplace of the Sun(1.9±0.9)kpc inwards of our current position. Other estimates for the
Solar cradle have recently been attempted from the dynamicsof the Solar system (e.g. Kaib et
al., 2011, claim that the Sun must have travelled even to the inner regions of the Galaxy). While
such a peculiar trajectory is of course possible in the framework of radial migration though not
necessarily likely (and this low likelihood has not been fully accounted for in this study), this
kind of estimates depends critically on the initial state ofthe solar planetary system, possible
interactions in the denser environment of the open cluster giving birth to the Sun, the initial state
of the Oort cloud and also on assumptions about the number of lower mass bodies or respectively
the low mass IMF in the Galaxy as well as it is deeply affected by small number statistics, we
consider this approach to be rather speculative. Hence we concentrate in the following on the
arguments from chemistry.
With the recalibration of the Geneva-Copenhagen Survey (Casagrande et al., 2011) the mean
metallicity of the Solar Neighbourhood has been considerably shifted up by around 0.1dex
mostly due to an upwards shift in the temperature scale by about 100K that came about by
the use of the infrared flux method (Casagrande et al., 2010) and also brought the main sequence
location of the new GCS into concordance with stellar models.When estimating the solar birth
radius this shift moves the birthplace of the Sun outwards bymore than one kpc and hence while
we found proof for radial migration from the metallicity distribution of the solar neighbourhood,
the original precedent made on the origin of the Sun is getting lost.
To estimate the past state of the local interstellar medium it is not sufficient to simply gather all
stars that have approximately the age of the Sun and search for their mean metallicity: As the
solar neighbourhood is subject to immigration from other radii both by blurring and by churning,



120 CHAPTER 5. OBSERVATIONS AND APPLICATIONS

the local composition is changed considerably apart from that uncertainties of ages can lead
to significant contamination by old objects. We can directlysee the immigration effect from
the top panel of Fig. 16 in Casagrande et al. (2011). There the metallicity distribution of the
older (see esp. the intermediate age stars) populations widens considerably and we see a longer
tail especially to the high metallicity side, that is readily explained as more stars being brought
outwards by radial migration due to the higher migration rates in the inner disc and by the same
reason that gives rise to increasing asymmetric drift with age: Stellar densities inside the solar
annulus are higher, the effective potential is flatter towards larger Galactocentric radii, and further
those stars are kinematically hotter so that they travel outwards in larger numbers than stars from
the outer regions of our Galaxy visit the inner regions. Thisgives rise to a considerable bias
that prevents us at current stage from estimating the composition of the solar neighbourhood
via the data, apart from saying that obviously there cannot have taken place major changes.
From the youngest population where this contamination is weakest, we can estimate a local
metallicity of around [Fe/H]= (−0.08±0.05)dex, where we added a minor systematic error for
undiscovered selection effects an uncertainties in the setting of the original metallicity scale. This
value might be challenged with the argument that there is still some residual abundance scatter
among the youngest stars in the Geneva-Copenhagen Survey andthat a young star selection
may also be prone to a positive metallicity bias evoked by theblue limit of the GCS. Yet, there
is some confirmation from high resolution data: While Luck & Lambert (2011) have a higher
absolute metallicity in the Solar neighbourhood, but Nieva& Przybilla (2008) find, based on the
abundance scale of Asplund et al. (2009) a difference of [Fe/H] = (−0.1±0.06)dex and for the
two reliableα elements they give [Mg/H]=(−0.08±0.06)dex and [Si/H]=(−0.05±0.05)dex.
Albeit tiny, this difference between theα elements and [Fe/H] is assuring as it coincides well
with a small residual trend in Schönrich & Binney (2009b) that the[α/Fe] ratios still fall slightly
by of order 0.03dex during the lifetime of the Sun.

Taking all this together we use in the following a metallicity difference [Me/H]= (−0.07±
0.06)dex, a more elaborate study will have to await the model recalibration on the new GCS
data.

How do we get the past state of the ISM? Currently the only viable strategy seems to be ask-
ing our chemical evolution models. The bitter truth is, however, that their results depend to
some extent on the development of radial flows and star formation rates. If we assume a smooth
behaviour for the past Gyrs, we can from the Schönrich & Binney (2009a) model roughly es-
timate that the metallicities have increased by about 0.05dex during the lifetime of the Sun
with an unknown systematic error (that depends on the development of radial flows, detailed
changes of the star formation rates, etc.). Taking this result together with an abundance gradient
of d[Me/H]/dR = (−0.06±0.01)dex/kpc from Luck & Lambert (2011), where we cautiously
allow for a systematic uncertainty of around 0.01dex/kpc the best current estimate for the birth-
place of the Sun can be put to around∆R = 2.0+1.5

−1.2kpc or with our new estimates for the current
radiusR0 the Sun should have been born aroundR = 6.2kpc. As the lower abundance gradient
balances the lower metallicity different a bit, our result is remarkably similar to Wielen et al.
(1996). We would like to note that the Sun is a bit more unusualthan it appears from its value.
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By its high rotational velocity that we know from Chapter 4 the guiding centre radius of the Sun
is placed(0.43±0.10)kpc outsideR0, so that the Sun is one of the rather rare outer disc visitors
to the Solar Neighbourhood and the estimate for the total radial migration experienced by the
Sun increases to more than 2kpc, with a formal lower limit slightly above 1kpc. This means
that the Sun is still a clear case for radial migration. It will be interesting to see if we can get a
substantially better estimate on the solar origin with the help of the re-calibrated model.



Chapter 6

A new formula for fitting the azimuthal
component of disc kinematics1

6.1 Abstract

In a disc galaxy the distribution of azimuthal components ofvelocity is very skew. In the past
this skewness has been modelled by superposed Gaussians. Weuse dynamical arguments to
derive an analytic formula that can be fitted to observed velocity distributions, and validate it
by fits to the velocities derived from a dynamically rigorousmodel, and to a sample of local
stars with accurate space velocities. Our formula is much easier to use than a full distribution
function. It has fewer parameters than a multi-Gaussian fit,and the best-fitting model parameters
give insight into the underlying disc dynamics. In particular, once the azimuthal velocities of a
sample have been successfully fitted, the apparatus provides a prediction for the corresponding
distribution of radial velocitiesvR. An effective formula like ours is invaluable when fitting to
data for stars at some distance from the Sun because it enables one to make proper allowance
for the errors in distance and proper motion when determining the underlying disc kinematics.
The derivation of our formula elucidates the way the horizontal and vertical motions are closely
intertwined, and makes it evident that no stellar population can have a scale height and vertical
velocity dispersions that are simultaneously independentof radius. We show that the oscillation
of a star perpendicular to the Galactic plane modifies the effective potential in which the star
moves radially in such a way that the more vertical energy a star has, the larger is the mean
radius of its orbit.

6.2 Introduction

Currently considerable effort is being invested in surveys of the solar neighbourhood. Fifteen
years ago the study of nearby stars was revived by the Hipparcos mission, which pioneered

1 Content and text of this paper have been published in nearly identical form as Scḧonrich & Binney (2011).
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space astrometry. Hipparcos put ground-based astrometry onto a more secure foundation, so now
useful proper motions are available for tens of millions of stars. In the last decade the proper
motions have been complemented by photometric surveys, both in the infrared and to fainter
magnitudes at optical wavelengths. Finally, the RAVE (Steinmetz et al., 2005) and SEGUE
(see York et al., 2000; Yanny et al., 2009) surveys have measured nearly a million line-of-sight
velocities.
As a result of these major observational programmes, it is becoming possible to determine the
velocity distribution within the disc of our Galaxy, not only at the location of the Sun, but also
at significant distances, especially at higher Galactic latitudes. Naturally one wants to quantify
the velocity distribution observed at some locationx in the Galaxy in an efficient way. Conven-
tionally one does this by imagining that the density of starsin velocity space forms a “velocity
ellipsoid” – a triaxial ellipsoidal region of over-densityin velocity space. If the Galaxy were
axisymmetric (which is a reasonable first approximation), we would expect that in the Galactic
plane the principal axes of the the velocity ellipsoid wouldbe aligned with the coordinate di-
rections of cylindrical polar coordinates,(R,z,φ). As one moves above the plane, two of the
principal axes of the velocity ellipsoid are expected to tipslightly with respect to thêR and ẑ
directions. Let the components of velocity parallel to these principal axes be denotedv1 andv2,
wherev1 → vR andv2 → vz asz → 0. The third axis is expected to remain aligned with theφ̂

direction.
The distributions of thev1 andv2 components of velocity are expected to be roughly Gaussian
with vanishing means and to be to good approximation alignedwith the Galactic polar coordi-
nates (minor vertex deviations as found in the solar neighbourhood by Dehnen, 1998, will not be
discussed here). Consequently, they can be characterised bytheir standard deviationsσ1 andσ2.
The distribution of thevφ components peaks at a value ofvφ that is slightly smaller than the cir-
cular speedvc. However, it is not at all well modelled by a Gaussian, because it is very skew, with
many more stars atvφ = vc−v than atvc+v, causing the population to have non-zero asymmetric
drift. Notwithstanding this skewness that was already known to Gustav Str̈omberg (Str̈omberg,
1927),vφ distributions have traditionally been characterised by a mean and a standard deviation.
Since a single Gaussian fits the data very poorly, the observed distribution is frequently modelled
by a superposition of two Gaussians: then the overall distribution is characterised by two means,
two dispersions and the ratio of the numbers of stars accounted for by each Gaussian, a total of
five shape parameters.
The purpose of this note is to introduce a new representationof vφ distributions that is more
effective in the sense that it fits typical data more accurately with fewer and physically more
meaningful parameters. Moreover, the new representation has a dynamical basis, so it is able to
connect the skewness of thevφ distributions to the standard deviations inv1 andv2. With the
new representation, a single free shape parameter suffices to describe the distribution invφ for
the whole population of stars in the solar cylinder, and two parameters are sufficient to fit the
distribution invφ of stars that have a given distance from the plane. The formula predicts in a
natural way both the magnitude of the asymmetric drift and the offset of the modal azimuthal
velocity from the circular velocity, neither of which is achieved by multiple Gaussians.
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The paper is organised as follows. In Section 6.3 we derive anapproximation to thevφ distri-
bution in an annulus in the Galactic disc that can be used as standard for extragalactic measure-
ments. As most samples of the Galaxy are centred on certain Galactic altitudes|z|, in Section
6.4 we use the adiabatic approximation (Binney, 2010) to takeinto account the vertical motions
of stars. In 6.4.1 we derive a formula that accounts for the variation in thevφ distribution with
|z| and test it against the velocity distributions of more elaborate models. In Section 6.4.2 we
derive a formula for the way in which the in-plane motion of a star depends on the extent of its
excursions perpendicular to the plane. The outcome is a small correction to thevφ distribution
derived in Section 6.4.1. In Section 6.4.3 we give formulae from which the distributions ofvR

andvz follow once the distribution invφ has been fitted. In Section 6.5.1 we show that our for-
mulae provide good fits to the disc model of Binney & McMillan (2011; hereafter BM11), which
has a rigorous dynamical basis. In Section 6.5.2 we demonstrate the practical application of the
formula by fitting data from the Geneva-Copenhagen Survey. Section 6.6 sums up and looks to
the future.

6.3 Velocity distribution as a 2D problem

There are three reasons for the asymmetry of the distribution of vφ components of nearby stars:
stars at lowvφ are approaching apocentre, so they have guiding-centre radii Rg smaller than the
solar radius,R0. As one moves inwards through the disc, not only does the density of stars in-
crease rapidly on account of the exponential increase in thesurface densityΣ(R) ∝ exp(−R/Rd),
but the random velocities of stars also increase, so a greater fraction of all stars are on eccentric
orbits that carry them far from their guiding-centre radiusRg. Moreover, the effective potential
in which a star oscillates aroundRg rises much more steeply atR < Rg than it does atR > Rg, so
stars spend more time beyondRg than they do interior to it. In fact, as a population of stars heats
up over its lifetime, the asymmetry of the effective potential causes the population to expand
spatially, and by conservation of angular momentum its meanrotation rate diminishes. For all
these reasons, there are many more visitors reachingR0 with guiding centres atR0−∆ than at
R0+∆ . A functional form forn(vφ ) that is successful in fitting observed distributions will reflect
these facts.
Following Shu (1969) we decompose the energy of a disc star into three parts. If the star were
on a circular orbit with angular momentumLz, it would have energy

Ec(Lz) = Φeff(Rg,Lz), (6.1)

where with the Galactic potential in the planeΦ(R)

Φeff(R,Lz)≡
L2

z

2R2 +Φ(R) (6.2)

and the guiding-centre radiusRg(Lz) solves the equationRgvc(Rg) = Lz, with vc(R) the circular
speed. In addition to this energy, the star has two smaller energies, namely the energyEz of
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vertical motion and the energyER of random motion within the plane. We postpone discussion
of Ez and focus for now on stars withEz = 0, which move in the plane. We have

ER =
1
2v2

R +Φeff(R,Lz)−Φeff(Rg,Lz)

= 1
2v2

R +∆Φeff(R,Lz) (6.3)

where

∆Φeff(R,Lz)≡ Φeff(R,Lz)−Φeff(Rg,Lz). (6.4)

Suppose that the disc’s distribution function (DF) is (Shu, 1969)

f (ER,Lz) =
F
σ2e−ER/σ2

, (6.5)

whereF(Rg) is a function that determines the surface density of the young disc andσ(Rg) is a
function that determines how the radial velocity dispersion. On account of the tendency noted
above for a population to expand radially as it heats up, ifF(Rg) is the same for both cool
and hot populations, the hotter populations will have slightly larger radial scale-lengths than
the cool ones. Note thatσ gives the intrinsic dispersion of stars at their guiding centre radius
Rg. The dispersion〈v2

R〉1/2 actually measured at some radiusR will have contributions from all
populations that reach this radius and turns out to be∼10 per cent higher than the value ofσ for
the stars that haveRg = R on account of the presence of stars that have guiding centresatRg < R.
Scḧonrich & Binney (2009a) show that the probability per unit area that a star with angular
momentumLz will be found atR is

P(R|Lz) =
K

σR
exp

[

−∆Φeff(R,Lz)

σ2

]

, (6.6)

whereK(Rg) is chosen such that 1= 2π
∫

dRRP.
Let n(vφ ,R)dvφ be the number per unit area of stars atR with vφ in (vφ ,vφ +dvφ ). Then

n(vφ ,R)dvφ = N(Lz)dLz P(R|Lz) = N(Lz)P(R|Lz)Rdvφ , (6.7)

whereN(Lz)dLz is the number of stars in the disc withLz in (Lz,Lz +dLz). In a cold disc, the
number of stars with angular momenta in(Lz,Lz +dLz), is simply the mass in the corresponding
annulus, 2πΣ(Rg)RgdRg. Hence under the neglect of the mild radial expansion noted above of a
population as its dispersion increases, an exponential disc with surface density

Σ(R) = Σ0e−(R−R0)/Rd, (6.8)

whereΣ0 is the local surface density andRd is the radial scale-length of the disc, has

N(Lz)≃
2πΣ0Rg

vc
e−(Rg−R0)/Rd, (6.9)
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where we have assumed a constant circular speed, so dLz = vcdRg. Combining equations (6.6),
(6.7) and (6.9), we have

n(vφ ,R) =
2πΣ0Rg

vc
e−(Rg−R0)/Rd

K
σ

exp

[

−∆Φeff(R,Lz)

σ2

]

. (6.10)

Our assumption of constantvc allows us to evaluateK(Rg), because then

−∆Φeff(R,Lz) =
1
2L2

z (Rg
−2−R−2)+ v2

c ln(Rg/R), (6.11)

so the normalisation condition 1= 2π
∫

dRRP reads

σ
2πK

=
∫

dR exp

[

−∆Φeff(R,Lz)

σ2

]

=
∫

dR exp
[

c
(

2lnRg/R+1−Rg
2/R2)] (6.12)

= g(c)Rg,

where

c(Rg)≡
v2

c

2σ2(Rg)
, (6.13)

and

g(c)≡ ec(c− 3
2)!

2c(c−1/2)
. (6.14)

So

n(vφ ,R)=
Σ0

vcg(c)
exp

[

−∆Φeff

σ2 − Rg−R0

Rd

]

=
Σ0

vcg(c)
exp

[

c

(

2ln
Rg

R
+1− Rg

2

R2

)

− Rg−R0

Rd

]

. (6.15)

As here we are aiming at velocity distributions and not stellar densities at a certain position, we
will henceforth use the normalised velocity distribution at a fixed radius R

n(vφ |R) =
N

g(c)
exp

[

c

(

2ln
Rg

R
+1− Rg

2

R2

)

− Rg−R0

Rd

]

, (6.16)

whereN normalises the integral ofn in vφ to unity.
Note that on the right side of eq. (6.16) the dependence onvφ is carried by the instances of
Rg = Rvφ/vc and byc(Rg).
From equation (6.6) we expectK (which has the units of a frequency) to be constant when
σ ≪ vc, and indeed from an asymptotic expansion of equation (6.12)for large c we obtain
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Figure 6.1: Upper panel: The functiong(c) defined by eq. (6.14) with solid red line and the
approximation of eq. (6.17) shown by a dashed green line. Lower panel: the relative difference
between the approximation and the underlying formula.
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g(c) ∝ c−1/2 ∝ σ and K = vc/(2π3/2Rg). Fig. 6.1 shows thatg(c) satisfies this expectation
throughout the entire parameter range of interest. For (c > 25), the direct computation ofg(c)
becomes impractical so that apart from the advantage of a numerically less costly formula a
reasonable approximation must be found. The dashed green line in Fig. 6.1 demonstrates that for
c > 2 this is achieved to high precision by

g(c)≃
√

π
2(c−0.913)

. (6.17)

Alternatively g(c) can be stringently approximated using eq. (8.327) of Gradshteyn & Ryzhik
(1980), but our term appears to be the best compromise of simplicity and accuracy throughout
the interesting part of the parameter range. Forσ we adopt the radial dependence

σ(Rg) = σ0e−(Rg−R0)/Rσ . (6.18)

Above we have restricted ourselves to stars withEz = 0. However, to the extent that the motion in
R of a star is unaffected by its motion perpendicular to the plane, the distribution we have derived
will apply to the population formed by all stars that now lie in the solar cylinder (the region
restricted in radius toR ≃ R0 but unrestricted inz). From our formulae we have that the shape
of this velocity distribution is controlled by four parameters: the galactocentric radius of the
measurementR0, the scale-lengthRd of the young disc, the local velocity dispersionσ0, and the
scale-lengthRσ on which the velocity dispersion varies. The first two parameters are generally
well-known and for fits of the solar neighbourhood can be set to R0 = 8kpc andRd = 2.5kpc.
The value ofRσ is less clear and will be discussed below.
The dependence ofn(vφ |R0) on σ0 andRσ is shown in Fig. 6.2. In the upper panel we hold the
dispersion scale-length constant at 7.5kpc and show the velocity distributions for local disper-
sion values ofσ0 = 20,25,30,40,50kms−1. As σ0 increases, the distribution becomes wider
and the low-velocity tail rises much faster than does the high-velocity tail, corresponding to an
increasing asymmetric drift. Simultaneously, the peak slowly shifts to lower velocities. The
lower panel shows the velocity distributions for fixedσ0 = 30kms−1, but different scale-lengths
of the velocity dispersion,Rσ = 10,7.5,5,4kpc. Smaller values ofRσ imply higher dispersion
in the inner regions of the Galaxy and lower dispersion in theoutskirts. Thus for smallRσ stars
from the inner disc can more easily reach theR0 compared to their counterparts with largerRg

so the azimuthal velocity distribution is more skewed and develops a strong low-velocity tail. In
the most extreme case,Rσ = 4kpc, the model breaks down, as〈v2

R〉1/2 approachesvc in the inner
regions. Notice that asRσ falls, the mode of the velocity distribution shifts to higher vφ even
as the tail at highvφ becomes weaker. This effect reflects the fact that stars withlarge random
velocities spread their contributions to the velocity distribution over many radii, while stars with
small random velocities localise their contributions. Consequently, whenRσ is small, the width
in R over which stars contribute tovφ narrows strongly asRg increases, which puts stars with
Rg ≃ R0 strongly in control of the mode of the localvφ distribution.
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Figure 6.2: The behaviour of eq. (6.16) for different local dispersions (upper panel) and dif-
ferent scale-lengths on which the dispersion varies (lowerpanel). The radius of observation
is R = 8kpc at a young-disc scale-lengthRd = 2.5kpc. In the upper panel we set the scale-
length of the velocity dispersion toRσ = 3Rd = 7.5kpc and show results for local dispersions
σ0 = 20,25,30,40,50kms−1, while we useσ0 = 30kms−1 in the lower panel.
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6.4 The velocity distribution as a function of distance from
the plane

In the previous section we setEz = 0 to obtain results that are approximately valid for the dis-
tribution of stars invφ regardless of their distance from the plane. In practice we can determine
the velocity distributions of the stars that lie in various more-or-less narrow ranges inz. We must
now consider how these distributions will vary withz and differ from the aggregate distribution
determined above. In the following we do so using a number of quite crude physical approxima-
tions. These approximations give useful physical insight into why the distribution invφ varies
with |z| as it does, but ultimately the value of our final fitting formula does not depend on the
correctness of the arguments used to motivate it.

6.4.1 Weights of different populations as functions ofz

The key idea is that within the solar cylinder there coexist many populations, one for each value of
Rg. Indeed the chemical compositions and ages of stars vary systematically withRg (see e.g. Luck
& Lambert, 2011; Bensby et al., 2011a; Schönrich, Binney & Dehnen, 2010, for observations
and a short discussion of consequences for studies of kinematics). Moreover, the smaller a
population’s value ofRg, the larger will be its mean value ofEz and therefore the larger will be
its vertical scale-heighth at radiusR; hereh(Rg,R) is the distance that at radiusR provides the
best fit to the vertical density profile of the population through

nRg(R,z) ∝
1
h

e−|z|/h. (6.19)

Note that with this formula we are not asserting that the realvertical density profile is exponential,
but simply identifying the characteristic vertical extentof the population. We now investigate
how the vertical extent of the population increases withR because the vertical restoring force,
which scales likeΣ(R), decreases outwards.
BM11 show that a very good approximation to the vertical dynamics of a population of stars can
be obtained by assuming that the vertical action

Jz ≡
1

2π

∮

dzvz (6.20)

of the population’s stars is adiabatically invariant as thestars oscillate in radius. We use this
adiabatic approximation (AA ) to estimate the ratioh(Rg,R)/h(Rg,Rg).
Jz can be evaluated analytically only for a vertical forceKz that is proportional tozα−1 and to
the local surface density of the discΣ , so we assume these dependencies in order to gain an
analytic model – in realityKz has a much more complex dependence onz, which does not yield
an analytic expression forEz(Jz). Then the vertical action is

Jz =
23/2

π

∫ zm

0
dz

√

Ez − kΣzα , (6.21)
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wherek is a constant and

zm = (Ez/kΣ)1/α (6.22)

is the height at which the radical vanishes. In terms of the variableθ = z/zm we have

Jz =
23/2

π
(kΣ)1/2z1+α/2

m

∫ 1

0
dθ

√
1−θ α . (6.23)

With theAA , it now follows that

zm ∝ Σ−1/(2+α). (6.24)

The scale-heighth(Rg,R) of the population will scale likezm, so

h(Rg,R)

h(Rg,Rg)
=

(

Σ(R)
Σ(Rg)

)−1/(2+α)

= exp

(

R−Rg

(2+α)Rd

)

. (6.25)

Photometry of edge-on spiral galaxies shows that the overall scale-height varies very little with
radius (van der Kruit & Searle, 1982). Since the velocity dispersion at radiusR will be dominated
by the population that hasRg = R, we assume that

h0 ≡ h(R,R) (6.26)

is independent ofR. Hence

h(Rg,R)

h(R,R)
= exp

(

R−Rg

(2+α)Rd

)

. (6.27)

For stars that make only small-amplitude vertical oscillations,Kz ∝ z soα = 2. If the amplitude
of a star’s oscillations significantly exceeds the local disc scale-height (but is none the less small
compared toR), a better approximation is that the disc is razor thin, soKz ≃ constant andα =
1. For amplitudes not small compared to the disc’s scale-length, a yet smaller value ofα is
appropriate. In the fits described below we assumed thatα decreases withz according to

α(z) =

{

2−1.5z/1.5kpc forz ≤ 1.5kpc

0.5 otherwise
. (6.28)

These choices are educated guesses that produce useful results.
Let the ratio of the contributions to the distribution invφ at heightz of the population with
guiding-centre radiusRg and the local population be given by the factorf (z,Rg−R). Then from
equation (6.15) the distribution ofvφ at altitudez above the plane is

n(vφ |R,z)=
N

g(c)
exp

[−(Rg−R0)

Rd

]

exp

[

−∆Φeff

σ2

]

f (z,Rg−R), (6.29)
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whereN is a new normalisation constant.
By equation (6.19), the factorf will scale as

f (z,Rg−R)=
nRg(z)

nR(z)

=
h(R,R)
h(Rg,R)

exp

[ |z|
h0

(

1− h(R,R)
h(Rg,R)

)]

(6.30)

=exp

(

Rg−R

(2+α)Rd

)

exp

{ |z|
h0

(

1−exp

(

Rg−R

(2+α)Rd

))}

,

where in the second step we have used the definition (6.26). Fig. 6.3 shows, for five values of
z, how f varies withRg at R = R0. At z = 0, f is an increasing function ofRg because at large
Rg stars typically have smallEz and therefore are more numerous in the plane than in the solar
cylinder as a whole. Atz = 1kpc, by contrast,f falls with increasingRg because high above the
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plane a sample is richer in stars with smallRg, and therefore largeEz, than is the solar cylinder
as a whole. The formula attains a maximum, where the local scale-height of a population equals
the altitude. Since by definitionf (z,Rg−R0) gives the enhancement of stars with guiding-centre
radiusRg relative to local stars, all lines intersect at (f = 1, Rg = R0) irrespective of the chosen
altitude.

6.4.2 Impact of the AA on the radial motion

The AA predicts that any star’s value ofEz varies as it moves radially. Since the star is moving
in a time-independent potential, its total energy is constant. It follows that changes inEz must be
compensated by changes in its energy of motion parallel to the plane. SinceLz is a true invariant,
the energyΦeff(Rg,Lz) associated with the underlying circular orbit is unchanged, so changes in
Ez must be compensated by changes in the radial energyER. Hence (6.3) becomes

1
2v2

R +∆Φeff(R,Lz)+∆Ez = constant, (6.31)

where

∆Ez(Jz,R,Rg)≡ Ez(Jz,R)−Ez(Jz,Rg) : (6.32)

takes into account the decrease in a star’s vertical energy as it moves outwards: by conservation
of energy, this energy must be transferred to the radial motion. One way of thinking about this
energy transfer is to imagine that the star moves at constantenergy in an effective potential

∆Φad(R,Lz)≡ ∆Φeff(R,Lz)+∆Ez(Jz,R,Rg), (6.33)

which might be called the “adiabatic potential” since it is the effective potential for radial motion
that follows from adiabatic invariance of the vertical motion. At R > Rg ∆Φad increases withR
less rapidly than the standard effective potential∆Φeff, so stars can reach larger radii than they
could if Ez were constant. BM11 simulated this effect by simply increasing Lz to Lz + Jz.
With the power-law forms of the vertical potential that we introduced above, we can obtain the
dependence ofEz on Σ . From equations (6.22) and (6.23) we find

Ez ∝ Σ2/2+α , (6.34)

so

∆Ez(Jz,R,Rg) = Ez(Jz,R)

[

1−exp

(

2(R−Rg)

(2+α)Rd

)]

. (6.35)

Our plan is to use∆Ez to modify our expression (6.10) forn(vφ |R,z), which has no dependence
on vz and therefore does not specify a value ofJz or Ez. Therefore in equation (6.35) we now
replaceEz(Jz,R) by an estimateEz of the typical vertical energy of the stars that are encountered
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Figure 6.4: Demonstration of the effect on velocity distributions above the Sun of adding∆Ez to
the effective potential to allow for the tendency of vertical energy to shift orbits outwards. The
velocity distributions are derived from fits to the models discussed in Section 6.5.1. Full curves
show the full corrections withEz (“corr”), dashed lines give the same models with the simple
adiabatic approximation (“sAA”) ignoring energy conservation.
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at (R,z) with angular momentumLz = Rvφ . Equation (6.47) in Section 6.7 is an expression for
Ez in terms ofh(Rg,R) and the vertical component of the gravitational potential.
Our next step is essentially to replace∆Φeff by ∆Φad in equation (6.29) but before we do this
we have to recall that the prefactorg(c) arose from normalising the radial probability density
P(R|Lz) as given by equation (6.6). For consistency in this formula we must now replace∆Φeff
by ∆Φad, with the consequence that the normalising integral is no longer analytic. Therefore our
final formula for the distribution ofvφ at a given point in the Galaxy must be written

n(vφ |R,z)=N e−(Rg−R0)/Rd
2πRgK

σ

×exp

[

−∆Φad

σ2

]

f (z,Rg−R), (6.36)

where K(c,Ez,Rg) is the numerically-determined result of normalising the revised form of
P(R|Lz) [cf eq. (6.12)],N normalises the distribution invφ and f is defined by equation (6.30).
Fig. 6.4 illustrates the effect that the inclusion of∆Ez in the effective potential has onn(vφ |R,z)
by showing forR = R0 and several values ofz the velocity distributions predicted with (full
curves) and without (dotted curves)∆Ez. Including∆Ez moves all velocity distributions to lower
vφ , particularly on the left side. The magnitude of the shift increases withz because at lowz,
n(vφ |R,z) is dominated by orbits with smallEz and therefore small∆Ez.
Far from the plane (z ∼ 2kpc) equation (6.36) breaks down because the physical assumptions on
which it depends fail. A problem that must be encountered at some height is that the vertical
frequency becomes comparable to the horizontal frequency,so the assumption of adiabatic in-
variance ofJz fails – the coupling between the horizontal and vertical motions becomes strong
and complex. However, BM11 did not encounter problems with the AA below∼ z = 2kpc. The
failure we encounter here probably arises from equation (6.47) for Ez, so we below explore the
effect of limiting the energy transfer by placing an uper limit on the value ofEz to less than
(50kms−1)2.

6.4.3 Velocity moments

From the formulae we have in hand we can calculate a variety ofmoments. Suppose the stellar
population of the disc were a superposition of populations that haveDFs of the form

f (ER,Lz,Ez) ∝ e−ER/σ2
e−Ez/σ2

z , (6.37)

where the dependence onEz is inspired by equation (6.19). Then since thisDF is a Gaussian in
vR, we would have〈v2

R〉 = σ2. To each value ofRg and thereforevφ we could ascribe a fixed
value for〈v2

R〉 = σ2, where in general lowervφ are connected to higher〈v2
R〉 = σ2. Hence the

velocity dispersion of the entire disc could be obtained from the weighted average

〈

v2
R

〉

(R,z) =
∫

dvφ n(vφ |R,z)σ2(Rvφ/vc). (6.38)
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Similarly the asymmetric drift would be

va(R,z) = vc −
∫

dvφ n(vφ |R,z)vφ . (6.39)

From the work of Section 6.4.2 we know thatER is not strictly a constant of the motion on
account of the transfer of energy between the radial and vertical motions, so these formulae are
only approximate. We shall see that they are nevertheless useful.
The DF (6.37) is also a Gaussian invz so naively we have〈v2

z 〉 = σ2
z for the population formed

by stars of a given value ofLz. However, when calculating〈v2
z 〉 for the entire disc it is essential

to bear in mind the radial variation ofEz implied by adiabatic invariance ofJz (eq. 6.34). In
effect this variation ofEz causesσz to vary with radius even at fixedLz. Hence an approximate
expression for the vertical velocity dispersion of the entire disc is

〈

v2
z

〉

(R,z) =
∫

dvφ n(vφ |R,z)σz
2(R0vφ/vc)

(

Σ0

Σ(R)

)2/2+α
. (6.40)

6.5 Applications

6.5.1 Comparison with torus models

To evaluate the performance of the above equations we fit the velocity distributions of the torus
model of BM11. TheDF of this model is

f (Jr,Lz,Jz) = fσr(Jr,Lz)×
ν

2πσ2
z

e−νJz/σ2
z , (6.41)

where

fσr(Jr,Lz)≡
ΩΣ

πσ2
r κ

∣

∣

∣

∣

Rc

[1+ tanh(Lz/L0)]e
−κJr/σ2

r . (6.42)

Here Ω(Lz) is the circular frequency for angular momentumLz, κ(Lz) is the radial epicycle
frequency andν(Lz) is its vertical counterpart andΣ(Rg) is given by equation (6.8). The factor
1+ tanh(Lz/L0) in equation (6.42) is there to effectively eliminate stars on counter-rotating orbits
and the value ofL0 is unimportant provided it is small compared to the angular momentum of the
Sun. In equations (6.41) and (6.42) the functionsσz(Lz) andσr(Lz) control the vertical and radial
velocity dispersions. The observed insensitivity to radius of the scale-heights of extragalactic
discs motivates the choices

σr(Lz)=σr0eq(R0−Rc)/Rd

σz(Lz)=σz0eq(R0−Rc)/Rd, (6.43)

whereq = 0.45 andσr0 andσz0 are approximately equal to the radial and vertical velocitydis-
persions at the Sun. BM11 take theDF of the entire disc to be the sum of aDF of the form (6.41)
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Table 6.1: Parameters of the torus model’sDF.

Disc Rd/kpc σr0/kms−1 σz0/kms−1 L0/kpckms−1

Thin 2.4 27 20 10
Thick 2.5 48 44 10

Table 6.2: Parameters of the potential employed

Component Σ(R0)/M⊙pc−2 Rd/kpc h/kpc Rm/kpc
Thin 36.42 2.4 0.36 0
Thick 4.05 2.4 1 0
Gas 8.36 4.8 0.04 4

Component ρ/M⊙pc−3 q γ β r0/kpc rt/kpc
Bulge 0.7561 0.6 1.8 1.8 1 1.9
Halo 1.263 0.8 −2 2.207 1.09 1000

z σ0 Rσ h0 〈v2
R〉1/2 〈v2

R〉
1/2
BM11 χ2

0 27.07 5.30 — 30.9 33.4 0.000095
250 27.56 5.39 229.8 32.3 35.2 0.000134
500 29.23 5.70 170.4 36.4 40.4 0.000265
750 33.30 6.25 190.4 44.1 48.4 0.000338
1000 38.93 6.86 247.7 53.9 55.1 0.000063
1250 40.85 6.90 281.3 60.0 58.7 0.000079
1500 42.21 7.29 294.5 62.4 60.7 0.000034
1750 44.45 8.26 284.7 63.7 61.8 0.000113
2000 49.27 10.90 271.5 64.8 63.1 0.000363

Table 6.3: Values of the parameters for the fits shown in Fig. 6.5, which employ the simple adia-
batic approximation.z denotes the distance from the plane in parsecs,Rσ the scale-length of ra-
dial velocity dispersion,h0 the local scale-height. We fixed the circular speedvc = 216.25kms−1

and disc scale-lengthRd = 2.4kpc to the values used by BM11. For a further comparison we give
the rms radial velocity from eq. (6.38) and the value of the corresponding parameterσR,BM11 of
the torus model. All fits and theirχ2 values were derived for 60kms−1 < vφ < 260kms−1. Note
that theχ2 values are not sensible per se, but a mere description of the relative fit quality, as there
are no proper errors on the theoretical distributions underlying the fit.
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Figure 6.5: Fitting velocity distributions of a torus modelfrom BM11 at different altitudes using
eq. (6.29). Points show values from the torus model and the curves show our fits to these points.
The scale-length of the disc was fixed at the BM11 value ofRd = 2.4kpc, the parameterα used
to estimate the adiabatic invariant was set via equation (6.28).
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for the thin disc, and a similarDF for the thick disc, the normalisations being chosen so that at
the Sun the surface density of thick-disc stars is 23 per centof the total stellar surface density.
Table 6.1 lists the parameters of each component of theDF.
BM11 took the gravitational potential to be that of Model 2 in Dehnen & Binney (1998a) modi-
fied to have thin- and thick-disc scale-heights of 360pc and 1kpc (Table 6.2). In this model the
disc contributes 60 per cent of the gravitational force on the Sun, with dark matter contributing
most of the remaining force.

Distribution in vφ

The points in Fig. 6.5 show thevφ distributions of the BM11 model atR0 and heights up to
2kpc, while the curves show the fits to these points that we obtain from equation (6.36) when we
approximate∆Φad with ∆Φeff. We takeα from equation (6.28) and at each location(R0,z) we
fit the givenvφ distribution independently by adjusting the parametersσ0, Rσ andh0. Table 6.3
gives the parameter values obtained from the fits and also theradial velocity dispersions that the
fits yield through equation (6.38) and the true radial velocity dispersion within the model. Notice
that the parameterσ0 rises from 27kms−1 at the plane to 48kms−1 at z ∼ 2kpc and that these
values coincide with the values of the corresponding parameters in theDFs of the thin and thick
discs, respectively. Fig. 6.6 and Table 6.4 show the fits obtained to the same data when∆Φad in
equation (6.36) is evaluated from equation (6.33) with∆Ez replaced byEz from equation (6.47).
In both Figs. 6.5 and 6.6 the quality of the fits is excellent, so the inclusion of∆Ez improves
the optimum fit only marginally. However, inclusion of∆Ez does change the optimum value
of h0 significantly and in the sense of bringing it closer to the true scale-height of the model
disc, which increases from small values very close to the plane, where the gas disc dominates
the gravitational potential, through 300pc atz ∼ 300pc, where the thin disc accounts for the
majority of stars, to∼ 1kpc at large heights, where the thick disc is dominant. Notethat far
from the plane the dominant population’s scale-heighth0 is significantly smaller than the locally
measured scale-height of the disc because the population isdominated by stars withRg < R,
which by equation (6.25) haveh(Rg,R)> h0. Even so, when∆Ez is omitted, the fitted values of
h0 are unexpectedly small. Including∆Ez increasesh0 at all heights, while limiting the values of
Ez employed to less than(50kms−1)2 yields intermediate values ofh0, which are not far from
constant as we would wish. The reason adding∆Ez to the effective potential increasesh0 is
that ∆Ez increases the contribution to the velocity distribution atR0 of stars with small values
of Rg and thereforevφ and thus reduces the need to suppress the contribution of thepopulation
with Rg ≃ R0, which dominates the peak of thevφ distribution, relative to the stars that form the
prominent left wing of the distribution. The other improvement effected by including∆Ez is to
lower 〈v2

R〉1/2 slightly and thus bring it closer to its true value at high altitudes. When there is no
upper limit on the values ofEz used in the calculation of∆Ez, this lowering of〈v2

R〉1/2 becomes
excessive abovez ≃ 2kpc because at such altitudes the vertical energy becomes comparable to
the radial energy.
Irrespective of whether∆Ez is used, the scale-lengthRσ exhibits a continuous rise in the fits,
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z σ0 Rσ h0 〈v2
R〉1/2 〈v2

R〉
1/2
BM11 χ2

0 27.06 5.31 50.5 30.9 33.4 0.000097
250 27.46 5.48 347.2 32.1 35.2 0.000310
500 29.65 5.61 323.4 37.1 40.4 0.000267
750 33.99 6.14 326.8 45.4 48.4 0.000338
1000 39.81 6.79 438.7 55.4 55.1 0.000060
1250 41.99 6.81 533.2 62.3 58.7 0.000085
1500 43.08 7.40 564.1 63.6 60.7 0.000040
1750 43.83 8.50 496.4 62.3 61.8 0.000117
2000 43.94 10.70 416.2 58.3 63.1 0.000234

0 27.06 5.31 50.5 30.9 33.4 0.000097
250 27.46 5.48 347.2 32.1 35.2 0.000310
500 29.65 5.61 323.4 37.1 40.4 0.000269
750 33.99 6.14 326.8 45.4 48.4 0.000338
1000 39.88 6.74 391.0 55.7 55.1 0.000062
1250 41.74 6.79 401.8 61.9 58.7 0.000081
1500 42.72 7.28 390.7 63.4 60.7 0.000035
1750 43.69 8.13 345.8 63.1 61.8 0.000105
2000 45.87 10.18 301.9 61.7 63.1 0.000230

Table 6.4: Fit parameters when the vertical energy correction ∆Ez is included. The upper half
applies the unlimited correction and its fits are presented in Fig. 6.6. The lower half includes an
upper limit ∆Ez ≃ Ez = (50kms−1)2 that produces comparable fits, but prevents a breakdown
of the horizontal dispersion starting aroundz = 2kpc. Fits were taken with the same fixed pa-
rameters and in identical range as the fits described in Table6.3, but this time with non-zero
∆Ez.

moving away from the valueRd/0.45 of the corresponding parameter of the torus model.Rσ
comes closer toRd/0.45 the lowerα is chosen at higher altitudes.

Distributions in vR

As we remarked in Section 6.4.3, theDF (6.37) is such that stars of givenLz have a Gaussian
distribution invR. Consequently, the distribution invR of all stars found at a given distance from
the plane should in this picture be a weighted sum of Gaussiandistributions with the weights
implicit in equation (6.38). Fig. 6.7 compares this prediction (lines) at several altitudesz with the
corresponding distributions from the torus models (data points). The overall agreement between
the data points and the predictions of the formula is remarkable when one bears in mind that
the curves have not been obtained by fitting to the data points. At low altitudes (red and green)
the formula predicts a distribution that is slightly too sharply peaked and deficient in the wings.
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Figure 6.6: Fitting the velocity distributions of BM11 at different altitudes using eq. (6.36). The
scale-length of the disc was fixed at their value ofRd = 2.4kpc and the parameterα was assumed
to be the function ofz specified by eq. (6.28).



142 CHAPTER 6. A NEW FORMULA FOR DISC KINEMATICS

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

-150 -100 -50  0  50  100  150

fr
eq

u.

U/kms-1

0 pc
500 pc

1000 pc
1500 pc
2000 pc

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

-150 -100 -50  0  50  100  150

fr
eq

u.

U/kms-1

0 pc
500 pc

1000 pc
1500 pc
2000 pc

Figure 6.7:vR velocity distributions from the models with non-zero∆Ez (lines) compared to the
torus models (data points) at different altitudesz. The upper panel is for whenEz is unlimited
and the lower panel is for whenEz < (50kms−1)2.
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Around∼ 1kpc from the plane the fit is near perfect. The agreement between the curve for 2kpc
and the data points at|vR| < 50kms−1 is much better in the lower panel than the upper panel,
vindicating the use of the correction provided by∆Ez.

6.5.2 Application to the Geneva-Copenhagen Survey

We have fitted the full formula (6.36) at an altitude ofz = 40pc to the velocity distribution of the
Geneva-Copenhagen Survey (GCS) of F and G stars (Nordström et al., 2004; Holmberg et al.,
2009). As sample we selected the full 13520 objects that havemeasured space velocities. We
adoptedvc = 220kms−1 and assumed that the Sun’s velocity with respect to the LocalStandard
of Rest is 12.24kms−1 (Scḧonrich, Binney & Dehnen, 2010), so 232.24kms−1 was added to
the published heliocentricvφ velocities. Given that the sample lies near to the mid-plane, where
α = 2 would apply, we adoptedα = 1.5, and we also set the local scale-height toh0 = 200pc:
whenα andh0 are allowed to vary when fitting to the data, they prove to be strongly correlated
in the sense that low values ofα enhance the contribution of populations with smallerRg and
thus favour larger values ofh0 for balance. However, the differences between the residuals of the
various best fits are not statistically significant.
Fig. 6.8 shows two typical fits performed on the region 150< vφ/kms−1 < 250, which demon-
strate how nicely and naturally the formula reproduces the non-Gaussianity of the azimuthal ve-
locity distribution. The fits are for scale-lengthsRσ = 7.5kpc (blue dashed line) andRσ = 5kpc
(red solid line). The shorter scale-length provides the better fit at lowvφ and the worse fit to the
high-velocity tail. The shorter length scale also yields the smaller value of the velocity-dispersion
parameter,σ0 = 22.90±0.45kms−1 versusσ0 = 24.57±0.48kms−1. In the plane the core of
the velocity distribution is dominated by the youngest partof the thin disc, while the wings of the
distribution will be dominated by the thick disc, and as we proceed from the core to the wings
of the distribution stars of ever increasing age will grow inimportance. Hence the true distri-
bution inv< < phi reflects the entire star-formation history of the Galaxy andwe cannot expect
to obtain a perfect fit to it by adjusting a single velocity-dispersion parameter,σ0. Moreover,
the statistics of the GCS catalogue to some extent reflect the complex selection biases involved
in the catalogue’s formation, and we have made no attempt to replicate these biases. Neglect
of these complexities is presumably why our fit is less good than that obtained by Schönrich,
Binney & Dehnen (2010). The presence of kinematically hotterobjects is confirmed by the esti-
mated value forσ0 drifting to higher values when we expand the velocity interval on which we
perform the fits. A couple of thin-disc scale-heights above the plane the population will be more
homogeneous, being dominated by the thick disc, and it should be possible to obtain better fits
by adjustingσ0.
Interestingly, on testing for a systematic shift invφ the formula recovered to 2kms−1 the ex-
pected local standard of rest both from the GCS data and from the velocity distributions of the
torus models at low altitudes. At higher altitudes the performance deteriorates due to the higher
uncertainties. We found that for local stars∆Ez does not play a significant role, although it gives
a bias of order 1kms−1. In a forthcoming re-determination of the local standard ofrest we will
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Figure 6.8: Fitting the GCS velocity distribution with a two-parameter fit, using only a normal-
ization constant and the local dispersionσ0. The lower panel shows the fit on a logarithmic
scale to show the wings, while the upper panel presents the linear scale. We separately fitσ0 for
dispersion scale-lengthRσ = 7.5kpc (blue dashed line) andRσ = 5kpc (red solid line).
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take this effect into account.
Fig. 6.9 compares the GCS data with thevR distributions that follow from the fits tovφ . It is clear
that the formula under-estimates the width of thevR distribution. In Section 6.5.1 we found that
in the case of the torus model at small|z|, the fittedvR distribution was somewhat narrower than
the true one even though thevφ distribution was very closely fitted. Correspondingly, in the case
of the GCS data, the failure of the fit to thevφ to adequately populate populate the wings of the
distribution is mirrored in the fit to thevR distribution in Fig. 6.9 being least satisfactory in the
wings.

6.6 Conclusions

The distribution of azimuthal velocities in the disc of a galaxy like ours is very skew and varies
systematically with distance from the plane. Naturally onewants to be able to quantify such
a distribution in an effective way. The traditional approach of fitting it with a superposition of
Gaussians (e.g. Bensby et al., 2003; Ivezic et al., 2008; McConnachie et al., 2006) is unsatisfac-
tory, both because there is no physical reasoning behind theuse of a Gaussian when the distribu-
tion is not dominated by measurement error, and because whena superposition of Gaussians is
used, the parameters of the fit are neither unique nor physically informative.
Our formula is based on the approximation that the vertical actions of stars are invariant as
stars oscillate radially. We have refined this approximation by considering anew the impact
that vertical motion has on the radial oscillations, which BM11 found to be a significant effect.
Our treatment of this effect, being based on overall energy conservation, is conceptually much
sounder than that of BM11 and promises to play a valuable role in the interpretation of stellar
velocities with rigorous dynamical models. However, we findthat the power of our formula
is only marginally improved by our more rigorous treatment of how vertical motion affects the
radial oscillations.
Ultimately, our formula is just a fitting formula rather thana dynamical theory, even though
we have derived it from dynamical considerations. Something the derivation highlights is how
closely the horizontal and vertical motions of stars are intertwined, notwithstanding the adia-
batic invariance of actions. Because both the vertical and horizontal random velocities of stars
increase with age, as one moves away from the plane the mix of stars one sees fundamentally
changes in the sense of increasing age and decreasing radiusof birth. The cleanest way to model
this phenomenon is by means of aDF like those presented by Binney (2010), but a couple of
computationally challenging steps are required to extractobservationally testable velocity dis-
tribution such asn(vφ ) from a DF: first a connection has to be established between ordinary
phase-space coordinates and the isolating integrals upon which theDF depends, and then one has
to marginalise over two velocities. Evaluation of our formula is trivial by comparison.
Our derivation makes it plain that no population of stars cansimultaneously have scale-height and
velocity dispersion that are both independent of radius: the sub-population formed by stars that
have a narrow range of angular momenta must inevitably increase in scale-height and decrease in
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vertical velocity dispersion with increasingR, and if stars of larger angular momenta are added
in to hold constant the scale-height, they will have to have an even smaller vertical velocity
dispersion, so the vertical dispersion of the entire population will decline steeply outwards. Given
this situation, it is unwise to seek to define the thick disc interms of a given scale-height and
velocity dispersion, as some recent papers have done.
We validated our fitting formula by using it to fit the distributions of vφ components at several
distances from the plane in a model with a well-definedDF that included both thin and thick discs.
Excellent fits were obtained. The values of the fitting parameters varied slightly with the level of
sophistication of the model employed, but were broadly in agreement with the values we would
expect given the underlyingDF, especially when the most sophisticated approximations were
used. This exercise implies that physical significance can be attached to the values of parameters
derived from fits to real data. Each fit to avφ distribution implies a model of the corresponding
vR distribution. In our tests these models turned out to be veryuseful although showing a slight
tendency to be too narrow at small|z|.
We fitted the formula to thevφ velocities of GCS stars and obtained good but not perfect fits for
plausible values of the parameters. The blemishes in these fits will arise from three causes: (i)
the well known presence of pronounced clumping of stars in the (U,V ) plane (Dehnen, 1998),
(ii) the need to model subtle selection effects in the GCS sample, and (iii) our formula is derived
from an isothermalDF and must encounter difficulty fitting data drawn from a systemthat is a
superposition of systems with very disparate dynamical temperatures. Hence in part the diffi-
culties encountered in fitting the GCS data may reflect the importance at the extremes of thevφ
distribution of the thick disc and/or stellar halo. With a larger body of data, or data taken further
from the plane, it might be profitable to fit the data to a sum of two or more instances of our
formula. Our fit to thevφ components yields a model of thevR components that is rather too
narrow, in agreement with our work with the model based on aDF.
Our formula could be used to fit the line-of-sight velocity distributions (LOSVDs) of galaxies
in which individual stars are not resolved (e.g. Bacon et al.,2001). Since our formula has been
derived on the assumption that the circular speed is independent of radius, it might fail to produce
a satisfactory fit to the velocity distribution of stars in a galaxy with a distinctly non-flat rotation
curve. The physical basis of our formula breaks down at distances from the plane of order 2kpc,
so failure to fit data for stars at higher altitudes might haveno physical significance.
We derived our formula by adapting to the three-dimensionalworld the planarDF of Shu (1969).
It would be interesting to adapt in a similar way the planarDF of Dehnen (1999b), which Dehnen
has argued is in certain respects superior to the ShuDF. Unfortunately, the adaptation of a planar
DF is a non-trivial exercise on account of the intertwining of the radial and vertical motions
mentioned above. Therefore in this paper we have confined ourselves to the ShuDF, which
proves to provide a very useful point of departure.
Data for stars that lie at significant distances from the plane are now becoming available (Ivezic
et al., 2008; Siebert et al., 2011). The measured space velocities of such stars contain significant
errors arising from a combination of errors in proper-motion and distance. It is essential to take
proper account of these errors when inferring the true kinematics of the underlying populations.
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Our formula provides the natural way to do this: one fits the data to the result of folding the
formula with appropriate distance and proper-motion errors. Scḧonrich, Asplund & Casagrande
(2011a) use this methodology to extract in an elegant way theinformation contained within the
measured distribution of azimuthal velocities of stars that have quite large random velocities. We
will shortly present similar analyses of samples that include a higher proportion of disc stars.
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6.7 Appendix: Estimating the typical vertical energy

In this section we estimate the typical valueEz(Rg) of the vertical energyEz(Jz,R) of the stars
that we encounter with specified angular momentumLz = Rvφ at a given location(R,z). Let σz

be the vertical velocity dispersion at(R,z). then

Ez(Rg)≃ 1
2σ2

z (Rg)+Φz(z). (6.44)

Regardingσz, we have that to an excellent approximation the vertical Jeans equation reads (Bin-
ney & Tremaine, 2008, eq. 4.271)

d
(

ρσ2
z

)

dz
=−ρ

dΦz

dz
. (6.45)

Neglecting the derivative of lnσ2
z relative to that of lnρ this yields

σ2
z = h

dΦz

dz
, (6.46)

whereh ≡ −(dlnρ/dz)−1 is the local scale-height of the population. As we saw from equation
6.27 the local scale-height decreases towards lower guiding centre radii, if we assume all popu-
lations to have at their guiding centre radius a constant scale-height. Hence finally we adopt:

Ez(Rg) =
1
2h(Rg,R)

dΦz

dz

∣

∣

∣

∣

z
+Φz(z). (6.47)

Equation (6.47) involves the potential and its derivative at altitude z. We obtain these from
a simple mass model with a razor thin gas layer that at the solar radius has surface density



6.7. APPENDIX: ESTIMATING THE TYPICAL VERTICAL ENERGY 149

12M⊙pc−2 and three exponential stellar components. In each such component the mass per unit
surface area within distancez of the plane is

Σi(z) = Σi,0

(

1−e−z/hi

)

. (6.48)

The three components represent the thin disc, the thick discand the halo with parameters

(Σ1,0,Σ2,0,Σ3,0) = (30,10,70)M⊙pc−2 (6.49)

and

(h1,h2,h3) = (300,1000,4000)pc. (6.50)

The halo contribution was chosen to match the local verticalpotential from the adopted Dehnen
potential, which was used for the torus models to which we compare our formalism – the modifi-
cations required for a different radius or disc mass are simple. We approximate the contribution
Φi(z) to the potential from theith component by assuming that the component is an infinite
plane-parallel sheet. Then

Φi(z) = 2πGΣi,0

[

z+hi

(

e−z/hi −1
)]

. (6.51)



Chapter 7

Application of the formula to study
kinematics and changes to the adiabatic
approximation

7.1 Abstract

In this little chapter the necessity for a change in the adiabatic correction is shortly discussed,
followed by a comparison of the two possible solutions: A change in the adopted angular momen-
tum of a star and the use of the adiabatic potential. We find theadiabatic potential more robust
and show that by pushing the orbits further out there is a significant increase of the asymmetric
drift at larger altitudes, where the vertical energy and itschange with galactocentric radius are
larger. In the second part we lay out our error analysis for kinematic data and show an application
to the SEGUE sample.

7.2 Consequences of the new adiabatic potential for the adia-
batic approximation

7.2.1 correcting the adiabatic correction

In the previous chapter we motivated the need for changing the horizontal potential when using
the adiabatic approximation. The need for this change is obvious as the adiabatic approximation
reduces the vertical energy of stars total energy conservation is violated in the classical adiabatic
approximation. To correct for this we suggested in the previous chapter to let the balance go over
to the horizontal term:

Φad(R,Lz) =
L2

z

2R2 +Φ(R)−∆Ez(α,v2
z ,R), (7.1)
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whereLz is the angular momentum parallel to the rotation axis,∆Ez(α,v2
z ,R) is the relative

change of vertical energy in the orbit relative to its guiding centre radius. We call this term
the adiabatic potential as it describes the horizontal motion of the adiabatic approximation with
energy conservation. Binney & McMillan (2011) suggested in contrary that the orbits of their
stars can be very well described, if the vertical motion thatpushes orbits outwards is accounted
for by using in the effective potential the entire angular momentum instead of its projection
onto the rotation axis. As of these two suggestions the energy conservation arguments is on
firm grounds, this raises the question why and under which conditions the angular momentum
approximation can be a sensible solution.
For the assumed vertical potential that follows a power law and is approximately proportional to
the surface density of the diskΣ(R) we obtained in Equation (6.35):

∆Ez = Ez,g

(

1−exp

(

−R−Rg

Rd

2
2+α

))

. (7.2)

This term delivers the aforementioned outwards tilt of the effective potential that pushes out the
inner boundary of the orbit and allows it to travel further out. We can now directly check the
suggestion of Binney & McMillan (2011) for the assumed power law potential approximating
the contribution byEz to the effective potential with a term in 1/R2:

Ez ∼−Ez
R2

g

R2

1
2+α

Rg

Rd
(7.3)

If we now replaceEz by the vertical velocity squared near guiding centre radius, we have simply

Ez
R2

g

R2 ∼
L2

φ

2R2 (7.4)

and so our formula is a simple adding of angular momenta in theeffective potential, if 1
2+α

Rg
Rd

∼ 1,
which happens to be the case near the regionRg ∼ 2.5Rd. However, this only matches the first
derivative. Already the second derivative of the approximation does not match its parent formula.
We check our assumptions for a naive potential in Fig. 7.1. Asunderlying potential we use
an unrealistic but handy potential with a constant circularrotation speedVc = 220kms−1 and a
razor thin disc vertical potential with an exponentially declining mass surface density of scale
length 2.5kpc and a local mass surface density of 40M⊙pc−2. This potential is, however, useful
for tests, as we know the power law index to be preciselyα = 1, eliminating uncertainty on the
right choice of this parameter. The upper panel shows an orbit starting fromR = 8kpc,z = 0pc
with initial velocities(vR,vφ ,vz)= (35,220,20)kms−1, the lower panel displays an orbit with the
same initial kinematics, but starting fromR= 3kpc,z= 0pc. On the vertical axis we plot changes
in the horizontal energy termEh = Ekin,h+Φe f f , whereEh is the assumed measure for horizontal
energy,Ekin,h is the kinetic energy in radial direction andΦe f f are the three possible assumptions
for the effective potential. For the blue curves we take the classical effective potential derived
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Figure 7.1: Testing the adiabatic approximation for two orbits in an idealised potential. The
lines display the horizontal energy partEh = Ekin,h +Φe f f for different assumptions: The blue
line shows the classical adiabatic approximation, the green has the angular momentum term
corrected according to Binney & McMillan (2011), while the blue line contains the correction
for vertical energy from eq.7.2.
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just from the vertical angular momentum and the potential inthe disc plane. Consistent with our
expectations this leads to a drift in the overall horizontalenergy along galactocentric radiusR,
with Eh rising towards larger radii, as the simple adiabatic approximation neglects the energy
transfer from the vertical term. The red curves give the energy Eh measured with the adiabatic
potential, i.e. balancing the expected vertical energy changes in the horizontal term. As we
hoped, this term is (apart from the minor phase dependent oscillations around the mean value
that arise from our approximation to split the motion into horizontal and vertical parts instead of
calculating the orbit or using the real actions) completelyflat in R for both plots, which implies
that the horizontal motion is correctly described by the adiabatic potential. The green curves give
the angular momentum approximation by Binney & McMillan (2011). For the adiabatic index
α = 1 of our chosen potential, our simple calculation suggests that the approximation attains its
optimal value atRg = 3Rd = 7.5kpc, soEh should bend very slightly upwards forRg = 8kpc in
the upper plot, as it really does, and bend strongly downwards due to severe over-correction of
the energies forRg = 3kpc in the lower plot, which it fulfils as well.
To demonstrate how important this kind of effects is for a correct assessment of Galactic kine-
matics, Fig. 7.2 shows the asymmetric drift in the kinematicmodel of Binney (2010) with his
thin and thick disc distribution function against altitude. For this we use the best-fit potential of
McMillan (2011). With the continuous red line we plot the mean rotational velocities calculated
with our adiabatic potential. These are significantly belowthe values from the original approach
without vertical energy correction (dashed blue line). Thedifference is nearly negligible in the
disc plane, where vertical energies are small and grows towards larger altitudes that require large
vertical energies that push the stars from the inner disc outwards. As a side effect this relation
mildly decreases the importance of the thick disc in the inner parts of the Galaxy from where the
thick disc orbits are pushed away and increases its relativeimportance in the intermediate and
outer parts as orbits are taken to regions where they feel less vertical restoring force and as we
have a more numerous population of energetic inner disc stars.
As a last point we would like to mention a speciality of the adiabatic potential: As vertical energy
tilts the effective potential outwards, the potential minimum shifts to larger radii. Stars with large
vertical energy and slow radial motion can hence be on orbitsthat never cross their guiding centre
radius as defined by the classic effective potential. We encountered those peculiar objects in N-
body simulations (Solway et al. in prep.) and hope to find themalso in real data once we can
derive more precise kinematics.

7.3 Application to SEGUE

Lastly we apply the fitting formula to data release 8 of Sloan Digital Sky Survey (SDSS, York
et al., 2000) for stars that were observed spectroscopically with the SEGUE Survey (Yanny et
al., 2009). Stellar parameters for the stars were estimatedusing the SEGUE Stellar Parameters
Pipeline (SSPP, Lee et al., 2008a,b; Allende Prieto et al., 2008). In contrast to the Geneva-
Copenhagen-Survey, which combined radial velocity measurements with the Hipparcos paral-
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Figure 7.2: Comparison of the mean rotational velocities against altitude above the plane with
and without the correction of the adiabatic potential. We used an adaption of the formalism of
Binney (2010), using the potential from McMillan (2011).

altitude/pc 0−400 400−800 800−1200 1200−1700 1700−2300 z > 2300
num. stars 1002 7243 7630 5601 3637 3217
mean z/pc 433 595 985 1423 1971 2808
ln(P) −80.10 −195.23 −93.64 −88.22 −88.35 −87.1
1 - p-level 0.999 1 0.734 0.194 0.606 0.672
σ0 32.6 31.6 34.1 37.75 40.59 39.42
h0 432.8 594.6 856.1 691.7 651.3 472.7
adoptedα 1.38 1.08 0.72 0.28 −0.27 −1
〈

v2
R

〉

32.02 35.44 39.60 45.89 52.41 55.0
〈

v2
R

〉

data 42.63 45.79 49.12 55.25 60.39 68.3

Table 7.1: Fit parameters and observers at different altitudes in the SEGUE DR8 sample. Dis-
persion values are from stars with|U |< 200kms−1 and|W |< 80kms−1.
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Figure 7.3: Velocity distributions from SEGUE DR8 versus thefits with parameters from table
7.1 at different altitude bins. Error bars give the Poisson noise, but do not account for systematic
or velocity errors.

laxes and proper motions, SEGUE only contains line-of-sight velocities, proper motions and
stellar parameters. The survey is far deeper and covers a larger volume reaching higher altitudes,
but due to the larger distance proper motion errors translate into larger velocity errors. As there
are no parallaxes, distances are highly uncertain and everystudy of kinematics is complicated
by non-Gaussian errors arising from the distance uncertainties. As a first approach we adopt the
main sequence calibration of Ivezic et al. (2008) (Eq. A7 in their Appendix) to obtain photo-
metric parallaxes for stars with gravities log(g) > 4.1 determined in the SSPP. An alternative
that would reduce the loss of available objects would be to use the method of Burnett & Bin-
ney (2010), however, we have sufficient numbers of stars so that we can afford to limit the risk
of systematic mis-selections by restricting the sample to main sequence stars with a tight sur-
face gravity cut. The selection of stars, distance determination and derivation of kinematics are
done as in Scḧonrich, Asplund & Casagrande (2011a) (see esp. their appendix). In contrast to
Scḧonrich, Asplund & Casagrande (2011a) we do not make use of the calibration sample, but use
instead all objects that fulfil the target selection criteria of the categories: F turnoff, low metal-
licity, K dwarf, F/G dwarfs, M sub-dwarfs, G dwarfs in SEGUE1and of the categories: MS
turnoff, Low metallicity for SEGUE2. This gives 191522 unique entries among which 28830
pass our quality criteria plus a cut for 0.2< (g− i)0 < 0.7 (to remove red and very blue stars),
have [Fe/H]> 1.0, are considered to be within 4kpc distance and satisfy the surface gravity cut
log(g)> 4.1.

With the distances space velocities of stars are readily calculated in the heliocentric coordinate
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system, where we adopt again the proper motion of the Sun fromScḧonrich, Binney & Dehnen
(2010), a standard rotation velocity of 220kms−1 and a galactocentric radius ofR = 8kpc. Ve-
locities were transformed into the local coordinate systems at the stars’ supposed position. The
necessity for the latter transformation is given by the extension of the sample and reduces the
systematic drift in radial velocities.
For our tentative fits we cut the sample into six altitude regions and performed separate fits. At
each altitude we fit the sum of a simple Gaussian halo component and a disc component with the
presented analytical function including the adiabatic correction and re-correction. As there are
very few halo stars in this sample, it contains insufficient information for a determination of the
halo velocity distribution and hence we use the values from Schönrich, Asplund & Casagrande
(2011a) fixing the halo velocity distribution at Galactic rest with an azimuthal velocity dispersion
of 70kms−1. Its normalisation is the only free fitting parameter applied to this component. As
errors are relatively large, information inherent in the velocity distribution is limited and so we
fix the disc scale length atRd = 2.5kpc, the adiabatic correction toα = 1.7−0.01|z|/pc. As we
presented in Scḧonrich, Asplund & Casagrande (2011a) very reasonable fits without the vertical
energy re-correction, we this time show results making use of it.
Due to the large uncertainties of distances and proper motions an elaborate error analysis is es-
sential to get at least a rough picture on the real distribution of velocities underlying the observed
distribution. We identify three sources of errors in the distribution: The ”direct” errors from
proper motions and the radial velocity determinations, theuncertainties in distance determina-
tions directly stretching theV velocities and velocity ”cross-overs” (cf. Schoenrich et al. in
prep.) from the other velocity components by distance errors.
The first category is easily accounted for: At each altitude we performed an error propagation
of the line-of-sight velocity errors and proper motion errors onto the velocity components. This
error propagation delivers the error distribution from proper motion errors as a sum of Gaussians
(for different error amplitudes), which is then folded ontothe theoretical distribution. We can
write this error function caused by the proper motion errorsas:

errpm(∆V ) = Nerr,pm ∑
i

gi(∆V,σV,i,0) (7.5)

where the sum runs over all stars going into the distributionandgi((∆V,σV ,0) is the unbiased
Gaussian error of withσV,i for star i. We thus estimate the width of the error for a single star
to be the square root of the sum of the squared proper motion errors and squared radial velocity
errors on the velocity component in question, which are derived by inserting the errors instead
of their observables into the terms connecting the velocitycomponents to the observables. The
normalisationNerr,pm just ensures thaterrpm(v) has weight 1:

∫

errpm(∆V )d(∆V ) = 1 (7.6)

The second major source of errors is the uncertainty of distances, leading to a second error distri-
butionerrd(v). Apart from the systematic uncertainties in the choice of the locus of isochrones,
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there is a small observational scatter in the measured observed magnitudes as well as a larger
scatter in the assumed absolute magnitudes, which directlyaffects the distance modulus esti-
mate. This error derives from errors in [Fe/H], in the alpha enhancement, in the observed colour
and in the reddening that affects both the inferred magnitude and dereddened colour of the star.
In this case we assume a global error of 0.25mag, which is applicable as the vast majority of
objects is sufficiently out of the plane to have relatively similar reddening uncertainties and the
decreasing uncertainty by influence of metallicity on the isochrones with decreasing metallicity
is partly balanced by an increased intrinsic scatter in the parameter determinations. As described
in Scḧonrich, Asplund & Casagrande (2011a) the distance error froma Gaussian distance mod-
ulus error is highly non-Gaussian, but has a prolonged tail towards larger distances. We obtain
the distance error distribution by transforming the Gaussian distance modulus error into relative
distance space. For the azimuthal velocityV we calculate the average part of the squaredV ve-
locity component in the sample that is carried by proper motions,ζV . As the sample is rather
high up in the sky and additionally concentrates away from the the apex and antapex of a circu-
lar orbit, the average proper motion partition onV approaches 1 (cf. also Schönrich, Asplund
& Casagrande, 2011a). The distance error distribution translates into a map of the observedV
velocity distribution onto itself that we to zeroth order approximate as:

V →V +(V −V⊙)ζV
∆s
s

(7.7)

where∆s/s is the relative distance mis-estimate, and(V −V⊙) is the stellar velocity in a heliocen-
tric frame. This is not the only term. Additionally there will be small crossovers from theU andV
velocities, that give a minor error term to theV velocities, which should again be shaped as a sum
of Gaussians. We approximate this by a single Gaussian errortermerrcv(V ) = g(∆V,7kms−1,0)
(7kms−1 would correspond to a 70kms−1 velocity dispersion at a conversion factor of 0.5 and
an effective distance error of 20%. This has also the pleasant effect to waive a tiny numeri-
cal instability that happens by the integration oferrd at the solar velocityV⊙. The entire error
calculation is done by first foldingerrpm, thenerrd and finallyerrcv onto the data:

fobs = errcv ◦ errd ◦ errpm ◦ f (7.8)

where f is the theoretical velocity distribution andfobs is its estimated observational represen-
tation. The folding with the error functions is numericallydescribed with matrices mapping the
velocity space onto itself to keep the calculation budget ata reasonable value. Due to their dif-
ferent positions in the sky we treat the halo and disc components separately and take all stars
with V < 50kms−1 for assessing the halo errors and all stars withV > 80kms−1 as basis for an
assessment of the disc velocity errors. We checked that thisanalytic approach is equivalent to the
results of a Monte Carlo scattering of the stars in distances and the observables. Numerically (to
speed up the calculations) the error propagation was solvedby a transition matrix inV velocity
at 1kms−1 resolution.
Table 7.1 shows fitting parameters and observables for the data sets at different altitudes binned
in 10kms−1 intervals. Fits were performed in the azimuthal velocity range−250kms−1 ≤V ≤
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280kms−1, the left limit fully covering the halo velocity distribution to get the right normalisa-
tion, the right limit near the upper edge of the theoretical velocity distribution and thus placed
inwards of the high velocity edge of the observed distribution to reduce the influence of mere
measurement error on the fits.
For the fits we used four free parameters, namely the normalisation of disc and halo, the local
horizontal dispersionσ0 and the local scale heighth0. The p-levels given are taken in the disc
component region and hence they are a bit below what could be attained if the fit was performed
on that range exclusively. Yet it can be seen, that in the two lowest bins the fit does not yield a
proper result, mostly by the fitting function being 3−5kms−1 shifted against the observations.
This can have three reasons: First it is an indication that a mixture of more than one disc com-
ponent could be required in this region (indeed by introducing another disc component the result
can be improved). Second we expect large and partly systematic distance errors in the formula
we used. This can to some extent shift the peak towards solar velocity (distance underestimates)
and lead to a wrong shape in the distribution. And third the adiabatic re-correction for vertical
energy could exaggerate the effect, offsetting the distribution too much towards the low velocity
side.
At the altitude bins above 800pc the fits are of very good quality, indicated also by p-levels that
exclude any significant deviation from the model prediction. The local scale height differs a
bit from the expected values, yet it’s value is uncertain anddepends on the assumption for the
vertical energy correction.
In an upcoming study we will make use of our improved distances to get a better characterisation
of both SEGUE and RAVE data and will publish the above in the revised framework.

7.4 Effects of magnitude induced fractional distance errors

Here we show that when distances are estimated photometrically, the pdf of the fractional
distance over-errors will have an enhanced tail towards distance over-estimates (f > 0). Let
∆M = DM−DM0 be the difference between the estimated distance modulusDM of a star and its
true valueDM0, and let the pdf of∆M bePM(∆M). Then the pdf off , Pf ( f ), is

Pf ( f ) = PM(∆M( f ))
d∆M

d f
. (7.9)

Since∆M = 5log(1+ f ) and dlogx/dx = 1/(x ln10), we obtain

Pf ( f ) =
5

ln10
PM(∆M)

1+ f
. (7.10)

SettingPM ∝ e−∆2
M/2σ2

M this becomes

Pf ( f ) =
5√

2πσM ln10

1
1+ f

exp

(

− [(5log(1+ f )]2

2σ2
M

)

. (7.11)
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Figure 7.4: The red curve displays the Gaussian V velocity distribution of a mock halo sample of
500000 objects. The green curve shows the same sample, but with a 0.4mag Gaussian magnitude
error applied.

This pdf has its maximum atf < 0 and a long tail atf > 0. The largerσM is, the further the peak
is displaced to the left of the origin, yet the more strongly positive the pdf’s expectation value
becomes.
In Fig. 7.4 we demonstrate an important consequence of this skewness of the pdf by scattering
the distance moduli of 500000 halo stars by a Gaussian that has a dispersion of 0.4mag. The
parameters of the halo model are the same as those used to generate Fig. 9.5. The red points show
the true distribution ofV velocities in the sample, while the green points show the distribution of
V velocities that follow from the distance moduli. On accountof the magnitude errors, more stars
are placed atV ≃−vc than atv ≃ vc, and if one is unaware of the bias caused by unbiased errors
in distance modulus, one would infer that the halo is in the mean counter-rotating. We will see in
the following Chapter that this effect can have far-reachingcomplications for our understanding
of Galactic structure.



Chapter 8

On the alleged duality of the Galactic halo1

8.1 Abstract

We examine the kinematics of the Galactic halo based on SDSS/SEGUE data by Carollo et al.
We find that their claims of a counter-rotating halo are the result of substantial biases in distance
estimates (of the order of 50 per cent): the claimed retrograde component, which makes up only
a tiny fraction of the entire sample, prone to contaminations, is identified as the tail of distance
overestimates. The strong overestimates also result in a lift in the vertical velocity component,
which explains the large altitudes those objects were claimed to reach. Errors are worst for
the lowest metallicity stars, which explains the metal-poor nature of the artificial component.
We also argue that measurement errors were not properly accounted for and that the use of
Gaussian fitting on intrinsically non-Gaussian Galactic components invokes the identification of
components that are distorted or even artificial. Our evaluation of the data leads to a revision of
the estimated velocity ellipsoids and does not yield any reliable evidence for a counter-rotating
halo component. If a distinct counterrotating halo component exists it must be far weaker than
claimed by Carollo et al. Finally we note that their revised analysis presented in Beers et al. does
not alleviate our main concerns.

8.2 Introduction

Galactic haloes are an excellent testbed for cosmology and galactic dynamics. Their exploration
can constrain the early assembly of galaxies as well as the dynamics of accretion of smaller
galaxies. Our Milky Way offers an ideal case for those investigations, as we can directly obtain
the detailed parameters like kinematics, elemental abundances and physical properties of single
stars surrounding us. New material is still being accreted into the Galactic halo, as the numerous
streams and newly discovered dwarf galaxies confirm (see e.g. Ibata et al., 1995; Klement et

1 Content and text of this chapter have been published identically as Scḧonrich, Asplund & Casagrande (2011a).
Minor editing has been applied.
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al., 2006; Belokurov et al., 2007). As metallicity gradientsgo in lockstep with star formation,
young accreted objects may be more metal-poor than old starsfrom the inner Galaxy and thus
metallicity can not be simply used as a cosmic clock. This would also make it plausible that a
later accreted halo component could indeed be on average younger and more metal poor than the
older parts. The formation of at least parts of the halo by accretion (combined with later adia-
batic contraction) could give rise to differences between early more turbulent accretion/collapse
processes and later accretion, which might leave an imprintin differences between the inner and
outer halo (see e.g. Cooper et al., 2010). Another possible source of discrepancies between inner
and outer halo is dynamical friction, which could be more efficient for prograde than for retro-
grade infall (Quinn & Goodman, 1986; Byrd et al., 1986). This could give rise to a different
rotational signature for accreted material in the outer Galactic halo compared to the inner regions
(Murante et al., 2010).
Historically (and as well today), halo stars have been extremely difficult to identify, particularly
in local samples, e.g. demonstrated by the historic argument between Oort and Strömberg (Oort,
1926; Str̈omberg, 1927). Like it is practically impossible to get a clean selection into thin and
thick Galactic disc based on kinematics (Schönrich & Binney, 2009b), we face the analogous
problem between thick disc and the prograde stars of the halo. Wrong assumptions about the
kinematics of the Galactic disc will thus affect results on the halo component. Soon after the
existence of the Galactic halo was established (Schwarzschild, 1952; Eggen et al., 1962), the
central question was raised if the stars of the inner and the outer halo had the same properties or
if gradients or even breaks in metallicities or kinematics existed with galactocentric radius. Two
main strategies to identify and examine halo stars have beenused in the past: either stars in the
solar neighbourhood are studied, classified according to their kinematics and then conclusions
about the structure further away are drawn by extrapolation(e.g. Sommer-Larsen & Zhen, 1990),
or the surveys concentrate on bright objects in the outer halo regions, such as RR Lyrae variables
or globular clusters (e.g. Sandage, 1970). The second alternative allows to directly map the
spatial structure by those standard candles with good distance information (e.g. Saha, 1985).
This strategy implies selection biases: for example the position and presence of RR Lyrae stars
on the horizontal branch are correlated with metallicity and age, while it is not known if the
formation of globular clusters is representative also for all halo field stars.
Claims of differences between the inner and outer Galactic halo are almost as old as the discovery
of the halo itself. After van den Bergh (1967) discussed differences in metallicity and the second
parameter between the haloes of the Milky Way and those of itsneighbouring galaxies (M31,
M33), Searle & Zinn (1978) found that Galactic clusters in the outer regions showed a larger
scatter in the ratio of blue to red horizontal branch stars than inner halo globular clusters, which
they interpreted as a signature of an age spread. Preston et al. (1991) found a similar difference
in field BHB stars.2 Differences in kinematics have also been suggested betweeninner and
outer halo globular clusters (Zinn, 1993), although precision and reliability of estimates in this

2 While it is clear that age is one parameter which will cause an older globular cluster to be bluer than a younger
one at the same metallicity, whether this is the dominant cause of differences in horizontal branch morphology is
still debated (see, for example, Dotter et al. (2010) and VandenBerg (2000) for opposing views.)
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respect are limited by the small number of available globular clusters. Various claims of an
asymmetry in the halo azimuthal velocity distribution withan extended tail to retrograde orbits
have been made (e.g. Norris & Ryan, 1989). Majewski (1992) even found the entire halo to
be on average counterrotating, could, however, not find any significant velocity gradient. Ryan
(1992) pointed out that measurements of kinematics based onproper motions were particularly
vulnerable to distance errors and showed that overestimated distances for halo stars can lead to
false identifications of counter-rotating stars.
In this paper we will revisit the recent claim by Carollo et al.(2007) (hereafter C07) and Car-
ollo et al. (2010) (hereafter C10) that the Galactic halo consists of two components: a more
metal-poor counterrotating component with larger scaleheights, distinct from a slightly prograde
component and starts dominating the halo at high altitudes in their analysis.3 In particular we
will carefully re-examine their distance estimation procedure; we will focus on C10 as this paper
deviates from its precursor mostly by the larger sample size. To avoid relying on any of the
uncertain available distance calibrations, we apply in parallel both the C10 distances and two na-
tive SDSS main sequence distance calibrations, checking results additionally with an isochrone
method. In Section 8.3 we outline those methods, discuss theSDSS/SEGUE data used for this
purpose and describe how the sample cleaning was performed.
Thereafter (Section 8.4) we discuss the underlying assumptions and the reliability of gravity
estimates used to sort stars into different sequences as well as the actual assumptions for absolute
magnitudes by C07 and C10. We will show that their claim to have distances precise to 10−
20% is unsupported and that the C10 sample contains a class of stars with significant distance
overestimates by being sorted into unphysical positions inthe colour magnitude diagram. In
Section 8.5 we present statistical proofs of distance biases in the sample and in Section 8.6 we
discuss the implications of different distance schemes on kinematics and the inner-outer halo
dissection.

8.3 The calibration sample of SDSS and the Carollo dataset

All the data used in this paper come from the Sloan Digital SkySurvey (SDSS, York et al., 2000),
and consist of spectroscopic observations of stars from both SDSS-I and II and from the SDSS-
II/SEGUE survey (Yanny et al., 2009). Stellar parameters for the stars were estimated using the
SEGUE Stellar Parameters Pipeline (SSPP, Lee et al., 2008a,b; Allende Prieto et al., 2008).

3 This dominance of a retrograde component in the outer halo has recently been contested by Deason et al. (2010)
although they find a retrograde motion for metal-poor ([Fe/H] < −2) and prograde ([Fe/H]> −2) for metal-rich
stars using a BHB sample in the outer Galactic halo. In our view, this issue needs to be further investigated, as they
assume constantg band magnitudes for the horizontal branch in a region affected by the blue tail, which spans of
order 2mag ing band luminosity. If a considerable fraction of the halo giants is in the blue tail, their colour and
temperature cuts remove a large part of this tail, but still leaveBHB members spanning∼ 0.7 magnitudes, as we
tested it on SDSS photometry of metal-poor globular clusters known to have such a strong blue tail (M3, M13,
M15 andM92) and the BASTI isochrones.
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For this study we use the calibration star sample from SDSS public data release 7 (DR7).4 As
the colour transformations and distances used in C07 and C10 are not part of the public data
releases, we draw this information from the sample used by C10, which is a cleaned version of
DR7 and which was kindly provided on our request.
The calibration star sample comprises two datasets, namelythe photometric calibration star sam-
ple and the reddening calibration star sample. Querying theDR7 catalogue for these stars pro-
duces a total of 42841 entries, but many refer to identical objects, so that the actual number of
unique objects in the database is 33023. The interested reader is referred to Section 8.9 where
we describe how the cleaning of the sample from questionableobjects has been performed that
cuts down the sample to 28844 stars.
Throughout the paper we make use of two different classes of distance determinations (see Sec-
tion 8.9 for details): On the one hand the distances used by C07and C10 and on the other hand
two derivations adopted from Ivezic et al. (2008). When usingthe distances by C07 and C10
we examine the effects of their different sequences by both using their entire sample (”Carollo
all”) and using exclusively their dwarf stars (”Carollo dwarfs”). For the native SDSS calibrations
we restrict ourselves to the dwarf stars, imposing in general a gravity limit of log(g) > 4.1 to
reduce the impact of giant and subgiant contamination). We there use two different schemes:
An adopted main sequence derivation, where we increase distances defined via their Eq. (A2)
and (A3) by accounting for alpha enhancement and additionally decreasing the adopted abso-
lute magnitudes of all stars by 0.1mag, hereafter termed the adopted main sequence calibration,
short ”IvzMS”). Second the calibration favoured by Ivezic et al. (2008) using Eq. (A7) from
their appendix, which is steepened towards the isochrones in order to account for age dependent
effects, hereafter called the age dependent calibration (short: ”IvzA7”). We would like to point
out that we believe neither distance calibration to deliverthe full truth, yet they are currently the
most commonly used schemes and can give hints on the intrinsic uncertainties of all methods.
To have an additional test we cross-checked and confirmed ourfindings with distances derived
directly from using 12.5Gyr BASTI isochrones (Pietrinferni et al., 2004, 2006); some details are
provided in the Section 8.9.
C10 applied two different geometric cuts. The first was a distance cut at an estimated distance of
4kpc, limiting the errors on velocities caused by proper motion errors. The second was a cut that
removed stars differing from the Sun by more than 1.5kpc in galactocentric radius (i.e. outside
7.0kpc≤ RG ≤ 10kpc with their value ofR⊙ = 8.5kpc for the Sun). The latter cut was reasoned
in C10 by the use of their applied orbit model, which was adopted from Chiba & Beers (2000)
using a Sẗackel-type potential from Sommer-Larsen & Zhen (1990). As we do not make use of
this orbit calculation, in this work we do not apply the second cut, which removes of order one
third of the available stars.
Due to the magnitude ranges in the SEGUE survey the distance cuts imposed by C10 and C07
remove almost all giants from the sample, a minor fraction ofsubgiants and very few dwarf stars.
The effects of both selections depend strongly on the adopted distances and thus the absolute

4 http://casjobs.sdss.org/dr7/en/
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Figure 8.1: The distribution of all reliable stars in the calibration sample, fulfilling the temper-
ature range limit and with acceptable kinematic information. To demonstrate the weak line-of-
sight motion support of azimuthal velocities we plot the 0.95 (innermost lenses, green), 0.8, 0.5
and 0.3 (outermost lenses, light blue), contours of the angle termηV in Eq.(8.7) that quantifies
the relative support by the direct line-of-sight velocity measurements. This demonstrates the vul-
nerability ofV velocities in this sample to distance errors as they cannot be found directly from
line of sight velocities.

magnitudes of the stars. Applying the C10 distances to the sample, 21600 stars remain within the
distance limit of 4kpc, of which 14763 have surface gravities log(g)> 4.0 and are thus classified
as dwarf stars. With the adopted main sequence calibration 15808 stars with log(g) > 4.0 are
found in the sample, which gives a first hint to the more stretched distance scale by C10.

Metallicities are taken from the DR7 pipeline adopted values(Lee et al., 2008a,b). For a dis-
cussion of the different metallicity scales of DR7 and C10 the reader is referred to the Section
8.9. There we also describe in more detail how kinematics arederived from distances, radial
velocities and proper motions.
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8.4 Assessing the distance calibrations

The core assumptions in C10 are those about stellar distances. They claim that by using the
log(g) estimates from the SEGUE stellar parameter pipeline stars can be reliably sorted into
clean sequences, i.e. main sequence, turn-off and subgiant/giant. The attraction of this idea, laid
out in Beers et al. (2000), is that it seems to reduce the distance errors to simple uncertainties in
colour and metallicity on well-determined sequences. However, as we will see below, things are
more complicated.

8.4.1 Effects of distance errors

Selecting a star into the wrong position in the colour-magnitude diagram results in a faulty es-
timate of its absolute magnitude and thus an erroneous distance. As they are the most common
population we would naively expect the largest contamination to be main sequence stars mistak-
enly addressed as turn-off stars. These will be assumed to befar brighter than they are, hence
their distance will be overestimated, bringing many of them, especially halo stars, falsely into
the retrograde tail of the velocity distribution. This effect happens via the translation of proper
motions into velocities and thus prevails for samples that have low support by radial velocities
(cf. Section 8.9.1 of Section 8.9). Fig. 8.1 depicts the locations of stars (red dots) in Galactic
longitude (x-axis) and latitude (y-axis). The SDSS/SEGUE sample is (due to the location of the
telescope in the northern hemisphere and the strategy to avoid the high extinction in the Galactic
plane) largely concentrated away from the plane and towardsthe Galactic North Pole. Conse-
quently it has almost no points at directions that would havehigh support of azimuthal velocities
by the direct line-of-sight velocity measurements. The contours in the plot encircle the regions of
high line-of-sight velocity support ofVh in the sky.5 Within the ellipses, the fractionηV (Eq.(8.7)
in Section 8.9) of the line-of-sight velocity going into theheliocentric azimuthal velocityVh is
larger than 0.95 (smallest lenses), 0.8, 0.5 and 0.3 (largest lenses). They demonstrate how heav-
ily any analysis of the azimuthal velocities has to rely on the transverse velocity component and
thus proper motions and distance estimates.
The effect of distance errors in this process is easily understood: Think of driving a car past a
field that has a rabbit sitting on it. As the speed of the car is known, the fact that the rabbit rests
on the lawn can be derived by the car driver from its apparent angular speed - if the distance is
right. If the natural size of the rabbit is overestimated, sowill be its distance and to explain its
angular motion one wrongly infers that it moves opposite to the car’s direction of motion. And
vice versa a distance underestimate drags the estimated rabbit velocity towards that of the car,
i.e. it is wrongly inferred that the rabbit moves in the same direction as the car does. As the Sun
moves with a velocity of more than 200kms−1 around the Galactic centre, for this sample a 10%
distance overestimate implies that an average halo star in the sample will be wrongly pushed

5 Throughout the paper we distinguish between the velocitiesin the solar rest frame and coordinate system
(Uh,Vh,Wh) and velocities in the Galactic rest frame and Galactic cylindric coordinate system(U,V,W ). For
a short discussion of those we refer to Section 8.9.
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Figure 8.2: The distribution of the “well behaved” stars in the calibration sample (red crosses,
without distance cut to make the giants visible) in the dereddened colour-gravity (DR7 pipeline)
plane. Horizontal lines mark the cuts adopted by Carollo et al. between the dwarf, turn-off and
subgiant/giant regions. Stars that have likely membershipin their counter-rotating halo, i.e. with
Vh <−400kms−1 and fulfilling d < 4kpc are marked with blue points.

by ∼ 20kms−1 into retrograde motion, and a larger distance error will entail a proportionately
larger retrograde motion.

It should also be mentioned that azimuthal velocities are subject to an error similar to the Lutz-
Kelker (1973) bias: Even if there is no net bias on estimated absolute magnitudes and thus of
distances, a symmetric magnitude error distribution will cause an asymmetric distribution of
estimated distances with a longer tail in the overestimates. As these directly translate to the
transverse velocities one will with any magnitude based distance scheme encounter asymmetric
velocity errors that give rise to an extended counterrotating tail in the measured halo azimuthal
velocity distribution. This may also be related to the asymmetry found by Norris & Ryan (1989).
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8.4.2 Gravities

Fig. 8.2 shows the positions of all cleaned sample stars in the colour - log(g) plane (red points).
The horizontal lines show the selection regions in log(g) used by C10. Stars with log(g) > 4.0
are classified as main sequence stars. Those with log(g) < 3.5 are assumed to be subgiants or
giants, while the intermediate objects are classified into their ”turn-off” branch. The blue dots
mark the objects in the C10 sample that have heliocentric azimuthal velocities,Vh, smaller than
−400kms−1, i.e. they are on highly retrograde orbits and should be in the majority counter-
rotating halo objects according to C10. There can be minor differences between the gravities
directly from DR7 and their sample, as we we use the best determined values when their are
double or multiple entries for a star, while their log(g) values (which we do not have access to)
are probably averaged.
The plot reveals one crucial problem with those criteria: although it may be expected that some
distinct branches of stars are present, they are not reflected by the SEGUE measurements. While
the upper giant branch is apparent, we cannot make out a substantial decrease of densities be-
tween the main sequence and subgiant regions. Measurement errors prevail, especially in the
turn-off region, and veto against a clean selection of the components.
One possibility is that the measurement errors on log(g) are so large that it is not possible to use
the log(g) measurements to classify stars into these three categories. Also the true main sequence
is inclined in gravity versus colour. In this perspective the constant (colour and metallicity inde-
pendent) gravity cuts applied by C07 and C10 do not appear well founded. If one aims to select
a pure dwarf sample, the tightening of the constant cut relative to the inclined main sequence, is,
however, beneficial in reducing the turn-off-contamination.
The accuracy of the DR7 log(g) values is discussed by Lee et al. (2008b), who show estimated
surface gravities for open and globular cluster stars observed by SEGUE for the purpose of
calibration of the survey. As demonstrated by Lee et al. (2008b) (see their Fig. 15 ff.) the
low spectral resolution results in a significant scatter in log(g) values: some turn-off stars have
log(g) < 3.5, and significant numbers of stars with log(g) measurements in the region assigned
by Carollo et al. to the turn-off (3.5< log(g)< 4) are clearly either subgiants or main sequence
stars. Thus we have to expect a significant number of main sequence objects in the turn-off band
of the Carollo et al. (2007, 2010) samples.
The consequent bias in distance estimation discussed abovewill give an artificially enhanced
fraction of retrograde halo stars residing in the turn-off/subgiant regime. Although Fig. 8.2
should play this effect down with the red points being drawn from the main sample without
distance cuts (to keep the red giant branch visible), while the blue circles satisfyd < 4kpc in
addition to the velocity cut, this crowding of the counterrotating halo stars into the designated
turn-off region is still prominent. The distance cut is responsible for the missing enhancement in
the giants.
Carollo et al. also find that their outer counterrotating halomembers display significantly lower
metallicities than the average of the inner halo. Could this be related to problems with distance
estimation as well? It would not be unreasonable to expect the accuracy of the log(g) estimates
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to decrease for the stars of lowest metallicity, increasingby this the fraction of fake turn-off
stars and subgiants, since the stellar lines become weaker.In fact, Ma et al. (in prep.) find
this effect. A better understanding of why the “counter-rotating” component of Carollo et al.
has lower metallicity can be achieved from Fig. 8.3. In its top panel we plot the gravities
against the metallicity, again with red points for the entire sample and with blue circles for the
strongly retrograde stars. Stars with lower metallicitiesin the sample get on average assigned
lower gravities. This could arise from the fact that determining gravities gets more difficult on
the lowest metallicity side. The inclination of the sample in the metallicity-gravity plane favours
distance overestimates for metal poor stars, thus loweringthe average metallicity of the “counter-
rotating” component. This shift in classification of stars is demonstrated in the middle panel
of Fig. 8.3: Almost all identified subgiants are metal-poor,while the average metallicity rises
towards the higher surface gravity categories. The bottom panel shows the ratio of the number
of turn-off to main sequence stars,ρ, against metallicity. One might argue that the pronounced
rise ofρ towards lower metallicities be caused by the intrinsic rarity of metal-poor objects. As
the sample is dominated by magnitude cuts, the different ratios could, however, just be explained
by different geometry of the subpopulations, which indeed puts stars with higher scaleheights
(e.g. halo) to more remote positions than those with low scaleheights (e.g. disc). Since the C10
sample extends by definition less than 4kpc away from the plane it is hardly possible to explain
how ρ can rise by a factor of∼ 3 from [Fe/H]DR7 ∼ −1.5 to [Fe/H]DR7 ∼ −2.5 as the large
scaleheight of the halo should veto against relative density variations of the halo populations by
this amount.



8.4. ASSESSING THE DISTANCE CALIBRATIONS 169

 2.5

 3

 3.5

 4

 4.5

-3.5 -3 -2.5 -2 -1.5 -1 -0.5  0  0.5

lo
g(

g)
D

R
7

[Fe/H]DR7

all
Carollo, Vh < -400 kms-1

cut for turnoff
cut for giants

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

all stars
log(g) > 4.0

3.5 < log(g) < 4.0
log(g) < 3.5

 0.1

 1

 10

-3 -2.5 -2 -1.5 -1 -0.5  0

ra
tio

 tu
rn

of
f /

 d
w

ar
f

[Fe/H]DR7

Figure 8.3:Top panel: The distribution of the cleaned ”all
star” sample in the metallicity- surface gravity plane. Horizon-
tal lines mark the cuts adopted by Carollo et al. between the
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8.4.3 Absolute magnitudes

Having discussed the surface gravity estimates it is time toturn towards the actual assumptions
on absolute magnitudes of stars from which the distances areinferred. The claim by C10 to reach
an accuracy of “10−20%” in distance estimates is predicated on the ability to cleanly select stars
according to their spectroscopically determined gravity into several branches. If such a selection
was feasible, it would indeed limit the uncertainties to those caused by metallicity, reddening and
photometric errors. The reader should bear in mind that the low relative density of the outer halo
component found by Carollo et al. implies that even a contamination on the 1% level (i.e. 200
out of∼ 20000 stars) can alter the results.
The sorting into different branches via the formalism of Beers et al. (2000) can be seen in the
top panel of Fig. 8.4. The plot shows all stars in the C10 samplein the(g− i)0,Mr plane that do
not have warning flags. The absolute magnitudes were deriveddirectly from the C10 distances
using the distance modulus via

Mr = r0−5log10(
dCar

0.01kpc
) (8.1)

whereMr is the derived absolute magnitude,r0 is the reddening corrected apparent magnitude
from the DR7 database anddCar the distance given by Carollo et al. and derived from the Beers
et al. (2000) sequences.
The three branches, into which the sample stars are selected, can be identified in the figure. Lower
metallicity stars are brighter and bluer, but the latter shift dominates. Thus the main sequence
gets fainter at the same colour. As the metallicity spread ofespecially the main sequence in
the top panel of Fig. 8.4 partially obscures the underlying sequences, we restricted the sample
to [Fe/H]DR7 < −1.9 in the middle panel. For comparison we plot the adopted mainsequence
calibration at [Fe/H]∼−2.14 and the alpha enhanced Basti isochrones (Pietrinferni et al., 2004,
2006) for SDSS colours (cf. Marconi et al., 2006) at [Fe/H]= −2.14 at ages 10 and 12.5 Gyrs.
The main sequence and the giant branch are apparent and between them lies a strong sequence
sloping down from(0.2,3.8) to about(0.8,4.8). The stars in this band are termed turn-off stars
by Carollo et al. as they comprise everything that has gravities 3.5 < log(g) < 4. As we can
see from the bottom panel, this artificial turn-off sequencecomprises the majority of heavily
counter-rotating stars (green dots). The reader might ask why we do not see a large number of
stars as false identifications in the brightest subgiant branch. As already discussed above the
absolute magnitude difference to those stars is, however, so large that by the distance limits most
stars sorted into the subgiant and giant branches will be dropped from the sample, as they are
deemed to be more than 4kpc away. This conclusion is verified by the subgiant branch getting
much more populated when the distance cut is removed (cf. Fig2).
In stellar evolution there exists no unique turn-off branch. Instead there is just a region where
stars leave the main sequence and move up to the subgiant branch, and which depends on metal-
licity and age of the population. Thus the artificial sequence we face here can only be thought
of as a compromise for stars in the broad region between main sequence and subgiant branch
that intends to describe the average luminosity of these objects. In this perspective, the claim
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Figure 8.5: The distribution of absolute magnitude differences between the Carollo et al. calibra-
tion and the other metallicity-dependent colour-magnitude calibrations. In the top row we show
the results for the adopted main sequence calibration (”IvzMS”), while in the bottom row we
compare to the age-dependent calibration by Ivezić et al. (2008) (”IvzA7”). On the left we show
the entire colour range, while we plot only redder objects with (g− i)0 > 0.4 on the right. In the
entire sample (red bars) the main sequence by Carollo et al. isbrighter by∼ 0.15mag than in
the native SDSS calibrations. The offset gets larger for thecounter-rotating (green crosses) and
metal-poor (blue squares) stars; note that the Carollo et al.turn-off sequence is very prominent
with an offset of about 1 magnitude.

by Carollo et al. to achieve 10−20% accuracy in distances is ruled out in this transition region
as it intrinsically spans more than one magnitude (at fixed metallicity and colour), i.e a distance
uncertainty of more than 50%. Because this ”turn-off” branchis constructed to be a compromise
between subgiants and main sequence, the gap between the subgiant branch (moving up towards
lower metallicity) and the main sequence (moving down, as the colour effect dominates) widens
with decreasing metallicity. This aggravates the effects of misassignments on estimated distances
for lower metallicity objects.
The worst problem with the “turn-off” stars appears in comparison with stellar models. Com-
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parison of the adopted positions of metal-poor stars in the colour-magnitude diagram with the
isochrones at 10 and 12.5 Gyrs reveals that most objects in the artificial “turn-off”branch reside
on the red side of the low metallicity turn-off region. Some of the selected “turn-off” stars are
even on the red side of what could be achieved at solar metallicity. In fact the overwhelming
majority of strongly retrograde stars is actually claimed to be in a region where according to our
knowledge of astrophysics no star of reasonable ages can reside.

8.4.4 Colour transformation and main sequence comparison

It should be mentioned that the distances used in C07 and C10 were derived using theB−V
colour calibration and thus the colour transformation of Lee et al. (2008a) had to be performed to
apply them to SDSS colours. Fortunately there are now good isochrones (e.g. BASTI isochrones,
Pietrinferni et al., 2004), fiducials (An et al., 2008) and photometry in SDSS colours readily
available, making such a colour transformation to translate SDSS colours to the formerB−V
calibration by Beers et al. (2000) unnecessary. The colour transformation may explain some of
the scatter and systematic shifts presented in Fig. 8.5 thatshows the comparisons of the abso-
lute magnitudes from C10 to the native SDSS calibrations. Thelatter is depicted by red lines in
Fig. 8.4 at [Fe/H]=−2.14 and [Fe/H]= 0. Both isochrones and the two main sequence approx-
imations are fainter than the adopted C10 absolute magnitudes, especially at lower metallicities.
This can be seen from the middle panel of Fig. 8.4 and from Fig.8.5, which depicts the distri-
bution of differences in absolute magnitudes of C10 towards those derived via the adopted main
sequence calibration (top panels) and those derived via theIvezic et al. (2008) age-dependent
relation (bottom panels) for all stars (red), metal poor objects with [Fe/H]< −1.9 (blue) and
for the ”counter-rotating” stars withVh < −400kms−1 (green crosses and errorbars). Errorbars
depict the Poisson noise. On the right side of Fig. 8.5 we showthe same quantities, but exclu-
sively for redder stars with(g− i)0 > 0.4 where the sequences of Beers et al. (2000) have a larger
separation, and which also excludes the expected turn-off region (cf. the isochrones in Fig. 8.4)
for the very metal-poor stars. Apart from the observationalscatter, the peaks arising from the
main sequence∆M ∼ 0.3 and from the ”turn-off branch” around∆M ∼ 1.0 are washed out for
the whole population, as the sequences shift with metallicity and the main sequence dominates.
However, the generally higher intrinsic brightness under the Carollo et al. assumptions is clearly
seen in both distance descriptions. On the blue end the age-dependent formulation by Ivezic et
al. (2008) is a bit brighter than the adopted main sequence calibration and makes the peak of
the ”turn-off sequence” in the metal poor and counterrotating subsamples of C10 merge with the
main sequence at blue colours, yet the large offset remains.
For stars that are claimed by C10 to have heliocentric velocitiesVh <−400kms−1 and thus make
up the bulk of what they identify as a counter-rotating halo the two peaks of main sequence and
turn-off stars are separated, as the metallicities of thesestars are more narrowly distributed . For
comparison we show the result of selecting only stars that have [Fe/H]DR7 <−1.9 (blue squares
in Fig. 8.5). These distributions look very similar apart from the counter-rotating stars being
more inclined to the bright side. Also regard the increased importance of the turn-off band for
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those populations.

In summary there are two main drivers of overestimated distances in Carollo et al. compared to
the native SDSS distance calibrations: The main sequence ofC10 for metal-poor stars is brighter
than in the other calibrations and the number of stars in the turn-off and subgiant/giant branches
is increased by a large factor for metal-poor stars; most of the designated “turn-off” stars by C10
reside in positions in the colour-magnitude plane that would require unreasonable ages. We thus
conjecture that the “counter-rotating” halo as presented by C10 is due to distance uncertainties
and the selection of stars into unphysical stellar branchesan artifact.
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8.5 Signatures of misselection

8.5.1 Geometric distribution anomaly

Even if the biases in distance assignments were not obvious there are still ways to detect them. As
erroneous distance estimates mostly act on the part of motion perpendicular to the line of sight,
populations with distance errors will be preferentially found in regions of the sky perpendicular
to the velocity component in question, or in other words, if stars end up in one component
by misselection this should should show up as a bias in samplegeometry. Such a bias will
not be aligned directly with the Galactic coordinates, but with the part of the biased velocity
component covered by proper motion. This is obvious as the largest errors should happen where
the uncertainty in the motion is largest, i.e. where the proper motion and distance estimates have
the largest impact. For these statistics we make use of the squared angle terms connecting the
proper motion to the azimuthal velocity (from now called the”proper motion partition”). We
take from eq.(8.6) in Section 8.9 the angle terms that connect Vh to the proper motionṡl andḃ,
square them and add them together:

ζpm,V = sin2(l)sin2(b)+cos2(l). (8.2)

Fig. 8.6 shows the cumulative distribution of stars over theproper motion partition forVh (red
line). The C10 sample is (as the entire SEGUE survey) concentrated towards positions where
the azimuthal velocity is mostly covered by proper motions as it is mostly oriented towards high
Galactic latitudes. Yet the counter-rotating subsample (purple line) is even more concentrated
towards the high proper motion contributions. The average value forζpm,V rises from 0.909 for
all stars to 0.933 for the subsample withVh < −400.0. In other words, the fraction covered by
robust radial velocities drops from 0.091 to 0.067. In a Kolmogorov-Smirnov test the probability
for equality of the two distributions is well below the 1% level and thus equality is strongly
rejected. Again the high values forζpm,V show how vulnerable the sample azimuthal velocities
are to any distance errors.
This is of course not a proof of the bias, but a strong indication. Against this argumentation
one could raise the objection that stars at low metallicities are located more polewards, as the
halo to disc ratio in the sample rises (higher altitudes are reached) and so metal-poor / halo
stars show a different spatial distribution. Indeed for lower metallicities the sample distribution
shifts polewards reducing the difference, which remains present in all cases, but can become
insignificant due to the shrinking sample numbers.

8.5.2 Linear error analysis and velocity crossterms

A robust approach to prove and quantify the distance errors is presented in Fig. 8.7, which shows
theWh velocities against sin(l)sin(b)cos(b) for all stars that should be part of the counter-rotating
halo, i.e. haveVh <−400kms−1. The strong uptrend cannot be any stream, which would show
up as a narrower band. It appears that the entire halo experiences a lift inW velocity, which
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via distance errors.
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has its origin in the distance errors of the C10 analysis. By wrongly assessing distances the
relative motion of stars in the azimuthal direction mixes over the proper motions into the vertical
component depending on this angle term. To illustrate this effect think of a star that is seen
at b = 45o, l = 90o and hasUh = 0, Vh = −500kms−1, Wh = 0. Due to the geometry of the
setup the star will have a significant proper motion inb. With a wrong distance estimate the
relative impact of line-of-sight velocity and proper motion changes and the star is assigned a
non-zeroW velocity. A more detailed description is found in Schönrich et al. (in prep.). The
fitting line has a slope of 119.5± 16.5kms−1, i.e. the trend is significant at a level of more
than 7σ . We can thus state that a significant distance error that is expected from the discussions
above is here quantitatively demonstrated. Since the alleged counterrotating halo stars in this
subsample (with a cut atVh < −400kms−1) have on averageVh ∼ −470kms−1, we arrive at a
distance bias of roughly 40% for the counter-rotating stars, which translates into a magnitude
error of around 0.7mag. It should be mentioned that errors might even be higher: Selecting more
strongly retrograde stars the trend estimate gets even higher.
Restricting the sample of stars withVh <−400kms−1 further to dwarfs (log(g)> 4.0) and thus
removing the largest identified source of distance errors, the numbers of stars in the sample drop
by the selection dramatically from 735 stars to 299. The removal of the low gravity stars also
gives fewer outliers in the velocity distribution. Only oneobject has|W | > 400kms−1. The
lower panel of Fig. 8.7 shows the remaining stars together with an equivalent linear fit. Again
the trend is highly significant, though now more moderate with 83.8±22.5kms−1. TheσW in the
sample is already down from 129kms−1 to 110kms−1. The more moderate trend corresponds
to an error of about 25%. It also fits well into the picture thatthe distance overestimate for the
full sample is larger than for the dwarfs, when we remove the spurious ”turn-off” branch. This
bias has the effect that the distance overestimates do not only increase theW velocity directly,
but also give rise to an additional contribution to theW velocity dispersion by turning a part of
the large heliocentric azimuthal motion of halo stars into afake vertical term. We will call this
behaviour “velocity crossovers”. This effect is even more important in the original analysis by
C07 and C10, as they restrict their sample in galactocentric radius, thus increasing the weight
aroundl = 90◦ andl = 270◦, where sin(l) is largest.

8.6 Velocity distribution

How do the described biases and different distance derivations affect the velocity distribution and
what might remain of the alleged counter-rotating component halo when we reduce the distance
biases that spuriously inflate it? Fig. 8.8 shows the velocity distributions under different cuts and
distance approximation both on a linear scale and on a logarithmic scale that reveals the wings
of the distributions. Error bars give the Poisson noise, butneglect any other sources of error. The
velocity distributions of the halo and the Galactic disc canbe made out in both plots. The long tail
of the counter-rotating halo is clearly visible for the C10 sample (red circles). As already noted
above, a restriction to dwarf stars (green crosses) diminishes the counter-rotating tail (around
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Figure 8.8: Velocity distributions for stars in the calibration sample. To make them comparable
at the different sample sizes, all distributions were normalized to unity (i.e. divided by the total
number of stars in each subsample). Error bars show again Poisson errors.
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V <−170kms−1, which corresponds toVh <−400kms−1). The blue filled squares show what
we obtain with the adopted main sequence calibration, and the purple empty circles depict the
age-dependent distance calibration by Ivezic et al. (2008). With both native SDSS distance
calibrations the sample displays a clean downtrend to the low velocity side corresponding to
aV velocity dispersion of around 70−80kms−1.
One might argue that the two native SDSS calibrations lead tosome contamination by giants
that are treated as dwarfs and thus provoke the opposite effect of underestimating distances. To
reduce the contamination by evolved stars we use a gravity cut of log(g) > 4.1 in the following
discussions, which mostly helps to reduce the density saddle between the disc and halo com-
ponent, where halo stars with severe distance underestimates tend to assemble. However, the
left tail of the halo distribution does not change significantly on a tightening or loosening of
the gravity cut. In the following discussions we will alwaysuse the slightly tightened condition
log(g)> 4.1, but we checked that all of our conclusions are valid regardless of the specific choice
of the gravity cut. The absence of a significant excessive tail for dwarf stars can in our view only
be explained by the fact that strongly counter-rotating halo dwarfs are at the best an extremely
rare population. It is highly implausible that the counter-rotating halo consists exclusively of
subgiants and giants.

8.6.1 Kinematics versus metallicities

The reason why Carollo et al. (2007, 2010) get a transition between their inner and outer halo
from a local sample is the increasing scaleheight of their populations with lower metallicity,
which is linked to the increasing velocity dispersion perpendicular to the plane. According to
our above discussion of kinematic fingerprints of distance errors, at least the increase of vertical
dispersion by velocity crossovers (Section 8.5.2) due to distance overestimates should disappear
when cutting away the unphysical turn-off stars and furtherwhen switching from C10 dwarf dis-
tances to the native SDSS calibrations. This is indeed observed in Fig. 8.9: It shows the values
of vertical velocity dispersion against metallicity for different subsamples together with Poisson
errors. The full C10 sample (red circles) harbours a prominent uptrend towards lower metallicity,
which is at odds with the earlier result from Chiba & Beers (2000). This uptrend almost vanishes
in their dwarf subsample (green crosses). Both when using theadopted main sequence calibra-
tion (blue filled squares) and when using the Ivezic et al. (2008) age-dependent distance estimates
(purple empty squares), we see no significant trend with metallicity any more; this finding is ro-
bust against changes in the gravity cut. To guide the eye we plot a horizontal line at 85kms−1.
There is a suggestion of a subtle increase below[Fe/H]DR7 < −1.8, yet numbers are too small
to allow for a judgement. A source of uncertainty is the degree of possible giant contamina-
tion. It likely rises towards the metal-poor side, which mayresult in a reduction of measured
dispersions. On the other hand the radial velocity support for the vertical velocity component is
very high due to the polewards orientation of the sample. So the decrease effected by distance
underestimates is relatively weak. Underestimating distances takes a further moderated effect on
vertical dispersions: While a distance overestimate both increases the measured vertical disper-
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Figure 8.9: Vertical velocity dispersions against metallicity for different halo subsamples and
distance calibrations. In all samples we cut away all prograde stars to eliminate most of the disc
contamination. While the Carollo et al. full sample (red line)shows a vigorous uptrend towards
the lowest metallicities, this trend almost vanishes in their dwarf star subsample (green line),
while using the two native SDSS calibrations no significant trend is detectable.

sion by direct overestimate of the proper motion part, and a lift via the velocity cross-overs, on
distance underestimates the effects have opposite signs, thus to some part balancing each other.
Another way to look at the problem is to plot metallicity distributions as a function of the kinetic
energies (by stellar mass) of stars. In Fig. 8.10 we show the separations in entire kinetic energy
(v2, left column) and in vertical kinetic energy (W 2, middle column). In the rightmost column
we show the vertical kinetic energy, but for retrograde stars (V < −10kms−1). As the rotation
velocity of disc stars adds to the kinetic energy the disc hasits strongest dominance of course
not in the lowest energy bin, but at 1802(kms−1)2 < v2 < 2702(kms−1)2, as most disc stars are
on quite circular orbits with an entire velocity close to thecircular rotation speed of the Galaxy.
The prominent shift especially in the left tail and also peakof the metallicity distributions in the
original C10 distance prescription for the full sample (top row) can be seen in both the total and
vertical energy separation. However, this already diminishes, when we plot the subsample of



180 CHAPTER 8. ON THE ALLEGED HALO DUALITY

kin. energy vertical kinetic energy vert. kin. en. retrograde

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-3 -2.5 -2 -1.5 -1 -0.5  0

C
ar

ol
lo

, a
ll

fr
eq

u.

[Fe/H]DR7

4502 < v2

3602 < v2 < 4502

2702 < v2 < 3602

1802< v2 < 2702

902 < v2 < 1802

v2 < 902

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-3 -2.5 -2 -1.5 -1 -0.5  0
fr

eq
u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-3 -2.5 -2 -1.5 -1 -0.5  0

C
ar

ol
lo

, d
w

ar
fs

fr
eq

u.

[Fe/H]DR7

4502 < v2

3602 < v2 < 4502

2702 < v2 < 3602

1802 < v2 < 2702

902 < v2 < 1802

v2 < 902

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-3 -2.5 -2 -1.5 -1 -0.5  0

Iv
zM

S
, l

og
(g

) 
>

 4
.1

fr
eq

u.

[Fe/H]DR7

4502 < v2

3602 < v2 < 4502

2702 < v2 < 3602

1802 < v2 < 2702

902 < v2 < 1802

v2 < 902

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-3 -2.5 -2 -1.5 -1 -0.5  0

Iv
zA

7,
 lo

g(
g)

 >
 4

.1
fr

eq
u.

[Fe/H]DR7

4502 < v2

3602 < v2 < 4502

2702 < v2 < 3602

1802 < v2 < 2702

902 < v2 < 1802

v2 < 902

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-3 -2.5 -2 -1.5 -1 -0.5  0

fr
eq

u.

[Fe/H]DR7

2002 < W2

1602 < W2 < 2002

1202 < W2 < 1602

802 < W2 < 1202

402 < W2 < 802

W2 < 402

Figure 8.10: Metallicity distributions at different values for kinetic energy in the different dis-
tance prescriptions. From top to bottom we show the entire C10sample, the dwarf stars from
C10, the adopted main sequence calibration and the Ivezić et al.(2008) age-dependent calibra-
tion. The left column displays a separation by the entire kinetic energy, while the centre column
makes only use of the vertical velocityW . The right column shows the distributions using the
vertical energy part for retrograde stars (V <−10kms−1) to reduce the disc contamination. Ve-
locities are taken in kms−1. Error bars indicate the Poisson errors.
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the C10 dwarf stars with log(g)> 4.0 (second row). No convincing outer halo signature can be
found in either of the native SDSS calibrations (bottom row). At the highest vertical energies
a single spike at [Fe/H]∼ −2.2 sticks out. At first glance this could be taken as a hint for an
outer halo. However, in this interpretation it should be mirrored by the entire energy distribution,
which is not the case. We are tempted to identify this featureat least partly with a prominent
metal-poor stellar stream described by Helmi et al. (1999) and Kepley et al. (2007), which we
expect exactly at these very high vertical energies. This stream can as well serve as explanation
for the subtle and insignificant increase of vertical velocity dispersions at[Fe/H]DR7 <−1.8 that
was seen in Fig. 8.9.
There appears also a slight general drift towards lower metallicity at the highest energies, which
can be mainly seen in the vertical term. Caution should be exercised, however, due to the varying
presence of the Galactic disc (most prominent at the lowest vertical kinetic energies and at total
energies corresponding to the rotation speed), which then impacts on the normalization of the
halo component and fools the eye because the apparent halo peak can be shifted by the wing of
the disc distribution. A quite robust approach is removing all prograde stars from the sample
to minimize disc contamination. As this biases kinematics,the overall energy distributions are
altered, but the vertical energies (right hand column) should not be affected. In Fig. 8.10, the
entire C10 sample shows a clear signature of lower metallicities in the higher vertical energy
bins. When removing the contested turn-off stars (i.e. plotting dwarfs, centre row) no trend apart
from the discussed spike can be detected regardless of the applied distance determination.
In summary it can be stated that also in terms of metallicity versus energy the sample has no
reliable outer halo signature, neither when using the native SDSS calibrations nor when using
the C10 dwarf subsample.

8.6.2 Component fit

Fig. 8.11 shows fits to the azimuthal velocity distribution (green data points) for the the four
different subsamples and distance calibrations we use. Bothcolumns show the same data, the
left column on a linear scale, the right column on a logarithmic scale to examine both centres
and wings of the distributions. We apply a simple Gaussian halo and a single non-Gaussian disc
component. All fits were done for−250kms−1 < V < 280kms−1, a limit that stays out of the
regions dominated by noise, but reaches on the retrograde side still well into the region where any
suspected retrograde halo component would be influential. To account for the observational er-
rors, we folded the underlying distributions with a sum of Gaussians (with a spacing of 1kms−1),
of which the relative weights were derived globally for eachcomponent from error propagation
on the single objects (stars withV > 50kms−1 attributed to the disc, objects withV < 10kms−1

to the halo) concerning proper motion and radial velocity errors. This treatment is a bit crude
and we suspect that it underestimates errors on the left wingof the distribution and overestimates
them on the right wing, which we identify as the most likely reason for the overshooting of the
model against the data atV > 270kms−1. In a second step we folded with another Gaussian
magnitude error of 0.25mag to account for uncertainties in the intrinsic brightness and thus dis-
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Figure 8.11:Velocity distributions for stars (light blue, with Poisson errors) in the calibration sample
for different selections and distance prescriptions: From top to bottom: The entire C10 sample, the C10
dwarf stars with log(g) > 4.0, the dwarfs with log(g) > 4.1 using the adopted main sequence calibration
distances and the age-dependent formula from Ivezić Z̆ et al. (2008). To show both distribution centre and
wings we contrast the linear scale (left) with logarithmic plots of the distributions (right). All distributions
are fitted by a simple model (red line) with a Gaussian halo and a single (non-Gaussian) disc component.
We did an error propagation from the values given in DR7 which is – together with a magnitude error of
0.25mag - folded onto the original distribution (light blue). The error broadens the peaks and thus lowers
the maximum count rates especially of the disc peak. The dark blue line showsthe underlying Gaussian
halo component and the purple curve the analytic disc component.
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tance of the stars and thereafter a third Gaussian of 7kms−1 to account for velocity crossovers
via the distance uncertainties.
For the disc component we make use of the analytic formula of Schönrich & Binney (in prep.).
The underlying assumption is that of an isothermal sheet through the Galaxy with increasing
velocity dispersions towards the centre, i.e. the stellar populations at each galactocentric radius
are given a specific vertical and horizontal energy dispersion. For those populations their likeli-
hood to be in the solar annulus and their local scaleheight can be estimated assuming a simple
potential with constant rotation speed. We used a solar galactocentric radiusR0 = 8.0kpc, a cir-
cular rotation speed ofvc = 220kms−1, a disc scalelength ofRd = 2.5kpc, a scalelength for the
vertical dispersion ofRσz = 5.0kpc and for the horizontal dispersion asRσ = 7.5kpc. The adi-
abatic correction index (index dependent on the shape of thepotential that describes the change
of vertical energy along orbits that are extended over different galactocentric radii) was set to
0.5. As we are using the adiabatic correction without a recorrection for energy conservation,
the disc local scale height gets moderately underestimated, an effect that we partially cope with
by setting the adiabatic correction index to 0.5, slightly below the expected value for the upper
disc. To simplify the calculation we summed up disc contributions at equal parts at altitudesz =
400,700,900,1100,1400,1800,2400pc. The Gaussian halo component was set at rest (V = 0).
The five free parameters of the fit were disc and halo normalization (Nh = 530,Nd = 16691 for
the entire C10 sample,Nd = 14403,Nh = 312 for the C10 dwarfs,Nd = 13031,Nh = 262 for the
adopted main sequence calibration,Nd = 13254,Nh = 255 for the age-dependent calibration),
halo azimuthal velocity dispersion (84.7,80.9,65.4,68.9kms−1), disc local horizontal disper-
sion (σ0 = 43.2,41.4,41.5,40.1kms−1), and local scaleheight (h0 = 571,499,466,439kms−1).
As seen in Fig. 8.11, apart from a weakness on the high velocity side, which presumably derives
from the use of a global observational scatter that could overestimate the uncertainty for disc
stars, the two-component approximation gives decent fits (red lines) to the velocity distributions
for the dwarf samples. The relative halo normalization varies between the different datasets as
the most metal-poor stars are more likely to be classified into the turn-off or subgiant bands.
Of most interest for this discussion is the shape of the (retrograde) halo velocity distribution. For
the entire C10 distance sample (left column) we can clearly identify the bump that encouraged
C07 and C10 to fit a separate velocity peak starting from around−200kms−1. This anomaly
becomes especially apparent in the logarithmic plot and is confirmed by Poisson loglikelihood
values ruling out equality of the theoretical (simple Gaussian halo) and observed distributions at
highest significance.
We point out that even this strong anomaly in the fit alone would not be a sufficient justification
for a second physical component, especially not for a retrograde component. There is no rea-
son to firmly believe that the Milky Way halo or its possible components should have a strictly
Gaussian velocity structure; the disc certainly can not be adequately described by Gaussian fits
(a discussion of this can be found in Strömberg, 1927) and similarly the halo might have a more
complex velocity distribution. The only way to cleanly identify a retrograde velocity distortion
on the Galactic halo from kinematics would be to prove a difference to the prograde halo tail. As
this is, however, impossible at the required accuracy due tothe disc contamination, we conclude
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that without a clean halo-disc separation any attempt to usethe azimuthal velocity distribution
for proving a retrograde halo component is unreliable.
Besides its doubtful significance for indicating a separate component, the extended retrograde
tail anyway diminishes when we turn to the dwarf samples, which do not contain the at least
partly unphysical turn-off stars: restricting the C10 sample to their dwarf stars (centre column
of Fig. 8.11) the bump below−200kms−1 disappears. There is a weak surplus of stars between
−220kms−1 and−280kms−1, which could, however, just be a statistical fluctuation. This is
confirmed by statistics, which have the p-level (measured under the assumption of Poisson er-
rors) for equality of the fit and the measured distribution at0.55 for−250kms−1≤V ≤ 20kms−1

(and 0.20 when we extend the range to−300kms−1 ≤V ≤ 20kms−1) meaning that when draw-
ing realisations from the given theoretical distribution,about 55% of the samples would be more
different from the theoretical distribution than the current one. Regarding our imperfect treat-
ment of distance errors the quality of the fit is rather surprising. Using the main sequence distance
calibration the distribution gets even more contracted dueto the shorter distances. Apart from the
slight surplus of stars left ofV ∼−320kms−1, which just appear to be some sample contamina-
tion (indeed a distance test on the 100 objects with lowestV velocities still reveals a 2σ distance
overestimate) and the single bin with 8 stars aroundV = −260kms−1 no anomaly is traceable
any more, confirmed by statistics. Using the age-dependent calibration from Ivezic et al. (2008)
the picture is similar. The fit looks even better down toV ∼−300kms−1 beyond which there is
a weak surplus of about a dozen objects betweenV =−400kms−1 andV =−300kms−1. This
can be attributed to misassignement of stars between the catalogues for proper motions and a
probable non-Gaussian far tail of the proper motion error distribution.
It can also be argued that an attempt to fit the disc velocity distribution via a Gaussian fit increase
the need for a spurious second halo component, especially asthe large (unavoidable) velocity
errors limit the information on the real shapes of the underlying velocity distributions: as the
disc velocity distribution is naturally skewed towards lower velocities, a Gaussian fit will drop
too steeply towards low rotation velocities. This invokes asecond Gaussian for the disc (thin-
thick discs), which will in most cases show the same problem again, forcing the halo component a
little bit up into the prograde regime. This again increasesthe need for the creation of an artificial
retrograde halo component. In this case we avoided this problem by using a more physical fitting
formula for the Galactic disc, yet there was still noticeable influence by the disc fit onto the
parameters of the simple Gaussian halo component.
Overall we can state that any striking excess of highly retrograde stars disappears from the dis-
tribution when we limit the sample to the more reliable dwarfstars. There is a good agreement
between fits and data for the dwarf samples, apart from a misfitat high velocities and a slight
surplus at the lowest velocities against a Gaussian fit, which, however, rather looks like imperfect
error handling or a probable contamination of the sample with misidentifications in between the
different catalogues delivering the proper motions or a non-Gaussianity in their contamination.
Replacing the questionable Gaussian analysis for the disc bya more physically motivated for-
mula and by applying an error propagation we have shown that neither a second halo nor a second
or even third disc component are required for explaining theazimuthal velocity distribution.
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8.6.3 Velocity dispersions

Using the adopted main sequence approximation and restricting the sample to 2020 retrograde
stars (V < −10kms−1) we can give a tentative estimate for the halo kinematics ofσU ∼ 157±
10kms−1 andσW ∼ 75± 8kms−1. The latter is close to the azimuthal velocity dispersion of
σV ∼ 70kms−1 from the last section. In these values we accounted for the errors reported in
the SEGUE pipeline plus a dispersion of roughly estimated 15% in the distances. These act
to reduce the derived velocity dispersions from the actually measured ones. Those values are
considerably smaller inV andW than what was given by C10 partly due to the spurious crossover
into W velocities having diminished. We point out that these values agree well with the results
of Kepley et al. (2007) and Smith et al. (2009). Although we use the same sample with the same
distance scale as Smith et al. (2009) we cannot confirm their quoted errors of 2kms−1, since
the systematic uncertainties by the distances within the Ivezic et al. (2008) method and sample
cleaning are currently too large to assess dispersions on a scale better than 5%.

8.7 Conclusions

We have described how errors in distance estimates result inan apparent systematic retrograde
motion of the Galactic halo, an effect to which the SEGUE/SDSS sample is especially prone by
its strong poleward orientation. The general problem of distance biases similarly applies to any
study that makes use of proper motion-based estimates. We find that the distance derivation of
Carollo et al. (2007) and Carollo et al. (2010) is flawed by sorting stars into unphysical positions
in the colour-magnitude diagram: objects are placed between the subgiant and dwarf sequences
in positions that would require stellar ages in excess of theage of the universe. Despite the
elegance of the general idea to sort stars into known sequences according to their estimated
gravities, the method itself and the used gravity cuts are not well supported by measurements.
Moreover there is no ”turn-off”-sequence, but turn-off stars are populating a region that spans of
order 1 magnitude in luminosity. In this light the statementby C10 to have distances precise to
about 10−20% is an unsupported claim.
From the distances kindly provided by Carollo et al. we calculated back to their assumed absolute
magnitudes and found systematic differences of∼ 0.2 to 0.3mag and a large scatter for metal-
poor main sequence stars towards the adopted main sequence calibration as well as towards the
age-dependent calibration by Ivezic et al. (2008), also farto the red side of the suspected turn-off
region. The adopted main sequence calibration is only slightly fainter than the theoretical BASTI
isochrones.
We have shown in Section 8.4.3 that the claim by C07 and C10 to have found a counter-rotating
extended tail of the halo is largely caused by unphysical assumptions about locations of stars in
the colour-magnitude diagram, by magnitude uncertaintiesin the turn-off stars and by the use of
a too bright main sequence calibration. The correctness of this tail can be ruled out by statistical
tests, as described in Section 8.5. The tail diminishes whenwe limit the C10 sample to dwarf
stars and disappears when we make use of the better founded Ivezic et al. (2008) calibrations,
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which are consistent with fiducials and isochrones. In Section 8.6.2 we demonstrated that the
halo distribution for the dwarf samples regardless of the applied distance determination can be
fit by a simple Gaussian component.
We have also shown that in the DR7 pipeline stars with lower metallicities are shifted towards
lower gravities, considerably increasing their fraction among the thought-to-be turn-off stars.
Further the magnitude difference for their main sequence stars against the Ivezic et al. (2008)
main sequence calibration grows towards lower metallicities. The stronger prevalence of distance
errors at the metal-poor end of the metallicity distribution will thus give any spurious counter-
rotating tail members a biased metallicity distribution.
Finally we have shown that the claim of C10 that the counter-rotating component members reach
to higher altitudes can as well be traced back to distance determinations: the dispersion of the
vertical velocity component is significantly increased by their distance errors, though due to the
polewards sample orientation this effect would at first order be smaller than for the other veloc-
ities. As shown in Section (8.5) simultaneously theW velocities of the halo stars with distance
overestimates are artificially increased by of order 50kms−1 via spurious velocity cross-over
terms from the heliocentric azimuthal velocities in the derivation. The effect is strongest for the
most strongly retrograde objects (they have the largest heliocentricVh) and is aggravated by their
selection for stars in galactocentric radius 7kpc< R < 10kpc. This colludes with their metal-
licity dependent distance bias (see above) to produce theirfindings of decreasing metallicities
at high altitudes. There is a slight excess of more metal-poor stars in a single velocity bin at
high vertical velocities, which is not mirrored by the behaviour at high total kinetic energies. We
argue that this is most likely a reflection of a well-known local stream that has been identified by
Helmi et al. (1999) and Kepley et al. (2007).
Another source of error is the modelling of especially the Galactic disc azimuthal velocity dis-
tribution by Gaussian components. It was shown by Strömberg (1927) that Gaussian modelling
of the Galactic disc lead to unphysical results and the identification of spurious components on
the low rotation side because of the extented tail. As the skewedV velocity distribution enforces
in most cases the introduction of a second Gaussian component, that - being a mere artifact by
wrong assumptions - can then be misinterpreted as physical reality, Gaussian modelling of the
Galactic disc in a combined disc and halo sample can wrongly force the halo component into the
prograde regime to compensate for the two steeply falling disc terms. Consequently this then
creates the need for inference of a retrograde component to compensate for the bias.
We also argue that magnitude based distance assessment schemes introduce a velocity bias that
resembles the Lutz-Kelker bias: If the error in absolute magnitudes follows a Gaussian dis-
tribution, the distance error distribution will thus form an extended tail that grows stronger with
increasing dispersions. Via the proper motion part in the determination of space velocities, which
is proportional to the estimated distance, measured velocities develop extended tails away from
the solar motion. For theV velocity distribution of especially the halo this gives thehalo an
asymmetric velocity distribution with a longer tail in the retrograde regime, a process that can
explain the moderate asymmetries found e.g. by Norris & Ryan (1989).
Finally we note that it is by no means imperative that the halohave a Gaussian velocity distribu-
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tion. In this light it is rather surprising that our simple Gaussian halo component can fit the data
so well. Even if there were deviations from Gaussianity thiswould alone be no convincing sign
for a separate component. A more convincing indication would be a proven difference between
the prograde and the retrograde tail of the halo azimuthal velocity distribution, but disentangling
this from disc contamination on the prograde side will be difficult.
Recently Carollo and collaborators submitted a rebuttal paper (Beers et al., 2011) claiming that
our analysis presented here be wrong. Instead of discussingall our arguments their revised
analysis relies on two central claims: They state that the distance scale adopted by us is wrong
and that there is an asymmetric halo azimuthal velocity distribution for their metal-poor stars,
neither of which we concur with.
Concerning the distance issue we stress that our conclusionsare valid for the Carollo et al. (2007,
2010) and both Ivezic et al. (2008) distance calibrations; our work does not rely on a single
distance scale in contrast to claims made by Beers et al. (2011). Beers et al. criticize us for
adopting the incorrect main sequence calibration of Ivezicet al. (2008) but failed to note that
we actually stretched this calibration in the same direction of their preferred one by increasing
the luminosities by 0.1 magnitudes and accounting for alpha-enhancement by increasing the
measured metallicities by 0.2 dex (Sect. 2). Importantly, we have also made use of their preferred
Ivezic et al. (2008) calibration (here denoted IvzA7) and find no significant differences (e.g.
Fig. 11). Finally, we have made use of direct isochrone distances, which fully corroborates our
findings.
As for the azimuthal velocity distribution of the most metal-poor stars, we re-emphasize that any
magnitude-based distance scheme invokes a bias in the inferred distances and thus an asymmetric
azimuthal velocity distribution by definition; this effectis akin to the well-known Lutz-Kelker
(1973) bias and is illustrated in Fig. 8.11. In view of a largemagnitude scatter (which their metal-
poor stars clearly have, see their Fig. 5) a Gaussian fit is inappropriate due to the missing error
handling. In this light it is not surprising that their new revised parameters are quite different from
their original results (e.g. forzmax > 5kpc their outer halo mean velocity rose from−128kms−1

(cf. Table 1 in C10) to−59±20 km/s). Finally, we argue that moving a considerable fraction of
the wrongly identified turnoff stars up to the subgiant/giant branch as done by Beers et al. will
make the distance overestimate for misidentified dwarfs among them even more severe.
In summary our criticism of the C07, C10 works remains in full: our in-depth re-analysis of
their data with different distance calibrations and a proper error handling reveal no convincing
evidence for a dual halo.
The systematic distance uncertainties make it dangerous todraw a definitive conclusion for the
strength or existence of a possible counter-rotating halo component. All current distance cali-
brations have problems and need improvement before a methodalong the lines used by C07 and
C10 can be attempted. We would like to stress that we do not and would not want to rely on ei-
ther of them. Two central conclusions can, however, be drawnwithout having to trust any of the
different distance calibrations: Even on the C10 or C07 sampleusing their distances, no reliable
detection of any non-Gaussianity in the halo, be it a counter-rotating halo or not, is possible on
the examined data set in any of the dwarf samples. If a separate component gets detected on a
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larger sample in the future, it should be significantly weaker than what was claimed by C10.
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8.9 Appendix: Details on sample selection and treatment

8.9.1 Kinematics and geometry

We use up-to-date values for the basic constants of our Galaxy. The rotation speed is assumed to
be 220kms−1 in concordance with recent results of Koposov et al. (2010).We apply the recent
determinations of solar motion relative to the local standard of rest from Scḧonrich, Binney &
Dehnen (2010), which isv⊙ = (11.1+0.69

−0.75,12.24+0.47
−0.47,7.25+0.37

−0.36)kms−1 with additional system-
atic uncertainties of∼ (1,2,0.5)kms−1. Neither the Galactic rotation rate nor the solar galacto-
centric radiusR⊙ are very well determined, but the angular motion of Sagittarius A∗ is (Reid &
Brunthaler, 2004). The galactocentric radius ofR⊙ = 8.5kpc assumed in C10 is inconsistent with
their assumption for the rotation speed. We adoptR⊙ = 8.0kpc, which is in concordance with
most measurements, and coincides with the most recent trigonometric parallax determination for
Sagittarius B2 (Reid et al., 2009b).

8.9.2 Distance calibrations and metallicities

For adopted distances in SDSS colours two alternatives exist: The Ivezic et al. (2008) calibration
(see Appendix therein) or the Beers (2000) calibration. A third possibility would be using the
isochrones directly, which would allow for a statistical implementation of the subgiants and also
allow for natural shape changes: however, their handling isbeyond the scope of this work. The
Ivezic et al. (2008) main sequence calibration uses the formula:

Mr(g− r, [Fe/H]) = (8.3)

= 1.65+6.29(g− i)0−2.30(g− i)2
0−1.11[Fe/H]−0.18[Fe/H]2 (8.4)

whereMr is the adopted absolute magnitude and(g− i)0 is the dereddened SDSS colour index.
A short assessment of this formula reveals that it fits the zero age main sequence relatively well
in the required colour range at low metallicity. Apart from the shortcome that the subgiants are
not considered, the metallicity dependence is not well matched at the high metallicity end. Fur-
ther the colour dependence is not perfect at the level of precision required for distances and there
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are no crossterms between metallicity and colour, i.e. there is no implementation of metallicity-
dependent shape changes. Thus this relation has to be used with caution. A comparison with the
BASTI isochrones reveals that the Ivezic et al. (2008) calibration at low metallicities is slightly
fainter than the isochrones without alpha enhancement. To correct for alpha enhancement we
slightly increase the metallicity of all metal-poor stars (with [Fe/H]DR7 < −1.0) by 0.2dex and
let this correction go linearly to zero between[Fe/H]DR7 = −1.0 and[Fe/H]DR7 = 0. In ad-
dition we increase all luminosities by 0.1mag to reconcile the calibration better with the main
sequence ofM92 according to the fiducials by An et al. (2008), to avoid any suspicion to have
buried the counter-rotating tail by a too faint calibration, and as we detected a minor distance un-
derestimate in our statistics without this shift. Further the calibration is now just slightly brighter
than the isochrones as seen in Fig. 8.4, which is a desired effect at those metallicities, as there
are indications that metal-poor isochrones could underestimate the luminosities (or equivalently
overestimate the effective temperatures) of lower main sequence stars (Casagrande et al., 2007).
To account for age effects Ivezic et al. (2008) also suggested an ”age-dependent” calibration,
which rises more steeply towards the blue side (Eq.A7 in their appendix). To meet concerns
of our referee we show all relevant statistics also in the light of this other calibration. This cali-
bration is steeper in colour than the main sequence calibration, i.e. it is brighter at blue colours
and fainter at red colours, following an intention to cope with the steepening of isochrones near
the turn-off. However, the steepening of isochrones only applies near the turn-off, while this
relation is globally inclined against the main sequence of the isochrones as well as against the
main sequence calibration. As this relation thus does not follow the blueward shift of the turn-off
towards lower metallicity, a relative overestimate is expected for the distances of the blue stars at
lowest metallicity. Vice versa the distances to metal rich turn-off stars might be underestimated.
We tested all our results for the C10 dwarf sample and also for cutting in colour and different
gravity selections to delineate the impact by the turn-off region. As can be seen from the central
panel in Fig. 8.4 the difference between the adopted main sequence calibration and the C10
magnitudes persists also to the red side of the turn-off region and is also present for the Ivezic et
al. (2008) age-dependent relation.
As an even fourth distance determination we made use of the BASTI isochrones (Pietrinferni
et al., 2004, 2006). To accomplish that we account again for alpha enhancement with the same
prescriptions as for our adopted main sequence relation. For each star we choose the closest
12.5Gyr isochrone in metallicity from a dense grid kindly provided by S. Cassisi for our age
determinations in Casagrande et al. (2011). On this isochrone we choose the r-band magnitude
from (g-i) on the main sequence. When the turn-off is to the redof the stellar position, we
extrapolate from the turn-off point of the isochrone following the shape of the Ivezic et al. (2008)
main sequence relation. So these stars are placed at an extrapolated turn-off point. As one can
easily see from Fig. 8.12 in the central statistics there areno significant changes towards the other
main sequence calibrations. We confirmed that no real difference was detectable.
C10 used a slightly different metallicity scale from DR7, which was reasoned to balance out a
possible metallicity overestimate on the lowest metallicity end:

[Fe/H]Car =−0.186+0.765[Fe/H]DR7−0.068[Fe/H]DR7
2 (8.5)
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Figure 8.12: Vertical dispersions vs. metallicity revisited. The lines are the same as in Fig. 8.9.
Additionally we plot in black the same derived via direct isochrone determination of distances.

We argue that their claimed overestimate at low metallicities most likely reflects the impossi-
bility of the pipeline to cope with the faint metal lines in this region, getting lost in the low
resolution and low signal-to-noise ratios. This effect is quite similar to the loss of accuracy e.g.
in Strömgren photometric metallicities. The formula has the dissatisfactory effect of aggravating
the well-known bias of the DR7 pipeline to underestimate the metal content of metal-rich stars.
This can be seen by comparison of local stars from the Geneva-Copenhagen Survey (Nordström
et al., 2004) with high vertical energy, to the metallicity distribution of the SEGUE disc stars.
Similarly the ugriz metallicity calibration fails to reproduce metallicities already slightly below
solar metallicity as can be seen from Fig. 11 inÁrnad́ottir et al. (2010). The latter problem is not
of major importance for the halo, but applying the formula byCarollo et al. would exacerbate
metallicity-induced errors on the disc population. We estimate that distances are only weakly
affected by this correction on the low metallicity side (i.e. mostly for halo stars) as the sensi-
tivity of stellar atmospheres to the logarithmic metallicity scale gets lower. This can be seen in
VandenBerg et al. (2010) or for comparison in fig. 13 of Casagrande et al. (2010).
We use the DR7 metllicities throughout the paper and do not apply the correction from (8.5), but
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checked that our findings are not significantly affected by switching the distance scale.

8.9.3 Deriving space velocities

The dataset contains information on magnitudes, colours, the distances, stellar parameters, radial
velocities and proper motions. We can thus derive the velocities in the solar/local coordinate
system by:

Uh =−d sin(l)l̇ −d cos(l)sin(b)ḃ+cos(b)cos(l)v‖
Vh = d cos(l)l̇ −d sin(l)sin(b)ḃ+cos(b)sin(l)v‖

Wh = d cos(b)ḃ+sin(b)v‖

(8.6)

wherel,b are Galactic longitude and latitude,l̇, ḃ are the proper motion components inl and
b and d is the assumed distance to the stars. Of special interest is the degree of support of
the measurement by radial motions, which are independent ofdistance biases and have smaller
errors. Neglecting the geometrical extension of the sample, the quantity of interest is thus the
term connecting the azimuthal velocity in the heliocentricframeVh to the line-of-sight velocity
v‖:

ηV = |cos(b)sin(l)| (8.7)

The termηV is 1 where theVh velocity is measured directly from the line-of-sight velocity v‖ i.e.
at b = 0 andl = 90◦,270◦, its contours on the sample are depicted in Fig. 8.1.
Due to the extension of the sample to a radius of more than 3kpcprojected on the Galactic plane
a small angle approximation cannot be reliably taken. Usingthe Galactic rest frame velocities in
heliocentric coordinateUa =Uh+U⊙,Va =Vh+VG+V⊙,Wa =Wh+W⊙ (whereVG is the Galactic
rotation speed,V⊙,U⊙ andW⊙ are the components of solar motion relative to the local standard
of rest) the correction from the local coordinate system canbe done via the Galactic angle

α = arctan(
d sin(l)cos(b)

R⊙−d cos(l)cos(b)
) (8.8)

between the line sun-centre to the line star-centre:

U =Ua cosα −Va sinα
V =Va cosα +Ua sinα −VG

W =Wa

(8.9)

Throughout the paper blank lettersU,V,W denote the corrected velocities in a Galactic reference
frame, which are useful for assessing kinematics,Uh,Vh,Wh denote the velocities in the rest frame
of the Sun and heliocentric coordinates, which are the native setting for exploring kinematic
biases.
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8.9.4 Sample cleaning

The DR7 calibration sample contains 42841 spectra. The stepsfor cleaning the sample and the
subsequent reduction of numbers are listed in Table 8.1; subsamples used in this work and the
plots are set in bold font. However, a considerable fractionof these entries is double, i.e. stars
whose spectra have been taken several times, some for observational reasons as to improve the
signal to noise, some as they were both listed among the photometric calibration stars and the
reddening calibration stars. Therefore it is necessary to clean DR7 samples by identifying any
measurements that are within 1.5 arcsec of each other in both right ascension and declination or
are within an angular distance of 3 arcsec and have ag band magnitude difference below 0.1mag.
We chose the entry that gives full information on proper motions and the latest measurement in
case both contain it. This leaves 33023 unique calibration stars in our DR7 sample. The C10
sample was already cleaned by them and has the 4kpc distance cut (according to their distances)
applied, but not the cut in galactocentric radius (which we do not apply either). Hence the number
of unique stars in the C10 sample is only slightly reduced whenwe demand a cross-match by
stellar position on our DR7 table for being less then 2.5 arcsec apart both in right ascension and
declination. There are some stars dropping out because of a missing cross-match and there were
52 candidate double entries with identical position in the C10 sample. Among those objects
some are∼ 0.3mag fainter than their second entry and the corresponding entry in DR7. In total
we found 41 stars which are∼ 0.3mag fainter in apparent magnitude than their counterpartsin
DR7. We checked that none of these differences has a significant impact on the results.
We also removed from the sample the stars with signal to noiseratio S/N < 10 and those which
are flagged by the SSPP for spectral abnormalities, for colour mismatches or for being a sus-
pected or proven white dwarf, as well as those with particularly unreliable radial velocity mea-
surements or SSPP parameters. We thus cleaned the C10 sample from ∼ 1700 flagged stars.
Superficial tests did not show any obvious problems caused bythose stars. Following C10, we
also excluded all stars without determined proper motions and ”clean” the sample according to
Munn et al. (2004) requiring that bothσRA and σDEC < 350mas, with an additional require-
ment of those stars to have quoted errors in each proper motion component of< 5masyr−1. We
checked on the C10 sample that 224 objects in their sample not passing this cut did not cause
any noticeable biases. The full cleaning gives a final DR7 sample of 28844 stars, which we will
use when plotting ”all” stars in DR7. In plots of the full C10 sample we use its counterpart of
21600 stars that already fulfills at their distances the condition of having all distances smaller or
equal to 4kpc.
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condition DR7 Carollo et al. (2010)
original sample entries 42841 —
cleaned sample by C10 — 23647
unique & cross-matched 33023 23553
unflagged 29655 21828
S/N > 10 29638 21825
4500≤ Teff ≤ 7000 29601 21823
[Fe/H]DR7,v‖ fine 29584 21819
prop. motion fine 28844a 21600
log(g)> 4.0 17365 15023
log(g)> 4.1 13880 12120
dIvz < 4kpc, log(g)> 4.0 15808 14763
dIvz < 4kpc, log(g)> 4.1 12678b 11894
dCar < 4kpc — 21600c

dCar < 4kpc, log(g)> 4.0 — 15023d

Table 8.1: Numbers of stars at different cuts in the two samples. The quality cuts are applied
cumulatively from the first row until the horizontal line. Below the horizontal line we show
selected subsamples with gravity and distance cuts. The cuts down to the quality cut in proper
motion are applied successively. Below the horizontal line we show the effects of differnt dis-
tance estimations and cuts on the number of remaining stars.
Subsamples used in the paper:a ”all star sample”,b ”Ivezic dwarfs”, c Carollo all, d Carollo
dwarfs.



Chapter 9

The detection and treatment of distance
errors in kinematic analyses of stars1

9.1 Abstract

We present a new method for detecting and correcting systematic errors in the distances to stars
when both proper motions and line-of-sight velocities are available. The method, which is ap-
plicable for samples of 200 or more stars that have a significant extension on the sky, exploits
correlations between the measuredU,V andW velocity components that are introduced by dis-
tance errors. We deliver a formalism to describe and interpret the specific imprints of distance
errors including spurious velocity correlations and shifts of mean motion in a sample. We take
into account correlations introduced by measurement errors, Galactic rotation and changes in the
orientation of the velocity ellipsoid with position in the Galaxy. Tests on pseudodata show that
the method is more robust and sensitive than traditional approaches to this problem. We investi-
gate approaches to characterising the probability distribution of distance errors, in addition to the
mean distance error, which is the main theme of the paper. Stars with the most over-estimated
distances bias our estimate of the overall distance scale, leading to the corrected distances be-
ing slightly too small. We give a formula that can be used to correct for this effect. We apply
the method to samples of stars from the SEGUE survey, exploring optimal gravity cuts, sample
contamination, and correcting the used distance relations.

9.2 Introduction

Studies of stellar kinematics in the Milky Way are of enormous importance as they hold the key
both to measuring the gravitational field of the Galaxy and tounravelling the Galaxy’s history and
manner of formation. Consequently considerable resources have been, and are being, devoted to
measuring the velocities of stars.

1 The content and text of this chapter are being published in nearly identical form as Scḧonrich et al. (2011b).
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Two different techniques have to be used to measure the threecomponents of velocity with
respect to the Sun: the componentv‖ along the line of sight to the star is measured spectroscop-
ically, while the componentv⊥ transverse to the line of sight is determined by combining the
measured proper motion̄with an estimate of the distances to the star. Over the next decade
enormous numbers of distances will be obtained from parallaxes measured by the Gaia satel-
lite, but currently the great majority of distance estimates have been obtained by comparing an
estimate of the star’s absolute magnitude with its apparentmagnitude. This process is liable to
systematic error in several ways. Giants can be mistaken forsubgiants or even dwarfs of the
same colour (or vice versa) and assumed ages severely influence the adopted luminosities in the
turn-off region even for well classified stars. Also, the adopted metallicities may be biased as
discussed by Lee et al. (2008a) and as demonstrated by the shifts in metallicity scale between
Nordstr̈om et al. (2004), Holmberg et al. (2007) and Casagrande et al. (2011). An erroneous
metallicity will lead to the wrong isochrone being used to infer the luminosity, and an erroneous
luminosity and distance will follow. Further problems are that synthetic colours can be wrong
(cf. the discussion in Percival & Salaris, 2009) and that stellar-evolution models can predict dif-
ferent luminosities for given metallicity and effective temperatures; there is evidence that they
make the main sequences of metal-poor objects too faint (the“helium problem”, e.g. discussed
in Casagrande et al., 2007). Finally, erroneous extinctionsmay be adopted. Since the problems
just enumerated can readily accumulate to systematic distance biases in excess of 20 per cent,
some way of independently calibrating the distance scale isinvaluable.
Here we present a method for calibrating distances that exploits correlations between the mea-
suredU,V,W components of velocity that are introduced by systematic distance errors, and is
applicable to any survey that provides proper motions and line-of-sight velocities over a wide
area of the sky.
The idea that the typical distance to objects in a sample can be constrained by proper motions is
well known in astronomy – for a useful recent review see Popowski & Gould (1998). The method
of secular parallaxes determines the mean parallax of a population by combining proper motions
and the known mean motion of the population with respect to the Sun (e.g. Trumpler & Weaver,
1962; Binney & Merrifield, 1998,§2.2.3), while the method of statistical parallaxes estimates
the mean parallax by combining proper motions with line-of-sight velocities (e.g. Binney &
Merrifield, 1998,§2.2.4). Our method has points in common with both the above methods in that
it hinges on comparing proper motions with line-of-sight velocities but also exploits the mean
motion of the stars with respect to the Sun. It is much less vulnerable than classical methods to
questionable assumptions regarding the shape of the velocity ellipsoid and/or the nature of mean
velocity field (see esp. the discussion in Trumpler & Weaver,1962). By examining the way
correlations between components of space velocity vary with position on the sky, we dispense
with the need for prior knowledge of the mean velocity field. All we require is knowledge
of the formal errors of the observables and, if the sample is sufficiently non-local, reasonable
assumptions about the orientation of the velocity ellipsoid at relevant points in the Galaxy.
Section 9.3 lays out the basic theory for the case in which distances are all in error by a common
factor. Section 9.4 extends the theory to the realistic casein which distance errors contain a
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random component. Section 9.5 applies the method to data from the Sloan surveys. Section 9.6
sums up.

9.3 The mean distance error

We are concerned with the case in which calibration errors inthe distance scale cause all distances
have a fractional errorf , so the assumed distances′ to a star is related to the true distances by

s′ = (1+ f )s. (9.1)

Consequently the assumed tangential velocityv′⊥ is related to the true tangential velocityv⊥ by

v′⊥ = (1+ f )v⊥. (9.2)

The velocity componentv‖ along the line of sight is of course unaffected by distance errors.
From v‖ and the proper motions(µb = ḃ,µl = cosb l̇) parallel to each Galactic coordinate we
infer the velocity components(U,V,W ) in the Cartesian coordinate system in which the Sun is
at rest at the origin. In this system theU axis points to the Galactic centre, theV axis points in
the direction of Galactic rotation, and theW axis points to the north Galactic pole. The relevant
transformation is





U0

V0

W0



= M





sµb

sµl

v‖



 , (9.3)

where the orthogonal matrix

M ≡





−sinbcosl −sinl cosbcosl
−sinbsinl cosl cosbsinl

cosb 0 sinb



 . (9.4)

The velocity components inferred from distances that have fractional errorf are





U
V
W



= M(I + f P)





sµb

sµl

v‖



 , (9.5)

whereI is the identity matrix and

P≡





1 0 0
0 1 0
0 0 0



 . (9.6)
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Table 9.1: Explicit expression for the matrixT through which distance errors introduce correla-
tions between the apparent components of velocity, and an expression for the relation between
the errors in(U,V,W ) and in(µ,v‖).

T = MPM T =





1−cos2bcos2 l −1
2 cos2bsin2l −1

2 sin2bcosl
−1

2 cos2bsin2l 1−cos2bsin2 l −1
2 sin2bsinl

−1
2 sin2bcosl −1

2 sin2bsinl cos2b









eU

eV

eW



= M(I + f P)





sεb

sεl

ε‖



=





−sinbcosl(1+ f )sεb −sinl(1+ f )sεl +cosbcoslε‖
−sinbsinl(1+ f )sεb +cosl(1+ f )sεl +cosbsinlε‖

cosb(1+ f )sεb +sinbε‖





Hence the true and measured Galactocentric components of velocity are related by





U
V
W



= M(I + f P)MT





U0

V0

W0



= (I + f T)





U0

V0

W0



 , (9.7)

where

T ≡ MPM T . (9.8)

Table 9.1 gives an explicit expression forT, which has direction-dependent off-diagonal ele-
ments. Consequently, whenf 6= 0 the inferred value ofW has linear dependencies onU0 and
V0 with coefficients that are known functions of Galactic position times f . By detecting these
patterns of bias, we can measure the amountf by which distances have been over-estimated.
The phenomenon we exploit can be understood by an example. Consider a star at a Galactic
longitudel = 0 and latitudeb = 45◦. Suppose the star’s only non-zero component of velocity (in
the Sun’s rest frame) isU0 > 0. This motion generates both a proper motionµb < 0 and a line-
of-sight velocityv‖ away from us. If we over-estimate the star’s distance, the tangential velocity,
which lies in the(U,W ) plane, will be over-estimated, and we will infer a negative value forW
instead of zero. By the same token, a star with over-estimateddistance that hadU0 < 0 would
haveW > 0. In the southern Galactic hemisphere signs reverse and a star with over-estimated
distance atb = −45◦ with U0 > 0 will be wrongly assigned a positive value ofW . Hence a
systematic tendency to misjudge distances can be detected by looking for correlations between
velocity components that vary over the sky in given ways.
The Sun moves in the direction of Galactic rotation faster than the circular speed and all Galactic
components are subject to at least some asymmetric drift, so〈V0〉 < 0 for most groups of stars,
especially halo stars. Consequently, the clearest signals of an erroneous distance scale are usually
correlations between the measured values ofU andV and betweenW andV .
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9.3.1 A naive Approach

Equations (9.7) yield

U =(1+ f TUU)U0+ f TUVV0+ f TUWW0

V =(1+ f TVV )V0+ f TVUU0+ f TVWW0 (9.9)

W =(1+ f TWW )W0+ f TWUU0+TWVV0.

Suppose for each hemisphereb > 0 andb < 0 we bin stars inl and inV ≃V0. Then for each bin
we could average the first and third equations, obtaining foreach bin two equations

〈U〉= 〈(1+ f TUU)U0〉+ f 〈TUVV0〉+ f 〈TUWW0〉
〈W 〉= 〈(1+ f TWW )W0〉+ f 〈TWUU0〉+ f 〈TWVV0〉. (9.10)

We expect the population of stars under study, taken as a whole, to be moving neither radially nor
vertically, so at any(b, l) the mean values ofU0 andW0 should be the reflex of the solar motion,
(U⊙,W⊙). With this assumption in theU equation we may set

〈(1+ f TUU)U0〉=−(1+ f 〈TUU〉)U⊙
〈TUWW0〉=−〈TUW 〉W⊙, (9.11)

and similar relations can be used in theW equation. Finally we makef the only unknown in
equations (9.10) by assuming, in a first approximation, thatV0 =V . On account of Poisson noise,
the sample values of quantities such as〈TUWW0〉 will differ from our adopted value,−〈TUW 〉W⊙,
so the equations will not be exactly satisfied, but we can seekthe values off that minimise the
quantities

S′U ≡ ∑
bins

[

〈U〉+(1+ f 〈TUU〉)U⊙

− f 〈TUV V 〉+ f 〈TUW 〉W⊙
]2

(9.12)

S′W ≡ ∑
bins

[

〈W 〉+(1+ f 〈TWW 〉)W⊙

+ f 〈TWU〉U⊙− f 〈TWVV 〉
]2
.

After determining the optimum value off , this value can be used to correct the distances and the
velocities derived from them, and a new value off is then obtained, enabling the distances to be
corrected a second time, and so on until convergence has beenreached.
The scheme just described is straightforward conceptuallyand does work, but suffers a significant
loss of information from the need to bin the data and to replace the measured values ofU andW
by −U⊙ and−W⊙. Therefore the results shown in this paper are obtained by a different scheme
that is described in the next subsection.
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9.3.2 A more effective approach

Our method is based on the principle that the true value ofU or W can be decomposed into a
mean velocity field of known form with componentsU andW , plus a random variableδU or
δW that has zero mean, soU0 = U + δU , etc. In this subsection we make the assumption that
the mean velocity field may be approximated by the reflex of thesolar motion, soU =−U⊙ etc.
In Section 9.3.5 we will lift this restriction to allow for Galactic rotation. Also we argue that in
the second or third terms on the right of equations (9.9) we may replaceV0 by V on the ground
that the inferred value is close to the true value and the presence in these terms of an explicit
factor f implies that the error made by replacingV0 by V is O(f 2). The same argument enables
us to replaceU0 by U andW0 by W in these terms. With these replacements the first and third of
equations (9.9) become

U =−U⊙+ f x+(1+ f TUU)δU

W =−W⊙+ f y+(1+ f TWW )δW, (9.13)

where

x≡−TUUU⊙+TUVV +TUWW

y≡−TWWW⊙+TWUU +TWVV. (9.14)

We now eliminate reliance on prior knowledge of the solar motion by subtracting from each of
equations (9.13) its expectation value, and have

U −〈U〉= f (x−〈x〉)+(1+ f TUU)δU

W −〈W 〉= f (y−〈y〉)+(1+ f TWW )δW, (9.15)

We determine the optimum value off by forming the sample sums2

∑
i
[Ui −〈U〉− f (xi −〈x〉)]xi =∑

i
(1+ f TUUi)δUixi (9.16)

∑
i
[Wi −〈W 〉− f (yi −〈y〉)]yi =∑

i
(1+ f TWWi)δWiyi.

The right side of the first equation would vanish ifδU were uncorrelated withx but it is correlated
becausex depends onV andW , which in turn depend onU0 = −U⊙+ δU . In fact one easily
shows that

〈(1+ f TUU)δUx〉= f 〈(1+ f TUU)(T
2

UV +T 2
UW )δU2〉. (9.17)

2 The accuracy with whichf is determined can be slightly increased by weighting each term in the sums in eqs.(9.16)
by the inverse of the expected standard deviation of the noise term or by using Huber-White standard errors (White,
1980).
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Table 9.2: Parameters of the mock disc and halo samples used in tests. All velocities are in
kms−1

Component σU σV σW vφ
Disc 55 45 35 180
Halo 150 75 75 0

Since we are working to O(f ) only, we neglect the second term in the first bracket on the right
and use the resulting expression in equation (9.16) to solvefor f . We find

f =
Cov(U,x)

Var(x)+ 〈T 2
UV +T 2

UW 〉σ2
U

, (9.18)

whereσ2
U ≡ 〈δU2〉 and we have identified sample means with expectation values.Analogously,

from the second of equations (9.16) we have

f =
Cov(W,y)

Var(y)+ 〈T 2
WV +T 2

WU〉σ2
W

. (9.19)

As with the naive scheme, we proceed iteratively, successively correcting the distances according
to the value off yielded by the current distances, untilf becomes negligible. The precise values
of the denominators in our expressions forf are not important because we rescale distances until
f ∝ Cov(U,x) = 0 or f ∝ Cov(W,y) = 0. This circumstance is fortunate as only an approximate
values ofσU andσW may be available. Note that equations (9.18) and (9.19) makeno reference
to the solar motion so that in contrast to the secular parallax they require only information about
the shape, but not the average value of the mean velocity field.
In the following, when using equation (9.18) we shall callU the “target variable” andx the
“explaining variable”, while when we use equation (9.19),W will be the target variable andy the
explaining variable.
The reader may wonder why we do not obtain a third estimate off from theV equation of the
set (9.9). The problem is that we cannot writeV0 =−V⊙+δV by analogy with our treatment of
U andW , because most stellar groups have mean azimuthal velocities smaller than that of the
Sun, and in fact the mean azimuthal velocity of a group will vary with location.
The quantities∑iUixi and∑iWiyi implicit in the right sides of equations (9.18) and (9.19) contain
cross-terms such as∑iUiVi and∑iUiWi. As explained above, usually theV cross-terms contain
the largest amount of information regardingf , except whenV lies near zero, when theW cross-
terms provide the strongest constraints onf . W is the target velocity of choice both because it
has the lowest velocity dispersion, and because it is least affected by streaming motions, which
are largely confined to theUV plane (Dehnen, 1998).
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Figure 9.1: Value of the fractional distance errorf from equation (9.19) versus value off bias
in a mock sample of 450000 disc and 50000 halo stars. The blue line has unit slope.

9.3.3 Tests

In this section we test the effectiveness of the scheme derived in the last subsection by deriving
pseudo-data from a model Galaxy, and analysing them in the presence of systematic distance
errors. We have conducted such tests using a model obtained by adding gas and star formation
to a halo formed in simulations of the cosmological clustering of collisionless particles. The
results of these tests were entirely satisfactory, but we donot report them here for two reasons:
(a) considerable space would be required to describe the Galaxy model with sufficient precision
and the model is in any case not entirely realistic, and (b) the model provides a rather limited
number of particles in the vicinity of the Sun, so the statistical precision of the tests is inferior
to that of the tests we will present. These use data obtained from a Galaxy model that is highly
idealised, but which has the flexibility to produce data thatinclude or exclude whatever features
in the data might affect the performance of our method.
Our idealised Galaxy model has a non-rotating halo and a rotating disc. The velocity ellipsoids
of both components are triaxial Gaussians: Table 9.2 gives the values of the dispersions. The



202 CHAPTER 9. THE DETECTION AND TREATMENT OF DISTANCE ERRORS

mean rotation velocity of the disc is taken to be 180kms−1 and the circular speed is 220kms−1.
The sampled stars are distributed uniformly in distance between 0.5kpc and 4kpc, and uniformly
in Galactic longitude and latitude, which gives the sample astrong poleward bias that resembles
the bias encountered in real samples better than an isotropically distributed sample would. The
solar motion is in addition offset by the local standard of rest velocity vector as determined by
Scḧonrich, Binney & Dehnen (2010).
The crosses in Fig. 9.1 show the value off recovered from equation (9.19) on the first iteration,
f1, versus the preset fractional distance over-estimatef applied to the sample. Each cross shows
an independent realisation of the pseudodata, which contained 450000 disc and 50000 halo stars.
The crosses fall on a curve that passes through(0,0) as we would hope. The straight line through
the origin with unit slope is also plotted and we see that for| f |<∼0.2 the slope of the curve is
close to unity, so convergence of the iterative procedure israpid. However, the key point is that
the curve passes through the origin and has no point of inflection. So long as these conditions are
satisfied, the iterative scheme will converge on the correctdistance scale regardless of the slope
or curvature of the curve.
Fig. 9.2 demonstrates that the method works well even in the absence of solar motion by showing
results analogous to those of Fig. 9.1 for a sample of stars that has no net motion with respect to
the Sun and an isotropic velocity distribution around the solar motion, i.e. without any systematic
offset. The minor difference between the estimators onU andW derives from second-order
effects in f by the polewards bias in the sample geometry. Note that a simple linear regression of
W on y from equation (9.13) would give the right zero point and so finally an unbiased distance
estimate, but due to the lack of correction factors to the denominator Var(x) would give a slope
that is a factor 2 too large and hence a bad convergence behaviour in the iteration.

9.3.4 Impact of random errors

We now consider the impact on our technique of random measurement errors. If we measured
U , V andW directly, random errors would have no impact because they would simply inflate
the scatter in these variables that is inherent in stars having random velocities. Unfortunately,
we do not measureU,V,W directly but calculate them from the measured values ofµb, µl and
v‖. Consequently the error in sayµl introduces correlated errors into bothU andV . Since our
technique consists precisely in attributing correlationsbetweenU andx (which depends onV ) to
a non-zero value off , we must consider the contribution of the errors to the correlations between
U andx or W andy if we are to estimatef correctly.
Our key assumption is that the errors inµb µl andv‖ are statistically independent, have vanishing
mean, and have finite and approximately known variances. Letεb,εl,ε‖ be the errors in the
proper motions and line-of-sight velocity. Then the randomerrors inU,V,W are





eU

eV

eW



= M(I + f P)





sεb

sεl

ε‖



 . (9.20)
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Figure 9.2: Value of the fractional distance errorf from equation (9.18) or (9.19) versus the
input value off for samples of 500000 stars with an isotropic velocity distribution and no solar
motion. The line of unit slope is also shown.

Table 9.1 gives an explicit expression for the right side of this equation.
Consider now the correlation, between a target variable, sayW , and the explaining variabley.
Let W = W ′+ eW andy = y′+ ey, where the primed variables are the components without the
error andeW , ey are their errors derived from equation (9.20)

〈Wy〉= 〈W ′y′〉+ 〈eW ey〉+ 〈W ′ey〉+ 〈eW y′〉. (9.21)

Given that the errors are unbiased, the correlations such as〈W ′ey〉 between the true velocities
and the errors vanish. Consequently the changes inf that the errors introduce through equation
(9.19) is

e f =
〈eW ey〉

〈y2〉+ 〈T 2
WU +T 2

WV 〉σ2
W

− f
〈e2

y〉
〈y2〉+ 〈T 2

WU +T 2
WV 〉σ2

W

. (9.22)
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Figure 9.3: Tests of the effects of random measurement errors in a mock sample of 500000
stars, among which are 50000 halo stars. The left and centre panels show how the values of
Cov(W,y) and Var(y) are affected by measurement errors, while the right panels show the values
of f1 using equation(9.19) with and without the correction termsfor these samples. In the upper
row the proper motions are error free and the horizontal axisgives the error inv‖, while in the
lower panelv‖ is error free (red and green crosses) and the horizontal axisgives the error in
proper motions. In the bottom right panel we added the case ofa fixed radial velocity error of
30kms−1 (green squares and purple circles) to demonstrate the simple superposition of the error
correlation terms on the covariance.

The second term on the right side is smaller than the first, andas we iterate towardsf = 0 it van-
ishes altogether. Hence we neglect it. With this term neglected, we can obtain the error-corrected
value of f simply by subtracting〈eW ey〉 from the measured value of〈Wy〉 before inserting its
value into equation (9.19).
We now calculate the error-error correlations. We have fromequations (9.14)

〈eU ex〉=TUV 〈eU eV 〉+TUW 〈eU eW 〉
〈eW ey〉=TWU〈eW eU〉+TWV 〈eW eV 〉. (9.23)

When we use Table 9.1 to express the errors in terms of the (uncorrelated) errors in the observ-
ables, we find

〈eU eV 〉= 1
2 sin2l[(1+ f )2s2(sin2bε2

b − ε2
l )+cos2bε2

‖ ]

〈eU eW 〉=−1
2 sin2bcosl[(1+ f )2s2ε2

b − ε2
‖ ] (9.24)

〈eW eV 〉=−1
2 sin2bsinl[(1+ f )2s2ε2

b − ε2
‖ ].
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From the definition off we see that these terms exclusively depend on the measured distance
s′ = (1+ f )s, so we can correct for proper-motion errors before determining f . Finally using the
explicit form ofT from Table 9.1 we obtain our correction terms:

〈eU ex〉=−1
4{cos2bsin22l [(s′2(sin2bε2

b − ε2
l )+cos2bε2

‖ ]

−sin22bcos2 l [s′2ε2
b − ε2

‖ ])} (9.25)

〈eW ey〉= 1
4 sin22b{s′2ε2

b − ε2
‖}.

The left panels in Fig. 9.3 show〈eW ey〉 as a function of the errors in the line-of-sight velocities
(upper panel) and the errors in proper motions (lower panel). (In the upper panels the proper-
motion data are error-free, while in the lower panels the line-of-sight velocities are error-free.)
All points are determined from realisations of a Monte-Carlosample of 450000 disc stars and
50000 halo stars sampled from the model described by Table 9.2. The agreement between the
analytic formula and the Monte-Carlo results is perfect. On account of the large distances of
most of the stars, the proper-motion errors produce substantially greater values of〈eW ey〉 than
do the errors inv‖ (which will be negligible for most present-day samples). The right panels of
Fig. 9.3 show the shifts inf1 (red crosses) that arise from the correlations plotted on the left. The
uncorrected values off1 exhibit a quadratic behaviour for small errors as can be expected from
equation (9.25), while for larger errors growth in the denominator on the right of equation (9.19)
abates the growth in| f1|. The blue crosses show the values forf1 obtained when we correct our
estimate according to equation (9.25). The green squares inthe bottom right panel depict the
case when we varyσµb at a fixed line-of-sight velocity errorσv‖ = 30kms−1. This demonstrates
that the error effects can be added linearly and our formalism gives a perfect account of them
(purple circles). We also checked that as predictedσµl does not affect our distance estimate when
targetingW .
The largest uncertainty in the corrections given by equations (9.25) lies in the assessment of the
measurement errors. The model data used above include remote disc stars, which have errors
that are larger than will often be encountered in practice. So this test suggests that it should be
possible to correct for the effects of measurement errors inmost samples.

9.3.5 Rotation of the velocity ellipsoid

Regardless of a star’s location, we have been decomposing itsvelocity into Cartesian components
in the frame that is aligned with the Sun-centre line. Since this frame is not aligned with the prin-
cipal axes of the velocity ellipsoid at the location of a distant star, we anticipate non-vanishing
values of〈UV 〉, etc., even in the absence of distance errors. We now addressthis issue.
Let the components of velocity of any star along the principal axes of its local velocity ellipsoid
be(Ug,Vg,Wg). Then with the anglesα andβ defined as shown in Fig. 9.4, the angleα between
the projection onto the plane of the velocity ellipsoid’s long axis and the Sun-centre line is given
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Figure 9.4: The definition of Galactic coordinates, heliocentric velocities and the anglesα andβ .
GC signifies the Galactic Centre. The purple ellipse depicts the direction of the radially oriented
main axis of the velocity ellipsoid (alongUg), which definesβ .

by

α = arctan

(

ssinl cosb
R0− scosl cosb

)

, (9.26)

and the heliocentric velocity components(U,V,W ) are given by





U +U⊙
V +V⊙
W +W⊙



= R(α,β )





Ug

Vg

Wg



 , (9.27)

where

R(α,β )≡





cosα cosβ sinα cosα sinβ
−sinα cosβ cosα −sinα sinβ

−sinβ 0 cosβ



 . (9.28)
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Both observation (Siebert et al., 2011) and theory (Binney & McMillan, 2011) suggest thatα
andβ will take values close to the Galactocentric azimuthφ and latitude1

2π −θ of the location
in question. In our tests we will assume that these relationsare exact.

Correlations from mean streaming

A major contribution to the velocity componentsU andV comes from the azimuthal streaming of
stars, which we take to have magnitudevφ (R,z). This motion invalidates our assumption above
thatU = −U⊙+ δU . Instead we now haveU = −U⊙+U + δU , whereU is theU component
of the velocity field given byvφ at the star’s location. Specifically we have

U(s, l,b)= vφ sinα, (9.29)

where there is dependence on(s, l,b) both throughα and through the (generally unknown) de-
pendence ofvφ on (R,z). Unfortunately, bothTUV andU are odd functions ofl, so correlations
contributed by distance errors can be interpreted as due to differential rotation and vice versa.
On account of this fact,W , to whichvφ does not contribute, is a more useful target velocity than
U . However, it is nonetheless worthwhile to consider howU can be targeted.
The first of equations (9.13) now becomes

U =−U⊙+ vφ sinα + f x′+(1+ f TUU)δU. (9.30)

To determinef from these equations we assume that

vφ =Θg(R,z), (9.31)

whereg(R,z) is a function that describes the way in whichvφ varies with position andΘ ≡
vφ (R0,0) is the local streaming velocity of the population under study. In the simplest case we
assume thatg has no dependence onR, and we estimate its dependence onz from the data, using
the current distance scale. Onceg has been chosen, and a preliminary value forΘ adopted, we
can determine the value ofx for each star. We primedx in equation (9.30) becausex contains the
mean motion inU , so we have to split off the rotation term:

x′ = x+TUUΘg(R,z)sinα. (9.32)

The distance errorf causes the measuredα ′ to deviate from the true valueα, but we can correct
for this effect by Taylor-expandingα ′( f ):

sinα = sinα ′− f cos3α ′ s′R0sinl cosb
(R0− s′ cosl cosb)2 +O( f 2). (9.33)

Then

U =−U⊙+Θρ + f x+ fΘk+(1+ f TUU)δU, (9.34)
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where

ρ ≡ g(R,z)sinα ′

k≡TUU ρ +cos3α ′ s′R0sinl cosb
(R0− s′ cosl cosb)2 . (9.35)

Now we can proceed identically to the derivation of equation(9.18): we first subtract from
equation (9.34) its expectation value to obtain

U −〈U〉−Θ(ρ −〈ρ〉)− f (x−〈x〉)
− fΘ(k−〈k〉) = (1+ f TUU)δU, (9.36)

and then we multiplyxi andρi and sum over our sample. Introducing the abbreviationsa,b ≡
Cov(a,b), this gives two equations for the unknownsf andΘ :

sUx −Θsρx − f sxx −Θ f skx = f 〈T 2
UV +T 2

UW 〉σ2
U

sUρ −Θsρρ − f sρx −Θ f skρ =0 (9.37)

InsertingΘ from the second equation into the first and dropping all termsof order f 2 we obtain
our estimator

f =
sUxsρρ − sρxsUρ

sxxsρρ − s2
ρx + skxsUρ − sUxskρ + t2σ2

U sρρ
(9.38)

wheret2 ≡ 〈T 2
UV +T 2

UW 〉. For a quick calculation the third and fourth term in the denominator
can be neglected as they are in general small and only affect the slope. Again we solve these
equations iteratively, at each iteration updating the distances and recalculating for each starx, α
andg.

Correlations from random velocities

In the heliocentric frame the random componentδU ≡ U0+U⊙−U is correlated withδV ≡
V0+V⊙−V because the velocity ellipsoid at the star’s location is notaligned with that at the
Sun’s location, so the rotation matrixR(α,β ) of equation (9.28) is non-trivial. Consequently,
when we calculate〈UTUVV 〉 in the course of evaluating〈Ux〉, the correlation will be larger than
the one we want by〈δUTUV δV 〉. We now determine the magnitude of this correlation so we can
subtract it from the correlations we obtain from the data prior to determiningf . Bearing in mind
that〈δUgδVg〉= 0, we have

〈δUTUV δV 〉= 〈(δUgcosα cosβ +δVgsinα +δWgcosα sinβ )
×TUV (−δUgsinα cosβ +δVgcosα −δWgsinα sinβ )〉 (9.39)

= 1
4〈cos2bsin2l sin2α(cos2βσ2

U −σ2
V +sin2βσ2

W )〉

Similar calculations yield the additional correlations

〈δUTUW δW 〉= 1
4〈sin2β sin2bcosl cosα(σ2

U −σ2
W )〉 (9.40)
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Figure 9.5: The effect of including the corrections for rotation of the velocity ellipsoid. Two
samples are used: one has just 500000 disc stars and the another has 450000 disc plus 50000 halo
stars. Both samples are strongly affected by rotation of the velocity ellipsoid, yet the correction
successfully shifts the points so they pass through the origin. As expected, the sample with a
halo contribution is less strongly affected.

and

〈δV TVW δW 〉= 1
4〈sin2bsinl sinα sin2β (σ2

W −σ2
U)〉 (9.41)

The red and blue points in Fig. 9.5 show what happens if one ignores the impact of azimuthal
streaming and rotation of the velocity ellipsoids when determining f by plotting on the vertical
axis the value off that is recovered from equation (9.18) against the input value of f . The red
points do not pass through the origin, so the estimated valueof f is non-zero even when the
distances are, in fact, correct. The green and blue points show that when the formulae above are
used to subtract the contributions to the measured correlations from velocity-ellipsoid rotation,
the points pass through the origin as we require. The mock data used in these tests consisted of
450000 disc stars and 50000 stars belonging to a non-rotating halo in one case and a pure disc
sample of 500000 objects in the other case. For one test case only the disc stars were used, while
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all the stars were used in the other case.

9.3.6 Components with extreme velocities

Samples of halo stars generally have large meanV velocities relative to the Sun. So long as
we are confident that the sample means ofU0 andW0 are far smaller than that ofV , we can
greatly simplify the analysis of the sample. While some samples of high-velocity stars may
show a degree of radial streaming on account of the Hercules star stream, the only indication of
streaming in the vertical direction is a very small correlation betweenV andW that was detected
in the Hipparcos proper motions by Dehnen (1998), and interpreted by him as the signature of
the Galactic warp. We proceed under the assumption that〈U0〉=−U⊙ and〈W0〉=−W⊙.
At each point on the sky we imagine taking the sample mean of the third of equations (9.9) to
obtain

〈W 〉+(1+ f TWW )W⊙+ f TWUU⊙ = f TWV 〈V0〉 (9.42)

On the left we neglect terms of orderf and redeterminef as the value which gives the least-
squares fit between the functions of sky coordinates〈W 〉+W⊙ andTWV 〈V0〉 ≃ TWV 〈V 〉. The
formal error in the recovered value is

ε f =
1√
N

σW

〈V 〉σTWV

, (9.43)

whereN is the number of bins on the sky. For a typical sampleσTWV ∼ 0.2, and for halo stars we
have〈V 〉∼ 250kms−1 andσW ∼ 100kms−1, soε f ∼ 2/

√
N, which gives an error inf ε f ≃ 6.3%

for a sample of 1000 objects. We can reduce this error by usingthe corresponding equation for
〈U〉 – the reduction is by a factor slightly smaller than

√
2 becauseσU > σW .

If initially our distance scale is significantly in error, our first values of〈V 〉 will be wrong. The
magnitude of the problem is given by the first term on the rightof the second of equations (9.9):

〈V0〉 ≃
〈V 〉

1+ f 〈TVV 〉
, (9.44)

where the angle brackets aroundTVV imply the average over the surveyed region of the sky.
Eliminating〈V0〉 between equations (9.42) and (9.44), we obtain

〈W 〉+W⊙ ≃ f
1+ f 〈TVV 〉

TWV 〈V 〉. (9.45)

It is now straightforward to determinef from the mean slopex of the correlation between〈W 〉+
W⊙ andTWV 〈V 〉:

f =
x

1− x〈TVV 〉
. (9.46)
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Figure 9.6: The effect of an unbiased Gaussian distributionof distance errors in a sample of
450000 disc and 50000 halo stars. For comparison we plot the fits viaU andW for the corrected
fitting formulae. At larger standard errors of the distances, the average distance estimate diverges
quadratically. ForW we show the fitting line 0.453σ2

f obtained for 0.0< σ f < 0.4. Beyond this
point the error loses Gaussianity because we have to cut the Gaussian distribution in order to
avoid negative distances.

This simple-minded approach to the determination off uses the available information less ef-
ficiently than the technique described in Section 9.3.2, butit is a good way of detecting a sys-
tematic distance error and its sign prior to iteratively correcting the distance scale. This is the
approach that led Schönrich, Asplund & Casagrande (2011a) to suggest that the distances to
low-metallicity stars in the SEGUE dataset were being systematically over-estimated.

9.4 Scatter in the distance errors

To this point we have assumed that the distances to all stars contain the same fractional error,
f . In reality any systematic offset will be combined with random scatter, and we now consider
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whether in these circumstances the factorf that we recover from the whole population will equal
the average of thef factors of the stars. In other words, does our procedure provide an unbiased
estimate off ?

9.4.1 The bias inf

In fact it is not hard to see from equation (9.18) that we must anticipate a tendency to over-
estimate the mean value off : stars with f > 0 will be ascribed the largest velocities and will
thus tend to dominate the sums implicit in〈Wy〉 and〈y2〉. From the perspective that equations
(9.13) describe linear relations betweenU andx or W andy, stars with over-estimated distances
will dominate the ends of the line and influence more stronglyour estimate of the line’s slopef
than stars with under-estimated distances, which will cluster near the middle of the line.
Fig. 9.6 shows this effect in samples of 450000 disc and 50000halo stars in which the input
distances have errorsf that have zero mean but the dispersionσ f that is given by the horizontal
axis. The vertical axis gives the recovered value off . To both cases we apply the corrections
described in subsections 9.3.4 and 9.3.5. The expected tendency for f to be over-estimated in the
presence of significant scatter in the inputf values manifests itself in the parabolic shape of the
curves formed by the corrected results.
We can recover this behaviour analytically as follows. We assume that the stars with a given
fractional distance errorf ′ occur everywhere on the sky, so we can form the sky-average〈Wy〉 f ′

over just this group of stars. Defining

n2 ≡ (T 2
WV +T 2

WU)σ2
W , (9.47)

the inferred fractional distance error of the population is

f =

∫

d f ′Pf ( f ′)〈Wy〉 f ′
∫

d f ′Pf ( f ′)〈y2+n2〉 f ′

=

∫

d f ′Pf ( f ′) f ′〈y2〉 f ′
∫

d f ′Pf ( f ′)〈y2+n2〉 f ′
, (9.48)

wherePf ( f ′) is the probability density function (pdf) off ′. Now we we decompose〈y2〉 into the
part〈y2〉⊥ that derives from tangential velocities and the part〈y2〉‖ that derives from line-of-sight
velocities. Since the inferred tangential velocities scale like 1+ f we then have

f =

∫

d f ′Pf ( f ′) f ′[(1+ f ′)2〈y2〉 f ′⊥+ 〈y2〉 f ′‖]
∫

d f ′Pf ( f ′)[(1+ f ′)2〈y2+n2〉 f ′⊥+ 〈y2+n2〉 f ′‖]
(9.49)

SettingPf ∝ e− f 2/2σ2
f and neglecting the variation of〈y2〉 f ′ with f ′, this yields

f ≃
2σ2

f

1+σ2
f + 〈n2〉⊥/〈y2〉⊥+ 〈y2+n2〉‖/〈y2〉⊥

. (9.50)
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The parabolic variation of the recovered value off with the widthσ f of the scatter in individual
f -values is now manifest.
Actually, the assumption above of a Gaussian distribution of fractional distance errors is not fully
realistic. In fact, thePf ( f ) has a long tail atf > 0. Stars in this tail will have seriously over-
estimated tangential velocities, and Schönrich, Asplund & Casagrande (2011a) argue that as a
consequence a halo sample that in reality has no net rotationcan be interpreted as consisting of
two populations, one of which is counter-rotating.

9.4.2 The second moment of the error distribution

We can obtain information about the breadth of the distribution of distance errors in an approach
largely similar to the classical statistic parallax: we compare the square of the speedv with the
squares of the line-of-sight velocityv‖. For the measurement of theith star, we have

v2
i = v2

‖,i +F2
i v2

⊥,i,0, (9.51)

whereFi ≡ 1+ fi. Summing over theN stars in the sample, we obtain

v2

v2
‖
=1+

∑F2
i v2

⊥,i0

Nv2
‖

=1+
F2∑v2

⊥,i0+∑(F2
i −F2)v2

⊥,i0

Nv2
‖

(9.52)

=1+F2
v2
⊥0

v2
‖
+

1

v2
‖
Cov

(

F2,v2
⊥0

)

.

If the distance errors are statistically independent of velocities, the covariance vanishes. Further,
if either the velocity distribution is isotropic or the sample is uniformly distributed on the sky so
v⊥ andv‖ sample equally all three principal axes of the velocity ellipsoid, thenv2

⊥0 = 2v2
‖ and

equation (9.52) yields

F2 = 1
2





v2

v2
‖
−1



 (isotropy). (9.53)

If the velocity distribution is anisotropic and the sky coverage is non-uniform, this formula will
under-estimateF2 when the sample points towards the longest axis of the velocity ellipsoid and
over-estimate it in the contrary case.
Classical statistical parallaxes are obtained under the assumption of isotropic velocity dispersion,
which is the circumstance in which equation (9.53) is most likely to hold, and clearly this equa-
tion is closely related to the classical formula for a statistical parallax. The main difference is
that is yields the second rather than the first moment ofF .
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The covariance in equation (9.52) is non-vanishing when thedistance errors are not statisti-
cally independent of the velocities, for example, because distances are more likely to be under-
estimated when looking into the plane than when looking to a Galactic pole.
In practice the scope for reliable application of equation (9.52) is limited since few samples are
uniformly distributed on the sky and have securely known values of the covariance term.
A more effective way to determine the scatter inf exploits the idea introduced at the start of
this Section that stars with over-estimated distances tendto have large values of|x| and |y|,
while stars with under-estimated distances have small values of|x| and|y|. Consequently, if in
equations (9.18) or (9.19) we restrict the sum to stars with small (resp. large)x2 or y2 we will
probe the smallest (resp. largest) values off within the sample. By combining these estimates
of f with the numbers of stars associated with each range of values of x2 or y2, we can construct
the probability distributionP( f ) of the overall sample.
Whichever approach we adopt to determine the scatter inf , we should take into account the
errors in proper motions. In the first approach they increasev2

⊥ andv2, in the second approach
they push stars to large vales ofx2 andy2 and thus affect the distance estimator. Fortunately, in
relatively nearby samples the impact of errors in proper motions is limited.

9.5 Implementation

In this section we explain which of the several formulae we have given for the fractional distance
error f we recommend, and in what order they should be used. Then we illustrate the procedure
by applying it to a sample of stars from the Sloan Extension for Galactic Understanding and
Exploration (SEGUE, Yanny et al., 2009) and a sample from Data Release 8 of the Sloan Digital
Sky Survey (Eisenstein et al., 2011; Aihara et al., 2011).
In any real data set there are likely to be stars with implausibly large heliocentric velocities, and
the first step should be to discard those stars. We discard stars for with extreme galactocentric
velocities, i.e.|U |, |V |> 800kms−1 or |W |> 400kms−1. Then we bin the stars by some quantity
of interest, such as surface gravity, metallicity or value of vφ , and for each bin use equation (9.19)
iteratively to determinef for that group. The values of〈Wy〉 used in this equation are the raw
values from the data minus the corrections〈eW ey〉 from equations (9.25) and the corrections for
rotation of the velocity ellipsoid from equations (9.40) and (9.41). Once this stage in the analysis
has been completed, the distances of stars have been corrected for the most important errors in
the original data, and we may assume that any residual systematic errors are small.

9.5.1 Used samples

We will make use of two subsamples from the SEGUE survey. Our main sample consists of a
raw dataset of 224019 stars from the eighths Sloan data release (DR8, Aihara et al., 2011). As we
want the maximum number of stars we can get and not a specific subset and do not fear metallic-
ity biases in the sample, we use all stars with clean photometry from target selection schemes that
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Figure 9.7: Values off for the sample of∼ 20000 main-sequence stars in the sample of Carollo
et al. (2010) (red curve) and three different selections on our SEGUE sample. A mask with a
width of at least 1600 stars and at least 25kms−1 width was moved over the sample in steps of
200 stars. The dotted lines delimit the formal 1σ error bands associated with these estimates. In
the lower panel we plot the distance corrections from propermotions (negative, solid lines) and
the velocity ellipsoid turn (positive, dashed lines) as defined in eq. 9.40.
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do not include any direct kinematic (i.e. proper motion or line-of-sight velocity) bias. To ensure
decent quality of the used kinematics, we follow Munn et al. (2004) in requiring a match in the
proper motion identifications (match = 1), a good position determinationσRA,σDEC < 350mas.
To ensure sensible stellar parameters, we require an average signal-to-noise ratio larger than 10.
Further we require the formal errors on the proper motions tobe moderate:σµb,σµl < 4masyr−1.
We exclude any star that lacks a metallicity or a proper motion or is flagged as having an unusual
spectrum (Lee et al., 2008a) unless the flag indicates carbonenhancement. To eliminate a hand-
ful of objects with colours far outside the normal calibration ranges we require 0< (g− i)0 < 1.
Only stars that would be within 4kpc in the first guess distance determination and pass our
criteria for not being velocity outliers are used. When adopting the Ivezic et al. (2008) (A7)
main-sequence distance calibration a total of 119577 starspass these cuts. Velocities are derived
as in Scḧonrich, Asplund & Casagrande (2011a) with an adopted solar galactocentric radius of
R0 = 8kpc, a circular speed of 220kms−1 and the solar motion relative to the local standard of
rest from Scḧonrich, Binney & Dehnen (2010). For this work we make use of thedereddened
Sloan photometric colours provided in the catalogue.
The sample of Carollo et al. (2010), which comprises∼ 30000 calibration stars from SEGUE,
constitutes our second sample. Its parameters derive from an earlier version (DR7, Abazajan
et al., 2009) of the SEGUE parameter pipeline, but are consistent with the new data release.
While their sample is no more than a mere subset of our larger sample, their sample suffers
from distance over-estimates (as shown by Schönrich, Asplund & Casagrande, 2011a) whose
re-detection illustrates the potential of the method presented here.

9.5.2 Mapping the samples in azimuthal velocity

Fig. 9.7 shows the results of binning the main-sequence stars of four subsamples of SEGUE stars
by azimuthal velocityvφ (with the Sun atvφ = 232kms−1). The upper panel shows values off ,
while the lower panel shows the corrections used to obtain thesef -values.
The full lines in the bottom panel of Fig. 9.7 show the corrections to f that are required to
account for proper-motion errors – the impact of errors inv‖ is negligible and not plotted. Proper-
motion errors tend to increase the recovered value off , so they require a negative correction to
f . Their importance peaks around solar velocity because theycontribute a roughly constant term
to Cov(W,y), while the typical heliocentric velocities of stars, whichprovide our signal, shrink
asvφ tends to the Sun’s value both because of the diminishing offset in the rotational component
and because the velocity dispersion of disc stars diminishes asvφ approaches the circular speed.
The dashed lines in the bottom panel of Fig. 9.7 show the corrections to f that are required to
account for the rotation of the velocity ellipsoid. These curves have two peaks because there
is a similar competition between decreasing heliocentric velocities and decreasing size of the
velocity ellipsoid that drives the correction term.
The full red curve in the upper panel of Fig. 9.7 shows the values of f yielded by equation (9.19)
when distances from Carollo at al. are used for their “main-sequence” stars; the dashed red curves
show the error bounds onf . We see thatf is significantly greater than zero forvφ < 0, the region
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of retrograde rotation, implying the presence of significant distance over-estimates. Atvφ > 0, f
drops slightly below zero. The full green curve shows the corresponding values off for the full
SEGUE sample when distances are obtained from the Ivezic et al. (2008) (A7) main-sequence
relation. Since the samples are now much larger, the formal error bounds are tighter than in the
case of the Carollo et al. sample. Now atvφ > 0, f is decidedly negative (∼−0.3) implying the
presence of significant distance under-estimates. Thef -value of a sample is anaverage distance
correction, so a given value off could imply that all stars have the corresponding distance mis-
estimate, or that a fraction of the stars have a larger mis-estimate while the bulk of the stars have
good distances. The blue full curve in the upper panel of Fig.9.7 shows the values off obtained
when the all-star sample is restricted to dwarfs by imposingthe restriction logg> 4: with this cut
the distances are under-estimated by only∼ 10 per cent because the gravity cut eliminates most
sub-giants and giants from the sample. The black line shows the same “dwarf” star sample with
the additional restriction for the primary distance estimate to bed′ ≤ 2kpc. This cut removes
mostly relatively blue stars that have a tendency to be on theblue side of the turn-off point. And
as we can see from the black line in the lower panel the impact of proper motion errors is greatly
reduced as these are proportional to the square of the estimated distance.

In light of this finding we conclude that the deep trough in thegreen curve for the all-star sample
arises because that sample is severely contaminated by subgiants and giants. We can probe
the extent of the contamination by dissecting a sample in velocity space because, as we saw
in Section 9.4.1, stars with over-estimated distances assemble at extreme velocities, while stars
with under-estimated distances are dragged towards the solar motion. This is why the curves of
the two contaminated samples (the Carollo et al. sample and the all-star sample) slope steeply
downward from left to right in the upper panel of Fig. 9.7. Theslope of the curve for the cleaner
sample produced by the gravity cut is much smaller. We can even in analogy interpret the minor
difference between the black and the blue curves: by the general inclination of the main sequence,
the distance cut preferentially removes relatively brightblue stars from the sample that have a
larger spread in estimated distances.

The sudden rise off at super-solarvφ has a different cause. These stars are few in number and
have small heliocentric velocities, and, as the lower panelof Fig. 9.7 shows, theirf -values are
strongly affected by assumed proper-motion errors. It is likely that our probably false assumption
of a constant proper-motion error has biased thef -values for these stars. By contrast, thef -
values of stars withvφ substantially smaller than the solar value are insensitiveto the handling
of proper-motion errors.

While valuable insights can be obtained by examiningf as a function of velocity, a word of cau-
tion about such dissection is in order. No cut or selection should directly affect the target variable
(hereW ), and cuts on the explaining variable can introduce artifacts that should be explored with
mock data. For example cutting in the heliocentricV velocity instead ofvφ introduces a velocity-
dependent error inf of order∼ 5 per cent. In this case the bias arises from the rotation of the
velocity ellipsoid, which from selection inV creates a bias inU , which in turn evokes biases in
W through the vertical tilt of the ellipsoid.
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Figure 9.8: An evaluation of the performance of gravities inSEGUE DR8 and the performance
of the Ivezic (2008) A7 calibration against metallicity andcolour. Each of the first three panels
shows results for stars in a restricted range of metallicity. Each metallicity group was then divided
by surface gravity andg− i colour andf determined for that group from equation (9.19). We
move a 1200 stars wide mask over the sample in steps of 400 objects, so that every third data
point is fully independent. Error bars give the formal errorplus a 30% error on the systematic
corrections. The bottom right panel shows the corrections made to thef -values of high-gravity
stars of various metallicities for proper motions (solid lines) and the turn of the velocity ellipsoid
(dashed lines).

9.5.3 Dissecting the main sample in gravity

By partitioning a sample in gravity we can explore the extent to which a sample contains stars at
different evolutionary stages since they should fall into different bins in gravity. In the following
we use only the A7 calibration of Ivezic et al. (2008).
The first three panels of Fig. 9.8 show results obtained by splitting the ∼ 120000 stars into
three ranges of metallicity, with boundaries at [Fe/H]= −1.2 and−0.5 and then within each
metallicity group splitting the stars in logg, and finally binning them in colour. Each colour bin
has≥ 1200 stars (the ones at the edges carry≥ 800 and≥ 400 objects), and from one bin to
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the next 400 stars are dropped, so every third data point is independent. Points are plotted at
the average colour of the stars in the bin. Most giant stars inthis sample have low measured
metallicities so the low-gravity bins are only well-populated for the most metal-poor stars. The
error bars indicate the formal errors onf plus an error of 30% in the corrections tof for proper-
motion errors and rotation of the velocity ellipsoid.
Since the distances employed assume that every star is on themain sequence, giants have severe
distance under-estimates (negativef ). In the top two panels of Fig. 9.8 one can assess the colour
at which stars move up from the subgiant branch to the giant branch – the precision with which
this colour can be determined is increased if the sample is not divided by gravity or metallicity.
The distance under-estimates indicated by Fig. 9.8 are similar to those we would expect a priori,
but the agreement is imperfect because the giants in this sample are very remote, so proper-
motion errors have a big impact on kinematically determineddistances.
In the literature SEGUE stars with gravities within 3.0 < logg < 3.5 are considered subgiants
(see e.g. Carollo et al., 2010). Stars with 3.5< logg < 4.0 were classified as turn-off stars until
it was shown by Scḧonrich, Asplund & Casagrande (2011a) that this practice sorts stars into
unphysical positions in the colour-gravity plane (at the relevant low metallicities, the turn-off
region should end bluewards of(g− i)0 < 0.4). More recent studies (Beers et al., 2011; Carollo
et al., 2011) classify the stars with 3.5< logg < 3.75 as subgiants and the higher-gravity objects
as main-sequence stars. However, the purple and blue pointsin the upper two panels of Fig. 9.8
show that it cannot be the case that all stars with logg < 3.75 are subgiants, both because at
(g− i)0 > 0.4 the f -values of the stars with 3.5 < logg < 3.75 are significantly less negative
than those of stars with logg < 3.5, and because thef -values of the high-gravity sub-sample are
no smaller than∼ −0.3. This corresponds to their being more luminous than main-sequence
stars of the same colour by less than a magnitude, whereas, depending on metallicity, already
at (g− i)0 ∼ 0.4 subgiants should be more luminous than main-sequence stars by more than 1.5
magnitudes. We conclude that no reliable selection for subgiants is feasible with the current
gravities: in general there is a contamination by dwarf stars (with the well-known effects of
distance overestimates mimicking kinematically hot retrograde populations) and at least on the
red side we have to expect some contamination by giants.
The main-sequence relation appears to describe relativelywell the distances of stars with mea-
sured logg > 3.75. Yet, especially in the top right panel of Fig. 9.8 we see that for all metal-
licity subsamples,f tends to increase bluewards. This phenomenon arises because the colour-
luminosity relation we have used is inclined relative to thetheoretical zero-age main sequence
and assigns quite high luminosities and consequently largedistances to blue stars relative to their
red counterparts.
Fig. 9.8 enables us to choose the lower limit on gravity that will most effectively minimise
contamination of the final sample by stars that are not dwarfs. This limit appears to rise from
about logg ∼ 4.1 at the lowest metallicities to logg ∼ 4.4 at the highest metallicities. Some
part of the trend may also be connected to the redward shift ofthe turn-off with metallicity.
However, this conclusion should not be blindly transferredto catalogues other than DR8 because
in this parameter derivation measured gravity is likely correlated with metallicity, so we may
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to some extent see mapping errors in assumed luminosity thatarise from errors in metallicity.
Fig. 9.8 also enables us to detect the redward shift with increasing [Fe/H] in the turn-off colour
as the colour at which the dark-blue points of lower-gravitystars become clearly separated from
the black points of dwarf stars. Also, blueward of the turn-off we expect an increased spread
in values of f within the highest-gravity bins, as the SEGUE stellar parameter pipeline retains
some residual information on how high above the main sequence a star is placed in gravity.
The bottom-right panel of Fig. 9.8 shows the corrections tof required by proper-motion errors
(solid lines) and rotation of the velocity ellipsoid (dashed lines). The impact of proper-motion
errors on the most metal-weak stars is small because these stars are in the halo and have large
heliocentric velocities. Rotation of the velocity ellipsoid has similar impact on stars of all metal-
licities because these stars are distributed through broadly the same volume and a higher velocity
dispersion both inflates the correction and the signal inf . For this plot velocity errors were
calculated by measuring the dispersions in each subsample and then assuming constant velocity
dispersions in the lowest metallicity bin and in the other metallicity bins an increase of the dis-
persion by 15 per cent for each kiloparsec in|z| and assuming that〈U2〉1/2 ∝ exp(−R/Rσ ) with
Rσ = 7.5kpc. This correction term is small and minor changes in how it is derived will not alter
our results.

9.6 Conclusions

Systematic distance errors give rise to correlations between the measured components(U,V,W )
of heliocentric velocities. Similar correlations arise from three other sources: (i) measurement
errors in the proper motions, (ii) Galactic streaming motions and (iii) dependence of the orien-
tation of the local velocity ellipsoid on position in the Galaxy. However, each of these sources
of correlation between(U,V,W ) has a different and known pattern of variation over the sky,
so provided the data come from a wide-area survey, we can disentangle their effects. We have
described an iterative procedure by which the distances to stars are rescaled until correlations
between(U,V,W ) are fully accounted for by effects (i) – (iii) above, and the contribution from
systematic distance errors vanishes.
The procedure works best when the group of stars under study has a large net motion with
respect to the Sun. This net motion is often dominated by azimuthal streaming, since the Sun
has more angular momentum than a circular orbit, while nearby thick-disc and halo stars tend to
have substantially less angular momentum. When azimuthal streaming is dominant, the simpler
formulae of Section 9.3.6 apply. For stars in the thin disc that have similar angular momentum to
that of the Sun the other velocity components usually still carry sufficient information to assess
distances.
In principle we can determine distance errors by using either U , V or W as a “target” variable,
with the “explaining” variable being composed of the other components of velocity and the sky
coordinates. In practiceV should not be used as a target variable as the systematic variation of
V velocities with position in the Galaxy would invoke spurious correlations with the angle terms
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connecting it to the explaining velocity components.W is the target variable of choice both
because it has the smallest velocity dispersion and becauseit is least affected by the complexities
of differential rotation.U is mainly useful as a target variable for its ability to determine the
mean rotation rate of a population once the distance scale has been corrected by exploitingW .
We will discuss an application to this rotation term in a forthcoming paper.
There are some restrictions on the applicability of the method that should borne in mind when
using it. The proper motions need to be unbiased and their errors should have finite and approx-
imately known variances. These conditions seem to be satisfied by data from the SDSS (Dong
et al., 2011). If the sample is non-local we need to estimate the extent of rotation of the velocity
ellipsoid within the sampled region. Such an estimate can beobtained from the sample itself, but
with some residual uncertainty arising from proper-motionerrors that particularly affect remote
stars.
Streams and a warp will induce unwanted correlations but thelikelihood of these giving rise to an
erroneous distance scale is small for several reasons. First, for a stream or warp to undermine the
method, the correlations it introduces must vary on the sky in a similar way to the correlations
associated with distance errors. Consequently, the impact of a stream or warp is likely to be
suppressed given sufficient sky coverage. Second, a warp could be accounted for in much the
same way we have accounted for Galactic rotation. Third, thefootprints of streams or a warp
will show up in conflicting values forf obtained from the two possible target velocities,W and
U . Finally, a stream or warp would induce identical correlations in the velocities of stars in the
broad colour and gravity range that made up the physical feature, whereas distance mis-estimates
will usually vary with spectral type.
In Section 9.4.1 we showed that the estimators given in Section 9.3 are mildly biased in the sense
that when there is a scatter in the distribution of distance errors, the estimated value off will
be larger than it should be by an expression quadratic in the width of the distribution. Equation
(9.50) can be used to correct for this effect. As we discussedin Section 9.4.2, the method can
be extended to probe the full probability distribution off values rather than just determining the
mean value off . Details of this extension will be given in a later paper.
In Section 9.5 we applied the method to samples of stars from the SEGUE survey. We concluded
that the distances to stars used by Carollo et al. (2010) are onaverage significantly over-estimated
among stars deemed to be counter-rotating, and tend to be under-estimated by∼ 10 per cent near
solar velocity. This is also a nice example on how a spread in the distance errors within a sample
can be directly seen by eye, when we dissect the sample in velocity: the distance over-estimates
assemble at velocities remote from the solar value (i.e. mostly the retrograde tail of the halo
velocity distribution), while in our all-star sample, which is contaminated by numerous giants,
the giants are dragged towards the solar motion, so a trough forms in a plot of the correction
factor f versus azimuthal velocity.
In Section 9.5.3 we demonstrated the use of the method to assess the reliability of the Ivezic
(2008) A7 distance scale for dwarfs and to assess the degree of contamination by non-dwarfs
that arises as the lower limit on logg for entering the sample is varied. For low contamination the
lower limit on logg should increase with metallicity. We conclude that using only the DR8 grav-
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ities it is not possible to achieve a satisfying selection ofsubgiants. The level of contamination
by dwarf stars becomes large once the upper limit on logg exceeds∼ 3.5. Since any dwarf that is
misidentified as a subgiant has a seriously over-estimated distance, studies of stellar kinematics
that are based on DR8 gravities should rigorously exclude subgiants.
We are currently applying the method to recent distances to stars in the RAVE survey (Zwitter
et al., 2010; Burnett et al., 2011). A wide variety of applications to this method will follow as
it offers a standard tool to identify groups of stars with problematic parameters, to check the
reliability of selection schemes and distance assignmentsand finally to correct for any biases in
these distances, e.g. by deviations in reddening with distance from the Sun.
Our study has also illuminated the kinematic patterns that distance errors can generate. These
are not limited to the production of spurious counter-rotating components, but include tilts of
the velocity ellipsoids, and by allowing rotational velocity to masquerade as motion in either
the radial or vertical direction, can extend to patterns of mean motion that, in a sample that is
anisotropically distributed on the sky, can imply a wrong motion of the local standard of rest.

Acknowledgements

R.S. acknowledges financial and material support from Max-Planck-Gesellschaft. We thank
Michael Aumer for the kind provision of his galaxy models andRuobing Dong for helpful dis-
cussions on SDSS proper motions.



Chapter 10

Galactic rotation and solar motion from
stellar kinematics1

10.1 abstract

I examine the imprint of Galactic rotation and Solar motion in the stellar kinematics from the
Sloan Digital Sky Survey. Apart from the azimuthal velocities of stars the rotational streaming
invokes a strong dependence of the observed heliocentric radial velocities (U) on Galactic po-
sition that allows for a direct measurement of rotation in a component that does not depend on
the assumed velocity of the Sun. Neglect of this dependence can cause a bias in the estimate
of the solar radial motionU⊙ in excess of 10kms−1. Accounting for this effect I find a solar
radial motionU⊙ ∼ 12.7kms−1 in concordance with results from the Geneva-Copenhagen Sur-
vey, albeit slightly larger. More important comparing the two rotation estimates fromU and
Vg velocities, I directly obtain the total azimuthal velocityvφ ,⊙ of the Sun in the Galactic rest
frame and hence the local circular speed of the Milky Way. Thedependence of this value on
the assumed Galactocentric radius of the Sun can be broken byeither using the proper motion
of Sgr A∗ or by measuringR0 directly from the stars in comparing slow and fast rotating pop-
ulations. I find that my values are consistent with results from different strategies and can by
combination of these independent approaches reduce formalerrors. From this work alone I es-
timateR0 = (8.11±0.29)kpc andvφ ,⊙ = (245±9)kms−1 and by combination with other data
R0 = (8.25±0.14)kpc andvφ ,⊙ = (249.5±4.2)kms−1. The measurements carry an additional
systematic uncertainty of about 5−10kms−1 and parallel correction inR0.

1 The work in this chapter is being submitted to MNRAS as Schönrich (2011b). The content and text are identical
apart from minor changes during the refereeing process and from language editing or adaptions to this work.
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10.2 Introduction

Among the central questions in Galactic structure and parameters are the Solar motion, Solar
Galactocentric radiusR0 and the local circular velocityVc of our Galaxy. Galactic rotation curves
are found to be generally quite flat over a vast range of Galactocentric radii (Krumm & Salpeter,
1979). As common for Galaxies with exponential discs (Freeman, 1970) there is some evidence
for a radial trend of the Galactic circular velocity near theSun, but it is very moderate (Feast &
Whitelock, 1997; McMillan & Binney, 2010), so that the circular velocity at solar Galactocentric
radiusR0 characterises well the entire potential.
Initially stellar samples were the main source of information on Galactic parameters. Since the
invention of the Oort constants (Oort, 1927) local kinematic data were used to constrain Galactic
parameters including the local circular velocity. While studies determining the Local Standard
of Rest (LSR) are still primarily based on stellar samples, theaccuracy of geometric parallaxes
and the magnitude requirements of stellar spectroscopy limited the spatial extent of available
data sets and hence their importance in finding Galactic parameters. The significant kinematic
heat of the stellar populations requires large sample sizes. Hence some classical strategies like
the position determination of the Galactic centre by Shapley (1918) reached their limits by the
number of available luminous standard candles and a lack of stellar observations far from the
solar neighbourhood.
To date a few attempts have been made to use luminous stars forstructure determination (e.g.
Burton & Bania, 1974). Yet most evidence on these Galactic parameters derives from modelling
streams in the Galactic halo (see e.g. Ibata et al., 2001; Majewski et al., 2006) and from radio
observations of theHI terminal velocity (see the discussion in McMillan, 2011), of the Galactic
centre, molecular clouds and MASERs (e.g. Reid & Brunthaler, 2004; Broderick et al., 2011).
While the first line of determinations depends strongly on underlying assumptions like distance
scale and on the shape of the Galactic potential (cf. the discussion in Majewski et al., 2006),
there are further complications like the fact that the apparent structure of tidal streams does not
exactly delineate the involved stellar orbits (Eyre & Binney, 2009). Radio observations (Reid
& Brunthaler, 2004) have provided us with very accurate proper motion of the radio source Sgr
A∗, which is identified with the central black hole of the Milky Way. This sets narrow limits to
the ratio of the solar speed in the azimuthal direction to thesolar Galactocentric radius. Yet it is
not only desirable to have more than one approach in measuring such an important quantity, but
we need further information to get the actual circular velocity. Recently parallaxes to objects in
the central Galactic regions have become available (see thediscussion in Reid et al., 2009a), and
values for the Galactic circular speed have been derived from HI motions and from MASERs
(Rygl et al., 2010). Despite the high accuracy in the determined kinematics of MASERs, these
objects are rare leading to statistical and systematic uncertainties, particularly as they are first
not on pure circular orbits and second intimately connectedto the intense star formation in spiral
arms, where the kinematic distortions are largest. Hence the exact values for Galactic parameters
remain under debate.
These uncertainties make an independent determination of Galactic parameters desirable, which
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is facilitated by the new large spectroscopic surveys like RAVE (Steinmetz et al., 2005) and
SEGUE (Yanny et al., 2009). Of course we can not attain yet theaccuracy achievable with Gaia
astrometry and sample sizes. Yet I will show that already nowthe stellar samples, which have
been so far primarily used for the exploration of substructure, be it for halo streas (Kepley et al.,
2007; Belokurov et al., 2007) or tidal streams in the disc (Hahn et al., 2011) give results forVc

competitive with radio observations.
Knowing the LSR velocity of the Sun to reasonable accuracy weneed to measure either the total
azimuthal velocity of the Sunvφ ,⊙ or the circular velocityVc to know the other quantity. In this
work I suggest some basic techniques to measure the rotationof a component under study and
to fix the Galactocentric radius of the Sun as well as the Galactic circular speed from stellar
kinematics.
In Section 10.3 I lay out the general method before describing the sample selection and treatment
in Section 10.4. This contains especially a discussion of proper motion issues and in subsection
10.4.3 a description of the distance corrections via the method of Scḧonrich et al. (2011b). In
Section 10.5 I shortly lay out the radial velocity based rotation measurement on SEGUE data,
discuss the local standard of rest values in radial and vertical motion in subsection 10.5.1 and then
dissect the sample in metallicity to get estimates on Galactic parameters in 10.5.3 presenting three
methods to get the Galactocentric radius and the circular speed from stellar samples. In Section
10.6 I summarize the results.

10.3 General Idea

Before I start the dirty work of data analysis it seems appropriate to concisely lay out the general
definitions and ideas.

10.3.1 Definitions

This paper is based on comparisons between velocities in theheliocentric frame and galactocen-
tric velocities. In the heliocentric frame I define the velocitiesU,V,W in a cartesian coordinate
system as the components pointing at the Sun towards the Galactic centre, in the direction of
rotation and vertically towards the Galactic North pole. The galactocentric velocities are defined
in cylindrical coordinates around the Galactic centre withUg,Vg,Wg pointing again towards the
Galactic central axis, in the direction of rotation and vertically out of the plane, as illustrated in
Fig. 10.1.U⊙,V⊙,W⊙ are the three components of the Solar motion relative to the Local Standard
of Rest (i.e. the circular orbit at the local galactocentric radiusR0), for which I assume the values
from Scḧonrich, Binney & Dehnen (2010) if not stated otherwise. The total azimuthal velocity
of the Sun in the Galactic frame is writtenvφ ,⊙ =V⊙+Vc whereVc denotes the circular velocity
in the disc plane of the Milky Way atR0.
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Figure 10.1: Definition of kinematic quantities. On the connection line between Sun and Galactic
centre the heliocentric and “galactocentric velocities”,i.e. velocities in the galactocentric cylin-
drical coordinate system are identical, while they differ in general. This gives rise to systematic
streaming motion in the heliocentric frame.

10.3.2 An absolute measure of rotation

Usually studies on the rotation of Galactic components suffer from the uncertainty in the solar
azimuthal velocity that directly translates into a systematic uncertainty of stellar azimuthal ve-
locities. In a sufficiently extended sample this can be cured: As already discussed in Schönrich
et al. (2011b) and evident from Fig. 10.1 Galactic rotation leaves its imprint in both the helio-
centricU andV velocities: As the direction of the rotational component ofmotion turns through
with the angleα between the lines Galactic centre – Sun and Galactic centre –star, it gets partly
aligned with the radial component of the local cartesian frame. Hence from the heliocentricU
velocities we can directly infer the Galactic rotation as a global streaming motion. In parallel the
observed heliocentric azimuthal velocity shrinks for larger |sinα|. Accounting for rotation the
mean motions of stars in the heliocentric frame are:

U =−U⊙+θ sinα
V =−vφ ,⊙+θ(1−cosα) (10.1)

W =−W⊙,
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where(U⊙,vφ ,⊙,W⊙) are the velocity components of the Solar motion in the Galactic rest frame
radially towards the Galactic centre, azimuthally in the direction of disc rotation and vertically
out of the plane.θ is the rotation speed of the population. Observing the change of heliocentric
U velocity in a sufficiently extended sample hence estimates the rotation of a componentθ , once
we know the angleα.

Prima facie it might be tempting to use the azimuthal velocity term. Yet, all it expresses is a
slowing of heliocentric azimuthal velocities. However,θ is in general not a real constant, but
a function of altitudez, galactocentric radiusR, metallicities, etc. In particular it is a known
fact that the kinematically hotter disc populations at higher altitudes above the plane have a
larger asymmetric drift (see e.g. Binney, 2010), or vice versa a slower rotation rate, while the
fraction of halo stars with nearly no rotation increases as well. As I do not hold an exact model
describing this behaviour, no trustable statistics can be drawn from the azimuthal component. A
similar uncertainty derives from the possibility for variations ofθ in R even at the same altitude.

For the radial component the situation is different: Setting aside the problem of distance errors
the worst concern for a rotation measurement are streams with significant radial motion (which
would have to make up a significant part of the sample to yield an effect) and disturbances from
the Galactic potential itself. Especially the bar region with its pronouncedly non-circular motions
can hamper this estimator. One important warning is that oneneeds sufficient spatial coverage in
the sample to avoid a bias like in the azimuthal velocities: If e.g. populations with larger|sinα|
have a slowerθ , a naive linear fit on a sample with meagre extension inα can deliver a wrongly
shallow slope or respectively low rotation rate. This problem diminishes when one can either
assume a saneU⊙ or have sufficient coverage of stars on both sides of the Galactic centre and/or
low |sinα| so that a linear fit gives a reliable anchoring onU⊙. In addition one may test for the
presence of higher order terms ofU in α. These criteria fulfilled the radial motionU(α) gives a
weighted, but reliable estimate of the meanθ in a sample.

In contrast to the use ofVg, a population’s rotationθ derived from heliocentric radial motions
is independent from the assumed Solar motion. This different dependence can be exploited
to measure the solar azimuthal velocityvφ ,⊙ from stellar samples without having to involve
any modelling: The Galactic parametersvφ ,⊙ andR0 can be varied until the rotation estimates
from Vg andθ agree. As we will see this results in a relation betweenvφ ,⊙ andR0 that can be
combined with an additional datum like the proper motion of Sgr A∗ to get definitive values for
both parameters. An independent estimate forR0 of similar accuracy can be generated by the
demand that different populations with different values ofθ must give the same value forvφ ,⊙.
This is possible because the parameterθ is roughly proportional toR0. Hence the estimates for
vφ ,⊙ get sheared between populations with smallθ and populations with largeθ when a wrong
R0 is assumed. To complete the series of model-independent measurements I will estimateR0

from the direction of stellar motions with Galactocentric radius. Though this estimate is roughly
consistent with the other results, it does not give any additional useful constraint compared to the
other strategies and is more vulnerable to assumptions on Solar motion.
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10.4 Sample selection and distances

10.4.1 Data selection

Any reader not interested into the details of sample selection, distance analysis and the proper
motions may skip this section and turn directly towards Section 10.5.1.
All data used in this study were taken from the seventh and eighth data release (hereafter DR7
and DR8 Abazajan et al., 2009; Aihara et al., 2011) of the SloanDigital Sky Survey (SDSS
Eisenstein et al., 2011). The stellar spectra have been taken by the Sloan Extension for Galactic
Understanding and Exploration (SEGUE, Yanny et al., 2009).An evaluation of the performance
of their parameter pipeline (SSPP) can be found in Lee et al. (2008a,b). In this work there is no
interest in specific metallicity distributions, but in having kinematically unbiased samples that
include as many stars as possible. Hence the sample drawn from DR8 consists of a raw dataset
of 224019 stars from all SEGUE target categories and the photometric and reddening standard
stars that do not include any proper motion cuts and have clean photometry. In particular I use
the categories of F turnoff/subdwarf, Low Metallicity, F/G, G dwarf, K dwarf, M subdwarf stars
from SEGUE1, MS turnoff, Low Metallicity and the reddening and photometric standard stars
from all samples. The older DR7 forms a subset of 182627 stars among these.
To ensure sufficient quality of the involved proper motions,I select only stars with a match in the
proper motion identifications (match = 1) and a good position determination withσRA,σDEC <
350mas as suggested by Munn et al. (2004). I furthe require the formal errors on the proper mo-
tions to fulfil σµb ,σµl < 4masyr−1, skimming the tail of uncertain proper motion determinations
and cut for line-of-sight velocity errors below 20kms−1.
Sample homogeneity is not a concern in this study, but to avoid issues with reliability of the
used isochrones in colour regions with insufficient coverage to check them by statistics, I select
0< (g− i)0 < 1, tossing out a handful of stars especially on the red side. Itested that narrower
colour cuts would have no significant effect on the presentedresults.
For our purpose it is most important to have a good discrimination between dwarf stars and
other categories and to dispose of as many evolved stars above the main sequence as possible.
Hence only stars are used that have values for gravity and metallicity determined by the pipeline,
otherwise distances could not be properly assigned. The sample must be restricted to dwarf stars,
as Scḧonrich et al. (2011b) showed that stars with especially intermediate gravities in the pipeline
are an indeterminable blend of dwarf, subgiant and giant stars, hence exhibiting huge distance
errors making their use detrimental to any kinematic study.
Following Scḧonrich et al. (2011b) I adopt a sloping gravity cut generallytighter than the usu-
ally applied log(g) > 4.0, demanding log(g) > 4.3+ 0.2[Fe/H] and setting a constant limit of
log(g)> 3.9 for [Fe/H]<−2 and log(g)> 4.3 for [Fe/H]> 0.
Quite commonly it is expected that a cut for spectra with signal to noise ratioS/N > 10 ensures
reasonable parameters in the SEGUE pipeline. Still the accurate determination of parameters is
more difficult in those noisy spectra. There is a mild drift inthe derived quantities pointing to
a decreasing giant contamination towards higherS/N, motivating a cut atS/N > 15 where the
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derived quantities become more stable.
Reddening is accounted for by subtracting the reddening vectors estimated in the DR8 catalogues
from the observed magnitudes. To avoid problems with complicated three dimensional behaviour
of the reddening and to limit uncertainties in the dataset, Iremove all objects with an estimated
g magnitude extinctionAg > 0.75mag. This strips all stars in the low latitude fields from the
sample. I tested that the exclusion does not have a significant impact on my results due to the
low number of concerned objects (apart from increasing the derived formal errors), but keep this
cut for the sake of sample purity. I exclude all stars flagged for spectral aberrations apart from
suspected carbon enhancement. In all cases we cut all stars beyond 4kpc distance after applying
the distance corrections to limit the impact of proper motion errors.

10.4.2 Proper motions

For a precise measurement of Galactic rotation I am reliant on high accuracy of proper mo-
tions and a decent control of systematic aberrations on those proper motion terms. Aihara et al.
(2011erratum) reported significant problems with the DR8 astrometry implying also problems
with proper motions. From that perspective it seems appropriate to use DR7 proper motion val-
ues. A less well-known problem in Sloan astrometry is the thepossibility for stars contaminating
the galaxy sample used to set the astrometric frame. Those objects can give rise to some “frame-
dragging”. The largests aberrations were found for about 15% of the DR7 objects inrerun 648,
which have to excluded from the data when using DR7. Despite constituting a minority in the
sample their inclusion would distort estimates for the Galactic circular speed by as much as
14kms−1 consistent with the idea that the astrometry frames were dragged into the Galactic ro-
tation direction underestimating the real motion. Still there remain additional aberrations also in
DR8: (Bond et al., 2009) et al. reported significant net proper motions on quasars. They traced
the declination dependent systematic components of their quasar proper motions back to chro-
matic aberration by Earth’s atmosphere (Kaczmarczik et al., 2009): the angle at which the stellar
light passes through Earth’s atmosphere strongly depends on the declination and this should give
rise to colour dependent offsets. While this appears plausible, I tested proper motion on the
cleaner Schneider et al. (2010) quasar sample. For this I fitted a simple linear function in right
ascension and declination to the proper motions from DR7 (andfound it quite consistent with
DR8):

µi

masyr−1 = fi,RA · RA
deg

+ fi,DEC ·
DEC
deg

+ ci (10.2)

where i = RA,DEC denotes the two possible proper motion components in right ascension
(RA) and declination (DEC),f are the coefficients,c are free fitting constants. Using the
combined fit diminishes the impact from omitted variable bias that might arise from the par-
ticular sample geometry (the explaining variables are mildly correlated). ForµDEC I obtain
fDEC,RA = 0.00015± 0.00015, fDEC,DEC = 0.00706± 0.00047 andcl = −0.192± 0.031. So,
despite a marginally significant dependence on right ascension, for µDEC indeed most of the
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bias originates from the declination of the objects, which is consistent with the interpretation
as chromatic aberration. TargetingµRA the picture reverses:fRA,RA = 0.00045± 0.00015,
fRA,DEC = −0.00052± 0.00047 andcb = 0.078± 0.031 most of the bias originates from the
right ascension itself. This is not implausible as errors should be aligned with the corresponding
coordinates, but on the right ascension (unless some information was missed in this crude analy-
sis) it is seems only viable to reason this outcome with chromatic aberrations, if the observations
were made at a specific nighttime in a short period of the year or in a very particular manner that
correlates the airmass of a stellar observation significantly to right ascension.
Consequently another source of systematic proper motion bias should be tested for: Astromet-
ric “frame” dragging by stellar contamination in the Galaxysample used for Sloan astrometry:
These misclassified stars will follow the general Galactic streaming by rotation and the relative
motion of the Sun. In the following I develop a very crude analytic term approximating the
proper motion bias depending on(l,b) as it could arise from Galactic streaming: Candidates for
contamination of the galaxy sample should preferentially populate a certain magnitude range and
also have preferred colours resembling the used galaxies. It seems hence appropriate to assume
for simplification a dominant distance for stars contaminating the sample, placed ats = 1kpc.
The outcomes will anyway not be critically affected by this distance (that will alter the shape of
the systematic bias once the stars are sufficiently remote for the small angle approximation to
break down). On this shell I assume the stars to rotate dependent on their altitude z around the
Galactic centre withθ(z) = (215− 10z/kpc)kms−1. The proper motion can be written down
from the heliocentric velocities from equation (10.1) subtracting the reflex motions of the solar
Local Standard of Rest (LSR) values from Schönrich, Binney & Dehnen (2010) and assuming
a total solar azimuthal velocity according to the IAU recommendations atvφ ,⊙ = 232kms−1.
Using this the simple Galactc streamig terms are:

µl =
(

flχl +al cosl cosbvφ ,⊙
)

/(sk)+ clmasyr−1 (10.3)

µb =
(

fbχb +ab sinbsinlvφ ,⊙
)

/(sk)+ cbmasyr−1

with

χl =−sinlU +coslV (10.4)

χb = sinb(coslU −sinlV )−cosbW⊙

wherek ∼ 4.74pc/masyr−1 does the unit conversion,U andV are the heliocentric velocities
from streaming minus the assumed motion of the Sun andfl,al,cl, fb,ab,cb are the fit parameters.
The terms connected toai give a crude estimate for the effects from halo streaming.
The derived values for DR7 and DR8 are presented in Table 10.4.2. The errors for DR8 proper
motions are slightly larger because of the increased randomscatter. Cutting out the about 10%
of the objects with the largest proper motions does not significantly alter these results. The
coefficients fi and ai may be understood roughly as contamination fraction. Especially they
are very rough estimates as by the distance dependence of proper motions, the reqired fraction
varies with the assumed distance. A priori the expected trends are not obvious as the Schneider
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name DR7 σDR7 DR8
fl −0.0641 0.0057 −0.0644
cl −0.016 0.011 −0.009
al 0.00521 0.00064 0.00447
fb −0.0702 0.0061 −0.0670
cb −0.151 0.012 −0.147
ab 0.00533 0.00081 0.00371

Table 10.1: Fit parameters for systematic streaming in the quasar proper motions as described in
the text.

et al. (2010) sample might have some residual stellar contamination that competes with possible
astrometry problems. In both cases the main rotation termfi is significantly negative hinting to
some misclassified stars affecting astrometry. On the otherhand the coefficientsai that resemble
terms expected for the Galactic halo are positive, which might be interpreted as a tiny fraction of
halo stars hiding in the quasar sample. I rather understand it as an omitted variable bias: Neither
do I know the exact functional shapes and distance distributions of the contamination, nor do
I have precise terms at hand to cope with the possible chromatic aberrations. Exact terms for
contamination would demand a complete modelling of the entire measurement process including
a reasonable model to the Milky Way, other galaxies and the exact Sloan selection function. If I
fit alone eitherai or fi, both variables turn out negative and still their counterparts are negative
when I fit them with this naively derived value. So one could argue thatfi is getting excessively
negative being balanced by a slightly positiveai to cope with these uncertainties.
In the end I cannot achieve more than a rather phenomenological correction without being able
to determine the true cause for the observed trends. The maininformation is, however, the
influence on Galactic rotation measurements and this is wellcontrolled by the derived naive
approximation. I will use these terms for correction of stellar proper motions. As it is unknown
which of the named effects prevails in our case and how much residual contamination there is in
the sample I use the terms from equation. (10.3) multiplied by a factorζµ of 0.5 on the red end
rising to 1.5 on the blue end of the sample:

ζµ =







1.5 for (g− i)< 0.45
(0.9− (g− i))/0.3 for 0.45< (g− i)< 0.75
0.5 for 0.75< (g− i)

(10.5)

where(g− i) is the observed colour without reddening correction.
As can be seen from Table 10.4.2 the fit coefficients on DR8 data are not very different from
the DR7 values, indicating that DR8 proper motion systematicsshould not be more troublesome
than those in DR7. Since I cannot exclude further catastrophic errors in DR7 apart from the
problem withrerun 648 I use the significantly larger DR8 sample as standard throughout this
work, showing DR7 results for comparison where appropriate.
For proper motion errors, which influence the distance determinations, I use the values from
Dong et al. (2011) for DR7 and multiply those by 1.22 for DR8 to account for the 22% larger
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rms scatter of my fit residuals. I checked that use of the Munn et al. (2004) values does not
significantly affect the presented analysis.

10.4.3 Distances

In this work I make use of the statistical distance correction method developed by Schönrich et
al. (2011b). This approach relies on the velocity correlations over Galactic angles that are in-
duced by systematic distance errors and promises a better precision and robustness than classical
methods. The method can find the average distance in any sample of a couple of hundred stars.
So the only thing required as first input is a smooth distance or respectively absolute magnitude
calibration that has a roughly correct shape. The shape has some importance as erroneous as-
sumptions would result in an increased distance scatter on the sample bins resulting in residual
systematic trends for different subpopulations. The use ofstatistical distance corrections is im-
portant as there are in all cases expected offsets by reddening uncertainties, mild differences by
evolutionary differences on the main sequence, systematicmetallicity offsets and by the helium
enhancement problem, where the isochrones appear to be to faint at a fixed colour.
To derive a correction field I bin the sample in metallicity and (g− i)0 colour. I also attempted
binning the sample simulateneously in distance as well, butfound no additional benefits, prob-
ably because the bulk of the sample is further away than 0.5kpc and I excluded high reddening
regions so that variations of reddening with distance are comparatively small.
Primary stellar distances are derived from a dense grid of BASTI isochrones (Pietrinferni et al.,
2004, 2006) that was kindly computed by S. Cassisi for the purpose of our age determinations in
Casagrande et al. (2011). For a first distance estimate I use the 11.6Gyr isochrones which seems
an appropriate compromise between the suspected age of the first significant disc populations
(see e.g. Aumer & Binney, 2009; Schönrich & Binney, 2009a; Bensby et al., 2004) and the age
of halo stars. For metal-poor stars with [Fe/H]< −0.6 I account for alpha enhancement by
raising the effective [Fe/H] by 0.2dex as suggested by Chieffi et al. (1991) or Chaboyer et al.
(1992). In analogy to the observations of Bensby et al. (2007); Meléndez et al. (2008) I let the
alpha enhancement go linearly to zero towards solar metallicity:

[Me/H] =







[Fe/H]+0.2 for [Fe/H]<−0.6
[Fe/H]− 1

3[Fe/H] for −0.6≤ [Fe/H]≤ 0
[Fe/H] for 0< [Fe/H]

(10.6)

Some of the stars are located bluewards of the turn-off pointat this age. To cope with these
objects I search the point at which the old isochrone is 0.5mag brighter than the corresponding
50Myr isochrone and extrapolate bluewards parallel to the main sequence defined by the 50Myr
isochrones. I also experimented with using the turnoff point, i.e. the blue-most point of the
old isochrone, but this introduces larger shot noise in distances that would hamper the distance
corrections via the method of Schönrich et al. (2011b). Comparing the expectedr-band absolute
magnitude of each star to the measured reddening correctedr0 I then infer its expected distance
modulus and hence distances0.
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Figure 10.2: Upper panel: Assumed absoluter-band magnitudes from isochrone interpolation in
the metallicity-colour plane after statistical distance correction. Lower panel: Distance correc-
tion factors in the metallicity-colour plane with the smoothing from equation (10.8).
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To correct those distances I cut the sample in metallicity, colour and distance to derive the sys-
tematic aberrations. There is a trade-off between resolution of the smallest possible structures in
the aberration field and the introduction of Poisson noise the effective numbers of stars contribut-
ing to the estimate at a certain point in the observed space. The strategy is to select every 50th
star in the sample and estimate the distance aberrations forits 800 closest neighbours (I checked
that the bin size has no significant effect) using an euclidean metric on the parameter space:

d2
param= 2∆2

(g−i)0
+∆2

[Fe/H] (10.7)

For non-halo or respectively metal-rich stars that offer less accurate statistics by the smaller
heliocentric velocities this results in some significant scatter, which is reduced by smoothing the
distance corrections:

s = s0









1+
∑i xest,i exp

(

−∑ j
∆2

i, j

2σ2
j

)

∑i exp

(

−∑ j
∆2

i, j

2σ2
j

)









, (10.8)

wheres0 is the first naive distance estimate from isochrone interpolation. The first sum runs
over all stellar parameter setsi around which the best-fit distance correctionx = 1−1/(1+ f ) or
respectively the distance misestimate factorf has been evaluated. The second sumj runs over
used parameters (here metallicity and colour), to evaluatethe parameter differences∆i, j between
the star in question and the mean values of all evaluation subsets and smooth via the exponential
kernel with the smoothing lengthsσ j. I choseσ[Fe/H]= 0.12dex andσ(g−i)0 = 0.04mag. When
binning the sample a second time for measuring Galactic parameters I fit the distance for a second
time, to diminish the danger of remaining systematic biases. Anyway there is no evident trend
e.g. with distance in the second step and the remaining corrections are on the noise level.
Scḧonrich et al. (2011b) reported that their method gives a slight mean distance underestimate
in the presence of significant intrinsic distance scatter, which is caused by stars with distance
overestimates populating the edges of the fitting baseline and hence acquiring larger weight.
This bias was found atδ f ∼ 0.5σ2

f , where f denotes the relative distance aberration andσ f its
dispersion. I confirmed the validity of the prefactor 0.5 for the sample in use by applying a range
of Gaussian broadenings to our isochrone distances. Yet it is not straight forward to estimate the
values ofσ f dependent on metallicity and colour. On the red side the stars are relatively firmly
placed on the main sequence, the reddening vector runs quiteparallel to the main sequence, and
hence the colour and metallicity errors dominate justifying a moderate error estimateσ f ∼ 15%.
On the blue end the placement of the stars on the turn-off becomes increasingly uncertain and
especially on the metal-rich side one must expect significant spread in ages and hence absolute
magnitudes as well. I hence adopt a mild increase in distancedepending on colour

δs

s
= 0.01+0.08((g− i)0−0.8)2

(

1+
1
4
([Fe/H]+2.3)2

)

, (10.9)



10.5. DETECTING GLOBAL ROTATION IN SEGUE 235

which is larger on the blue side and increases mildly with metallicity. I limit the relative distance
increase to a maximum of 4.5%, which corresponds to a distance scatterσ f = 30%.
Fig. 10.2 shows the adopted absolute magnitudes (upper panel) and the correction field for the
isochrone distances (lower panel) in the colour-metallicity plane. Along the metal-poor stars Ii
require moderate distance stretching. This is the turn–offregion, where the 11.6Gyr isochrones
might be a little bit too young and get shifted upwards and on the other hand a bit of contami-
nation by subgiants is more likely because of the reduced physical differences. In principle this
contains information on the structure around the turn–off and the dominant ages among these
populations, but such an investigation is beyond the scope of this work and so I store it for a later
paper. At higher metallicities the turn–off line evidentlyshifts upwards, i.e. to redder colours as
expected from stellar models. On the other hand there is someevidence for a younger metal-rich
population at blue colours, indicated by the absence of distance under-estimates that are seen
on the metal-poor side. Some vertically aligned features might point to minor systematics in
the pipeline metallicities (i.e. under-estimating a star’s metallicity makes us underestimate its
distance), but their discussion is beyond the scope of this work. Throughout the range of G and
K dwarfs there is a quite constant need for mildly larger distances than envisaged by naive use
of the isochrone distances.

10.5 Detecting global rotation in SEGUE

Fig. 10.3 shows the streaming motion for the sample projected into and binned in the Galactic
plane. At each bin I evaluate the mean motion in the heliocentric frame (left panel) and the
mean motion in the Galactocentric frame (right). While I would expect some minor systematic
motion even in the Galactocentric frame by spiral structureand maybe influence by the bar, such
contributions will be relatively small as most of this sample is at high altitudes where the stars
with large random motion experience less important changesof motion by the relatively shallow
potential troughs of the spiral pattern. Some of the residual structure will likely be blurred out by
Poisson noise and distance uncertainties, so that it is no surprise not to see any appreciable signal.
As a good sign there are no significant aberrations, which would be expected under systematic
distance errors, where especially the azimuthal velocity component could cross over into the
radial velocity determinations. In the left panel, however, we see the very prominent rotational
streaming of the Galactic disc, which is central to the following investigations.

10.5.1 The standard of rest

The strong influence of rotational streaming on the observedradial motion makes any determi-
nation unreliable that does not explicitly deal with this problem. In the literature varying offsets
of the solar radial motion of up to more than 10kms−1 from the value derived from local sam-
ples have been claimed. One possible reason are the velocitycross-overs invoked by systematic
distance errors (Schönrich et al., 2011b). However, irrespective of the use of proper motions one
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Figure 10.3: Systematic streaming in the SEGUE sample. The left hand panel shows the he-
liocentricU velocity, while the right hand panel gives the galactocentric Ug, i.e. the real radial
motion at the position of the star assuming a solar galactocentric radiusR0 = 8.2kpc andvφ ,⊙
set accordingly to the proper motion of SgrA∗. The sample was binned in separate boxes a third
of a kpc wide, plotted when they contain more than 50 stars. The sample thins out towards the
remote stars, which causes the increased scatter seen particularly in the galactocentric velocities.
For both panels I restrict the sample to stars with [Fe/H]>−1.

must not neglect rotation. In any sample that is not demonstrably rotation-free and is not sym-
metric in Galactic longitude the streaming motion offsets the mean heliocentric radial motion
and hence the inferred Solar motion with the error growing the more remote the observed stars
are.
Fig. 10.4 shows the heliocentricU velocities for all stars (red crosses) from DR8 and stars with
[Fe/H] > −0.5 (light blue points) against sinα. I set R0 = 8.2kpc, the value forvφ ,⊙ is set
accordingly via the Reid & Brunthaler (2004) relation. The metal-rich subsample displays a
nearly linear relationship of the meanU velocity in sinα as expected for rotational streaming
from equation (10.1). This streaming motion is far larger than the expected offset caused by the
solar LSR motionU⊙ ∼ 11.1kms−1 (Scḧonrich, Binney & Dehnen, 2010). Thus even a mild
asymmetry like in the SEGUE sample will give a wrong estimatein a naive fit without rotation.
Consistently one would infer from those data a solar motion ofU⊙ = (3.92±0.45)kms−1 using
the metal-rich objects andU⊙ = (6.54± 0.44)kms−1 for the entire sample. As expected for
a rotational bias the aberration from the standard LSR valueis significantly larger for the disc
sample. To rid my results from this bias, I use the estimator

Urot(α) = θg sinα −U⊙
′ (10.10)

where the free parametersθg and−U⊙′ are the effective rotation in the sample and the reflex
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Figure 10.4:U velocities versus sinα for all stars in the SEGUE sample (red crosses) and objects
at disc metallicities ([Fe/H]>−0.5, blue points). The line represents the linear fit for the metal-
rich subsample.

of the solar motion. I obtain(θg,U⊙′) = (202.0± 3.5,13.39± 0.44)kms−1 for the metal-rich
subsample and(θg,U⊙′) = (139.8±3.5,13.14±0.47)kms−1 for all stars. Formally this is dif-
ferent from the Scḧonrich, Binney & Dehnen (2010) estimate at the 1σ -level. Yet there are
larger uncontrolled systematic biases: This fit implies that the effective rotation term carries all
the observed bias. While the detailed rotation pattern is notof interest here, the measurement
will be biased if one encounters a larger fraction of slow rotators on one side than on the other.
E.g. a different number of halo stars or unmatched differences of rotation with galactocentric
radius could bias the estimate ofθg which correlates withU⊙′. The systematic uncertainty can be
quantified by the uncertainty inθg. In the sampleU⊙′ shrinks by 0.5kms−1 for every 10kms−1

decrease inθg.

Despite all efforts put into the SEGUE parameter pipeline, it cannot be granted that we can
trust the radial velocities to be free of any systematic aberrations of order 1kms−1. To shed
light on this problem let us examine the vertical velocity component. ReplacingU by W in
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equation (10.10) gives interestingly a marginally significantθg ∼ (3.1±2.1)kms−1 and an es-
timate ofW⊙ = (5.13±0.28)kms−1 that is surprisingly different from the local values derived
from Hipparcos and GCS. The vertical velocity component should not carry and rotational sig-
nature, so thatθg could be identified with a warp of the Galactic disc (cf. Dehnen, 1998),
but accounting for the fact that without statistical correction of the isochrone distances I would
have obtained a baffling estimate of around 20kms−1, this may well be a residual distance bias.
W⊙ can, however, be probed without significant systematic uncertainties directly on the cones
around the Galactic poles, where proper motions and distances play hardly any role. This reveals
W⊙ = (4.97±0.78)kms−1 for the 6740 stars with sinb > 0.9 versusW⊙ = (10.03±1.34)kms−1

for their southern counterpart of 1446 stars with sinb < −0.9. Allowing for the projection of a
radial velocity offset as a free fit parameter:

W = δvlossinb−W⊙ (10.11)

the final result is on the chosen poleward conesδvlos = (2.79±0.95)kms−1 andW⊙ = (7.58±
0.90)kms−1. Testing for streams by cuts in metallicities I obtainδvlos = (2.67±0.75)kms−1

for [Fe/H]>−1.0 (4762 stars) andδvlos= (1.35±0.93)kms−1 for 1624 objects with [Fe/H]>
−0.5. If I am not very unlucky in this sample, either the stars in the solar cylinder are currently
expanding vertically or far more likely the stellar line-ofsight velocities velocities are redshifted
by ∼ 2kms−1. In this light I control the estimate forU⊙ for a line-of-sight velocity bias by
expanding equation (10.10) to:

U(α) = θg sinα +δvloscosl cosb+ c (10.12)

Assumingδvlos= 2kms−1 reduces the estimate forU⊙ to (12.65±0.47)kms−1 for all stars and
12.67kms−1 for the metal-rich subsample. This result does also not change significantly when I
choose distancess > 2kpc.
After all, when accounting for the systematic uncertainties in the data, no hint for a motion of
the solar neighbourhood against some Galactic standard of rest can be detected in this sample. In
the light of this result and the following sections I recommend a value ofU⊙ = 12.7±0.5kms−1

with a systematic uncertainty of about 1.5kms−1.

10.5.2 Divide and conquer: The rotation of components

So far I exclusively looked at the global rotation pattern, yet the new rotation indicator can do
more: Any measurement relying on observed azimuthal velocities does not provide the real rota-
tion of the component in question, but only a value relative to the Sun, from which we conclude
its rotation speed by discounting for the Galactic circularvelocity plus the solar azimuthal LSR
motion. On the contrary the radial velocity part of (10.1) relates to the velocity differences at a
range of Galactic longitudes gives the real rotation of the component without significant influ-
ence by assumptions on the motion of the Sun. Similarly, azimuthal velocity measurements can
be influenced by streams and so it is desirable to have an independent source of information: In
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Figure 10.5: Measuring the intrinsic rotation of the populations. I assumeR0 = 8.2kpc and
vφ ,⊙ = 245kms−1. After sorting the sample in [Fe/H] I move a 2000 stars wide mask in steps
of 1000 so that every second data point is independent. The red data points show the measured
rotation speed in each subsample, while the blue data pointswith small errors give the mean
azimuthal velocityVg in each bin. The green line shows the same, but weighted with(sinα −
sinα)2.

general a stream will then show up in highly different valuesfor the two rotational velocity indi-
cators. The price one has to pay for the radial velocity estimator is a larger formal error, the need
for extended samples, a different dependence on the assumedR0 and some stronger vulnerability
to distortions from axisymmetry, e.g. influence by the Galactic bar. As discussed by Schönrich et
al. (2011b) dissecting a sample by kinematics is detrimental for this kind of kinematic analysis,
but one can divide the Galaxy into its components by a selection in metallicity.
Fig. 10.5 shows the rotation measurement from the radial velocity estimator when I dissect the
sample into bins of 2000 objects in metallicity and move halfa bin in each step (large red error-
bars). The two plateaus of disc and halo rotation with the transition region in between show up
nicely. Clearly there is no significant average net rotation in the Galactic halo. Despite the far
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smaller formal error, this would be more difficult to state onfirm grounds by using the average
azimuthal velocity alone (blue error bars), which does depend strongly on the solar Galactocen-
tric motion. In fact the azimuthal velocity estimator has been shifted onto the curve by matching
vφ ,⊙ = 245kms−1, which turns us to the topic of the next subsection.

10.5.3 Deriving Galactic parameters

More important than mutual confirmation of results one can play off the two measurements
against each other. Matching their absolute scales gives a quantity that has up to now largely
eluded stellar dynamics: the azimuthal velocity of the Sun in the Galactic rest framevφ ,⊙. Sub-
tracting the solar LSR motion this grants an estimate for thecircular speedVc near the solar
radius without any need to invoke complicated models.
To bring the two measurements on common ground we have to apply weights to our estimate
of the mean azimuthal velocityVg for each subpopulation: In a least squares estimate on the
rotation speedθ each star gets assigned a weight proportional to its distance from the population
mean on the baselined = |sinα −sinα |. As the valueUh invoked by rotation varies linearly on
this baseline, each star in the fit attains the weightw = (sinα −sinα)2. Now all stars have equal
weights in both types of measurement diminishing impact from inhomogeneities in the sample.
Those weighted averages on the azimuthal velocities are drawn with the green line in Fig. 10.5.
Generally the weighted values in the disc regime are a bit lower, because the extreme ends on
sinα are populated by remote stars at higher altitudes and at larger asymmetric drift.
Via the Galactic angleα the assumed solar galactocentric radius enters the derivation. The larger
R0 the smaller the derived|α| will be for stars on our side of the Galaxy. This results in a larger
rotation speed required for the same pattern and so increases the estimate of the circular velocity.
Fortunately the rotation speed of Galactic components is lower than the solar value and further –
in contrast to the linear Oort constants – the dependence onα is not linear in the distance, which
helps towards a flatter relationship than a mere proportionality betweenVc andV⊙. This is shown
with the red error bars in Fig. 10.6. For the practical calculation I assume a first guess solar
velocity vector(U⊙,v′φ ,⊙,W⊙) and calculate in each bin of 2000 stars the difference between θ
and the weighted galactocentric azimuthal velocity. As theestimate forv′φ ,⊙ hardly matters for
the derivedvφ ,⊙ I setv′φ ,⊙ according to the Reid & Brunthaler (2004) relationship for SgrA∗. The
weighted average of the single values gives then the sample datapoint at each assumedR0. By
using the proper motion of SgrA∗ (determined as 6.379±0.026masyr−1 by Reid & Brunthaler,
2004) as a second constraint the Galactocentric radius can be fixed to toR0 = 7.97+0.36

−0.33kpc for
DR8 and hence the total velocity of the Sun to aboutvφ ,⊙ = 241+11

−10kms−1. For the resulting
circular speed one has to subtract about 12kms−1. By coincidence this result hits almost exactly
the value determined by Eisenhauer et al. (2003) on the orbitof S2 around the black hole of our
Galaxy.
One can even gain an estimate for the Galactocentric radius that is fully independent of any
other results. For this we have to recapitulate the impact ofR0 on the derivedvφ ,⊙ for different
populations: The measurement compares the mean azimuthal velocity in any population to the
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Figure 10.6: Measuring the total azimuthal velocityvφ ,⊙ =Vc +V⊙ of the Sun. The sample was
binned in distance at bins of a bit more than 2000 stars and then a weighted average taken. The
red errorbars show the results from DR8 proper motions, whilethe green lines show the values
from DR7. The significantly lower number of objects results inlarger error bars. For comparison
I plot the constraint from the proper motion of SgrA∗.

derived absolute rotationθ . Changing the Galactocentric radiusR0 makes the coordinate system
bend differently and hence gives mild changes toVg, but more important it changes sinα and
so almost proportionally affectsθ . As a weakly rotating population has a far smaller value of
θ this relative change will be considerably smaller than the change experienced for fast rotating
disc stars. However, for all populations one measures the same quantity, i.e. the azimuthal
speed of the Sun, and so they must give fully consistent results. Aberrations caused by a wrong
R0 are hence easily detected by dissecting the sample in metallicity, which is (as can be seen
from Figure 10.5) a very good proxy for rotation. I cut the sample again into bins of 2000
stars – now in metallicity instead of distance – and evaluatethe trend ofvφ ,⊙ against the mean
azimuthal speed in each bin. From the red error bars in Fig. 10.7 one can see that already on
the quite modest sample size and extension of the 47790 starsin DR8 I get an independent and
competitive estimate of the solar Galactocentric radiusR0 = 8.43+0.63

−0.54kpc.
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Figure 10.7: Using the trend in determined rotation speed versus mean azimuthal velocity to get
another constraint to the galactocentric radius. For this purpose I sorted the sample by metal-
licity into bins of 2000 stars and estimateddvφ ,⊙/dVg (vertical axis in the plot,a dimensionless
quantity) while varyingR0.

As in the first measurement I used the absolute value of rotation while here the unit-less slope
dvφ ,⊙/Vg is employed, the two results are formally independent and can be combined toR0 =
(8.11±0.29)kpc. Blending this result with the higher estimate of McMillan (2011) givesR0 =
(8.25±0.14)kpc. This translates tovφ ,⊙ = (245±9)kms−1 from this work alone andvφ ,⊙ =
(249.5±4.2)kms−1 when blending with the values of McMillan (2011). Working inthe LSR
values of Scḧonrich, Binney & Dehnen (2010) I hence obtainVc = (233± 7)kms−1 for the
presented analysis only andVc = 237±5kms−1 for the blended result.

10.5.4 Assessment of systematic errors

To assess the systematic uncertainties I vary some of the assumptions. First I checked that the
choice of bin size does not change the results more than the general noise induced by bin changes
as long as the bins are not unreasonably small. I tested that neither of the measurements depends
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on the initial assumption ofv′φ ,⊙, when varying this value by of order 20kms−1. Galactic rotation

at fixedR0 is increased by 4kms−1 when I globally increase distances by 10% and would be
about 7kms−1 lower without the Scḧonrich et al. (2011b) distance correction. It is not affected
to more than 1kms−1 by increased distance scatter of 10−30%. It is obvious that such a scatter
has a minor effect, as the relation betweenUh and sinα is linear and hence at small changes the
mean ofUh is only mildly affected. This is a benefit from operating remote from the Galactic
centre where the changes in Galactic angle become more rapid. The mean azimuthal velocity is
mostly affected by distance scatter via the bias on average distance derived from our statistical
method. Tests reveal an expected systematic bias of order 1kms−1.
Similarly the slope of the derived rotation speeddvφ ,⊙/dVg depends mostly on distance. Here
the dependence is larger: It reacts by 0.08, i.e. about 1.5 standard deviations to a forced increase
of 10% in distance and by−0.05 to a forced decrease of 10%. Removing the statistical dis-
tance correction would lift values by about 0.2 and increased distance scatter without distance
correction increases the value by 0.018 for an additional scatter of 10% and lowers it by 0.021
for a scatter of 30%. Gravity cuts have minor influence on my results: The mean rotation rate is
affected to less than 0.5kms−1 when I instead apply a constant gravity cut at log(g) > 4.0 and
at the same time the trend in azimuthal velocity drops by 0.019. Using a minimum gravity value
of log(g) > 4.1 in addition to the cut sloping in metallicity the rotation measurement does not
change significatly either, but the second approach for determination ofR0 deviates by−0.03.
While there are strong hints to a lower degree of contamination from the distance estimator,
the observed deviation inR0 is still not significant and likely results partly from random scat-
ter as many metal-poor objects are lost by this tighter cut. The robustness of the result against
changes in the gravity selection points to the statistical distance estimator being able to cope with
the different contamination by adjusting the mean distances. The largest uncertainty appears to
arise from the proper motion determinations. The correction I apply raises rotational velocities
by about 3kms−1 and in light of the unsatisfactory physical reasoning as discussed in Section
10.4.2 I have no clue how well this correction works. FurtherI find that a change ofU⊙ by
3kms−1, which acts mainly by biasing the average azimuthal velocities in the lopsided sample,
affects the rotation value by less than 0.2kms−1 and the dimensionless slope by 0.0004.

10.5.5 Using the direction of motion

As a third possibility for fixing Galactic parameters I suggest use of the direction of motion.
All that needs to be done is to compare the expected Galactic angle α to the angle that the
Galactocentric mean motion in the subsamples has against the local azimuth. The upper panel in
Fig. 10.8 shows the angle

αv = arctan
(

(U +U⊙)/(V + vφ ,⊙)
)

(10.13)

of the mean velocity for a binned sample of all stars with [Fe/H] > −0.7 (above that value I
expect sufficient rotation) assuming a solar azimuthal velocity vφ ,⊙ = 242kms−1 and plotting
only bins with more than 10 stars. To make use of this angle I note that the ratioU/V behaves
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Figure 10.8: The upper panel shows the angle of the mean motion vector in the plane for bins
with more than 10 stars. The distribution of bins is irregular because the mean values inx andy
were used in contrast to Fig. 10.3 where bin boundaries were used. The lower panel shows the
resulting estimates forR0 varyingvφ ,⊙ and allowing forU⊙ as free parameter.
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asy/(x+R0). This relationship is more direct to the observables and allows for a simpler fit
(that does not have to account for the bending of the arcustangens). It is obvious that this kind
of statistics critically depends on the choice ofU⊙ and the total azimuthal velocity of the Sun.
While I can fitU⊙ directly to these data, this is not possible forVtot as the fit would then converge
to the wrong global minimum: LetVtot andR0 go to infinity and the fit becomes perfect with
all ratios/angles zeroed. In this light I varyVtot externally and allow forU⊙ andR0 as free fit
parameters. All bins were weighted by the inverse number of stars they contain and I only
accepted bins with more than 10 objects. The result is shown in the lower panel of Fig. 10.8,
where I plot the new result in addition to the previously discussed data. On the first glance this
looks good, the formal error margins are competitive makingthis most probably be a useful tool
in larger samples with better precision, but in the present case does not provide a lot of new
information: The dependence betweenR0 andvφ ,⊙ largely resembles that of SgrA∗ and I would
need a larger sample extension and more stars to be able to compete with that. In addition tests
reveal that different sample selections in metallicity canyield R0 larger by 1σ at the samevφ ,⊙
and at the same time I get about 0.2kpc smaller results when I restrict the sample to in-plane
distances below 2kpc. This may just be bad luck, alternatively it may either point to Galactic
substructure, or to problems with proper motions and radialvelocities. Also the assumed radial
motion of the Sun has a significant impact on the result. For this reason I used it as a free fit
parameter, but the derived values either imply that the rotation frame must be turned by about
0.8 degrees or thatU⊙ is about 2−3kms−1 larger then the GCS value. The fit works out very
well, but due to the arising systematic uncertainty (plus the uncertain status of proper motions
and radial velocities) and the fact that for the current rather small sample we cannot compete with
the accuracy of the SgrA∗ proper motion, I do not use the results for the presented determination
of Galactic parameters.

10.6 Conclusions

In this work I developed the idea that in a spatially extendedsample the absolute rotation of stel-
lar components can be measured from systematic streaming inthe heliocentric radial direction.
The stars on one side of the Galactic center show an oppositeU velocity to those on the other
side. This value has a lower formal accuracy than the classically used azimuthal velocity, but in
contrast to the commonly used galactocentric azimuthal velocities does not require assumptions
about the velocity of the Sun. The systematic radial motion in any extended sample severely
affects determinations of the Local Standard of Rest:U⊙ andW⊙ are generally determined by
simply taking the sample average in each velocity componentwith the reasoning that what flies
inwards/downwards has to be balanced by the flow outwards/upwards. All presently available
surveys are, however, lopsided, i.e. they are not symmetricin Galactic longitude making theU⊙
measurements biased by disc rotation. For SEGUE I find this systematic error to be∼ 10kms−1

getting worse the more remote the used objects are. Accounting for rotation the otherwise ob-
served difference to halo stars disappears and I findU⊙ = (13.14± 0.47)kms−1. While there
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could of course be some interesting physics involved, a systematic difference of∼ 5kms−1 in
the averageW motion between narrow cones towards the Galactic North and South Poles points
to a systematic error in the line-of-sight velocities by∼ 2kms−1 towards us. This does not seem
implausible considering that the pipeline radial velocities had to be corrected by an adhoc shift of
7.3kms−1 (Adelman-McCarthy et al., 2008; Aihara et al., 2011). The correction reconcilesW⊙
to perfect agreement with Hipparcos and the Geneva-Copenhagen Survey (Holmberg et al., 2009;
Aumer & Binney, 2009) andW⊙ = 7.25kms−1 from Scḧonrich, Binney & Dehnen (2010). The
correction leads to a recommended value for the radial component ofU⊙ = (12.7±0.5kms−1

with an additional systematic uncertainty of about 1.5kms−1, a bit higher than the GCS value,
but still within the error margin.
Comparing the absolute rotation measure based on heliocentric U velocities to the meanVg

velocities in a sample delivers the solar azimuthal velocity vφ ,⊙. This measurement is cor-
related with the assumed Galactocentric radiusR0. Combining the fitting line with another
datum like the proper motion of SgrA∗ one can determine bothR0 andvφ ,⊙. For DR8 I ob-
tain R0 = 7.97+0.36

−0.33kpc andvφ ,⊙ = 241+11
−10kms−1. By dissecting the sample into slow and

fast rotating subgroups I can independently infer the Galactocentric radius from their compar-
ison: As fast rotators experience a larger absolute change in the rotation speedθg the value of
vφ ,⊙ derived from them differs from the slow rotators, whenR0 is wrong. Enforcing consis-
tency between the subgroups this effect providesR0 = 8.43+0.63

−0.54kpc and in combination with
the simple rotation measure and the proper motion of SgrA∗ I get R0 = (8.11±0.29)kpc and
vφ ,⊙ = (245± 9)kms−1. Combining those estimates with the values from McMillan (2011)
improves the estimate toR0 = (8.25±0.14)kpc andvφ ,⊙ = (249.5±4.2)kms−1. From this I
obtain the circular speedVc = vφ ,⊙−V⊙ by the LSR value ofV⊙ = (12.24±0.47±2)kms−1 from
Scḧonrich, Binney & Dehnen (2010). With the LSR value ofV⊙ = 12.24kms−1 from Scḧonrich,
Binney & Dehnen (2010) this translates intoVc = (233± 7)kms−1 for the presented analysis
only andVc = 237±5kms−1 for the blended result.
Another strategy would be to use only the direction of motionin the Galaxy to estimateR0. In
contrast to the previously described measurement this bears, however, a strong dependence on
the solar radial motion apart from the dependence onvφ ,⊙ I also encountered with the rotation
statistics. As the resulting relationship is only weakly inclined against the result from SgrA∗,
but for this sample size is still significantly less accurate, this approach will be more relevant for
larger samples and here far just provides some reassurance.It also points to a slightly largerU⊙
(or that our coordinate system should be turned by around 0.8 degrees in longitude) consistent
with the previous finding.
There are a couple of systematic uncertainties in this approach that demand our caution. The
worst uncertainty comes from the proper motions: I tested both DR7 and DR8 proper motions
on the Schneider et al. quasar sample and it is not entirely clear how much of the observed trends
can be attributed to chromatic aberration in the Earth’s atmosphere and which part may be caused
by Galactic frame dragging, i.e. contamination of the galaxy sample used for astrometry with
Galactic stars. In any case the systematics are strongly correlated with Galactic rotation and force
me to apply a correction of questionable amplitude and colour dependence. The correction alters
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the derived Galactic rotation rate at fixed solar position byabout 3kms−1, the systematic error
is unknown and must be suspected to be a considerable fraction of this number. The fact that an
entire rerun in DR7 proper motions (rerun 648) has been found distorted and would lower the
Galactic rotation estimate by more than 10kms−1 does not increase trust inDR7 proper motions,
while the problem withDR8 seems to have largely the effect of an increased scatter that does
not noticeably affect the accuracy of the results. I hence decided in favour of the significantly
larger sample size available in DR8 and provide DR7 results as aconsistency check where it
seems necessary. The radial velocity uncertainty mostly affects the measurements ofU⊙ andW⊙
and I explicitly correct for the possible shift only in thoseplaces. The effect on rotation should
(dependent on if the correction is constant) be small.
I made extensive use of the distance corrections developpedby Scḧonrich et al. (2011b). Besides
that this project would have been futile without the accuracy achieved by the statistical correc-
tions we are of course prone to all the weaknesses of that method. Especially streams and wrong
assumptions about the velocity ellipsoid can induce systematic distance errors of order 5%. Fur-
ther the distortions caused by the bar or spiral pattern can induce both a distance bias and bias
especially the rotation estimates fromU . I could not detect significant structures connected to
this, so the consequences should be rather small, particularly as we stay out of the region domi-
nated by the bar and as the sample is at the same time large enough not to sample just over one
side of a spiral arm. The accuracy could be far better could I use more stars and had I better
control of the systematic errors by another dataset. To resolve that problem we will cope with
the RAVE sample in an upcoming paper.
If the reader should take only one point from this note then let it be this: With the advent of
the large surveys stellar samples are regaining their placeas a primary source to obtain not only
the Local Standard of Rest, but global Galactic parameters. Already a sample of∼ 50000 stars
from SEGUE can deliver formal accuracies for the galactocentric radius and the solar azimuthal
velocity that is competitive with any other known approach.Stellar samples will quickly rise
in significance with their rapidly growing stellar numbers and spatial extension. Even if stars
did not reach this precision, stars provide in extremely valuable source of information, as their
systematic errors are highly different from the other sources.
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Chapter 11

Concluding remarks

The main points the reader should take from this work are: Radial migration as described by
Sellwood & Binney (2002) is the only known way to explain the observed local metallicity
distribution. There is no way around immigration if one accepts that the age determinations in
Casagrande et al. (2011) are at least approximately correct,that imply a quite flat age-metallicity
relation.
Radial migration can also describe the full wealth of links between chemistry and kinematics
that are observed in the Solar Neighbourhood without havingto tune any further parameter. By
explaining all features of the Galactic thick disc it has made a Galactic merger or other cosmic
catastrophes in the past obsolete. This does not mean that such a merger has not taken place,
it simply means that from the current data Ockham’s razor tells us to use the simplest possible
picture that does not require such a merger. In the near future it will be our task to look for
real and significant deviations of model predictions from the data to learn more about the history
of our Galaxy. Apart from that we do not expect such a simple model to really describe a
complicated thing like the Galactic disc, it would be sad andboring, if all the model predictions
were really fulfilled.
The links between chemistry and kinematics give rise to an until now neglected error in the
determination of the Local Standard of Rest, or respectivelythe Solar motion in relation to a
local circular orbit. Our Galactic model makes a firm prediction about the distortion in the
asymmetric drift relaton classically used for the determination of the Local Standard of Rest
that agrees very well with the independent result obtained by fitting the local azimuthal velocity
disribution and hence we increased the estimate for the solar motion in the rotational direction at
good confidence by about 7kms−1.
The predictions of the model for detailed kinematic structure on the colour-magnitude diagram
that led to the error in the LSR determination remained untested in observations so far in the liter-
ature, but we have demonstrated that we can see the predictedtrends both in the metallicity plane
of the new Geneva-Copenhagen Survey and in the colour-magnitude diagram of the Hipparcos
data.
Further it was shown that recent claims of a dual structure ofthe Galactic halo lack any sub-
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stance and can be traced back to distance errors and inappropriate Gaussian analysis of velocity
components that neglects the fact that neither the underlying velocity distributions nor the error
of the data are even remotely Gaussian. This does not excludedifferences between the inner and
outer halo of our Galaxy, but if those exist (and we expect them to exist) they must be far more
subtle than claimed.
To cope with the problem of Gaussian analysis we have put forward an analytic formula that
captures the assymetric shape of the disc’s azimuthal velocity distribution perfectly, while its
parameters are physically motivated. Of course this is not afull kinematic model of our Galaxy,
but a useful little formula that can be used to characterize the azimuthal velocity distribution very
well.
We also developed a novel statistical approach that can be used to determine distances with an
accuracy that could not be attained by classical strategiesof statistical astronomy. This approach
opened the way to determine the local circular speed in our Galaxy to high accuracy and for
the first time reinstitutes stellar samples as a competitivesource of information on Galactic pa-
rameters. The new method presents an easy way to obtain the intrinsic rotation of a population
from heliocentric radial velocities. Once we hold this value the circular speed of our Galaxy is
obtained by matching of the absolute rotation of a componentwith its azimuthal velocities in the
Galactic frame. The dependence on the assumed Galactocentric radius can be resolved by the
condition that slow and fast rotating populations must yield the same value for the velocity of the
Sun or by comparison to the proper motion of SgrA∗.
Despite all those successes this work has not come to its end,nor did it achieve in time what
it was planned for. For quite a long time now it was attempted to replace the simple isothermal
approximation in our chemo-dynamic model by adiabatic models. Yet, it had to be noticed that by
using simple adiabatic modelling the asymmetric drift at higher altitudes and the vertical extent
of the thick disc component at intermediate and large Galactocentric radii would be severely
underestimated. Consequently it was not obvious why adiabatic models should be to any extent
superior to the isothermal approximation, as they explicitly violated energy conservation. We
have solved this problem by the introduction of the adiabatic potential that corrects for the energy
transfer from and to the vertical component of motion. With those new inputs we have finally
started a recalibration of the model to the new Geneva-Copenhagen Survey that is not finished
yet.
A lot needs to be done with the new model: The possibility of pronounced inside-out formation
has to be re-investigated as well as different scenarios forthe formation of the thick disc. The for-
mation and impacts of bulge and bar are still an open issue andwill demand separate modelling.
The model also requires recipees for a proper implementation of the halo. In addition my student
and I have run a new algorithm that describes the inflow in an angular momentum conserving
way. While not explicitly shown in this work, the new algorithm confirms that the inflows in
the Scḧonrich & Binney (2009a) model were on firm physical grounds andwill demonstrate that
the Galactic gradients measured by Luck & Lambert (2011) areconsistent with the accretion
from the Galactic corona as put forward by Fraternali & Binney(2008). Among those necessary
advances many works are waiting that apply the model for detailed chemical abundance studies
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or other studies. So far we have also hardly made use of the fact that we do hold a full Galactic
model that can be used for making detailed predictions and exploration of Galactic structure.
This latter point will also be of great importance for further modelling. So far we have developed
an axisymmetric model that works in the dynamic consequences of the spiral pattern, but does
not incorporate the present day spiral pattern with all its consequences. From the current per-
spective this will best be done by coupling the model to the torus machinery that is being built
by Binney & McMillan (2011).
On the side of distances our new method requires further tests that need better models of our
Galaxy. Further the kinematics with their changes evoked bythe new distance assessment have
been hardly explored.



Bibliography

Abazajan K. et al., 2009, ApJS, 182, 543

Adelman-McCarthy J.K. et al., 2006, ApJS, 172, 634

Aihara H. et al., 2011, ApJS, 193, 29

Aihara H. et al., 2011erratum, ApJS, 195, 26

Allende Prieto C. et al., 2008, AJ, 136, 2070

An D. et al., 2008, ApJS, 179, 326

Antoja T., Valenzuela O., Pichardo B., Moreno E., Figueras F., Ferńandez D., 2009, ApJL, 700,
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Scḧonrich R., Binney J., 2009b, MNRAS, 399, 1145
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Veltz L., Bienayḿe O., and the RAVE collaboration, 2008, A&A, 480, 753

Venn K.A., Irwin M., Shetrone M.D., Tout C.A., Hill V., Tolstoy E., 2004, AJ, 128, 1177

Vila-Costas M.B., Edmunds M.G., 1992, MNRAS, 259, 121

Vilchez J.M., Esteban C., 1996, MNRAS, 280, 720

Vorobyov E. I. & Theis Ch., 2008, MNRAS, 383, 817

von Weizs̈acker C.F., 1937, Phys. Zeitschr., 38, 176

von Weizs̈acker C.F., 1938, Phys. Zeitschr., 39, 633

Wielen R., Fuchs B., Dettbarn C., 1996, A&A, 314, 438

Williams B.F., 2003, AJ, 126, 1312

White H., 1980, Econometrica, 48, 817

Mo H., van den Bosch F., White S., 2010,Galaxy Formation and Evolution, Cambridge, CUP

van Woerden H., Wakker B. P. 2004, in “High Velocity Clouds”, ed. H. van Woerden, B.
P.Wakker, U. J. Schwarz, & K. S. de Boer (Dordrecht: Kluwer), 195

Yanny B. et al., 2009, ApJ, 137, 4377

Yoachim P., Dalcanton J.J., 2006, AJ, 131, 226

York, D. G., et al. 2000, AJ, 120, 1579

Zinn R., 1993, The Globular Cluster-Galaxy Connection, 48, 38

Zwitter T., & the RAVE collaboration, 2008, AJ, 136, 421

Zwitter T., & the RAVE collaboration, 2010, A&A, 522, 54



Curriculum Vitae

Name: Ralph Alexander Schönrich

Born: 30th March 1982 in M̈unchen

Marital Status: single/ledig

Citizenship: German/Deutsch

Home: Max-Planck-Str. 1, 81675 M̈unchen

Education 1988 – 1992 St.Anna primary school Munich
1992/93 Wilhelmsgymnasium Munich
1993 – 2001 Gymnasium Christian Ernestinum Bayreuth
2001 Abitur (A-levels) with grade 1.0
Oct. 2001 Start of studies in physics at LMU Munich
March 2003 Vordiplom (corresponds to a bachelor) in physics, grade

very good
April 2003 Start of Economics studies at LMU Munich
Sept. 2004 Vordiplom (corresponds to a bachelor) in economics, grade

very good
2004/2005 Merton College, University of Oxford
Oct 2008 Diploma (equals a master) in physics, grade 1.0 withdis-

tinction (highest possible grade)
March 2009 Diploma (equals a master) in economics, grade 1.28, 3rd

out of 67 students
April 2009 Start of PhD studies at LMU/MPA with IMPRS scholarship

of the Max-Planck-Gesellschaft
Awards and stipends:
Maximilianeum Scholarship (granted 2001)
Bavarian State Scholarship for especially gifted students (2001)
Stipend of the Studienstiftung des Deutschen Volkes (2003)
Max-Weber stipend for excellent students (2006)
IMPRS scholarship of the Max-Planck-Gesellschaft for PhD studies (2008)
prize for excellent studies in economics (2009)
Hubble fellowship (2011)



264 BIBLIOGRAPHY



Danksagungen

Mein besonderer Dank gilt Prof. Dr. James Binney, ohne den ichnicht zur Astrophysik gekom-
men und Prof. Dr. Martin Asplund, ohne den ich vermutlich nicht in diesem Fach geblieben
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