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Zusammenfassung

Beobachtungen der großskaligen Struktur des Universums, die auf einer statistischen

Analyse der Galaxienverteilung, einer sogenannten Clustering-Analyse, in großen

Himmelsdurchmusterungen beruhen, haben sich zu einer wichtigen Wissensquel-

le für unser Verständnis des Universums entwickelt. Dazu gehören zum Beispiel

die Messung der Zweipunkt-Korrelationsfunktion (2PKF) oder des Leistungsdichte-

spektrums von Galaxien. Herkömmliche Messungen dieser Art sind jedoch mit den

folgenden Herausforderungen verbunden: Erstens muss man ein bestimmtes kosmo-

logisches Referenzmodell annehmen, um die dreidimensionalen Galaxienpositionen

verwenden zu können. Zweitens mittelt man meist über ein großes kosmologisches

Volumen, das sich über einen weiten Rotverschiebungsbereich erstreckt. Dabei wird

die Abhängigkeit des Clustering-Signals von der Rotverschiebung vernachlässigt. In

dieser Arbeit stellen wir eine alternative Herangehensweise vor, welche die genannten

Schwierigkeiten umgeht.

Ziel dieser Dissertation ist die kosmologische Auswertung der Galaxienvertei-

lung anhand eines tomographischen Ansatzes, der die winkelabhängige 2PKF, ω(θ),

in dünnen Rotverschiebungsschalen misst. Ein Vorteil gegenüber bisherigen Analy-

severfahren ist, dass keine Referenzkosmologie benötigt wird, um die gemessenen

Winkelpositionen und Rotverschiebungen der Galaxien in räumliche Abstände um-

zurechnen. Des Weiteren führt man im Gegensatz zu den herkömmlichen Methoden

nicht nur eine einzige gemittelte Messung für die effektive Rotverschiebung des Gala-

xienkatalogs durch. Dadurch kann man untersuchen, wie sich das Clustering-Signal

mit der Rotverschiebung entwickelt, wodurch die Expansionsgeschichte des Univer-

sums genauer bestimmt wird.

Wir modellieren das gemessene ω(θ) in den verschiedenen Rotverschiebungsscha-

len sowie die dazugehörige Kovarianzmatrix und überprüfen diese Modellierungen

anhand von synthetischen Galaxienkatalogen. Im Rahmen dieser Untersuchung zei-

gen wir, dass mit Hilfe der tomographischen Methode die kosmologischen Parameter

unverfälscht extrahiert werden. Außerdem entwickeln wir eine Vorhersage für die Ge-

nauigkeit der Ergebnisse, die wir für die Analyse des finalen Galaxienkatalogs des

Baryon Acoustic Oscillation Survey (BOSS) erwarten. Diese Vorhersage basiert auf

Messdaten, die wir unter der Annahme eines Referenzmodells simulieren, das an die
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Beobachtungen des kosmischen Mikrowellenhintergrunds (MWH) durch die Planck-

Mission angepasst wurde. Für eine engere Einschränkung des kosmologischen Pa-

rameterraums kombinieren wir die BOSS-Analyse mit den Planck-Messungen. Wir

untersuchen unsere Methode sowohl in Bezug auf das kosmologische Standardmodell

(ΛCDM-Modell) als auch auf zwei mögliche Erweiterungen mit alternativen Model-

len für die Dunkle Energie (DE). Dazu vergleichen wir unsere Ergebnisse mit denen,

die man aus der isotropischen Messung der Baryonischen Akustischen Oszillationen

(BAO) für den BOSS-Galaxienkatalog unter Verwendung der Rekonstruktions-Me-

thode in Kombination mit Planck-Daten erhält. Für das ΛCDM-Modell können die

kosmologischen Parameter mit dieser herkömmlichen BAO-Analyse genauer einge-

schränkt werden. Wenn wir allerdings erlauben, dass der Zustandsgleichungspara-

meter der DE, wDE, vom Wert −1 abweicht, kann die tomographische Analyse zu

besseren Ergebnissen führen. Unter der Annahme, dass wDE konstant ist, weisen bei-

de Analysen eine vergleichbare Genauigkeit auf. Für ein zeitlich veränderliches wDE

erreicht man mit dem tomographischen Verfahren eine Verbesserung des Gütefaktors

(Figure of Merit; FoM) in der w0–wa-Ebene von bis zu 15%.

Im letzten Teil der Arbeit wenden wir die tomographische Methode auf den fi-

nalen BOSS-DR12-Galaxienkatalog an. Dafür benutzen wir neuartige Ansätze zur

Modellierung der nichtlinearen Gravitationsdynamik, des Galaxien-Bias und der

Verzerrungen im Rotverschiebungsraum. Außerdem erweitern wir unsere Analyse

dahingehend, dass sie neben den Auto- auch die Kreuzkorrelationen der unterschied-

lichen Rotverschiebungsschalen beinhaltet. Ein wichtiger Schritt ist dabei, die op-

timale Anzahl an Rotverschiebungsschalen zu bestimmen, um eine möglichst hohe

Genauigkeit für die FoM in der Ωm–wDE-Ebene zu erzielen. Anhand unserer Er-

gebnisse analysieren wir die Rotverschiebungs-Abhängigkeit des linearen Bias der

BOSS-Galaxien. Diese Untersuchung ist mit herkömmlichen Galaxien-Clustering-

Methoden nicht möglich. Außerdem bestimmen wir Einschränkungen für kosmo-

logische Parameter, die sich aus unserer Analyse in Kombination mit Messungen

des MWH und Typ-Ia-Supernova-Daten (SNIa) ergeben. Dazu betrachten wir ne-

ben dem ΛCDM-Modell eine Auswahl seiner interessantesten Erweiterungen. Zu

diesen zählen Abweichungen von wDE = −1, Neutrinos mit nicht-minimaler Mas-

se, räumliche Krümmung und Modifizierungen der Allgemeinen Relativitätstheorie,

welche durch den Wachstumsindex γ parametrisiert sind. Unsere Ergebnisse sind

vergleichbar mit anderen aktuellen hochpräzisen Messungen der kosmologischen Pa-

rameter und stimmen sehr gut mit dem ΛCDM-Modell überein. Insbesondere er-

halten wir für die Kombination aus ω(θ), CMB- und SNIa-Daten einen Wert für

wDE, der im Einklang mit −1 ist. Die Genauigkeit der Messung ist für ein zeitlich

konstantes wDE besser als 5% und für ein Modell, das ein räumlich gekrümmtes

Universum zulässt, besser als 6%.



Abstract

Observations of the large-scale structure of the Universe based on statistical
analyses of galaxy clustering in large galaxy-surveys, such as measurements of
the the correlation function or the power spectrum, have been of great impor-
tance to the advancement of our understanding of the Universe. Nevertheless,
these measurements have two issues. First, they need to assume a fiducial
cosmology in order to use the 3D positions of galaxies. Secondly, they usu-
ally average large cosmological volumes neglecting the redshift evolution of
the galaxy-clustering signal. Here we present an alternative approach, which
is able to overcome these issues.

We test the cosmological implications of studying galaxy clustering using a
tomographic approach, by computing the galaxy two-point angular correlation
function ω(θ) in thin redshift shells using a spectroscopic-redshift galaxy sur-
vey. An advantage of this procedure, compared to the traditional 3D analysis,
is that it is not necessary to assume a fiducial cosmology in order to transform
measured angular positions and redshifts into distances. Another advantage is
that it allows us to probe the redshift evolution of the galaxy clustering signal,
instead of making only one measurement at the effective average redshift of
the sample, which results in better constraints on the expansion history of the
Universe.

We model the signal of ω(θ) in redshift bins, and its covariance matrix, and
test these models against a set of mock galaxy catalogues. We show that this
technique is able to extract unbiased cosmological constraints. Also, assum-
ing the best-fitting ΛCDM cosmology from the cosmic microwave background
(CMB) measurements from the Planck satellite, we forecast the expected accu-
racy of applying this tomographic approach to constrain cosmological parame-
ters, using the final Baryon Oscillation Spectroscopic Survey (BOSS) catalogue
in combination with Planck. We show tests of the standard ΛCDM model and
two extensions of alternative dark energy models. We compare these results
with those expected from isotropic baryon acoustic oscillation (BAO) mea-
surements post-reconstruction on the same galaxy catalogue combined with
Planck. The standard BAO analysis is more accurate for constraining cosmo-
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logical parameters for the basic ΛCDM model. Nevertheless, the tomographic
technique gives better results when we allow the dark energy equation-of-state
parameter, wDE, to deviate from −1, resulting in a performance similar to
BAOs in the case of a constant value of wDE, and an improvement in the case
of a time-dependent wDE, increasing the value of the Figure-of-Merit (FoM)
in the w0 − wa plane by up to 15%.

Afterwards, using state-of-the-art modelling of non-linearities, bias and
RSD, as well as extending the analysis to include both auto- and cross-correlation
functions between redshift shells, we apply this tomographic analysis to the
final BOSS DR12 galaxy sample. For this, we optimise the number of redshift
shells in order to maximise the value of the FoM in the Ωm − wDE plane. We
present results on the redshift evolution of the linear bias of BOSS galaxies,
which cannot be obtained with traditional methods for galaxy-clustering anal-
ysis. We also obtain constraints on cosmological parameters, combining this
tomographic analysis with measurements of the CMB and type Ia supernova
(SNIa). We explore a number of cosmological models, including the standard
ΛCDM model and its most interesting extensions, such as deviations from
wDE = −1, non-minimal neutrino masses, spatial curvature and deviations
from general relativity using the growth-index γ parametrisation. These re-
sults are, in general, comparable to the most precise present-day constraints
on cosmological parameters, and show very good agreement with the standard
model. In particular, combining CMB, ω(θ) and SNIa, we find a value of wDE

consistent with −1 to a precision better than 5% when it is assumed to be con-
stant in time, and better than 6% when we also allow for a spatially-curved
Universe.
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Chapter 1

Introduction

During the last century, cosmology went from a more philosophical discipline
to a well established research field in physics and astronomy, today referred
to as physical cosmology. This was supported by Albert Einstein’s theory of
General Relativity (Einstein, 1916) , and by key observations such as the reces-
sion of distant galaxies by Edwin Hubble (Hubble, 1929) which, assuming the
cosmological principle (i.e. the Universe is homogeneous and isotropic), sug-
gested the Universe was expanding. From the observational side though, the
greatest breakthrough came years later in the second half of the 20th century.
First, the discovery of the Cosmic Microwave Background (CMB) in 1964 by
Arno Penzias and Robert Wilson (Penzias and Wilson, 1965), provided strong
evidence in favour of the Big Bang theory, showing that the Universe must
have been very hot and dense in its early stages, cooling down as it expands.
Secondly, in 1998 the Supernova Cosmology Project(Perlmutter et al., 1998)
and the High-Z Supernova Search Team(Riess et al., 1998) used supernovae
type Ia (SNIa) up to redshift z . 0.9 as distance estimators (standard can-
dles), finding that the Universe is not only expanding, but this expansion is
accelerating. This marked the beginning of what today is referred to as the
age of precision cosmology, a very active data-driven research field that studies
the origin, structure and evolution of the Universe.

Besides the CMB and SNIa, a third key component in observational cos-
mology, which this worked is based on, are redshift surveys: large 3D maps
of the large-scale structure (LSS) of the Universe traced by galaxies. Even
though the firsts redshift surveys date from the early ’80s, such as the CfA
Redshift survey (Huchra et al., 1983), given the technological limitations at
the time, it was not possible to measure more than a handful of galaxy spec-
tra at the same time in order to obtain redshifts. This inefficiency limited
the total volume of such galaxy surveys and therefore the amount of available
information for cosmological studies. This changed in the ’90s, when multi-
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object spectroscopy techniques were developed allowing the measurement of
the spectra of hundreds of galaxies per night, rapidly increasing the volume
of these redshift surveys, finally unveiling the large-scale structure of the Uni-
verse at the present. The two most important examples of this new generation
of galaxy redshift surveys that arose in the early 2000s, are the Sloan Digital
Sky Survey (SDSS; York et al., 2000) and the 2dF Galaxy Redshift Survey
(2dFGRS; Colless et al., 2001, 2003).

All of these observations and experiments set what today is known as the
standard cosmological model, in which at very early stages the Universe was
extremely hot and dense, then went through an epoch of exponential inflation
that lasted a fraction of a second. After this, the Universe has been expanding
at a less rapid rate, decelerating at first, and recently accelerating. This model
also states that the energy budget of the universe today is largely dominated
by a dark energy component, that makes up to about 70% of its total energy
density, and drives this accelerated expansion as a mysterious repulsive force
that only affects space-time, without interacting with other components. The
other 30% of today’s energy density budget is mostly matter, from which only
about 16% (∼ 5% of the total) is in the form of known baryonic matter, and
the rest corresponds to another dark component called dark matter, that only
interacts gravitationally with other constituents, whose presence we can only
infer through these interactions with baryons and light. Other components,
such as photons and neutrinos, constitute a very small fraction of the total
energy density of the Universe today, but where dominant at early stages of
its evolution. The nature of dark energy, dark matter, and the expansion
history of the Universe are the most fundamental questions cosmologists want
to answer.

Observations of the CMB show that the Universe was extremely homoge-
neous and isotropic at early stages, with tiny fluctuations (inhomogeneities)
that in the CMB appear as temperature fluctuations of the order δT/T ≈ 10−5.
On the other hand, galaxy surveys show that today the Universe is very
clumpy, formed by galaxies and clusters of galaxies, which form larger struc-
tures such as filaments, walls, and large voids. In order to explain these ob-
servations, the standard model states that these inhomogeneities arise from
quantum fluctuations created in the very early Universe, that get “stretched”
during inflation to scales where they are no longer in the quantum regime,
and thus remain. These fluctuations are very small at the beginning, but with
time, the matter density field (and hence the velocity field) starts evolving un-
der the gravitational force induced by high-density regions, slowly collapsing
into these potential minima and ultimately forming the large-scale structure
we see today. Studying how these structures form and evolve in an expanding
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Universe provides plenty of valuable information on the constituents and the
expansion history of the Universe.

One of the most important cosmological probes of LSS is the signal of
the baryon acoustic oscillations (BAO). These oscillations occurred because
small primordial perturbations induced sound waves in the relativistic plasma
of the early Universe (Peebles and Yu, 1970), but later on at the epoch of
recombination (z ≈ 1000), the sound speed suddenly decreased to the point
that these waves stopped propagating. Since the Universe has a non-negligible
fraction of baryons, cosmological theories predict that the BAO signal will also
be imprinted onto the two-point statistics of the non-relativistic matter as an
excess of clustering in the correlation function, or an oscillation in power in
the power spectrum, at a given (fixed) scale, making it an ideal standard ruler
that can be measured at different redshifts.

In 1999, motivated by the results obtained from COBE of the primary tem-
perature anisotropy in the CMB (Bennett et al., 1996), the BAO signal was
measured for the first time in the CMB, detecting the small angle anisotropies
in the CMB angular power spectrum, confirming the cosmological predictions
(Torbet et al. 1999; Miller et al. 1999). Later on in 2005, the BAO signal was
measured simultaneously in the SDSS by Eisenstein et al. (2005) using the spa-
tial correlation function of a spectroscopic subsample of luminous red galaxies
(LRGs), finding the BAO peak at r ≈ 100 h−1Mpc; and in the 2dFGRS,
where Cole et al. (2005) also found the BAO signal using the power spectrum.
Supported by the increasing amount of data from current and future large
galaxy-surveys, such as the Baryon Oscillation Spectroscopic Survey (BOSS;
Dawson et al., 2013), WiggleZ (Drinkwater et al., 2010), the Dark Energy Sur-
vey (DES; The Dark Energy Survey Collaboration, 2005), the Hobby-Eberly
Telescope Dark Energy Experiment (HETDEX; Hill et al., 2008), the Dark
Energy Spectroscopic Instrument (DESI; Levi et al., 2013), the Large Synoptic
Survey Telescope (LSST; LSST Science Collaboration et al., 2009) and the
Euclid mission (Laureijs et al., 2011), substantial work has been devoted to
modelling and detecting the BAO signal in two-point statistics and use it for
cosmological constraints (e.g. Hütsi 2006; Percival et al. 2007; Spergel et al.
2007; Reid et al. 2010; Blake et al. 2011; Sánchez et al. 2009, 2013, 2014;
Samushia et al. 2013; Anderson et al. 2014b).

There are two important issues related to the traditional study of LSS that
need to be considered. First, in order to use the 3D positions of galaxies,
it is necessary to assume a fiducial cosmological model in order to transform
the measured angular positions on the sky and redshifts of galaxies into co-
moving coordinates or distances, a process which could bias the parameter
constraints if not treated carefully (see e.g. Eisenstein et al. 2005 and Sánchez
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et al. 2009). Secondly, in order to obtain a precise measurement of either the
correlation function or the power spectrum, usually the whole galaxy sample
is used to obtain one measurement, typically averaging over a wide redshift
range and assuming that the measurement at the mean redshift is represen-
tative of the entire sample, washing out information on the redshift evolution
of the structures. Even when these two issues are well understood and under
control within certain conditions, a simple way to avoid them is to use two-
point statistics based only on direct observables, i.e. only angular positions
and/or redshifts, such as the angular correlation function ω(θ) or the angular
power spectrum C`. This is done by dividing the sample into redshift bins, or
shells, in order to recover information along the line of sight, which otherwise
would be lost due to projection effects.

This thesis is based on this idea. In chapter 2 we start by presenting the
background and the tools required for the statistical analysis of the large-scale
structure of the Universe, including the theoretical models we use for the anal-
ysis of the galaxy clustering measurements and observational effects that need
to be taken into account for their correct analysis. In chapter 3 we introduce
what we call the clustering tomography technique, where we model the angu-
lar galaxy clustering signal in thin redshift bins, show what is the information
they provide, and test its cosmological implications. In chapter 4, we proceed
to analyse the final BOSS galaxy sample, explore the evolution of the galaxy
bias of this sample, and obtain constraints on different cosmological models
combining this clustering tomography technique with the latest measurements
of the CMB and SNIa available. Final conclusions are in chapter 5. Appendix
A provides an overview of the mathematical formalism behind the statistical
tools we use. Finally, appendix B contains the summary tables from chapter
4, including those of the cosmological parameters explored, that have been
removed from the body of this work for readability.



Chapter 2

Inhomogeneities in an
Expanding Universe

Since we are interested in the regime where matter is pressure-less and non-
relativistic, and the relevant scales are much less than the curvature radius
of the Universe, it is possible to describe the dynamics of the matter density
fluctuations using Eulerian hydrodynamics and Newtonian gravity. Let us
start by defining the matter density contrast field as the fractional difference
with respect to the mean density 〈ρ〉 = ρ̄,

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (2.1)

where the position and time dependence is shown explicitly here, but for sim-
plicity we will drop it hereafter. The equations governing the dynamics of
this density contrast field in an expanding Universe are, the mass conservation
equation

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0, (2.2)

the momentum conservation equation

∂v

∂t
+

1

a
(v · ∇)v +Hv = −1

a
∇Φ, (2.3)

and the Poisson equation
∇2Φ = 4πGa2ρ̄δ; (2.4)

where a is the scale factor that gives the relative expansion of the Universe as
a function of time, H ≡ ȧ/a is the Hubble function, which has units of velocity
over distance (usually km s−1Mpc−1), v and Φ are respectively the (peculiar)
velocity and gravitational fields associated with δ, and G is the gravitational
constant.
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2.1 The Linear regime

In general, this system of equations is impossible to solve analytically, but if
we restrict the analysis to the regime where δ � 1 and |v| � 1, the mass and
momentum conservation equations can be linearised as

∂δ

∂t
+

1

a
∇ · v = 0, (2.5)

∂v

∂t
+Hv = −1

a
∇Φ. (2.6)

Taking the time derivative of the first equation, the divergence of the second,
and combining them along with (2.4), we obtain a second-order differential
equation that, considering the gravitational force in the linear regime acting
only locally (thus making the whole equation local), can be turned into a
second-order ordinary differential equation given by

δ̈ + 2Hδ̇ = 4πGρ̄δ, (2.7)

which describes the evolution of density fluctuations that grow in place. The
solutions of this equation can be written as

δ(x, t) = A(x)D+(t) +B(x)D−(t), (2.8)

where D+(t) and D−(t) are usually referred as the growing and decaying
modes, respectively.

In practice, given that the initial perturbations are small, and that at early
times the expansion of the Universe slows down the gravitational growth of
density fluctuations, this linear approximation works well up until late times,
specially for large scales.

2.2 Statistics of the matter density field

The matter density field can be thought of as a random field, which means that
it is possible to learn from it by applying statistical tools for such purposes.
Traditionally, this has been done through two-point statistics (the second-order
central moments), such as the correlation function ξ(r) in configuration
space, and the power spectrum P (k) in Fourier space.

The correlation function can be defined as the excess probability density
of finding a pair of objects separated by a distance r, with respect to that of
a homogeneous random distribution. That is, given two volume elements, dV1
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and dV2, separated by r, the probability (density) of finding an object in each
of these volume elements is given by

dP1,2 = ρ̄(1 + ξ(r))dV1dV2, (2.9)

where ρ̄ is the mean density of such objects in the field. Here, we have assumed
that the random field under study is homogeneous and isotropic, and for this
reason ξ(r) is only a function of the magnitude of the separation vector r.
An equivalent definition, considering a zero-mean random field (such as the
density contrast δ), is given by

ξ(r) ≡ 〈δ(x)δ(x+ r)〉, (2.10)

where 〈·〉 stands for the expected value.

Similarly, in two dimensions we can define the angular correlation func-
tion, ω(θ), as the excess probability density of finding and object in two dif-
ferent solid-angle elements dΩ1 and dΩ2, separated by an angular separation
θ, i.e.

dP1,2 = n̄(1 + ω(θ))dΩ1dΩ2, (2.11)

where in this case n̄ is the projected mean density.

The power spectrum is defined as

〈δ(k)δ∗(k′)〉 ≡ (2π)3P (k)δD(k − k′), (2.12)

where δD is the Dirac delta function and, again, assuming homogeneity and
isotropy implies that P (k) is only a function of the magnitude of the wave-
vector k. The power spectrum is the Fourier pair of the correlation function,
thus it can also be defined in terms of ξ as

ξ(r) = 4π

∫ ∞
0

k2dk

(2π)3
P (k)

sin(kr)

kr
. (2.13)

Both, the correlation function and the power spectrum, have shown to be
excellent tools for the analysis of the large-scale structure of the Universe, as a
measure of the clustering of galaxies. In the following, we will concentrate on
how to model this clustering signal in terms of the matter and galaxy density
fields. A more detailed description of the statistical tools defined above, as
well as an overview of the mathematical formalism behind them, can be found
in appendix A.
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2.3 The linear power spectrum

Since the matter density field is expected to be a real-valued homogeneous and
isotropic (Gaussian) random field, the density contrast is a real-valued, zero-
mean, homogeneous and isotropic random field. From the statistical point
of view, this implies that we can apply the spectral representation theorem (see
appendix A) to the field δ(x), where its Fourier pair δ̃(k) is an independent
(i.e. uncorrelated) random variable; and that its correlation function, and the
associated power spectrum, are respectively functions of the magnitudes r and
k only. It is important to bear in mind that the Gaussianity condition is only
true in the linear regime, but at late times gravitational interactions make the
density field (thus, the velocity and gravitational fields as well) non-Gaussian.

Since (in the linear regime) the Fourier components of the density contrast
field are independent, it is easier to work with them and study their evolution.
For this purpose, the power spectrum is the standard tool used to characterise
the statistical properties of the density contrast, which we will describe here,
by its different components.

2.3.1 The primordial power spectrum

Standard models of (inflationary) cosmology predict that the initial power
spectrum of perturbations is a nearly scale-invariant power-law function of the
wavenumber

P(k) ∝ kns , (2.14)

where ns is known as the spectral index. Most models of inflation predict ns

between 0.9 and 1. A value of ns = 1 corresponds to a perfectly scale-invariant
power spectrum, also known as the Harrison-Zeldovich spectrum, and for any
value different from ns = 1 the spectrum is said to be tilted. Based on present-
day CMB measurements from the Planck satellite (Planck Collaboration XIII,
2015), the value of the spectral index is constrained to ns ≈ 0.96, with ns = 1
disfavoured by a significance of > 5σ (assuming that ns is scale-invariant).

2.3.2 The transfer function

This primordial power spectrum, however, is not observable. The reason is
that the initial fluctuations are affected by interactions between the different
energy components of the Universe. The way in which the power spectrum
at different scales (or k-modes) is influenced by this interactions depends on
when these scales re-enter (after inflation) the Hubble horizon. In the linear
regime, the Fourier components of the density contrast evolve independently,
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and if we assume that they appear at some very early time ti, we can neglect
the decaying mode D−(t) in equation (2.8) and write their time evolution as

δ̃(k, t) =
D(t)

D(ti)
T (k)δ̃(k, ti), (2.15)

where D(t) ≡ D+(t) from equation (2.8), and T (k) is the transfer function,
which describes how the different Fourier modes grow as they re-enter the
horizon, considering the interaction between different constituents of the Uni-
verse. The exact computation of the transfer function is a complicated task
involving the integration of the Boltzmann equation for the various interac-
tions. Approximate fitting formulas for the transfer function were proposed
by Bond and Efstathiou (1984) and Eisenstein and Hu (1999), but they are
not accurate enough for present-day clustering analyses. Nevertheless, today
a few fast and accurate Boltzmann codes are publicly available, such as camb
(Lewis et al., 2000) and class (Blas et al., 2011), which compute the transfer
function numerically in a few seconds with extremely high precision.

Taking the expression in (2.15) to compute the power spectrum as in equa-
tion (2.12), and considering that 〈δ̃(k, ti)δ̃∗(k, ti)〉 = P(k) given in equation
(2.14), the time-dependent linear (matter) power spectrum can be obtained
as,

PL(k, t) =

(
D(t)

D(ti)

)2

T 2(k)P(k). (2.16)

If we replace P(k) for kns as in (2.14), we still need a constant of propor-
tionality, or normalisation. In practice this normalisation is determined from
observations, with respect to a pivot value k0, and is usually called the spectral
amplitude As. With this, the final expression for the linear power spectrum is
given by

PL(k, t) =

(
D(t)

D(ti)

)2

T 2(k)As

(
k

k0

)ns

. (2.17)

2.4 Baryon acoustic oscillations

So far, we have considered matter as a single component, but in fact, the matter
content of the Universe is given by normal baryonic matter and another (un-
known, non-baryonic) dark matter component. This has a critical consequence
for the shape of the matter power spectrum (and, of course, ξ(r)), because,
unlike dark matter (in standard cosmological models), baryons interact with
photons.
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Figure 2.1: Left panel: The absolute value of the normalised transfer function.
Right panel: Linear matter power spectrum. Both have been computed using
camb, assuming the best-fitting ΛCDM model to the CMB temperature fluc-
tuation power spectrum measured by the Planck satellite. The baryon acoustic
oscillations (BAO) can be seen around k ∼ 10−1h/Mpc in both panels.

Before recombination, when the Universe was very hot (T > 3000K),
baryons and photons were tightly coupled in a so called baryon-photon plasma,
where electrons interact with photons via Thomson scattering, and with pro-
tons and Helium nuclei by Coulomb interaction. Even though dark matter
only interacts with photons and baryons through gravity, its role is to be the
largest contributor to the gravitational potential. In one moment in this hot
primordial soup, baryons try to collapse towards the gravitational potential
minima, and this force is equilibrated by an increase in radiation pressure by
photons. The result of this opposing forces creates a spherical density wave (or
sound wave) that travels outwards from the density peaks, until the moment
that the Universe is cold enough (T . 3000K) for the electrons to combine
with protons and He nuclei. This ceases the coupling of baryons and photons,
finally stopping the propagation of this density wave (considering matter being
pressure-less), leaving an excess of clustering at the scale of the sound horizon.

To illustrate this, it is possible to show that taking the Fourier equivalent
of the linearised equations for perturbations (2.5), (2.6) and (2.4) in terms δ̃(k)
for each component (dark matter, baryons and photons), and assuming that
the coupling between baryons and photons is very efficient, thus vb ≈ vγ, one
can obtain an equation for the evolution of baryon fluctuations given by

δ̈b +H
1 + 2R

1 +R
δ̇b +

1

3(1 +R)

k2

a2
δγ =

k2

a2
Φ, (2.18)
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where we have dropped the ·̃ symbol for simplicity, and R ≡ 3ρ̄b
4ρ̄γ

is the baryon-

to-photon energy density ratio. This is a wave-like equation, whose oscillatory
solution is know as the baryon acoustic oscillations (BAO) and has a fre-
quency of krs, where rs is the sound horizon

rs(t) =

∫ t

0

dt
cs(a)

a
, (2.19)

and cs is the sound speed that, before decoupling, has a value of c2
s = c

3(1+R)
.

The moment in time at which this sound wave stops is known as the drag
time, td, or the drag redshift, zd, when dealing with observations. Figure 2.1
shows how these wiggles look like in the transfer function (left-hand side) and
in the linear matter power spectrum (right-hand side), for the best-fitting Λ
cold dark matter (CDM) model to the CMB temperature fluctuations power
spectrum measured by the Planck satellite. It can be seen that these oscilla-
tions are small. This is because after decoupling baryons fall back to the dark
matter density peaks, but dark matter also follows baryons without erasing
the oscillations completely. This means that, on one hand if there were no
dark matter, these wiggles would be much stronger; and on the other hand,
the amplitude of the oscillations encodes information of the baryon fraction.

This result is of great importance, because the sound horizon scale im-
printed onto two-point statistics can be used as a standard ruler. Thus, mea-
suring the BAO scale at different epochs, it is possible to obtain accurate
constraints on the expansion history of the Universe. If we know the sound
horizon scale rs(zd), and we measure the apparent size of the BAO scale at a
given redshift, along and perpendicular to the line of sight, we can relate this
to the angular diameter distance, DA(z), and the Hubble parameter, H(z), as

∆θBAO =
rs

(1 + z)DA(z)
, (2.20)

∆zBAO =
rsH(z)

c
. (2.21)

Measuring the redshift-distance relation from BAO measurements has become
a standard and very powerful tool in the field of observational cosmology over
the last 10 years, after the first measurements on galaxy catalogs by Cole
et al. (2005) and Eisenstein et al. (2005). Figure 2.2, reproduced from An-
derson et al. (2014b), shows measurements on different galaxy surveys of the
spherically-averaged distance defined as

DV(z) =

(
(1 + z)2D2

A(z)
cz

H(z)

) 1
3

, (2.22)
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Figure 21. The distance–redshift relation from the BAO method on galaxy
surveys. This plot shows DV (z)(rs,fid/rd) versus z from the DR11 CMASS
and LOWZ consensus values from this paper, along with those from the
acoustic peak detection from the 6dFGS (Beutler et al. 2011) and WiggleZ
survey (Blake et al. 2011; Kazin et al. 2014). The grey region shows the 1σ

prediction for DV(z) from the Planck 2013 results, assuming flat "CDM and
using the Planck data without lensing combined with smaller scale CMB
observations and WMAP polarization (Planck Collaboration 2013b). One
can see the superb agreement in these cosmological measurements.

Figure 22. The DV(z)/rd measured from galaxy surveys, divided by the
best-fitting flat "CDM prediction from the Planck data. All error bars
are 1σ . The Planck prediction is a horizontal line at unity, by construc-
tion. The dashed line shows the best-fitting flat "CDM prediction from the
WMAP+SPT/ACT results, including their smaller scale CMB compilation
(Bennett et al. 2013). In both cases, the grey region shows the 1σ variation
in the predictions for DV(z) (at a particular redshift, as opposed to the whole
redshift range), which are dominated by uncertainties in #mh2. As the value
of #mh2 varies, the prediction will move coherently up or down, with am-
plitude indicated by the grey region. One can see the mild tension between
the two sets of CMB results, as discussed in Planck Collaboration (2013b).
The current galaxy BAO data fall in between the two predictions and are
clearly consistent with both. As we describe in Section 7.5, the anisotropic
CMASS fit would yield a prediction for this plot that is 0.5 per cent higher
than the isotropic CMASS fit; this value would fall somewhat closer to the
Planck prediction. In addition to the BOSS data points, we plot SDSS-II
results as open circles, that from Percival et al. (2010) at z = 0.275 and from
Padmanabhan et al. (2012) at z = 0.35. These data sets have a high level of
overlap with BOSS LOWZ and with each other, so one should not include
more than one in statistical fitting. However, the results are highly consistent
despite variations in the exact data sets and differences in methodology. We
also plot results from WiggleZ from Kazin et al. (2014) as open squares;
however, we note that the distance measurements from these three redshift
bins are substantially correlated.

Figure 23. Comparison of the 68 and 95 per cent constraints in
the DA(0.57)(rfid

d /rd) − H (0.57)(rfid
d /rd) plane from CMASS consensus

anisotropic (orange) and isotropic (grey) BAO constraints. The Planck con-
tours correspond to Planck+WMAP polarization (WP) and no lensing. The
green contours show the constraints from WMAP9.

set. The predictions from these two data sets are in mild conflict
due to the ∼5 per cent difference in their #mh2 values, discussed in
Section 9.1. One can see that the isotropic BAO data, and the BOSS
measurements in particular, fall between the two predictions and are
consistent with both. Note that the recent revision of Planck data by
Spergel, Flauger & Hlozek (2013) results in a value of #mh2 that
is in excellent agreement with our isotropic BAO measurements,
which brings Planck predictions of the distance scale at z = 0.32
and z = 0.57 much closer to BOSS measurements.

Our 68 and 95 per cent constraints in the
DA(0.57)(rfid

d /rd)–H (0.57)(rd/r
fid
d ) plane from CMASS con-

sensus anisotropic measurements are highlighted in orange in
Fig. 23. In grey we overplot one-dimensional 1- and 2σ contours
of our consensus isotropic BAO fit. Also shown in Fig. 23 are the
flat "CDM predictions from the Planck and WMAP CMB data
sets detailed in Section 9.1. The CMB constraints occupy a narrow
ellipse defined by the extremely precise measurement of the angular
acoustic scale of 0.06 per cent (Planck Collaboration 2013b).
The extent of the ellipse arises primarily from the remaining
uncertainty on the physical CDM density, #ch2; Planck narrows the
allowed range by nearly a factor of 2 compared with WMAP. The
CMASS isotropic BAO constraints are consistent with both CMB
predictions shown here. The anisotropic constraints in particular
prefer larger values of #ch2 (right edge of the WMAP contour) also
favoured by Planck. Also evident in this plot is the offset between
the best-fitting anisotropic constraint on H (0.57)(rd/r

fid
d ) (or ϵ) and

the flat "CDM predictions from the CMB.
To make the flat "CDM comparison between the CMB and our

BAO measurements more quantitative, we report in Table 13 the
Planck, WMAP, and eWMAP "CDM predictions for our isotropic
and anisotropic BAO observables at z = 0.32 and 0.57. All three
predictions are in good agreement with our isotropic measurements.
The largest discrepancy between the Planck "CDM predictions and
BOSS measurements is about 1.5 σ for the anisotropic parameter ϵ

(or the closely related α∥) at z = 0.57. eWMAP and BOSS disagree
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Figure 2.2: The distance-redshift relation from BAO measurements on galaxy
surveys, reproduced from Anderson et al. (2014b). It shows the (normalised)
spherically-averaged distance DV(rfid

s /rs) as a function of redshift as measured
on the DR11 BOSS survey (Anderson et al., 2014b), WiggleZ survey (Blake
et al., 2011; Kazin et al., 2014), and 6dFGS survey (Beutler et al., 2011). The
grey band corresponds to the prediction for DV from Planck Collaboration
XVI (2014) results assuming a ΛCDM cosmology.

as a function of redshift, normalised by the ratio between the real sound-
horizon scale and the one corresponding to the fiducial cosmology used to
perform the clustering measurements. Also shown, by a grey band, is the
prediction from the best-fitting ΛCDM model from Planck Collaboration XVI
(2014).

2.5 Galaxies as biased tracers of the density

field

A useful theoretical framework in structure formation to describe the sta-
tistical properties of the galaxy distribution is the halo model (Scherrer and
Bertschinger, 1991; Seljak, 2000; Peacock and Smith, 2000), where peaks (or
maxima) in the density field, and matter around them, collapse into massive
virialised structures called halos, and all galaxies form and live inside them.
Large massive halos can host several galaxies, and there can be small halos
with no galaxies. These halos represent an inhomogeneous Poisson process
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that traces the high density regions of the underlying matter density field.
With these assumptions, the halo model states that the statistics of the den-
sity field can be split into two components: (i) on small scales it is dominated
by the internal structure of halos, and the distribution of halos is not relevant
(the 1-halo term); and (ii), at scales larger than the typical size of a halo, it
is dominated by their distribution (the 2-halo term), where the distribution of
galaxies inside halos has a subdominant contribution.

In general, the halo field is biased with respect to the matter density field,
and this bias depends mainly on the mass of the halo and the redshift. As-
suming that the halo bias is a local function only (i.e. it only depends on the
potential at that point), the halo density field can be expanded in terms of
powers of the matter density field as

δh(m, z) =
∑
p=1

bp(m, z)

p!
δp, (2.23)

where bp are the (local) bias parameters. At the lowest level approximation,
δh ≈ b1δ, which implies that the correlation function of halos of masses m1

and m2 (for a fixed z), is related to that of the matter by

ξhh(r|m1,m2) = b1(m1)b1(m2)ξ(r), (2.24)

where b1 is known as the linear bias.
If each halo had only one galaxy sitting at its centre (and so moving as the

halo centre of mass), then the galaxy correlation function would be that of the
halos, but as we mentioned above, this is not the case. Nevertheless, on scales
sufficiently large to neglect the separation of galaxies within a halo, and their
internal structure in general, we can modify the first order approximation in
equation (2.24) as

ξg(r) = b2
g,1ξ(r), (2.25)

with the linear galaxy bias bg,1 given by

bg,1 =

∫
dm n(m)b1(m)

〈Ng|m〉
〈ng〉

, (2.26)

where n(m) is the number density of halos of a given mass m, 〈Ng|m〉 is the
expected number of galaxies inside a halo of mass m, and

〈ng〉 =

∫
dm n(m)〈Ng|m〉, (2.27)

is the mean number density of galaxies.
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Figure 2.3: Mean anisotropic correlation function ξ(s, µs) measured from Las-
Damas mock catalogues (McBride et al., 2009), reproduced from Kazin et al.
(2012). The left panel is measured using the real-space positions of galaxies,
while the right panel is in redshift-space.

As we look at smaller scales, still larger than the typical size of a halo, but
small enough to be comparable to the separation between galaxies inside one
of them, the contribution of higher-order bias factors and non-local biasing
(i.e. as a function of the matter density field around a given point) becomes
more important. These two will be treated later in §2.7.2. Moreover, different
environmental effects that influence galaxy formation will also have an impact
on the galaxy bias, introducing what is known as stochastic biasing.

In practice, since our understanding of the many processes that influence
how galaxies form and populate halos is not accurate enough for cosmological
studies, the biases are usually treated as free parameters in the modelling of
the galaxy clustering signal.

2.6 Redshift-space distortions

So far, we have been treating the matter density field δ(x), and galaxies as
tracers of it, assuming that we know their real three-dimensional position. In
reality, we cannot observe the real positions of galaxies, but rather their angu-
lar coordinates in the sky and their redshift z, and even knowing the correct
distance-redshift relation, the distances inferred from the measured z are not
the true distances to the observed galaxies. This is due to the fact that the
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observed redshifts are not only a consequence of the cosmological recession
velocity driven by the expansion of the Universe, but have an additional con-
tribution from the peculiar velocity v of each object. That is, for v = |v| � c

cz = rH + v · n̂ → s = r +
v · n̂
H

n̂, (2.28)

where n̂ = r/r, and s is the redshift-space distance to an object at real-space
distance r. The effect of this distortions is that galaxies with peculiar velocities
moving toward us will appear to be closer than they really are, while the
opposite applies for galaxies moving away from us, breaking the isotropy of the
density field along the line-of-sight but not in the transverse direction. Figure
2.3 shows the effect of redshift-space distortions on the correlation function.
The real-space ξ is shown in the left panel, as a function of the magnitude of
the separation vector, s, and µs, the cosine of the angle between this vector
and the line of sight. Naturally, ξ in real-space does not depend on µs, as
opposed to its redshift-space counterpart shown in the right panel. Here, it
can be seen that the signal perpendicular to the line of sight (µ . 0.5) gets
stretched, decreasing the slope of ξ at small scales, while the opposite happens
along the line of sight (µ & 0.5), where even an anti-correlation is developed
at intermediate scales s ∼ 70h−1Mpc.

Since the velocity field is given by the gradient of the potential, these dis-
tortions are tightly connected to the density field. They are usually described
by two components, a (linear) large-scale coherent flow towards dense regions
called the Kaiser effect (Kaiser, 1987), and a small-scale random motion within
virialised structures (i.e. clusters of galaxies) called the Fingers-of-God (FoG)
effect. The latter is very difficult to model, and a phenomenological description
is normally used (see §2.7.2).

To illustrate the linear effect, let us show how the evolution of δ is related
to v. In the linear regime we had that δ ∝ D(t), thus

∂δ

∂t
=
∂δ

∂a

da

dt
= δ

ȧ

a

∂ lnD

∂ ln a
. (2.29)

Replacing this in the mass conservation equation (2.5), and recalling that
H(a) ≡ ȧ

a
, we have

H(a)f(a)δ = −1

a
∇ · v, (2.30)

where f(a) ≡ ∂ lnD
∂ ln a

is the growth rate factor. For the galaxy density field, in
the linear regime we have δg = b1δ (dropping the subscript g in the bias). If
we assume no velocity bias, that is vg = v, equation (2.30) can be written as

H(a)βδg = −1

a
∇ · v, (2.31)
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where β ≡ f
b
. Therefore, even when at first these distortions could appear to

be a problem, they are in fact another source of information, since they are
caused by the velocity field, which at the same time is linked to the growth of
structures through f .

While solving (2.31) in configuration space to get an expression for δg(s) re-
quires an integral operator (see Hamilton, 1998), in Fourier space this relation
is significantly simpler. Following Kaiser (1987), in the plane-parallel approx-
imation, which assumes that the observed galaxies are far away (or separated
by a small angle), it is possible to show that

δ̃sg(k) = (1 + βµ2
k)δ̃

r
g(k), (2.32)

where the r and s superscripts are for real- and redshift-space, and µk = n̂ · k̂
is the cosine of the angle between the line of sight and the wave vector. This
allows us to write the (linear) anisotropic galaxy power spectrum as

Pg(k, µk) = b2
1(1 + βµ2

k)
2P (k), (2.33)

where (1 + βµ2
k)

2 is usually known as the Kaiser factor.
Note that the Kaiser factor can be expanded in terms of three Legendre

polynomials as

(1 + βµ2
k)

2 =

(
1 +

2

3
β +

1

5
β2

)
L0(µk)

+

(
4

3
β +

4

7
β2

)
L2(µk) +

8

35
β2L4(µk),

(2.34)

where L`(µ) are the Legendre polynomials of `-th order. It is useful then to
expand the anisotropic power spectrum as

P (k, µk) =
∑
`=0,2,4

P`(k)L`(µk), (2.35)

where P`(k) are the first three non-zero power spectrum multipoles: the monopole,
quadrupole and hexadecapole. These multipoles are given by

P`(k) =
2`+ 1

2

∫
dµk P (k, µk)L`(µk), (2.36)

and even though, in theory, this expansion runs over an infinite number of
even multipoles, from equation (2.34) it can be seen that in the linear regime
the information is enclosed in only three of them, and the multipoles of order
` ≥ 6 cancel out.
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Redshift-space distortions do not break homogeneity, thus P (k, µk) also
determines the anisotropic correlation function ξ(s, µs). It is convenient to
expand the two-dimensional spatial correlation function ξ (s, µs) analogously
to equation (2.35) as

ξ(s, µs) = ξ0(s) + L2(µs)ξ2(s) + L4(µs)ξ4(s), (2.37)

where ξ0(s), ξ2(s) and ξ4(s) are the monopole, quadrupole and the hexade-
capole of ξ(s, µs) respectively. These multipoles can be derived from those of
the power spectrum as

ξ`(s) =
i`

2π2

∫
dk k2P`(k)j`(ks). (2.38)

where j`(x) is the spherical Bessel function of `-th order (Hamilton, 1997).

2.7 The non-linear redshift-space power spec-

trum

Although linear theory has proved to be a very useful theoretical tool for the
study of the large-scale structure of the Universe, non-linear effects are much
more important today, especially at low redshift, as statistical errors of the
state-of-the-art measurements on galaxy catalogs become smaller. This can
be seen in figure 2.4, where measurements on a set of 100 N -body simula-
tions (blue band), dubbed minerva (Grieb et al., 2016), are compared to the
corresponding linear-theory prediction (dashed lines), and the two non-linear
approaches used in this work. It is clear that, already at k ∼ 0.1h/Mpc, linear
theory does not give a good description of the matter power spectrum.

Non-linearities occur because the effect of gravity is not only local as we
assumed before, thus not only amplifies the initial density peaks in place, but
also affects others in their environment. The effect that non-linearities have
on two-point statistics is a coupling between small and large k-modes, that in
the power spectrum corresponds basically to a transfer of power from small
values of k to large ones.

Non-linearities also have a damping effect on the BAO signal, that in the
case of ξ results in a broadening of the acoustic bump and a slight shift of its
centroid towards smaller scales (Crocce and Scoccimarro, 2008). This means
that if the non-linear evolution of the density field is not properly taken into
account, it could lead to biased measurements of the redshift-distance relation
in (2.20) and (2.21).
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Figure 2.4: Non-linear matter power spectrum at redshift z = 0 and z = 0.57.
The dashed yellow line corresponds to the prediction by 2-loop RPT, while
the solid red line corresponds to that of 1-loop gRPT. These two models are
compared to linear theory (black dashed line). The blue dashed line and light
blue band correspond to the mean and 2% error measurements from a set of
100 N -body simulations dubbed minerva (Grieb et al., 2016).
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There are many approaches to model the non-linear evolution of density
fluctuations, from perturbation theory (in Eulerian and Lagrangian coordi-
nates) and effective field theory of large-scale structure (EFTofLSS; Carrasco
et al., 2012; Angulo et al., 2015a,b), to numerical approaches using N -body
simulations to derive recipes of how these non-linearities depend on different
cosmological models (Smith et al., 2003; Heitmann et al., 2009, 2010). In this
work, we use two different perturbative approaches: one based on Renor-
malised Perturbation Theory (RPT; Crocce and Scoccimarro, 2006) in
chapter 3, and a similar approach called gRPT (Blas, Crocce & Scoccimarro,
in prerp) in chapter 4. We will describe these two here.

2.7.1 The Non-linear Matter Power Spectrum in real
space

In Standard Perturbation Theory (SPT), the idea is to express the non-linear
evolution of δ̃ as a perturbative expansion over powers of the linear solution
in the following manner,

δ̃ =
∞∑
p=1

δ̃(p), (2.39)

where δ̃(p) ∝
(
δ̃L

)p
, and δ̃L corresponds to the Fourier transform of the lin-

earised solution in equation (2.8). Then, the two-point covariance function
(the power spectrum), is given by

〈δ̃δ̃〉 = 〈δ̃(1)δ̃(1)〉+ 〈δ̃(1)δ̃(3)〉+ 〈δ̃(3)δ̃(1)〉+ 〈δ̃(2)δ̃(2)〉+· · · , (2.40)

where this effectively yields

P (k) =
∞∑
p=1

P (p)(k), (2.41)

where P (p)(k) ∝ (PL(k))p are known as the `-loop corrections, with ` = (p−1),
for p > 1 (p = 1 corresponds to PL(k), which would be the “0-loop”). The
issue with SPT is that many `-loop corrections contribute equally to a given
scale k, making it extremely difficult to know where to truncate the series of
corrections and to physically interpret each correction.

Renormalised perturbation theory consists in a way of reorganising the
(infinite) terms of SPT in two sums, where the first one adds up to a defined
function G(k) called the propagator, which is very well approximated by an
exponential factor and measures how initial conditions are erased, through
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gravitational effects, as a function of k. The remaining (infinite) terms are
reorganised in a well-defined expansion of `-loop corrections that account for
the effects of (` + 1)-mode-coupling, thus effectively defining the non-linear
matter power spectrum as

PNL(k) = PL(k)G2(k) +
∑
`

P
(`)
MC(k). (2.42)

Unlike SPT, each `−loop correction dominates over a narrow range of scales,
which makes it much easier to know how many terms are required to get the
non-linear power spectrum up to a given scale kmax.

A practical issue of RPT is that its `-loop terms start to crowd as ` in-
creases, progressively requiring more and more terms to go to higher values of
k. However, Crocce and Scoccimarro (2006) proposed that there are symme-
tries (e.g. Galilean invariance) that could be used to connect the resummation
of the mode-coupling series with that of the propagator, which one might be
able to take advantage of. This idea has recently been put into practice by
Blas, Crocce and Scoccimarro (in prep).

In a new approach, dubbed gRPT, they use Galilean invariance (invariance
under translations) to reorganise the mode-coupling terms of RPT in such a
way that already the 1-loop contribution gives the non-linear corrections that
would require many terms in RPT. Figure 2.4 shows a comparison between
RPT (left) and gRPT(right), against measurements on minerva, where a
significant improvement can be seen at the 1-loop correction level.

2.7.2 The Non-linear Galaxy Power Spectrum in red-
shift space

In general, the non-linear redshift-space galaxy power spectrum can be written
as

P (k, µk) = F (ifkµk)Pnonvir(k, µk), (2.43)

where Pnonvir(k, µk) represents the non-virial power spectrum, normally the
non-linear P (k) plus the coherent part of RSD, and F (ifkµk) is a function
that accounts for the FoG effect.

RPT-based model

For our first approach, based on RPT, since we are only interested in perform-
ing a simple proof of concept in chapter 3, it is sufficient to consider the linear
galaxy bias only, as in equation (2.33), and replace the linear matter power
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spectrum with the non-linear one in order to model Pnonvir(k, µk). That is, the
non-virial part of the redshift-space power spectrum can be written as

Pnonvir(k, µk) = b2
1(1 + βµ2

k)
2PNL(k), (2.44)

where in this case, we parametrise the non-linear real-space galaxy power spec-
trum as

PNL(k) = PL(k)e−(kσv)2 + AMCPMC(k), (2.45)

where e−(kσv)2 corresponds to our approximation of the propagator, σv is the
(one-dimensional) linear velocity dispersion, AMC is a constant that modulates
the amplitude of the mode-coupling part, and the (infinite series of) mode-
coupling corrections are well approximated, up to k ∼ 0.15h/Mpc, by

PMC(k) =
1

4π3

∫
d3q
[
|F2 (k− q,q)|2 PL (|k− q|)PL(q)] , (2.46)

where F2(k,q) is the standard second order kernel of perturbation theory
(Crocce et al., 2012) given by

F2(q1,q2) =
5

7
+

1

2

q1 · q2

q1q2

(
q1

q2

+
q2

q1

)
+

2

7

(
q1 · q2

q1q2

)2

. (2.47)

In this approach, we model the FoG effect by a Lorentzian pre-factor given by

F (λ) =

(
1

1− λ2σ2
v

)2

(2.48)

that gives a very good description of the Fingers-of-God damping effect, as-
suming an exponential galaxy velocity distribution function (Park et al. 1994;
Cole et al. 1995). This last component defines then the RPT-based non-linear
redshift-space galaxy power spectrum as

P (k, µk) = b2
1

(
1

1 + (kfσvµk)2

)2 (
1 + βµ2

k

)2
PNL(k). (2.49)

This model, that effectively has three nuisance parameters, b1, σv and AMC, has
been shown to give a very good description of non-linear evolution and RSD
in measurements of both N-body simulations (Sánchez et al., 2008; Montesano
et al., 2010) and real galaxy samples (Sánchez et al., 2009, 2012, 2013, 2014;
Montesano et al., 2012), up to scales of k ∼ 0.15h/Mpc.
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gRPT-based model

In chapter 4, the goal is to push the analysis to the smallest possible scales,
and for this we drop the simple model described above, and use gRPT. In this
case we include non-linear and non-local biasing and RSD, and extend the
modelling of the clustering signal to the smallest possible scales.

Expanding the galaxy density field δg up to second order as (Chan et al.,
2012; Chan and Scoccimarro, 2012)

δg ≈ b1δ +
b2

2
δ2 + γ2G2(Φv) + γ−3 ∆3G +· · · , (2.50)

where Φv is the velocity potential, γ2 and γ−3 are non-local bias parameters,
and the Galileon operators G2 and ∆3G are given by

G2(Φ) = (∇Φ)2 − (∇2Φ)2, ∆3G = G2(Φ)− G2(Φv); (2.51)

the non-virial part of the power spectrum, Pnonvir(k, µk), can be expressed at
1-loop as the sum of three contributions, i.e.

Pnonvir(k, µk) = P (1)(k, µk) + P (2)(k, µk) + P (3)(k, µk). (2.52)

The first term, P (1)(k, µk), is given by

P (1)(k, µk) = Pgg(k) + 2fµ2
kPgθ(k) + f 2µ4

kPθθ(k), (2.53)

where Pgg, Pgθ and Pθθ are the galaxy-galaxy, galaxy-velocity (divergence)
and velocity-velocity power spectra, respectively. Each of these terms has
contributions from cross-spectra of terms of the expansion in equation (2.50),
and corresponds to the non-linear version of the Kaiser power spectrum in
equation (2.33). Similarly, the second term is

P (2)(k, µk) =

∫
d3q

qz
q2

[
BθDsD′s(q,k− q,−k) +BθDsD′s(q,−k,k− q)

]
,

(2.54)
whereBθDsD′s is the Bispectrum (the third-order covariance function in Fourier
space), Ds ≡ δg +∇zuz and u = v/a is the (comoving) peculiar velocity. Fi-
nally, the third term is given by

P (3)(k, µk) =

∫
d3q

qz
q2

kz − qz
(k− q)2

(b1 + fµ2
q)(b1 + fµ2

k−q)Pδθ(k− q)Pδθ(q). (2.55)

Assuming that the bias is local in Lagrangian coordinates, the non-local bias
parameters (in Eulerian coordinates) γ2 and γ−3 can be set as a function of the
linear bias as

γ2 = −2

7
(b1 − 1), γ−3 =

1

42
(b1 − 1). (2.56)
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Figure 2.5: Mean monopole, quadrupole and hexadecapole, shown by symbols,
measured from 100 mock galaxy catalogs made from the minerva simulations.
The errors correspond to those expected from a single realisation. The solid
lines show the prediction from the gRPT+bias+RSD model used for the anal-
ysis in chapter 4.

The virial part in this gRPT-based model, corresponding to a description
of the FoG effect in the large-scale limit, is given by

W∞(λ) =
1√

1− λ2a2
vir

exp

(
λ2σ2

v

1− λ2a2
vir

)
, (2.57)

where avir is a free parameter that characterises the kurtosis of the velocity
distribution within virialised structures, and the linear velocity dispersion is
not a free parameter as in the previous model, but given by σv = ψ⊥(0), where
ψ⊥(r) = (I0 + I2)/3 and

I`(r) ≡
∫
d3kj`(kr)

PL(k)

k
. (2.58)

This model provides a significant improvement with respect to the previous
RPT-based model, and is able to describe the non-linear evolution and RSD
up to very small scales remarkably well (Sánchez et al., in prep; Grieb et al., in
prep), setting γ2 to the local-Lagrangian relation, and treating b1, b2, γ−3 and
avir as nuisance parameters. Figure 2.5 shows a comparison of the monopole,
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quadrupole and hexadecapole of ξ(s, µs) measured from mock galaxies in the
minerva simulations, against the prediction of our gRPT+bias+RSD model,
showing an excellent agreement up to scales well into the so called quasi-linear
regime (s & 15h−1Mpc).

As a final comment, state-of-the-art dark-matter only methods to account
for non-linear effects are reaching their limit. Baryonic effects are increasingly
becoming more important in order to include smaller scales (larger values of
k) into the analysis. For instance, in figure 2.4, the prediction by gRPT in the
right panel gives a very good description of the (dark) matter power spectrum
up to k ∼ 0.2h/Mpc at z = 0 and k ∼ 0.3h/Mpc at z = 0.57. The latter is the
scale where the power spectrum, measured from hydrodynamical simulations
that include baryonic processes (e.g. cooling and feedback), starts to differ
from that of dark matter only simulations, with this deviation already being
significant at k ∼ 0.5h/Mpc, and reaching a maximum at k ∼ 2h/Mpc (see
e.g Schneider and Teyssier, 2015). New theoretical frameworks considering the
non-linear growth of perturbations in various components, and the coupling
between them, will be necessary in the near future.



Chapter 3

Clustering Tomography

There are two important issues related to the traditional analysis of LSS that
need to be considered. First, in order to use the 3D positions of galaxies, it
is necessary to assume a fiducial cosmological model in order to transform the
measured angular positions on the sky and redshifts of galaxies into comoving
coordinates or distances, a process which could bias the parameter constraints
if not treated carefully (see e.g. Eisenstein et al. 2005 and Sánchez et al. 2009).
Secondly, in order to obtain a precise measurement of either the correlation
function or the power spectrum, usually the whole galaxy sample is used to
obtain one measurement, typically averaging over a wide redshift range assum-
ing that the measurement at the mean redshift is representative of the entire
sample, washing out information on the redshift evolution of the structures.

Even when these two issues are well understood and under control within
certain conditions, a simple way to avoid them is by using two-point statistics
based only on direct observables, i.e. only angular positions and/or redshifts,
such as the angular correlation function ω(θ) or the angular power spectrum
C`. This is done by dividing the sample into redshift bins, or shells, in order to
recover information along the line of sight, which would otherwise be lost due
to projection effects. In the last few years there have been several studies mod-
elling and analysing large galaxy catalogues using angular two-point statistics.
Although most of these focus mainly on photometric-redshift galaxy surveys
(Crocce et al. 2011a,b, Padmanabhan et al. 2007, Ross et al. 2011, Sánchez
et al. 2011, de Simoni et al. 2013), this approach has also been considered for
spectroscopic-redshift samples (Asorey et al. 2012, 2014, Di Dio et al. 2014,
Salazar-Albornoz et al. 2014). Here we focus on the cosmological implications
of applying this tomographic approach to a BOSS-like spectroscopic-redshift
galaxy survey, computing ω(θ) in redshift-shells and using this information to
obtain constraints on cosmological parameters.

There are three main advantages of this tomographic approach: (i) com-
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pared to that of photometric redshifts (photo-z), the higher accuracy of spec-
troscopic redshifts significantly reduces the overlap between redshift shells,
allowing us to assume that there is no correlation between them due to these
uncertainties, and to use thinner shells. Compared to the traditional 3D anal-
ysis, (ii) by using direct observables we do not need to assume a cosmological
model in order to compute spatial separations between galaxies, their angular
separations will remain unaffected independently of the cosmological model
being tested; (iii) By measuring the angular scale of the BAO peak imprinted
on ω(θ) at many different redshifts, we are basically measuring the angular
diameter distance DA(z) at several redshifts instead of just one more precise
measurement of the average distance DV (z̄) at the mean redshift of the sam-
ple, giving us more information about the rate at which DA evolves, putting
stronger constraints on the expansion history of the Universe. This chapter is
based on Salazar-Albornoz et al. (2014).

3.1 Angular Correlation Functions in redshift

shells

3.1.1 LasDamas Mock Catalogues

We used a set of 160 spectroscopic luminous red galaxies (LRGs) mock cata-
logues from LasDamas1 (McBride et al., 2009), constructed from a set of 40
dark-matter only N-body simulations, all of them following the same ΛCDM
cosmological model and using the same initial power spectrum but a different
random seed. The specifications of these simulations are outlined in Table 3.1.
From each realisation, a halo catalogue is extracted using a friends-of-friends
algorithm (FoF; Davis et al., 1985), and populated with mock galaxies follow-
ing a halo occupation distribution (HOD; Peacock and Smith, 2000; Berlind
and Weinberg, 2002) in order to reproduce the SDSS DR7 (Abazajian et al.,
2009) clustering signal. Each realisation provides 4 catalogues without overlap,
reproducing the SDSS DR7 geometry (northern Galactic cap only), containing
an average of 91137 galaxies per catalogue within the redshift range [0.16, 0.44],
and including redshift-space distortions (RSD) from peculiar velocities. These
catalogues, and the corresponding random field (which contains 50 times more
objects than one of these catalogues) needed to measure the correlation func-
tions, were modified to follow the radial number density n(z) of the SDSS DR7
LRGs (see figure 1 in Montesano et al. 2012).

We divided each mock catalogue and the random field into redshift shells

1http://lss.phy.vanderbilt.edu/lasdamas
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Figure 3.1: Mean ω(θ) measured on the mock catalogues for 8 redshift-shells,
amplified by (θ/deg)1.5 to highlight the BAO peak. The errorbars correspond
to the error in the mean. The blue dashed lines show the best-fitting model,
described in §3.2.1 and §3.2.2, for the cosmology of LasDamas, which simulta-
neously reproduces ω(θ) for every shell. The vertical dotted line is a reference
located at 6 deg., drawn to show how the BAO peak moves relative to a fixed
scale depending on the redshift.
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Cosmological constant density parameter ΩΛ 0.75
Matter density parameter ΩM 0.25
Baryonic density parameter Ωb 0.04
Dark energy equation of state wDE −1.0
Hubble constant

(
km s−1 Mpc−1) H0 70

Amplitude of density fluctuations σ8 0.8
Scalar spectral index ns 1.0

Number of particles Np 12803

Box size (h−1Mpc) L 2400
Particle mass (1010M�) Mp 45.73
Softening length (h−1kpc) ε 53

Table 3.1: Cosmological parameters and specifications of the LasDamas sim-
ulation.

to perform our analysis. Thicker shells lower the signal of the BAO peak,
because it is projected over an increasingly wide range of angular scales given
by the deeper sample. Thinner shells increase the BAO signal, but decrease
the projected number density and therefore decrease the accuracy of the mea-
surements, while increasing the correlation between shells due to RSD effects
and the clustering itself. Using a spectroscopic-redshift sample, any overlap
between redshift-shells due to redshift uncertainties can be safely neglected
as long as their width is much larger than these uncertainties. We tested a
number of configurations in order to estimate the optimal redshift bin size,
considering the strength of the BAO signal and the uncertainty in measur-
ing ω(θ). For simplicity we ignored any correlation between shells, but, as
discussed by Asorey et al. (2012) and Di Dio et al. (2014), and later on in
§4.2.4, cross-correlations add extra information. The final configuration for
LasDamas consists of 8 shells: 2 low redshift shells of ∆z = 0.056 covering the
redshift range [0.16, 0.272], and 6 higher redshift shells of ∆z = 0.028 covering
the redshift range [0.272, 0.44].

We use the estimator proposed by Landy and Szalay (1993) to compute
the angular auto-correlation function of a given redshift shell as

ω(θi) =
DDi − 2DRi +RRi

RRi

, (3.1)

whereDDi, DRi andRRi are the data-data, data-random and random-random
pair counts in the θi bin, respectively. We computed the angular correlation
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function ω(θ) in every shell of each mock catalogue and used these measure-
ments to compute the mean ω(θ) of each shell and to estimate its associated
covariance matrix. These measurements only depend on direct observables
(angular positions and redshifts) and do not require the assumption of a fidu-
cial cosmological model to be computed and thus will remain invariant when
considering the constraints on cosmological parameters. Figure 3.1 shows the
mean ω(θ) measured from the 8 shells, amplified by θ1.5 in order to highlight
the BAO feature, and where the error bars correspond to the error in the
mean. The dashed lines show the best-fitting model (described in §3.2.1 and
§3.2.2) for the cosmology of LasDamas, which simultaneously reproduces ω(θ)
for every shell.

3.1.2 Measuring distances using ω(θ) in redshift-shells

If we look again carefully at figure 3.1, it can be seen that the BAO peak in
ω(θ) is located at different angular scales depending on the redshift shell, i.e.
depending on the distance to that shell; this is the key feature that we want
to exploit. Let us say that we are only measuring the angular position θs of
the BAO peak, then for a given redshift zi we have

θs(zi) = rs(zd)/DM(zi), (3.2)

where rs(zd) is the (comoving) sound horizon at the drag redshift, and DM

is the angular diameter distance. Using the fact that the sound horizon cor-
responds to a fixed scale, in linear theory we can relate its angular scale as
θs(zi) = αijθs(zj), where αij is defined as

αij ≡
DM(zj)

DM(zi)
. (3.3)

Then, we can extend this relation to the angular correlation function of
two different shells as

ω(θ, zi) ' ω(αijθ, zj). (3.4)

In figure 3.2 we show the mean ω(θ) measured in three different redshift-shells
of LasDamas, where two of them have been rescaled using as reference the third
one following equation (3.4), computing DM at their mean redshift. The error
bars have been omitted for clarity. It can be seen that they match remarkably
well on applying the simple relation in equation (3.4), despite the fact that
there are some small differences in their shape due to the non-linear evolution
of the density field and RSD, which are discussed in §3.2.

The technique discussed in this work is based on the following idea: if we
have N measurements of ω(θ) in different redshift shells, in practice we have
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Figure 3.2: The mean ω(θ) measured on LasDamas for three different shells,
amplified by (θ/deg)1.5. Two of them have been rescaled following equation
(3.4) (dashed and dash-dotted lines) using the third one as reference (solid
line), from their original position (faint-colour version).

N − 1 measurements of DM(zi)/DM(zj) for i 6= j, constraining the rate at
which the angular diameter distance can evolve over the redshift range being
tested.

3.2 Modelling ω(θ) and its covariance matrix

Here we describe our model of the two-point angular correlation function used
to extract information from the full shape of ω(θ) without introducing sys-
tematic errors, starting in §3.2.1 from the description of its analytical model
in thin redshift shells and the distortion effects that have to be taken into
account, then going on to describe in §3.2.2 how to include such effects by
modelling the anisotropic two-point spatial correlation function. In §3.2.3 we
briefly describe the model for the covariance matrix of ω(θ) and compare it
with the ones measured from the mock catalogues.
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3.2.1 Angular clustering in redshift shells

The projection of the spatial density fluctuation field along the line of sight,
in a certain direction n̂ in the sky, is given by

δ(n̂) =

∫
dzφ(z)δ(rn̂), (3.5)

where φ(z) is the radial selection function normalised to unity within a redshift-
shell, which for this work is defined as

φ(z) =
dNg
dz
ϑ(z)∫

dz dNg
dz
ϑ(z)

, (3.6)

where dNg
dz

is the number of galaxies per unit redshift, and ϑ(z), in terms of
the redshift range of each shell [zi, zf ], is given by

ϑ(z) =

{
1 zi < z < zf
0 otherwise

. (3.7)

Similarly, the angular two-point correlation function, which is nothing other
than 〈δ(n̂)δ(n̂′)〉, can be obtained from the projection of its spatial counterpart
ξ (Peebles, 1973). That is,

ω(θ) =

∫ ∫
dz1dz2φ(z1)φ(z2)ξ (s) , (3.8)

where s is the comoving pair separation, and θ is the angular separation on
the sky.

When working on thin redshift shells, it is essential to include non-linear
and redshift-space distortion effects in the modelling of ω(θ) (Nock et al. 2010;
Ross et al. 2011; Fosalba et al. 2015). This is shown in figure 3.3, where dif-
ferent approaches, applying corrections for these effects or not, are compared
to the measurements made on the mock catalogues. It can be seen that the
RSD corrections have the strongest effects on the full shape of ω(θ), but are
not enough to describe the damping effects on the BAO peak without includ-
ing non-linear corrections, which also slightly move the centroid of the peak
towards smaller scales. In order to fully describe the shape of ω(θ) including
these effects, we replaced the isotropic spatial correlation function in equation
(3.8) by the anisotropic two-dimensional spatial correlation function described
in §3.2.2. Using this, the model for ω(θ) is given by

ω(θ) =

∫ ∫
dz1dz2φ(z1)φ(z2)ξ (s, µs) , (3.9)
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where µs is the cosine of the angle between the separation vector s and the
line of sight.

The last ingredient to model ω(θ) are expressions for the comoving separa-
tion s and µs ≡ cosϕ, the cosine of the angle ϕ between the separation vector
and the line of sight, as a function of {z1, z2, θ}.

Assuming that the geometry of the Universe is described by the FRW
metric, the line-of-sight comoving distance to a given redshift z is given by,

DC(z) = DHχ(z), (3.10)

where DH ≡ c
H0

is the Hubble distance, H0 is the value of the Hubble constant
today, and χ(z) is given by

χ(z) =

∫ z

0

dz′

E(z′)
, (3.11)

defining E(z) ≡ H(z)
H0

. On the other hand, the transverse comoving distance,
defined as the comoving distance we would infer between two objects at the
same redshift knowing their angular and comoving separation, is given by,

DM(z) =


DH√
|ΩK|

SK [χ(z)] ΩK 6= 0

DHSK [χ(z)] ΩK = 0

, (3.12)

where ΩK ≡ −K
H2

0
is the curvature density parameter today, with K = {−1, 0,+1},

and SK [χ(z)] is defined as

SK [χ(z)] =



sinh
(√

ΩKχ(z)
)

ΩK > 0

χ(z) ΩK = 0

sin
(√
|ΩK|χ(z)

)
ΩK < 0

. (3.13)

With this, the comoving separation between two objects (galaxies) at dif-
ferent redshifts with an angular separation θ on the sky, s(z1, z2, θ), is given
by

s(z1, z2, θ) =


DH√
|ΩK|

SK

[
χ(1,2)

]
ΩK 6= 0

DHSK

[
χ(1,2)

]
ΩK = 0

, (3.14)
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where SK

[
χ(1,2)

]
can be obtained from the spherical cosine rule (generalised

for positive and negative curvature) as (Peacock, 1999; Liske, 2000),

S2
K

[
χ(1,2)

]
= S2

K [χ(z1)]C2
K [χ(z2)] + S2

K [χ(z2)]C2
K [χ(z1)]

+KS2
K [χ(z1)]S2

K [χ(z2)] sin2 θ

−2SK [χ(z1)]SK [χ(z2)]CK [χ(z1)]CK [χ(z2)] cos θ,

(3.15)

defining CK [χ(z)] ≡
√

1−KS2
K [χ(z)], or equivalently,

CK [χ(z)] =



cosh
(√

ΩKχ(z)
)

ΩK > 0

1 ΩK = 0

cos
(√
|ΩK|χ(z)

)
ΩK < 0

. (3.16)

Note that when ΩK = 0, equation (3.14) reduces to the well known Euclidean
expression,

s(z1, z2, θ) =
√
D2

C(z1) +D2
C(z2)− 2DC(z1)DC(z2) cos θ. (3.17)

The difference in using equation (3.14), compared to equation (3.17) with the
correct form ofDM, is of the order of few per-cent when ΩK 6= 0. This difference
translates directly into a shift of the same order on the estimation of the BAO
position.

Similarly, using the (generalised) spherical sine rule, we can find a simple
expression for sinϕ, the sine of the angle between the separation vector and
the line of sight, which is given by

sinϕ =
SK [χ(z1)]SK [χ(z2)] sin θ

SK

[
χ(1,2)

]
SK [χ′]

, (3.18)

where DHχ
′ is the line-of-sight comoving distance between the observer and

the mid-point of the separation vector. Now, we only need SK [χ′] to calculate

sinϕ, and then take2 µs =
√

1− sin2 ϕ. Since SK [χ′] is the median of the
spherical triangle defined by z1, z2, θ and the observer, using Stewart’s theorem
we have the relation

CK [χ′] =
CK [χ(z1)] + CK [χ(z2)]

2CK

[χ(1,2)

2

] . (3.19)

2Note that we can drop the ±, and take the positive solution, since RSD are symmetric
around the line-of-sight.
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Note that this relation only works for ΩK 6= 0, and gives a trivial solution for
a flat geometry. In the case when ΩK = 0, we should use

µs =
D2

M(z2)−D2
M(z1)

s
√
D2

M(z1) +D2
M(z2) + 2DM(z1)DM(z2) cos θ

. (3.20)

The difference between deriving µs using (3.18) for ΩK 6= 0, compared to using
equation (3.20) with the correct form of DM for any value of ΩK, is less than
0.2% for the range of angular and redshift separations we are considering, while
the second case is significantly faster to compute. For this reason, we compute
µs using equation (3.20) in our analysis later on.

When comparing the model for ω(θ) with measurements, it is important
to take into account the effect of the binning in θ. Measurements are not done
over a single angle θ, but correspond to the average over a bin centred on θ
with a bin-width ∆θ. In order to avoid systematic effects such as a shift in the
BAO peak determination, we consider in our analysis the bin-averaged angular
correlation function, evaluated at the bin θi, given by

ω(θi) =
1

∆Ωi

∫
∆Ωi

dΩ ω(θ), (3.21)

where ∆Ωi is the solid angle given by

∆Ωi = 2π

∫ θi+∆θ/2

θi−∆θ/2

dθ′ sin θ′. (3.22)

3.2.2 Anisotropic clustering in redshift-space

Our first goal is to test the validity and potential of our tomographic clustering
analysis. For this reason we use the simple model based on RPT given in
equation (2.49). We will explain here how to include the redshift evolution of
the clustering signal in the context of this model for the non-linear evolution
of the density field.

Unlike the traditional 3D analysis, where it is assumed that evolving quan-
tities, such as galaxy bias, are constant within the sample, in our analysis we
need to allow for their evolution. Nevertheless, since each shell is covering a
small redshift range, we can neglect the evolution of the density field within
a shell, allowing us to evaluate terms such as b1 and the growth factor D(z)
at the mean redshift of the shell z̄shell. We emphasise that this does not mean
that the evolution of the whole sample is negligible, it needs to be considered
from shell to shell. With this in mind, starting from the linear galaxy bias b1

in the mock catalogues, since theoretical models favour smooth variations in
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Figure 3.3: The mean ω(θ) amplified by (θ/deg)1.5 for LasDamas (red points)
in the redshift shell 0.328 < z < 0.356, and the resulting models obtained
including or not non-linear growth and redshift-space distortions (RSD) for
the same shell. The green dotted line shows the impact of including non-linear
growth effects on the basic linear model (yellow dash-dotted line), while the
grey dashed line shows the effect of including RSD in the same linear model.
The blue solid line is the final model which includes both effects. The models
that do not include RSD are arbitrarily normalised to match the amplitude of
the measurements. The error bars correspond to the error in the mean.
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b1 as a function of redshift for galaxy samples with a fixed selection (Baugh
et al. 1999; Kauffmann et al. 1999), we assume a linear redshift evolution in
which the value of b1 for a given shell is

b1 = b∗ + b′ (z̄shell − zref) , (3.23)

where now b∗ and b′ are our free parameters for the linear galaxy bias, and zref

is some reference redshift. We also adopt a redshift evolution for σv given by

σv = σ∗v
D(z̄shell)

D(zref)
, (3.24)

where σ∗v is now the free parameter. The amplitude of the linear power spec-
trum in a given shell is related to that of the reference redshift as

PL(k, z̄shell) =

(
D(z̄shell)

D(zref)

)2

PL(k, zref), (3.25)

which implies that the mode-coupling contribution in equation (2.46), PMC,
scales as

PMC(k, z̄shell) =

(
D(z̄shell)

D(zref)

)4

PMC(k, zref). (3.26)

We do not assume any redshift evolution for AMC. With these considerations,
the set of free parameters of our model, i.e. {b∗, b′, σ∗v, AMC}, are fitted to zref ,
and the specific value of b1 and σv in each shell is given by equation (3.23)
and (3.24), relating every shell to a single set of values for these free param-
eters, which in practice means that we are able to simultaneously describe
PNL(k, z̄shell), therefore ω(θ, z̄shell), for every shell.

3.2.3 The Covariance Matrix of ω(θ)

Noise in covariance matrix estimates from mock catalogs propagates to the
recovered likelihood of cosmological parameters, leading to an increase in the
final errors in those parameters (Dodelson and Schneider, 2013; Taylor et al.,
2013; Taylor and Joachimi, 2014; Percival et al., 2014)). These uncertain-
ties, and so their correction, depend on the number of mock catalogs used to
estimate the covariance matrix, the number of bins in the data vector and
the number of parameters to be constrained using this matrix. Since the set
of mock catalogues from LasDamas consists of only 160 realisations, a direct
estimation of the full covariance matrix of ω(θ) in redshift-shells would be ex-
tremely noisy. That is why we use an analytical model instead, following the
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recipe of Crocce et al. (2011a). Here we briefly describe the more important
steps, and refer the reader to their article for a more detailed description.

The angular galaxy power spectrum C` in redshift-space for a redshift shell
is given by

C` =
2

π
b2D2(z̄shell)

∫
dk k2P (k) (Ψ`(k) + βΨr

`(k))2 , (3.27)

where Ψ` and Ψr
` are the real- and redshift-space contributions to the kernel

function given by

Ψ`(k) =

∫
dzφ(z)j`(kr), (3.28)
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Figure 3.5: Left: correlation matrix of ω(θ) measured on LasDamas in the
redshift shell 0.412 < z < 0.44 (upper-triangular) and its analytical predic-
tion using PNL(k) (lower-triangular). Centre: two anti-diagonals of the same
matrix, where the purple circles and red triangles are the measurements on
LasDamas and the dashed blue and solid yellow lines correspond to the an-
alytical matrix, respectively. Right: two horizontal cuts of the same matrix,
following the same symbology as the central panel.

and

Ψr
`(k) =

∫
dzφ(z)

[
2`2 + 2`− 1

(2`+ 3)(2`− 1)
j`(kr)

− `2 − `
(2`− 1)(2`+ 1)

j`−2(kr)

− (`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
j`+2(kr)

]
.

(3.29)

Then, the covariance matrix, Covθiθj = 〈ω(θi)ω(θj)〉, can be computed as

Covθiθj =
2

f sky

∑
`≥2

2`+ 1

(4π)2
L` (cos θi) L` (cos θi)

(
C` +

1

n̄

)2

, (3.30)

fsky is the fraction of the sky observed, and n̄ is the mean number of objects
per steradian.

As with ω(θ), the covariance matrix is also affected by the fact that mea-
surements are done over a bin in θ, reducing the covariance between bins (Cohn
2006, Sánchez et al. 2008, Smith et al. 2008). We consider the bin-averaged
covariance matrix obtained from averaging over ∆Ωi and ∆Ωj. Each of these
integrals only affect the Legendre polynomials evaluated at cos θi and cos θj
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respectively. Defining

L̂`(cos θi) =
1

∆Ωi

∫
∆Ωi

dΩL`(cos θi)

=
2π

∆Ωi

1

2`+ 1
[L`−1 (cos(θi + ∆θ/2))

− L`+1 (cos(θi + ∆θ/2))− L`−1 (cos(θi −∆θ/2))

+L`+1 (cos(θi −∆θ/2))] ,

(3.31)

the bin-averaged covariance matrix is then given by

Covθiθj =
2

fsky

∑
`≥2

2`+ 1

(4π)2
L̂` (cos θi) L̂` (cos θj)

(
C` +

1

n̄

)2

. (3.32)

We tested this model for the covariance matrix, using in equation (3.27)
both PL(k) and PNL(k) with the best-fitting values of {b∗,b′}, and {σ∗v,AMC}
in the non-linear case, for the cosmology of LasDamas, and compared the
results with the estimated matrix from the mock catalogues. figure 3.4 shows
the square root of the diagonal elements of the covariance matrix for the shell
within 0.412 < z < 0.44, which is the dispersion of ω(θ) in this shell, estimated
from the mock catalogues (red points), the prediction using the linear power
spectrum (green dashed line), and the prediction using the non-linear power
spectrum (blue solid line). It can be seen that both approaches give a very
good description of the variance of the angular correlation function for the
scales in which we are interested. Hereafter we will only use the non-linear
approach.

The left panel of figure 3.5 shows the reduced covariance matrix, or corre-
lation matrix, defined as

Corrθiθj =
Covθiθj√

CovθiθiCovθjθj
, (3.33)

for the same shell as figure 3.4, where the upper-triangular part is the esti-
mation from the mock catalogues and the lower-triangular part corresponds
to the theoretical model. The central panel shows two anti-diagonals of the
correlation matrix estimated from the mock catalogues (points), and of the
predicted matrix (solid lines). The same symbols apply for the right panel,
where two horizontal cuts of these matrices are shown.

We computed the theoretical matrix for every shell using PNL(k), and used
them to test our technique.
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Figure 3.6: The marginalised 68 and 95 per cent confidence levels in the wDE−
b∗ plane for our test. Here we find wDE = −0.99± 0.12 in excellent agreement
with the correct value used to construct the mock catalogues (dotted line).

3.2.4 Testing the model for ω(θ)

In order to test the model for the angular correlation function, we implemented
a Markov chain Monte Carlo (MCMC) analysis taking the same ΛCDM cos-
mology of LasDamas (see Table 3.1) and exploring the following parameter
space:

Ptest ≡ {wDE, b∗, b′, σ∗v, AMC}, (3.34)

where wDE is the constant dark energy equation of state parameter, and the
rest are the free parameters of our model for ω(θ). We estimate the likelihood
function as L(Ptest) ∝ exp (−χ2(Ptest)/2), where

χ2 (Ptest) =
∑
shells

(Mi −Di)
T Ĉov

−1

i (Mi −Di), (3.35)

Ptest is a vector with the parameter values, Mi is the model of the shell i
given Ptest, Di is the mean ω(θ) measured in the shell i, and Ĉovi is the
corresponding covariance matrix for the same shell divided by

√
Nmocks, which
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represents the covariance matrix for a volume equal to the total volume of the
ensemble, allowing us to detect any bias in the constraints. To compute the
models for ω(θ), the linear power spectrum PL(k) is calculated using camb
(Lewis et al., 2000).

The goal here is to test if we are able to recover the correct value of wDE
using this model and the measurements made on LasDamas. Since our model
does not have any free parameter to adjust the position of the BAO peak on
ω(θ), and moreover, it reproduces this angular scale simultaneously for every
shell, recovering the correct value of wDE basically means that we are able
to correctly measure the distance to every single redshift-shell, describing the
expansion history of the Universe.

Figure 3.6 shows the resulting marginalised constraints in the wDE − b∗
plane, where the contours are the 68 and 95 per cent confidence levels. For
this test we found wDE = −0.99 ± 0.12, which is in excellent agreement with
the true value of LasDamas, showing that this technique is able to extract
unbiased constraints on wDE.

3.3 A test case: Forecast for BOSS

We tested the implications of applying this technique to the final SDSS-III
BOSS catalogue (DR12), in combination with Planck, for three different flat
cosmological models, and compared this with what would result from the com-
bination of Planck and isotropic BAO measurements post-reconstruction on
BOSS (CMASS and LOWZ). To do so, we characterised the BOSS catalogue
by assuming the best fit of the base ΛCDM model from Planck plus WMAP
polarisation (WP) as our true cosmology (Planck Collaboration XVI, 2014),
an area in the sky of 10000 deg2, a constant n(z) = 3 × 10−4h3Mpc−3, and a
galaxy bias based on Fry (1996) given by

b1 = 1 +
(b0 − 1)

D(z̄shell)
, (3.36)

which describes its redshift evolution for the CMASS sample (Guo et al., 2013).
Also, since the effect of massive neutrinos is not negligible in the Hubble
expansion rate H(a), we adopted the exact treatment in Komatsu et al. (2011)
given by

H(a) =H0

(
Ωb + Ωcdm

a3
+

Ωγ

a4
(1 + 0.2271Nefff(mνa/Tν0))

+
Ωk

a2
+

ΩΛ

a3(1+wDE(a))

)
,

(3.37)
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where a is the scale factor, mνa/Tν0 = (1.87× 105/(1 + z)) Ωνh
2, the photon

density parameter is Ωγ = 2.469 × 10−5h−2 for Tcmb = 2.725K, and f(y) can
be approximated by the fitting formula

f(y) ≈ (1 + (Ay)p)
1
p , (3.38)

where A = 180ζ(3)/(7π4), ζ(3) ' 1.202 is the Riemann zeta function, and
p = 1.83.

Using the model for ω(θ) and its covariance matrix described in §3.2.1 and
§3.2.3 respectively, we constructed a synthetic dataset consisting of 16 shells
of width ∆z = 0.025, ranging from z = 0.2 up to z = 0.6. The fiducial values
for the free parameters of the model are b0 = 1.55, σ∗v = 4.29, and AMC = 1.5.
The result of this synthetic dataset can be seen in figure 3.7.

For the CMB data we used the distance priors based on Wang and Wang
(2013) which summarises the CMB information from Planck in a set of param-
eters and its covariance matrix, where we have included the spectral amplitude
As. The resulting set is

PCMB ≡ {`A, R, ωb, As, ns}, (3.39)

where in practice the first 2 parameters, the CMB angular scale `A and the shift
parameter R, are derived from the other explored parameters in our analysis,
which are described below in this section, following the equations in Wang and
Wang (2013).

To reproduce the isotropic BAO measurements post-reconstruction on BOSS,
for our fiducial cosmology we took the ratio

x(zm) =
DV(zm)

rs(zd)
, (3.40)

at z1
m = 0.32 with an error of 2% for LOWZ and at z2

m = 0.57 with an error
of 1% for CMASS (Anderson et al., 2014a), where DV(z) is the spherically-
averaged distance, defined in equation (2.22), from the mean redshift zm.

With these three ingredients we performed an MCMC analysis with the aim
of forecasting the expected accuracy of constraining cosmological parameters,
by applying this technique to the final BOSS catalogue. The base model for
the analysis is the flat ΛCDM model, where baryons, cold dark matter (CDM)
and dark energy (vacuum energy or a cosmological constant Λ) are the main
contributors to the total energy of the Universe; and with Gaussian, adiabatic
primordial scalar density fluctuations following a power-law spectrum for the
amplitudes in Fourier space. This model can be characterised by the following
parameter space:

PΛCDM ≡ {ωb, ωcdm, ωde, As, ns}, (3.41)
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Figure 3.7: Synthetic dataset constructed with the models of ω(θ) and its co-
variance matrix, taking the best-fit ΛCDM cosmology from Planck. It consists
of 16 redshift shells of ∆z = 0.025 within the redshift range 0.2 < z < 0.6. We
used this dataset to forecast the results of combining Planck and the technique
discussed in this paper applied to the final BOSS. We have characterised the
BOSS catalogue by assuming an area in the sky of 10000 deg2, a constant
n(z) = 3× 10−4h3Mpc−3, and a galaxy bias based on Fry (1996).
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where ωb, ωcdm and ωde are the baryon, cold dark matter and dark energy
densities respectively; here ωX ≡ ΩXh

2. The primordial power spectrum is
characterised by its amplitude As and its spectral index ns, both defined at the
pivot wavenumber kp = 0.05 Mpc−1. We also extended the base model allowing
variations in the dark energy equation of state parameter wDE, considering
wDE(a) = w0 constant in time, and also a time dependence given by the
standard linear parametrisation of Chevallier and Polarski (2001) and Linder
(2003)

wDE(a) = w0 + wa(1− a). (3.42)

Then, the two cases of the extended parameter space are

PwCDM ≡ {ωb, ωcdm, ωde, As, ns, w0[, wa]}, (3.43)

where [, wa] denotes the variation (or not) of wa. It is also necessary to include
the free parameters of our model with the sets in equation (3.41) and (3.43),
in order to compare the constraints obtained from the use of ω(θ) and the
other dataset combinations. We consider a case where we use the correct bias
evolution in equation (3.36), treating b0 as a free parameter, giving us three
nuisance parameters for our model (b0, AMC and σ∗v), and a second case where
we do not assume that we know the functional form of the bias evolution,
using the linear model in equation (3.23) giving us four nuisance parameters
for our model for ω(θ) (b∗, b

′, AMC and σ∗v). We do not consider more flexible
parametrisations for the bias evolution, since it is expected that the galaxy
bias has a smooth variation as a function of redshift, specially for passively
evolving galaxy populations such as LRGs (Baugh et al. 1999; Kauffmann
et al. 1999; Almeida et al. 2008).

We estimate the likelihoods as in §3.2.4, computing the χ2 for ω(θ) as
in equation (3.35) using the full covariance matrix, and where the argument
vector now is P which has values of the parameter-space corresponding to the
cosmology being tested. The χ2 for the CMB is given by

χ2
cmb(P) =

(
Vcmb −Vf

cmb

)T
Cov−1

cmb

(
Vcmb −Vf

cmb

)
, (3.44)

where Vcmb is a vector with the values of PCMB as a function of P, Vf
cmb is

the vector with the correct values for our fiducial cosmology, and Covcmb is the
covariance matrix for these CMB parameters. For the BAOs, we calculate the
χ2 as follows,

χ2
bao =

(
x(z1

m)− xf (z1
m)

σz1m

)2

+

(
x(z2

m)− xf (z2
m)

σz2m

)2

(3.45)
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Figure 3.8: The marginalised 68 and 95 per cent confidence levels in the ΩM−h
plane for the base ΛCDM model case. The dash-dotted lines (purple con-
tours) correspond to the constraints derived from the use of Planck+WP only.
The dashed lines (green contours) are the constraints obtained by combining
Planck+WP and BAO measurements post-reconstruction, while the solid lines
(orange contours) are those derived from the combination of Planck+WP and
ω(θ) without any reconstruction. The dotted lines correspond to the fiducial
values assumed to make our forecast.

where x(zim) is the expression in equation (3.40) at zim as a function of P,
xf (zim) is the same expression at zim evaluated in our fiducial cosmology, and
σzim is the assumed error for the BAO measurement at zim.

In the case of the base ΛCDM model, figure 3.8 shows the marginalised
constraints in the ΩM − h plane for the different combinations of datasets,
where the contours correspond to the 68 and 95 per cent confidence levels.
From the combination of Planck+WP and ω(θ) we find a mean value of ΩM =
0.314 ± 0.013 (68%C.L.) and h = 0.673 ± 0.010 (68%C.L.) for the correct
bias model, with negligible variation for the linear bias model (< 3%), in
remarkable agreement with the fiducial cosmology, tightening the constraints
derived from the CMB only. Although, it can be seen that, in this case, the
combination of Planck+WP and BAO measurements post-reconstruction does
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Figure 3.9: The marginalised 68 and 95 per cent confidence levels on the
ΩM − w0 plane for the extended ΛCDM model case with constant wDE = w0.
The dash-dotted lines (purple contours) correspond to the constraints derived
from the use of Planck+WP only. The dashed lines (green contours) are the
constraints obtained by combining Planck+WP and BAO measurements post-
reconstruction, while the solid lines (orange contours) are those derived from
the combination of Planck+WP and ω(θ) without any reconstruction. The
dotted lines correspond to the fiducial values assumed to make our forecast.

somewhat better. Nevertheless, once we allow wDE to take a constant value
different from −1, the constraints from combining Planck+WP and ω(θ) are
now as good as those obtained from the combination of Planck+WP and BAO
measurements post-reconstruction. This can be seen in figure 3.9, where the
contours correspond to the marginalised constraints in the ΩM − w0 plane
showing the 68 and 95 per cent confidence levels. In this case we find a mean
value of ΩM = 0.311±0.028 (68%C.L.) and w0 = −1.00±0.11 (68%C.L.) for the
correct bias model, and ΩM = 0.308± 0.032 (68%C.L.) and w0 = −1.01± 0.14
(68%C.L.) for the linear bias model, again in excellent agreement with our
true cosmology.

If we now allow wDE to vary over time following the parametrisation
given in equation (3.42), the constraints obtained from the combination of
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Planck+WP and ω(θ) in this case are more accurate than those obtained from
combining Planck+WP and BAOs. Figure 3.10 shows the 68 and 95 per cent
confidence level marginalised constraints in the w0−wa plane for the different
combinations of datasets, where this accuracy improvement can be seen. From
Planck+WP+ω(θ) we find a mean value of w0 = −1.03± 0.25 (68%C.L.) and
wa = 0.008+0.76

−0.74 (68%C.L.) for the correct bias model, and w0 = −1.05 ± .33
(68%C.L.) and wa = 0.015+0.91

−0.89 (68%C.L.) for the linear bias model, again in
perfect agreement with our fiducial cosmology just like the two previous cases.
To quantify the constraints obtained in this case using different dataset com-
binations, we used the Figure-of-Merit (FoM) defined as (Albrecht et al. 2006;
Wang 2008)

FoM = det [Cov(w0,wa)]−1/2 , (3.46)

where Cov(w0,wa) is the 2 × 2 covariance matrix of w0 and wa. The higher
the FoM, the more accurate are the constraints made by a particular dataset
combination. From the combination of Planck+WP and BAOs the FoM=
9.17, while from the combination of Planck+WP+ω(θ) we obtain a value of
10.54, increasing the FoM by 15% for the correct bias model. Using the linear
bias model, we obtain a FoM of 8.24, 10% lower compared to the BAO post-
reconstruction technique.

What can be concluded from these tests is: (i) The choice of different mod-
els for the galaxy bias evolution has an impact on the accuracy with which we
can constrain cosmological parameters, but a sensible choice can still result in
unbiased constraints; (ii) The more freedom we allow for the expansion his-
tory in a given model, the better performance this tomographic approach has
compared to the traditional BAO technique. This can be explained mainly
by two factors. First, while BAOs only take into account the position of the
BAO feature measuring the quantity in equation (3.40), the full shape of the
correlation function is also sensitive to other combinations of cosmological pa-
rameters, such as ωb and ωcdm. Secondly, as we mentioned in §3.1.2, measuring
ω(θ) in several redshift bins basically gives several measurements of θs(z), con-
straining the ratio at which the angular diameter distance can evolve over the
redshift range being tested. Then if we include the extra information of the
full shape of ω(θ) mentioned before, we end up with a very powerful tool to
probe the expansion history of the Universe.
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Figure 3.10: The marginalised 68 and 95 per cent confidence levels in the
w0 − wa plane for the extended ΛCDM model case, with a time-dependent
wDE parametrised as in equation (3.42). The dash-dotted lines (purple con-
tours) correspond to the constraints derived from the use of Planck+WP only.
The dashed lines (green contours) are the constraints obtained by combining
Planck+WP and BAO measurements post-reconstruction, while the solid lines
(orange contours) are those derived from the combination of Planck+WP and
ω(θ) without any reconstruction. The dotted lines correspond to the fiducial
values assumed to make our forecast.



Chapter 4

Clustering Tomography on the
final BOSS galaxy catalogue

4.1 The Data

4.1.1 The Baryon Oscillation Spectroscopic Survey

For our galaxy clustering measurements we use the combined sample of BOSS
(Dawson et al., 2013) from the final SDSS-III (Eisenstein et al., 2011) data
release (DR12; Alam et al., 2015), which consists of the combination of the
LOWZ and CMASS samples, used separately in previous studies (e.g. Ander-
son et al., 2014b; Sánchez et al., 2013, 2014; Beutler et al., 2014; Reid et al.,
2010; Samushia et al., 2014; Cuesta et al., 2016), adding up to a sample of
over a million galaxies. BOSS galaxies were selected for spectroscopic follow
up on the basis of the multi-colour SDSS observations (Gunn et al., 2006),
covering the redshift range 0.15 < z < 0.75 over an area of ∼10000 square
degrees. The motivation for the target selection and the algorithms used are
described in Reid et al. (2016). For each target, spectra were obtained using
the double-armed BOSS spectrographs (Smee et al., 2013), in order to extract
redshifts applying a template-fitting method described in Bolton et al. (2012).

We used the estimator by Landy and Szalay (1993) to estimate the angular
auto-correlation function of a given redshift shell (denoted now explicitly with
p) as

ω(p,p)(θi) =
DD

(p,p)
i − 2DR

(p,p)
i + RR

(p,p)
i

RR
(p,p)
i

, (4.1)

where DDi, DRi and RRi are the data-data, data-random and random-random
pair counts in the i-th bin in θ, respectively. Similarly, we estimate the angular
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Cosmological constant density parameter ΩΛ 0.69
Matter density parameter ΩM 0.31
Baryonic density parameter Ωb 0.048
Dark energy equation of state wDE −1.0
Hubble constant

(
km s−1 Mpc−1) H0 67.6

Table 4.1: Cosmological parameters of the BOSS fiducial ΛCDM cosmology.

cross-correlation function between the redshift shells p and q as

ω(p,q)(θi) =
DD

(p,q)
i −DR

(p,q)
i −DR

(q,p)
i + RR

(p,q)
i

RR
(p,q)
i

. (4.2)

When computing these pair counts, we apply a series of angular weights to
account for observational systematic-effects, such as redshift failures, fibre col-
lisions, local stellar density and seeing. These weights are described in detail
in Ross et al. (in prep.). Each correlation function is measured to a maximum
angular separation θmax(z̄(p,q)) corresponding to a physical separation of ∼ 180
Mpc/h at the mean redshift of the shell, z̄(p,q), in the fiducial BOSS DR12 cos-
mology (see table 4.1) used in analyses based on this galaxy sample (Alam et
al., in prep; Beutler et al., in prep.; Grieb et al., in prep.; Ross et al., in prep.;
Sánchez et al., in prep.). We emphasise that the choice of θmax is arbitrary
and has no other impact on our angular clustering measurements.

For illustration, figure 4.1 shows two measurements on the combined sample
(symbols), one auto-correlation function and one cross-correlation function in
the top and bottom panels respectively, for different redshift shells (see key).
The blue solid lines correspond to the best-fitting prediction of the model
described in §4.2.1 and §4.2.2, assuming the best-fitting ΛCDM model from the
latest CMB measurements made by the Planck satellite (Planck Collaboration
XIII, 2015).

To test our models for the angular correlation function and its full co-
variance matrix, we use a set of 1000 md-patchy mock catalogues (Kitaura
et al., 2016), which are designed to match the characteristics of the final BOSS
galaxy sample, following its angular and radial selection function. These mock
catalogues also include light-cone effects, such as galaxy bias and velocity field
redshift-evolution, a crucial characteristic for this analysis.
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Figure 4.1: An auto-correlation function (left) and a cross-correlation function
(right) between different redshift bins (see key) from the final BOSS galaxy
sample. Measurements are shown by red symbols, while the blue line shows the
prediction of our model described in §4.2.1 and §4.2.2, assuming the best-fitting
ΛCDM cosmology from the CMB temperature-anisotropy power spectrum as
measured by the Planck satellite.

4.1.2 Additional data sets

In order to improve the cosmological constraints obtained in this analysis, in
§4.3 and §4.4 we combine the information contained in the full shape of ω(θ)
and its redshift evolution with additional data sets.

We use high-` (` = 50 − 2500) CMB temperature plus the low-` (` =
2−29) temperature+polarisation power spectrum, from the latest data release
of the Planck satellite, corresponding to the “Planck TT+lowP” case in Planck
Collaboration XIII (2015). We refer to this data set simply as “Planck”, and
to its combination with our ω(θ) measurements on BOSS as “Planck + ω(θ)”.

In addition, we use the luminosity-distance relation information from Type
Ia supernova (SNIa). To this end, we use the joint light-curve analysis com-
pilation (JLA; Betoule et al., 2014), which includes SNIa data from the full
SDSS-II (Frieman et al., 2008; Kessler et al., 2009; Campbell et al., 2013)
survey and the compilation in Conley et al. (2011), comprising data from the
Supernova Legacy Survey (Astier et al., 2006; Sullivan et al., 2011), the Hub-
ble space telescope (Riess et al., 2007; Suzuki et al., 2012) and several nearby
experiments. We only use this data set in combination with the other two,
thus whenever it is included, this is referred to as “Planck + ω(θ) + SNIa”.
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4.2 Methodology

4.2.1 Modelling ω(θ)

We follow the same modelling as in §3.2.1, extended for the inclusion of cross-
correlations between different shells. Given the redshift shells p and q, the
angular auto-/cross-correlation function is given by,

ω(p,q)(θ) =

∫
dz1φ

p(z1)

∫
dz2φ

q(z2)ξ(s, µs), (4.3)

where φp(z) and φq(z) are the normalised selection functions of the shells p
and q respectively, and ξ(s, µs) is the full 2D anisotropic spatial correlation
function at the mean redshift z̄(p,q).

4.2.2 Modelling the anisotropic galaxy clustering in BOSS

To analyse the final BOSS galaxy sample, we use the gRPT-based modelling of
ξ(s, µs), including bias and RSD, which is described in §2.7.2. Similar to what
we do in chapter 3, in order to correctly model ω(p,q)(θ) we need to compute
the line-of-sight projection of ξ(s, µs; z̄

(p,q)) as in equation (4.3). For this, we
need to consider that the galaxy bias evolves with redshift, as well as the signal
of the RSD and the non-linear growth of structures. In practice, this means
that the nuisance parameters of our model, {b1, b2, γ

−
3 , avir}, will have different

values at different redshifts. We also need to linearly evolve the input (linear)
P (k) with redshift as in equation (3.25).

For the linear galaxy bias parameter b1, we test three well motivated mod-
els. The vast majority of galaxies in BOSS are old passively-evolving galaxies
(Leauthaud et al., 2016), this motivates the use of the model in Fry (1996)
(hereafter F96), given by

b1

(
z̄(p,q)

)
= 1 + (b1 − 1)

D(zref)

D
(
z̄(p,q)

) . (4.4)

On the other hand, it has been shown empirically that the clustering amplitude
of CMASS galaxies does not evolve significantly with redshift (Reid et al., 2014;
Saito et al., 2015). If the amplitude of the matter density fluctuations evolves
(in the linear regime) with the linear growth factor, then the galaxy bias needs
to evolve as

b1

(
z̄(p,q)

)
= b1

D(zref)

D
(
z̄(p,q)

) , (4.5)

in order to keep the amplitude of the galaxy-clustering signal constant. This
model is referred to as the constant galaxy-clustering model (hereafter CGC).



4.2 Methodology 53

These two models relate the evolution of the galaxy bias with the linear growth
factor, which could lead to biases in the cosmological parameters if the models
are not correct. For this reason, we also test a simple linear model that does
not depend on the cosmology, given by

b1

(
z̄(p,q)

)
= b1 + b′

(
z̄(p,q) − zref

)
, (4.6)

where b′ is an extra nuisance parameter to be fit when using this model. We
do not expect a redshift dependence of the quadratic bias parameter b2.

The redshift evolution for the non-local bias parameter is given by

γ−3
(
z̄(p,q)

)
= γ−3

D(zref)

D
(
z̄(p,q)

) , (4.7)

while avir, the parameter accounting for the kurtosis of the velocity distribution
within virialised structures, evolves with redshift as

avir

(
z̄(p,q)

)
= avir

(
D
(
z̄(p,q)

)
D(zref)

)2

. (4.8)

Figure 4.2 shows a comparison between the best-fitting model (blue solid
line) and the mean of the 1000 md-patchy (symbols). Here we use the bias
model in eq. (4.4), and the true underlying linear matter power spectrum
P (k). The upper panel shows one of the auto-correlation functions measured,
and the lower panel a cross-correlation function. In both panels the colour
band shows the dispersion corresponding to a single realisation.

4.2.3 Analytical model for the full covariance matrix

As we did for the angular correlation function, we extend the model for the
full covariance matrix of our ensemble of ω(θ) measurements, including cross-
correlations between redshift shells and the covariance between any two dif-
ferent measurements. Assuming that the density field is a Gaussian random
field, the full bin-averaged covariance matrix can be obtained as

Cov
(m,n),(p,q)
i,j =

∑
`,`′≥2

(
2`+ 1

4π

)2

L̂` (cos θi) L̂`′ (cos θj) Cov
(m,n),(p,q)
`,`′ , (4.9)

where {m,n, p, q} denote for every redshift shell in our configuration, L` (cos θi)
is the bin-averaged Legendre polynomial of `-th order in the solid angle ∆Ωi
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Figure 4.2: Comparison between the best-fitting model (blue solid line) and
the mean of the 1000 md-patchy (symbols). The top panel shows an auto-
correlation function, and the bottom panel a cross-correlation function. In
both panels the colour band shows the dispersion corresponding to a single
realisation.



4.2 Methodology 55

defined by the angular bin θi, and Cov
(m,n),(p,q)
`,`′ is the covariance matrix of the

angular power spectrum C`, given by

Cov
(m,n),(p,q)
`,`′ = δ``′

Ĉ
(m,p)
` Ĉ

(n,q)
` + Ĉ

(m,q)
` Ĉ

(n,p)
`

fsky(2`+ 1)
. (4.10)

Here, δxy is the kronecker delta function, and Ĉ` is the observed angular galaxy-
power-spectrum

Ĉ
(p,q)
` = C

(p,q)
` +

δpq
n̄p
, (4.11)

where n̄p is the mean number of galaxies per steradian in the redshift shell p.
Assuming the BOSS fiducial cosmology, we compute the redshift-space

galaxy C
(p,q)
` using the class code (Blas et al., 2011), taking into account the

specific radial selection, and a linear bias evolution that fits that of the data
(see §4.3), normalised to the corresponding σ8 in this cosmology.

For consistency, since we do not know a priori the true cosmology of the
Universe, we use this covariance matrix for the data analysis and all the tests
performed on our mock catalogues, irrespective of their true fiducial cosmol-
ogy. For illustration, figure 4.3 shows a comparison of some sections of the
covariance-matrix model (dashed and solid lines) against one estimated from
the mocks (symbols). The upper panel shows the square root of the diago-
nal of two sub-matrices corresponding to one auto-correlation and one cross-
correlation function measurement (see key), and the bottom panel shows the
square root of vertical cuts of the same sub-matrices at a fixed θj bin.

4.2.4 Redshift binning optimisation

The binning scheme in redshift shells is a significant variable to consider for our
analysis. As we already mention in the previous chapter, thinner shells result in
a sharper BAO feature, at the expense of increasing the statistical uncertainties
(due to the smaller number of objects) and increasing the correlation between
different shells. Thicker shells on the other hand, improve the statistical errors,
while lowering the BAO signal because it is projected over an increasingly wide
range of angular scales.

To maximise the constraining power of our analysis, we optimise the num-
ber and the width of the redshift shells we use. Our optimisation is based on
the binning strategy in Di Dio et al. (2014), which defines the width ∆z of each
shell in such a way that all of them have the same number of galaxies. This
results in a constant shot-noise in all our measurements, which is the main
contributor to the covariance matrix in a sample with the number density
of BOSS. In this procedure we use a smoothed version of the radial number
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Figure 4.3: Comparison between sections of the model (dashed and solid lines)
and the estimate from the mock catalogues (symbols). The upper panel shows
the square root of the diagonal of two sub-matrices corresponding to one auto-
correlation and one cross-correlation function measurement (see key). The
bottom panel shows the square root of vertical cuts of the same sub-matrices
at a fixed θj bin.

counts, N(z), in order to avoid our binning to be affected by the clustering
itself.

The criteria to define the optimal binning scheme is to maximise the Figure-
of-Merit (FoM) in the Ωm − wDE plane, defined as

FoMwDE,Ωm =
1√

det[Cov(wDE,Ωm)]
, (4.12)

where det[Cov(wDE,Ωm)] is the determinant of the covariance matrix between
the two parameters being constrained. We only use the cosmological informa-
tion encoded in the full shape of ω(θ) for this purpose.

First, we test our optimisation procedure using only auto-correlations, ex-
ploring two different methods to compute the FoM for a given configuration:
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Figure 4.4: Figure-of-Merit constraining Ωm−wDE as a function of the number
of shells for the combined BOSS sample. The blue dashed line shows the
prediction using the Fisher matrix-information technique, the green dashed
line shows the prediction from the MCMC analysis when only the cosmological
parameters are allowed to vary, and the red solid line shows that of the case
where we also include the model nuisance-parameters in the MCMC analysis.

(i) a Fisher information-matrix analysis,

(ii) a Markov chain Monte Carlo (MCMC) analysis, based on chapter 3,
using synthetic data.

Both methods are performed using our model of the full covariance matrix of
ω(θ), and taking into account the specific characteristics of BOSS (i.e. angular
and radial selection function). Thus, the optimal binning scheme found here
is specific for BOSS, and does not apply to other galaxy surveys.

We perform two versions of the MCMC analysis: one varying only the
cosmological parameters, and another one where we also include the nuisance
parameters of our model. Figure 4.4 shows the obtained values of the FoM
for these tests, as a function of the number of redshift shells, Nshells. The blue
dashed line corresponds to the predictions from the Fisher matrix analysis, the
green dashed line shows the predictions from the MCMC analysis when only
wDE and Ωm are allowed to vary, and the red solid line shows the results of
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the case where we also include the model nuisance-parameters in the MCMC
analysis. While the Fisher analysis always predicts a monotonically higher
FoM as the number of shells increases, none of the MCMC analyses shows this
behaviour, where the value of the FoM has a maximum and then decays. This
might be explained by the fact that the Fisher matrix analysis approximates
the shape of the posterior distribution by a multivariate Gaussian, which in
reality is not correct for this combination of parameters. Thus, as Nshells

increases, the reduction of the posterior-distribution surface (which is what
the FoM is actually estimating) is not equal for both methods. This, in the
Fisher analysis case, could compensate the lost of information in the regime
where the shot noise dominates (high Nshells).

Regarding the two different MCMC analysis, it is clear that the inclusion
of the nuisance parameters also changes the optimal value of Nshells. For this
reason, in the following we only use the “wDE − Ωm+nuisance” method.

Next, we extend the analysis of the optimal binning-scheme by including
the cross-correlations between different redshift shells, imposing two condi-
tions:

(i) as before, each redshift shell must contain the same number of galaxies
and,

(ii) for each redshift shell, we include as many cross-correlations with sub-
sequent redshift-shells as necessary to reach at least 120Mpc/h (in the
BOSS fiducial cosmology), i.e. past the BAO scale in the line-of-sight
direction.

In this case we also find that the maximum is consistent with the previous
tests, but the value of the FoM increases by a factor ∼ 2, with respect to the
case where we only use auto-correlations.

As a result, the optimal binning scheme for the combined sample of BOSS
is set to 18 redshift-shells, each of them with ∼ 70000 objects. The redshift
limits of the optimal binning for the combined sample are listed in table B.10.
In §4.3 we show that, in order to obtain robust cosmological constraints, we
need to exclude the last three redshift shells at z & 0.6. For this reason, the
final configuration consists of 40 measurements in total, 15 auto-correlation
functions and 25 cross-correlation functions, as shown in table B.11 in matrix
form.

4.2.5 Model performance on mock catalogues

We test our model for ω(θ) and its full covariance matrix against the combined
sample md-patchy mock catalogues. We measure the angular clustering us-
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Figure 4.5: Results from the tests, described in §4.2.5, of our tomographic
technique applied to the mean of 1000 md-patchy mock catalogs. The left
panel shows derived constraints on DM(z = 0.5) and H(z = 0.5). The central
panel shows derived constrains on fσ8 at z = 0.5. The right panel shows
constraints on the growth index γ.

ing the binning scheme described in §4.2.4, and perform fits to the mean of
1000 realisations and to a subsample of 100 realisations individually. Through
MCMC analyses, we explore four parameter spaces that are extensions of the
standard ΛCDM model, allowing for curvature and a free dark energy equation
of state parameter, wDE, constant in time; keeping the spectral index ns and
the baryon fraction fb fixed to their fiducial value.

The first parameter space consists of

P1 = {ΩK,ΩΛh
2, wDE, ln(1010As), b1, b2, γ

−
3 , avir}, (4.13)

using the F96 bias-model in equation (4.4), and the CGC bias-model in equa-
tion (4.5). The second parameter space is given by

P2 = P1 ∪ {b′}, (4.14)

using the redshift evolution of the linear galaxy bias as in equation (4.6). The
other two parameter spaces are defined as

P3 = P1 ∪ {γ}, (4.15)

P4 = P2 ∪ {γ}, (4.16)

where γ is the growth index, such that the growth rate factor, f = ∂ lnD
∂ ln a

, is
approximated by (Linder, 2005)

f(a) ≈ Ωγ
m(a), (4.17)
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and consequently the linear growth factor is

lnD(a) ≈
∫ a

a0

da

a
Ωγ

m(a), (4.18)

imposing the border condition D(a0)
a0

= 1 at some a0 in the matter-dominated
epoch. The value of γ = 0.55 recovers the predictions of General Relativity
(GR) for D(a) and f(a), and any deviation from it (in the real data) would
suggest a that the clustering measurements are in tension with GR. We assume
a Gaussian likelihood function of the form L(P) ∝ exp (−χ2(P)/2), where

χ2 (P) = [m (P)− d]T Cov−1 [m (P)− d] , (4.19)

P is a vector with the parameter values, d is the full data vector containing
all the measurements of ω(p,q)(θ), m (P) is the model vector given P, and Cov
is the full covariance matrix described in §4.2.3.

For each test we derive values of DM(zref), H(zref), f(zref) and σ8(zref) from
the cosmological parameters, at the reference redshift zref = 0.5. These quan-
tities are more familiar in galaxy clustering analyses, and easier to refer to. We
emphasise though, that these are derived quantities, and we are not measur-
ing them at that particular redshift, but rather constraining the cosmological
parameters through the full shape of ω(θ) and its redshift evolution.

We performed tests constraining P1 using (4.4) and P2 for different mini-
mum angular scales, θmin(z̄(p,q)), using the mean of the mocks. We find that
using smaller angular scales than θmin(z̄(p,q)) = 20Mpc/h (in the BOSS fiducial
cosmology) results in biased constraints, while larger values only increase the
errors without changing the mean. In the rest of this analysis, we use this
minimum scale.

The CGC model for the galaxy-bias evolution, given by equation (4.5),
does not describe b(z) of the mock catalogs, resulting in biased constraints,
of & 1σ, in all the tests.

Figure 4.5 shows the results obtained using the mean of the mocks for dif-
ferent tests. The left panel shows constraints on DM(zref) and H(zref) on P2,
i.e. using the linear bias in equation (4.6). We do not see any significant devi-
ation in this case, finding 0.1σ and 0.3σ for DM(zref) and H(zref) respectively.
These deviations are somewhat smaller, and the errors tighter, in the test on
P1 using the F96 bias model in equation (4.4). The middle panel shows con-
straints on f(zref)σ8(zref) on P2, and the right panel shows the constraints on
the growth index γ on P4. In these two cases, the results on P1 and P3, using
the F96 model, are also unbiased and the errors smaller. In all three panels,
the fiducial values, shown by the dashed lines, are those corresponding to the
true cosmology of the md-patchy mock catalogues.
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Figure 4.6: Deviations between the true and the obtained values for the derived
parameters α⊥, α|| and fσ8 at z = 0.5, from the individual fits (symbols) on
a subset of 100 md-patchy mock catalogues. Error bars correspond to the
estimated error on each fit, while the blue bands show the sample standard
deviation. The upper panel shows the deviations on α⊥, the middle panel
shows the deviations on α||, and the lower panel shows those of fσ8.

Figure 4.6 shows the results of the same test, this time fitting the subset of
100 mocks individually, constraining P2. The upper panel shows the deviations
from the true values on

α⊥ =
DM(z)rfid

s (zd)

Dfid
M (z)rs(zd)

, (4.20)

the middle panel shows those of

α|| =
Hfid(z)rs(zd)

H(z)rfid
s (zd)

, (4.21)

and the lower panel the deviations on fσ8 at zref , where rs(zd) is the sound
horizon at the drag redshift, and “fid” stands for the fiducial values in the
mock’s cosmology. The error bars correspond to the error from the individual
fits, and the blue band corresponds to the standard deviation of the sample.
The solid and dashed lines are the median and the mean of the distribution
respectively, which are practically indistinguishable because the individual val-
ues are normally distributed.

Overall, these tests show that, through the redshift evolution of the full
shape of ω(θ), we can recover an expansion history and RSD information that
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is in very good agreement with the fiducial cosmology of the mocks, with the
0.3σ deviation in H(z) being the largest one. These tests also confirm the
importance of a sensible choice of a model for the galaxy-bias evolution (see
e.g. Clerkin et al., 2015), and show that our simple linear model in eq. (4.6) is
flexible enough for the description of the redshift evolution of the linear bias
of the BOSS galaxy sample.

4.3 The linear bias of the BOSS galaxy sample

Assuming the best-fitting ΛCDM cosmology from Planck, we measure the
linear galaxy bias in each redshift shell in two ways. First, we fit all auto
correlations independently (shell by shell), fitting b1 and marginalising over
b2 and σ8, the amplitude of (linear-theory) density fluctuations in spheres of
R = 8 Mpc/h, given by

σ2(R) =

∫ ∞
0

dk

k

k3

2π2
PL(k)W 2(kR), (4.22)

where

W (x) = 3

(
sin(x)− x cos(x)

x3

)
(4.23)

is the Fourier transform of a spherical top-hat window function of radius R.
We impose a prior on σ8 from Planck. Secondly, we fit all redshift shells
simultaneously, using each of our three models for b(z) (Linear, F96 and CGC),
and marginalising over the other three nuisance parameters of our model for
ω(θ). For comparison, we repeated the first test on the mean of the md-
patchy mocks, using the correct PL(k) and σ8 for the mocks cosmology.

4.3.1 The redshift evolution of the linear bias of BOSS
galaxies

None of the models for the redshift evolution of the linear galaxy-bias used
in this analysis is able to simultaneously fit, within the errors, the first 16
measurements and the two high-redshift ones. A possible explanation for this
is that, above z & 0.6, the BOSS galaxy sample behaves as a flux-limited
one (see e.g. Saito et al., 2015), i.e. only intrinsically bright galaxies can
be observed at those distances, while intrinsically fainter ones are not in the
sample. On the other hand, at z . 0.6, this galaxy sample is much closer to
a volume-limited sample, thus practically all galaxies brighter than a certain
absolute magnitude Mlim have been observed. In practice, this means that
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Figure 4.7: Redshift evolution of the linear galaxy bias. Red symbols show
individual fits to 18 ω(θ) measurements on BOSS. The green band shows the
result of performing the same exercise on the mean of the md-patchy mock
catalogues. The dashed lines show the 68% and 95% confidence intervals
obtained by fitting all clustering measurements simultaneously (excluding the
three highest-redshift ones) with the bias model given in equation (4.6).

above z & 0.6, the effective clustering amplitude is not representative of a
given galaxy population, but rather dominated by observational systematics.
This is the reason why in chapter 3 we restricted the analysis to the redshift
range 0.2 ≤ z ≤ 0.6, in order to justify the assumption of a constant number
density. This effect has not been observed before in other clustering analyses
of BOSS galaxies in redshift bins (Reid et al., 2014; Saito et al., 2015), because
the binning in those analyses consisted in much wider redshift-bins, hindering
this variation in the amplitude of the clustering signal.

Not being able to reproduce the linear bias, hence the clustering ampli-
tude of these high-redshift measurements, has two important consequences.
An incorrect estimation of the linear galaxy bias, for a given redshift shell,
implies that all estimates of the covariance in equation (4.9) including this
redshift shell will be incorrect. Secondly, the F96 and CGC models depend
on the growth factor D(z), which encodes cosmological information. Then,
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non-cosmological variations in the linear galaxy-bias could result in biased
cosmological constraints. For this reason, and in order to be conservative, we
exclude the galaxies above redshift z = 0.6 from the rest of the analysis. This
means that we do not use the last three high-redshift bins, even though the
16th shell at z ∼ 0.6 seems to be within the errors.

Figure 4.7 shows the measured linear galaxy bias normalised by the ratio of
the corresponding σ8 of each cosmology and the fiducial one coming from the
Planck prior. The individual measurements are shown by the red circles, where
error bars correspond to the 1σ marginalised error. The joint fit assuming the
linear galaxy-bias evolution of equation (4.6) is shown by the dashed lines,
where the different levels correspond to one and two σ confidence levels. We
have excluded the last three high-redshift measurements from this fit. The
green band shows the 1σ region of the individual fits on the mean of the mock
catalogues.

4.3.2 The impact of the bias redshift evolution of BOSS
galaxies on cosmological constraints

We test the impact that assuming any of the three models for the redshift
evolution of the linear galaxy bias has on the obtained cosmological constraints.
For this we combine our measurements of the full shape of ω(θ) with Planck,
and perform an MCMC analysis. Using each of the three models, we explore an
extension of the standard ΛCDM model, allowing for the dark energy equation-
of-state parameter, w, assumed to be constant in time, to deviate from the
canonical value of −1. The basic cosmological parameters explored are listed
in the first block of table 4.2.

Figure 4.8 shows the constraints on the total mass density parameter, Ωm,
and w, obtained from the “Planck +ω(θ)” combination. The blue dashed line
corresponds to the use of the linear model for b1(z), the red solid line to CGC,
and the green dash-dotted line corresponds to the F96 bias model. Unlike
what we find in the tests on the mock catalogues in §4.2.5, where different
assumptions for the evolution of the linear galaxy-bias result in differences
in the final cosmological constraints, the “Planck + ω(θ)” combination seems
to be robust against the different assumptions within the errors. The three
mean values recovered in each case are within 0.16σLinear from the linear bias
case and, in both the CGC and the F96 cases, the errors are only about 4%
tighter compared to the linear case. Mean values and confidence intervals for
the linear case are shown in §4.4.2. Our interpretation is that, firstly, the
inclusion of CMB data breaks degeneracies within parameters that are present
in the ω(θ)-only likelihood function, which could solve the 1σ deviation from
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the CGC model (assuming that the bias evolution of the mocks represents well
that of the data). Secondly, the assumed models for the redshift evolution
of the linear galaxy bias are well motivated on the characteristics of BOSS
galaxies (see §4.2.2), thus large deviations are not expected.

4.4 Cosmological constraints

In this section we present constraints on cosmological parameters for the stan-
dard ΛCDM model, as well as for eight different extensions described in the
following subsections. For this purpose we use the July 2015 version of the
publicly-available MCMC-code cosmomc (Lewis and Bridle, 2002), modified
to compute the model for ω(θ), including non-linearities, bias and redshift-
space distortions, described in §4.2.1 and §4.2.2. Although we found in the
previous section that, after combining our angular clustering measurements
with Planck, the different assumptions for the redshift evolution of the linear
galaxy-bias do not have a significant impact on the cosmological constraints,
here we take a conservative approach and only use the linear model in equation
(4.6).

Table 4.2 displays the cosmological parameters explored in these analyses,
the ranges in which they are allowed to vary, and fiducial values in the case that
a given parameter is fixed. The first block lists the basic parameters varied
in all cases, corresponding to those that characterise the standard ΛCDM
cosmological model. The second block in the table lists those parameters
that represent extensions of the standard cosmological model explored in this
analysis. The last block in table 4.2 displays derived parameters quoted in
each case.

As we do in §3.2.4, we assume Gaussian likelihood function of the form
L(P) ∝ exp (−χ2(P)/2) for our clustering measurements, where χ2 is com-
puted as in equation (4.19).

Planck CMB constraints are only shown in figures for comparison, and we
quote results for the “Planck + ω(θ)” and “Planck + ω(θ) + SNIa” cases only.
Summary tables are given in appendix B for readability, and in the text we
only quote values of the most relevant parameters for each cosmological model.
In every case, the values and confidence intervals correspond to those obtained
after marginalising over all other parameters.

4.4.1 The standard ΛCDM model

We start out with the basic case: the ΛCDM model. This model has be-
come the standard cosmological model due to its astonishing description and
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Parameter Range Fiducial value Description
Ωbh

2 [0.005, 0.1] - Physical baryon density
Ωch

2 [0.001, 0.99] - Physical CDM density
100θMC [0.5, 10] - Approximate angular size

of rs at recombinationa

τ [0.01, 0.8] - Optical depth to
the reionisation epoch

ln(1010As) [2, 4] - Scalar spectral amplitudeb

ns [0.8, 1.2] - Scalar spectral indexb

w0 [−0.3,−3] −1 Present-day wDE

wa [−2, 2] 0 Time dependence of wDE

ΩK [−0.3, 0.3] 0 Curvature contribution
to the energy density

Σmν [0, 2]eV 0.06eV Total sum of
neutrino masses

γ [0, 2] - Growth index
H0 [20, 100] - Hubble constant
Ωm - - Present-day total

matter density
ΩΛ - - Dark energy density
σ8 - - Amplitude of linear-theory

density fluctuations
in spheres of R = 8Mpc/h

Age/Gyr - - Age of the Universe

Table 4.2: Summary of the cosmological parameters explored in
this analysis. Basic ΛCDM parameters are in the first block,
while those of extended cosmological models are listed in the second
block. The last block shows derived parameters quoted in avery case.
aAs defined in the July 2015 version of cosmomc.
bQuoted at the pivot k0 = 0.05 (Mpc)−1.
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Figure 4.9: Marginalised 68% and 95% confidence interval constraints in the
Ωm−H0 plane. The blue dashed line corresponds to Planck-only constraints,
the solid orange line corresponds to the constraints obtained from the Planck+
ω(θ) combination, and the green dash-dotted line to those obtained combining
Planck + ω(θ) + SNIa.

prediction capabilities, regarding a large list of observables.

Figure 4.9 shows the marginalised 68 and 95 per cent confidence inter-
val in the Ωm − H0 plane. The blue dashed line corresponds to Planck-only
constraints, the solid orange line shows the constraints obtained from the
Planck + ω(θ) combination, and the green dash-dotted line those obtained
combining Planck + ω(θ) + SNIa. We find that including our angular cluster-
ing measurements improves the constraints, and the subsequent addition of
SNIa slightly shifts the allowed region toward higher values of H0 and does
not represent a significant improvement. We also find that the Planck + ω(θ)
combination selects the highest values of Ωm allowed by Planck, as opposed to
previous 3D clustering analyses on BOSS (see e.g. Sánchez et al., 2013; Ander-
son et al., 2014b). Nevertheless, our results and those mentioned are consistent
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within 1σ. We found Ωm = 0.319±0.011 for the Planck+ω(θ) combination, and
Ωm = 0.317± 0.011 including SNIa. Table B.1 shows marginalised constraints
for all the parameters varied in this case, as well as the derived parameters.

4.4.2 The dark energy equation-of-state wDE
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Figure 4.10: Marginalised 68% and 95% confidence interval constraints in the
Ωm − w plane. The blue dashed line corresponds to Planck-only constraints,
the solid orange line corresponds to the constraints obtained from the Planck+
ω(θ) combination, and the green dash-dotted line to those obtained combining
Planck + ω(θ) + SNIa.

Although the standard ΛCDM model is sufficient to describe the expan-
sion history of the Universe, as probed by the CMB power spectrum, galaxy
clustering measurements and SNIa, the combination of all these observables
allows us to test assumptions and generalisations of it. One of such assump-
tions is that the dark-energy component of the Universe is characterised by
an equation of state PDE/ρDE ≡ wDE = −1 constant in time. Thus the first
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tested extension of the standard cosmological model is to treat wDE as a free
parameter (wCDM model), assuming it is constant in time.
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Figure 4.11: Marginalised 68% and 95% confidence interval constraints in the
w0 − wa plane. The blue dashed line corresponds to Planck-only constraints,
the solid orange line corresponds to the constraints obtained from the Planck+
ω(θ) combination, and the green dash-dotted line to those obtained combining
Planck + ω(θ) + SNIa.

Figure 4.10 shows the marginalised 68 and 95 per cent confidence interval
constraints in the Ωm−w plane. As before, the blue dashed line corresponds to
Planck-only constraints, the solid orange line to the results obtained from the
Planck + ω(θ) combination, and the green dash-dotted line to those obtained
combining Planck+ω(θ)+SNIa. We find that including our angular clustering
measurements significantly improves the constraints obtained by Planck, where
we found a value of Ωm = 0.328 ± 0.016 and w = −0.958+0.063

−0.055, in very good
agreement with the ΛCDM results. In this case, the Planck + ω(θ) + SNIa
combination improves the constraints even more, resulting in Ωm = 0.319 ±
0.012 and w = −0.991± 0.046, again in very good agreement with the ΛCDM
case. A summary of the constraints obtained in this case can be found in table
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B.2.
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Figure 4.12: Marginalised 68% and 95% confidence interval constraints on the
redshift evolution of wDE(z) using the CPL parametisation. The blue dashed
line corresponds to Planck-only constraints, the solid orange line corresponds
to the constraints obtained from the Planck+ω(θ) combination, and the green
dash-dotted line to those obtained combining Planck + ω(θ) + SNIa.

Next, we allow wDE to vary over time as we did in §3.3 (w0waCDM model),
following the standard linear parametrisation of Chevallier and Polarski (2001)
and Linder (2003) (CPL), given in equation (3.42). The marginalised 68 and
95 per cent confidence interval constraints, in the w0 − wa plane, are shown
in figure 4.11. In this case, we see a strong degeneracy between these two
parameters for the Planck only and the Planck+ω(θ) combinations, where the
fiducial ΛCDM values for these parameters, shown by the dotted lines, are only
within the 95% confidence interval, suggesting a mild tension with the standard
cosmological model. Nevertheless, adding SNIa breaks this degeneracy and
eliminates this tension. In this, case we find w0 − 0.94 ± 0.13 and wa =
−0.23+0.51

−0.42. Table B.3 summarises the cosmological constraints for this case.
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Figure 4.13: Marginalised 68% and 95% confidence interval constraints in
the Ωm − ΩΛ plane, relaxing the flat-space condition. The blue dashed line
corresponds to Planck-only constraints, the solid orange line corresponds to
the constraints obtained from the Planck + ω(θ) combination, and the green
dash-dotted line to those obtained combining Planck + ω(θ) + SNIa.

4.4.3 Non spatially-flat Universes

Another assumption of the standard ΛCDM model is that the Universe is
spatially flat, which implies that its total energy density is equal to the critical
one. In other words, the sum (ΩΛ + Ωm + Ωγ) = 1. We test this assumption of
flatness by including the ΩK parameter, yielding (ΩΛ + Ωm + Ωγ) = (1−ΩK).

The first case we analyse assumes wDE ≡ −1 (oCDM model). Figure 4.13
shows the marginalised 68 and 95 per cent confidence interval constraints in
the ΩK−ΩΛ plane, where the dotted diagonal line corresponds to spatially-flat
Universes. It can be seen that relaxing the flat-space condition opens a large
degeneracy in the CMB-only constraints, and that this degeneracy is broken
adding low-redshift measurements of the expansion history of the Universe,
greatly improving the constraints. For the Planck + ω(θ) combination we
find Ωm = 0.329+0.014

−0.016, ΩΛ = 0.676 ± 0.013 and ΩK = −0.0043+0.0042
−0.0035, while
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for the full Planck + ω(θ) + SNIa combination, we find Ωm = 0.324+0.011
−0.014,

ΩΛ = 0.679+0.013
−0.009 and ΩK = −0.0028 ± 0.0038, in excellent agreement with

a spatially-flat Universe, as well as with the results for the ΛCDM case. A
summary of the constraints obtained in this case can be found in table B.4.
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Figure 4.14: Marginalised 68% and 95% confidence interval constraints in the
w − ΩK plane. The blue dashed line corresponds to Planck-only constraints,
the solid orange line corresponds to the constraints obtained from the Planck+
ω(θ) combination, and the green dash-dotted line to those obtained combining
Planck + ω(θ) + SNIa.

We also include wDE as a free parameter in this case, assuming that its
value is constant in time (owCDM model). A summary of the constraints
for this case can be found in table B.5. Figure 4.14 shows the marginalised
68 and 95 per cent confidence interval constraints in the w − ΩK plane. As
always, the blue dashed line corresponds to Planck-only constraints, the solid
orange line corresponds to the constraints obtained from the Planck + ω(θ)
combination, and the green dash-dotted line to those obtained combining
Planck +ω(θ) + SNIa. Again this time, it can be seen that the inclusion of our
ω(θ) measurements on BOSS, to the CMB-only ones, significantly improves
the cosmological constraints, where we find a value of w = −1.00+0.10

−0.075 and
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ΩK = −0.0037+0.0057
−0.0051. Also, including SNIa further tightens the constraints,

resulting in w = −1.025+0.064
−0.055 and ΩK = −0.0040+0.0054

−0.0041, once again, in perfect
agreement with the standard cosmological model.

4.4.4 Massive neutrinos

Observations of neutrino oscillations (i.e., a change in neutrino flavour) imply
that at least two neutrino species have non-zero mass. This is one of the most
significant discoveries in the last decades, providing decisive evidence that the
Standard Model (of particle physics) needs to be extended. Actually, it was
for this very important discovery (Fukuda et al., 1998; Ahmad et al., 2001,
2002) that Takaaki Kajita and Arthur B. McDonald were awarded the Nobel
Prize in Physics last year1.

Although the fact that neutrinos have mass is well stablished, precise mea-
surements of their mass is a very difficult task. The best upper limits from
laboratory experiments, through tritium decay, aremνe < 2eV for electron neu-
trinos. Nevertheless, the best constraints in their total-mass sum, including all
species, comes from cosmological observations. Relic neutrinos generated in
very early Universe are almost as abundant as photons, and they form what is
knowns as the cosmic neutrino background (CνB). At the present, it is not pos-
sible to observe the CνB, but these primordial neutrinos have two important
consequences for cosmology. First, they decouple from the other components
before photons, free-streaming through the baryon-photon plasma and wash-
ing out small-scale anisotropies. Secondly, as we mentioned in §3.3, the effect
of massive neutrinos on the expansion rate H is not negligible (see equation
(3.37)).

The scales in clustering measurements affected by neutrinos are beyond
what we are able to currently model, but we certainly can constrain the effect
of neutrinos on the expansion rate. For this, in this section we treat the total
sum of neutrino masses,

∑
mν , as a free parameter, assuming three species of

equal mass. We obtain constraints within the ΛCDM and wCDM framework.

Figure 4.15 shows the marginalised 68 and 95 per cent confidence in-
terval constraints in the

∑
mν/eV − H0 plane, fixing wDE ≡ −1. For the

Planck + ω(θ) combination we find
∑
mν/eV < 0.207(0.400) 68%(95%) C.I.

upper limits, while for the full Planck + ω(θ) + SNIa combination, we find∑
mν/eV < 0.169(0.330) 68%(95%) C.I. upper limits, representing one of the

tightest constraints at the present. A summary of the constraints obtained in
this case can be found in table B.6.

1“The 2015 Nobel Prize in Physics - Press Release”. Nobelprize.org. Nobel Media AB
2014. http://www.nobelprize.org/nobel prizes/physics/laureates/2015/press.html
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Figure 4.15: Marginalised 68% and 95% confidence interval constraints in the∑
mν/eV − H0 plane. The blue dashed line corresponds to Planck-only con-

straints, the solid orange line corresponds to the constraints obtained from the
Planck + ω(θ) combination, and the green dash-dotted line to those obtained
combining Planck + ω(θ) + SNIa.



76 4. Clustering Tomography on the final BOSS galaxy catalogue

0.2 0.4 0.6 0.8 1.0∑
mν/eV

−2.5

−2.0

−1.5

−1.0

−0.5

w

Planck
Planck + ω(θ)
Planck + ω(θ) + SNIa

Figure 4.16: Marginalised 68% and 95% confidence interval constraints in the∑
mν/eV − w plane. The blue dashed line corresponds to Planck-only con-

straints, the solid orange line corresponds to the constraints obtained from the
Planck + ω(θ) combination, and the green dash-dotted line to those obtained
combining Planck + ω(θ) + SNIa.
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The results of also treating wDE as a free parameter are shown in table B.7.
Figure 4.16 shows the marginalised 68 and 95 per cent confidence interval con-
straints in the

∑
mν/eV−w plane. In this case, for the Planck + ω(θ) combi-

nation we find
∑
mν/eV < 0.221(0.486) 68%(95%) C.I. upper limits, while for

the full Planck + ω(θ) + SNIa combination, we find
∑
mν/eV < 0.229(0.474)

68%(95%) C.I. upper limits. Note that the inclusion of SNIa increases the 68%
C.I. upper limit, decreasing the 95% C.I. one, marginally suggesting non-zero
masses, although we cannot claim a detection. Also, including

∑
mν as a

free parameter does not significantly degrade our constraints in w, resulting
in w = −1.023+0.063

−0.053 for the full Planck + ω(θ) + SNIa combination.

4.4.5 Deviations from General Relativity

The last assumption of the ΛCDM model that we test in this analysis is that
of space-time being described by the theory of General Relativity. A thorough
analysis of different theories beyond GR requires modifications to our method-
ology, such as the way the expansion history of the Universe is parametrised,
which is out of the scope of this work. However, we perform a simple null test,
following the parametrisation for linear perturbation growth of Linder (2005),
which is decoupled from the expansion history. To a sub per-cent accuracy,
the growth rate f ≡ ∂ lnD

∂ ln a
can be approximated as in equation (4.17), where a

value of

γ = 0.55 + 0.05(1 + wDE(z = 1)), (4.24)

for the growth index parameter recovers the prediction of GR. Thus, any
deviation from this value, treating γ as a free parameter, would suggest that
general relativity should be revised.

First, we assume the standard ΛCDM as the background cosmological
model. A summary of the obtained constraints can be found in table B.8.
Figure 4.17 shows the marginalised 68 and 95 per cent confidence interval con-
straints in the Ωm− γ plane. Since CMB cannot be used to measure f(z) and
thus constrain γ, Planck-only contours are not shown, and the blue dashed
line corresponds to the constraints obtained by the Planck + ω(θ) combina-
tion, while the solid orange line line to those obtained combining Planck +
ω(θ) + SNIa. For the former we find Ωm = 0.317+0.011

−0.013 and γ = 0.67 ± 0.15.
Then, similar to what we obtain for the ΛCDM results, adding SNIa does
not significantly improve the constraints, resulting in Ωm = 0.315± 0.011 and
γ = 0.68 ± 0.14. Both data-set combinations result in constraints that are in
good agreement with GR within 1σ, as well as with our previous results for
the basic ΛCDM case.
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Figure 4.17: Marginalised 68% and 95% confidence interval constraints in the
Ωm−γ plane. The blue dashed line corresponds to the constraints obtained by
the Planck+ω(θ) combination, and the solid orange line line to those obtained
combining Planck + ω(θ) + SNIa. The dotted line shows the value of γ that
recovers the GR prediction for the growth rate f , following equation (4.24).

Finally, constraints obtained also treating wDE as a free parameter, assum-
ing that it is constant in time, are listed in table B.9. Figure 4.18 shows the
marginalised 68 and 95 per cent confidence interval constraints in the w − γ
plane. The vertical dotted line marks w = −1, while the other one follows
equation (4.24). Using the Planck + ω(θ) combination, we obtain a value of
w = −0.980 ± 0.092 and γ = 0.64+0.21

−0.23. Adding the information from SNIa
tightens the constraints, resulting in w = −1.013+0.052

−0.047 and γ = 0.70+0.16
−0.18. Both

sets of constraints are again in good agreement with the standard ΛCDM model
and General Relativity.
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Figure 4.18: Marginalised 68% and 95% confidence interval constraints in the
w− γ plane. The blue dashed line corresponds to the constraints obtained by
the Planck+ω(θ) combination, and the solid orange line line to those obtained
combining Planck + ω(θ) + SNIa. The (almost) horizontal dotted line shows
the value of γ that recovers the GR prediction for the growth rate f , following
equation (4.24).
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Chapter 5

Conclusions

We tested the implications of applying a tomographic approach to a
spectroscopic-redshift galaxy survey through measuring two-point angular cor-
relation functions, ω(θ), in thin redshift shells. In contrast with the traditional
analysis of galaxy-clustering, which uses the 3D positions of galaxies, this tech-
nique avoids the need to assume a fiducial cosmological model in order to trans-
form measured angular positions and redshifts into comoving distances. Also,
this technique is able to trace the redshift evolution of the galaxy clustering
signal, unlike the usual 3D analysis, which averages large cosmological volumes
ignoring the so called light-cone effects. In principle, this technique, as it is
presented in this work, can be also applied to narrow-band photometric sur-
veys (e.g. PAU survey1) without any further consideration, since the accuracy
in their photometric-redshifts determination is expected to be ∼ 0.0035(1+z).

We first tested the predictions of a model for ω(θ) and its covariance matrix,
described in §3.2, against measurements made on a set of 160 mock catalogues,
and tested its ability to recover the correct value of the dark energy equation
of state parameter wDE used to construct these catalogues. For simplicity,
we did not include cross-correlations between shells in our analysis, although
they add extra information. Our modelling includes effects such as redshift-
space distortions (RSD) and non-linear evolution of the density fluctuations,
showing that they are absolutely necessary to correctly reproduce the full shape
of ω(θ). This technique results in an unbiased method to extract cosmological
information.

Next, we made a forecast of the accuracy of the cosmological constraints
expected from applying this technique to the final Baryon Oscillation Spectro-
scopic Survey galaxy catalogue, BOSS, in combination with the Planck CMB
data. We tested this tomographic approach against the basic ΛCDM model, as

1http://www.pausurvey.org/
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well as two extensions of it for alternative dark energy models. We compared
the constraints obtained in these tests with what would result from combining
Planck with traditional isotropic BAO measurements post-reconstruction on
the same galaxy catalogue. To do so, we chose the best-fit of the base ΛCDM
cosmology from Planck as our true cosmology and characterised the BOSS
catalogue assuming an area of 10000 deg2, a constant n(z) within the redshift
range 0.2 < z < 0.6, and the galaxy bias model in equation (3.36). Using the
model for the angular correlation function and its covariance matrix, we con-
structed a synthetic dataset consisting of 16 measurements of ω(θ) on the same
number of redshift-shells covering the whole redshift range. We also computed
the CMB likelihood using distance priors for Planck, and reproduced the like-
lihood obtained from BAO measurements post-reconstruction on BOSS using
equation (3.40) and assuming an error of 2% for LOWZ and 1% for CMASS.

Across these tests, we used two different models for the redshift evolution of
the galaxy bias. In one case, we used the same model assumed to construct the
synthetic dataset, and in the other case, we used a simple linear model shown
in equation (3.23). The different choices showed no biases when constrain-
ing cosmological parameters, but different accuracies. The first cosmological
model tested was the basic ΛCDM, which resulted in tighter constraints for
the combination of Planck and BAO measurements compared to the combina-
tion of Planck and ω(θ). However, for the other two models tested, where we
extended the base parameter-space allowing wDE to deviate from its fiducial
value of −1 (wCDM model), assuming it is constant in one case, and allowing
a time-dependence in the other, we found that the more freedom we gave to
wDE the better performance our technique had. This results in an accuracy
comparable to Planck+BAOs when constraining a constant wDE, and in an up
to 15% higher Figure-of-Merit (FoM) compared to the combination of Planck
and BAO measurements in the case of a time-dependent dark energy equa-
tion of state, showing that our tomographic approach to analyse the galaxy
clustering is able to put strong constraints on the expansion history of the
Universe.

Afterwards, we applied this technique to the final BOSS galaxy sample. For
this purpose, we extended our description of the full shape of ω(θ) to use state-
of-the-art modelling of non-linearities, galaxy bias and RSD. We also extended
the analysis to include cross-correlation measurements between redshift shells.

In order to maximise the constraining power of our measurements, we op-
timised the number of redshift shells used in the analysis, by means of max-
imising the FoM in the Ωm − w plane. We did this exploring three different
cases: (i) a Fisher-matrix approach that resulted in an monotonic increase in
the FoM as a function of the number of shells; (ii) an MCMC analysis using
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synthetic data, where we only varied Ωm and w, which showed a clear maxi-
mum in the FoM; and (iii), an analogous MCMC test, where we also included
the nuisance parameters of the model, which resulted in the same behaviour
as (ii), but with a smaller value for the FoM. We defined our binning scheme
on the basis of the last case, where our final configuration consisted of 18 red-
shift shells of different widths, containing ∼ 70000 galaxies each, plus as many
cross-correlations, with subsequent shells, as necessary to surpass the BAO
scale in the line of sight.

We tested our methodology against a set of 1000 md-patchy mock cat-
alogues, which are designed to match the characteristics of the final BOSS
galaxy sample, following its angular and radial selection function, as well as
including the redshift evolution of bias and RSD. Using the mean of the 1000
mock catalogues, we ran an MCMC analysis constraining very general cosmolo-
gies, using three different models for the evolution of the linear galaxy-bias.
We were able to recover unbiased cosmological information for two of these
models, and biased results at the 1σ level for the constant galaxy-clustering
(CGC) model. Also, we repeated this test on a subset of 100 mocks using one
of the galaxy-bias models that resulted in unbiased constraints, and performed
an MCMC analysis on each mock catalogue individually. On these tests we
found excellent agreement between the statistical errors and those estimated
by our model for the full covariance matrix of ω(θ).

Next, we analysed the redshift evolution of the linear bias of BOSS galax-
ies. Fixing the cosmological parameters to the best-fitting ΛCDM model to the
final Planck CMB observations, we fit the linear bias parameter of our model
for the galaxy-clustering signal, marginalising over the other nuisance param-
eters and σ8 with a Planck prior. Also, using the same three different models
for the redshift evolution of the linear galaxy-bias used in the previous tests,
we fit the clustering amplitude of ω(θ) in all redshift shells simultaneously. We
saw that all three models are able to reproduce well the observed redshift evo-
lution of the linear bias up to redshift z ∼ 0.6, where the BOSS sample is close
to a volume-limited one. However, none of them were able to reproduce the
observed scatter in the measurements within 0.6 . z . 0.7, where the BOSS
sample behaves as flux-limited. For this reason, and because two of the three
bias models depend on the linear growth factor D(z), in order to avoid biased
cosmological constraints, we decided not to include the measurements in these
high-redshift shells in our tomographic analysis. We tested the impact that
assuming these three models for the redshift evolution of the linear galaxy-bias
has on the obtained constraints on cosmological parameters. Combining our
measurements of ω(θ) from BOSS with the CMB measurements from Planck,
we obtained constraints on the wCDM parameter-space using each of the three
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galaxy-bias models, and found no significant difference between them, showing
that this analysis provide robust constraints.

Finally, combining the information obtained from the application of our to-
mographic approach to the final BOSS galaxy sample, with the latest Planck
CMB observations and type Ia supernova (SNIa), we constrain the parame-
ters of the standard ΛCDM cosmological model and its more important exten-
sions, including non-flat universes, more general dark energy models, neutrino
masses, and possible deviations from the predictions of general relativity. In
general, these constraints are comparable to the most precise present-day cos-
mological constraints in the literature, showing and consolidating the ΛCDM
model as the standard cosmological paradigm.

In particular, in all the cases where we allow wDE to deviate from its fidu-
cial value of −1, either as constant or time-dependent, our final constraints
are in good agreement to those cases where wDE is fixed to −1. For the sim-
plest wCDM extension we obtain wDE = −0.958+0.063

−0.055 for the combination of
our ω(θ) measurements with Planck, and wDE = −0.991 ± 0.046 for the full
Planck + ω(θ) + SNIa combination. For models including ΩK, with w fixed
to −1 or treated as a free parameter, we find |ΩK| ∼ 10−3, consistent with
no curvature. Although we do not find a clear detection for the total sum
of neutrino masses, we obtain upper limits that can be considered amongst
the tightest ones available at present, where in the νΛCDM case, we obtain∑
mν/eV < 0.207(0.400) 68%(95%) confidence interval(C.I.) upper limits for

the Planck+ω(θ) combination, while for the full Planck+ω(θ)+SNIa case, we
find

∑
mν/eV < 0.169(0.330) 68%(95%) C.I. upper limits. Furthermore, we

see no significant deviations from the GR predictions of the linear growth of
structures, parametrised by the growth index parameter γ, neither assuming
a ΛCDM as the background cosmological model, nor when we also treat wDE

as a free parameter.
In summary, the methodology of analysing the large-scale structure of the

Universe presented in this work, using angular galaxy-clustering measurements
in thin redshift shells, is an excellent alternative to the traditional 3D cluster-
ing analysis. It avoids the two main issues of the traditional approach, by using
cosmology-independent measurements, and by being able to trace the redshift
evolution of the clustering signal. Furthermore, this technique is able to pro-
vide precise constraints on cosmological parameters, proving to be a valid and
very robust method to analyse present and future large galaxy-surveys.



Appendix A

Overview of Random Variables
and Spatial Statistics

In cosmology, the distribution of mass in the Universe can be described as a
continuous random variable (random field). On the other hand the distribution
of galaxies, which we can actually observe, is better described by a discrete
(random) point process. A redshift galaxy survey is essentially a set of posi-
tions {xi}Ni=1 of N objects (galaxies) in a volume V , that can be thought of as
a realisation of such a random process, connected somehow to the underlying
random (mass) field.

The most common statistical tools to study the clustering of galaxies are
the two-point central moments, such as the correlation function and the power
spectrum, that can be used to extract cosmological information from the ob-
servations.

This chapter aims to present the basic concepts required to understand
how we use spatial statistics to characterise the large-scale structure of the
Universe, and is not meant to be an extensive presentation of probability
theory. For a more detailed description of the concepts presented here, two
interesting books are Ripley (1981) and Papoulis (1984).

A.1 Probability Spaces

A probability space is a special case of a measure space, that is composed of
three elements: a set Ω whose elements are called points (e.g. R); a collection
of subsets of Ω, Σ, called sigma-algebra (σ-algebra); and a measure µ defined
on a σ-algebra. We will briefly describe these components here.
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The σ-algebra

A collection Σ of subsets of Ω is called a σ-algebra, if it satisfies the three
following axioms:

(i) If A ∈ Σ, then its complement Ac ∈ Σ, where Ac = Ω ∩ A.

(ii) If {Ai}∞i=1 is a countable family of sets in Σ, then their union
⋃∞
i=1Ai

also belongs to Σ.

(iii) The space Ω ∈ Σ.

Note that the empty set ∅ = Ωc is also in Σ, which is important to define the
measure later.

A special case is the Borel σ-algebra B of Rn, which is the smallest sigma-
algebra generated by the open balls of Rn, that is the family of sets of the
form

Bx,R := {y ∈ Rn : |x− y| < R}. (A.1)

Measure, measure spaces and measurable functions

A measure µ : Σ→ R+
0 , defined on a sigma-algebra Σ, is a function from Σ to

the non-negative real numbers (including infinity) such that

(i) µ(∅) = 0, and

(ii) If {Ai}∞i=1 is a sequence of disjoint (i.e. Ai ∩ Aj = ∅ for i 6= j) sets in
Σ, then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai), (A.2)

where this last point is called countable additivity. Two important conse-
quences of (A.2) for probability theory are that

(i) If A ⊂ B, then µ(A) ≤ µ(B), and

(ii) µ(A1 ∪ A2) = µ(A1) + µ(A2)− µ(A1 ∩ A2).

As we said above then, a measure space (Ω,Σ, µ) is composed by three
elements: a set Ω, a σ-algebra Σ and a measure µ. Also, a function between two
measure spaces is a measurable function if the pre-image of each measurable
set is also measurable. That is, let (Ω,Σ, µ) and (Ω′,Σ′, µ′) be two measure
spaces, then f : Σ→ Σ′ is measurable if

f−1(A) := {ω ∈ Ω : f(ω) ∈ A} ∈ Σ ∀A ∈ Σ′. (A.3)

Finally, a probability space (Ω,Σ, P ) is a measure space, where its (prob-
ability) measure P is normalised such that P (Ω) = 1.
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A.2 Random Variables

From this point on, we shall restrict our discussion to scalar random variables
with domain in Rn, but it can be easily extended to vectors or tensors by
treating each component as a scalar random variable. Let (Rn,B, P ) be a
probability space. Let Y : Rn → R be a real single-valued measurable function
defined for every x ∈ Rn such that for all y ∈ R,

Ry := {x ∈ Rn : Y (x) ≤ y} (A.4)

belongs to B. Then, the function Y (x) is called a random variable. We can
think of a random variable as being just a mapping with the property that
inverse images determined by the random variable are events in the original
space. This simple property ensures that the output of the random variable will
inherit its own distribution (or probability measure), which we will introduce
now.

A probability distribution, or cumulative distribution function, FY (y),
is defined as

FY (y) := P ({y ∈ R : Y ≤ y}), (A.5)

which is usually referred to as the probability of Y being less or equal to y, or
the measure P of the set {y ∈ R : Y ≤ y}. If FY (y) is differentiable, then the
probability density distribution exists, and is given by

fY (y) =
dFY (y)

dy
⇒ FY (y) =

∫ y

−∞
dyfY (y) (A.6)

Using f(y), we may calculate the probability for any interval y1 ≤ Y ≤ y2 as

P ({y1 ∈ R : y1 ≤ Y } ∩ {y2 ∈ R : Y ≤ y2}) = FY (y2)− FY (y1)

=

∫ y2

y1

dyfY (y).
(A.7)

For our purposes, we can think of a scalar random field as well as a random
point process as a set of random variables as defined above, together with a
collection of distribution functions P ({yi ∈ R : Y (xi) ≤ yi}Ni=1), for any
number of points N . They will differ in that we may impose continuity for a
random field, while a random point process has to be discrete, in the sense that
for any region A ⊂ Rn, there has to be a finite, countable number of points
NA. The relation between the two can be described by an inhomogeneous
Poisson point process with density n(x) as

n(x) =
N∑
i=1

wiδ
n
D(x− xi), (A.8)
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where δnD(x) is the Dirac delta function, and wi is some weight to be defined
from the underlying field (e.g. the mass density contrast at xi). For this
reason, in the following we will assume Y (x) is a random continuous random
field.

A.3 Spatial correlations

Let us start by defining the expected value of g(Y ) as

〈g(Y )〉 :=

∫
dyg(Y )fY (y), (A.9)

where fY (y) is the probability density function of Y as defined above. Using
this, we can define the first moment of a random field Y (x), its mean, as

m(x) = 〈Y (x)〉, (A.10)

The second moment is the two-point non-central covariance functionR2(xi,xj),
defined as

R2(xi,xj) = 〈Y (xi)Y (xj)〉. (A.11)

From (A.10) and (A.11) we can define the central two-point covariance
function, ξ(xi,xj), or the correlation function, as

ξ(xi,xj) = 〈[Y (xi)−m(xi)][Y (xj)−m(xj)]〉. (A.12)

The correlation functions is positive definite, which is important as it allows
us to represent it as a Fourier integral.

Analogously to the two-point covariance function, we can define all the
higher-order non-central n-point covariance functions as

Rn(x1, ...,xn) = 〈Y (x1)...Y (xn)〉, (A.13)

and the higher-order central n-point covariance functions by

µn(x1, ..,xn) = 〈[Y (x1)−m(x1)]...[Y (xn)−m(xn)]〉. (A.14)

These functions contain all the higher-order moments of the one-point proba-
bility distributions when its arguments coincide, meaning that the knowledge
of all covariance functions is sufficient to completely describe a random field.

At this point, we shall introduce homogeneity and isotropy of a random
field in terms of its first and second moments. Homogeneous random fields
are those where all distribution functions (and moments) are invariant under
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translations. In particular, its mean m will not depend on the position x, and
its correlation function will only depend on the separation vector r ≡ xi − xj,
thus

ξ(xi,xj) ≡ ξ(r). (A.15)

Isotropic random fields are defined by requiring that its correlation function
does not depend on the direction, that is

ξ(x,x + r) ≡ ξ(x, r), (A.16)

where r = |r|. In cosmology, the matter density field of the Universe is thought
to be both homogeneous and isotropic (this is known as the cosmological prin-
ciple), which means that the correlation function will be a function of the
separation only ξ(x,x + r) ≡ ξ(r).

A.4 The spectral representation

In linear algebra and functional analysis, the spectral theorem states conditions
under which operators can be diagonalisable. In the case of a homogeneous,
zero-mean, continuous random field, it can be decomposed as a sum of regular
underlying oscillations whose magnitudes are independent (i.e. uncorrelated)
random variables, a characteristic that greatly simplifies the study of the ran-
dom process. Mathematically, we can express it by

Y (x) =

∫
Rn
dZ(k) e−ix·k, (A.17)

and in the case that the field Z(k) is differentiable, it can be written in terms
of its density as dZ(k) = dnk

(2π)n
Ỹ (k), reducing Y (x) and Ỹ (k) into a Fourier

pair:

Ỹ (k) =

∫
Rn
dnx Y (x)e−ik·x,

Y (x) =

∫
Rn

dnk

(2π)n
Ỹ (k)eix·k.

(A.18)

Given that the field Ỹ (k) is independent, it is possible to express it second
moment as

〈Ỹ (ki)Ỹ
∗(kj)〉 = (2π)nP (ki)δ

n
D(ki − kj), (A.19)

where P (k) is the spectral density function of the field, also called in cosmology
the power spectrum.
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Analogously, the spectral theorem describes regular oscillations within the
random fluctuation of a homogeneous stochastic process through such oscil-
lations in its autocorrelation function. In practice, this means that ξ(r) and
P (k) are also a Fourier pair, holding

ξ(r) =

∫
Rn

dnk

(2π)n
P (k)e−ir·k. (A.20)

This relation can be derived from (A.11) and (A.18) as well.
If the field is also isotropic (its covariance function does not depend on the

direction), and if we work on R3, the relation above can be integrated over the
angles resulting in

ξ(r) = 4π

∫
R+

0

k2dk

(2π)3
P (k)

sin(kr)

kr
. (A.21)

A.5 Gaussian random fields

In the standard theory of cosmological structure formation, the initial mass
density fluctuations arise from Gaussian quantum fluctuations of physical fields
during inflation, that are naturally real homogenous isotropic random fields.
This characteristic is of great importance, since it allows us to infer the sta-
tistical properties of the Universe from a single realisation.

Gaussian random fields are those whose probability density functions is a
Gaussian (or normal) distribution, given by

fY(y) =
1√

(2π)k|C|
e−

1
2

(y−〈Y〉)TC−1(y−〈Y〉), (A.22)

where Y(x) is a k-dimensional (column) random vector, and |C| is the deter-
minant of the covariance matrix C given by Cij = ξ(xi,xj).

Gaussian random fields have useful properties. One of them is that, if Y(x)
is a Gaussian random field, then its Fourier pair Ỹ(k) is Gaussian as well.
Another important property of Gaussian random fields is that all odd higher-
order central moments are zero, while even higher-order central moments are
completely determined by the second-order central moment.

A.6 Ergodicity

In cosmology, since we only have a single realisation of the Universe, we usually
need to assume the fair sample hypothesis (as in Peebles, 1980), that implies
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homogeneity, isotropy (the cosmological principle) and ergodicity. A stochas-
tic process is called ergodic if its statistical properties can be obtained from a
sufficiently large random sample. In other words, averages taken over a large
number of events tend to the ensemble average. For instance, consider a set
{Yi}Ni=1 of N random variables with mean 〈Y 〉 = µ, such that their average is

1

N

N∑
i=1

Yi = µ+ ε. (A.23)

Then, the process will be ergodic on the mean, if ε → 0 for N → ∞. In
particular, Gaussian random fields are ergodic if their spectral density (or
power spectrum in cosmology) is everywhere continuous. Equivalently, the
condition that the covariance function R2(r)→ 0 for r →∞ implies ergodicity.
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Appendix B

Tables

This section contains the summary tables from chapter 4. It includes tables
displaying the cosmological parameters explored, that have been removed from
the body of this work for readability, as well as tables describing the redshift-
binning scheme used for the analysis of the final BOSS galaxy catalogue.

Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02215± 0.00021 0.02217± 0.00021

Ωch
2 0.1204± 0.0019 0.1200± 0.0018

100θMC 1.04078± 0.00045 1.04080± 0.00043
τ 0.070± 0.018 0.072± 0.018
ln(1010As) 3.075± 0.034 3.077± 0.035
ns 0.9631± 0.0053 0.9637± 0.0053
H0 66.98± 0.80 67.14± 0.77
ΩΛ 0.681± 0.011 0.683± 0.011
Ωm 0.319± 0.011 0.317± 0.011
σ8 0.825± 0.014 0.825± 0.014
Age/Gyr 13.826± 0.033 13.822± 0.032

Table B.1: Marginalised constraints on the cosmological parameters for the
ΛCDM model. Values correspond to the mean and 68% confidence interval.
The first block corresponds to varied parameters in the analysis, while the
second block are derived parameters.
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Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02220± 0.00022 0.02219± 0.00022

Ωch
2 0.1198± 0.0021 0.1199± 0.0021

100θMC 1.04087± 0.00045 1.04085± 0.00046
τ 0.076± 0.019 0.074± 0.019
w −0.958+0.063

−0.055 −0.991± 0.046
ln(1010As) 3.087± 0.037 3.081± 0.036
ns 0.9647± 0.0059 0.9645± 0.0059
H0 66.0± 1.5 66.9± 1.1
ΩΛ 0.672± 0.016 0.681+0.013

−0.011

Ωm 0.328± 0.016 0.319± 0.012
σ8 0.816± 0.020 0.823± 0.019
Age/Gyr 13.844± 0.040 13.825± 0.034

Table B.2: Marginalised constraints on the cosmological parameters for the
wCDM model. Values correspond to the mean and 68% confidence interval.
The first block corresponds to varied parameters in the analysis, while the
second block are derived parameters.

Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02220± 0.00022 0.02216± 0.00022

Ωch
2 0.1199± 0.0022 0.1199± 0.0021

100θMC 1.04084± 0.00048 1.04084± 0.00044
τ 0.076± 0.019 0.074± 0.019
w0 −0.60+0.24

−0.10 −0.94± 0.13
wa < −0.965 −0.23+0.51

−0.42

ln(1010As) 3.087± 0.036 3.082± 0.036
ns 0.9647± 0.0061 0.9637± 0.0060
H0 64.3+1.3

−1.8 67.0± 1.2
ΩΛ 0.654+0.017

−0.019 0.681± 0.012
Ωm 0.346+0.019

−0.017 0.319± 0.012
σ8 0.806± 0.021 0.825± 0.018
Age/Gyr 13.790± 0.046 13.811+0.047

−0.055

Table B.3: Marginalised constraints on the cosmological parameters for the
w0waCDM model. Values correspond to the mean and 68% confidence interval.
The first block corresponds to varied parameters in the analysis, while the
second block are derived parameters.
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Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02230± 0.00026 0.02229± 0.00026

Ωch
2 0.1189± 0.0022 0.1192+0.0022

−0.0026

100θMC 1.04100± 0.00049 1.04102+0.00055
−0.00049

τ 0.076± 0.020 0.074+0.016
−0.021

ΩK −0.0043+0.0042
−0.0035 −0.0028± 0.0038

ln(1010As) 3.085± 0.039 3.080+0.032
−0.038

ns 0.9671+0.0059
−0.0073 0.9663+0.0071

−0.0061

H0 65.7+1.5
−1.3 66.3± 1.2

ΩΛ 0.676± 0.013 0.679+0.013
−0.0093

Ωm 0.329+0.014
−0.016 0.324+0.011

−0.014

σ8 0.823± 0.015 0.822± 0.014
Age/Gyr 13.99+0.14

−0.17 13.93± 0.14

Table B.4: Marginalised constraints on the cosmological parameters for the
oCDM model. Values correspond to the mean and 68% confidence interval.
The first block corresponds to varied parameters in the analysis, while the
second block are derived parameters.

Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02227± 0.00025 0.02230± 0.00024

Ωch
2 0.1193± 0.0022 0.1187± 0.0022

100θMC 1.04095± 0.00045 1.04097± 0.00049
τ 0.076± 0.019 0.073± 0.019
ΩK −0.0037+0.0057

−0.0051 −0.0040+0.0054
−0.0041

w −1.00+0.10
−0.075 −1.025+0.064

−0.055

ln(1010As) 3.084± 0.037 3.077± 0.036
ns 0.9657± 0.0064 0.9675± 0.0063
H0 65.7+1.3

−1.5 66.5± 1.3
ΩΛ 0.673± 0.017 0.684± 0.013
Ωm 0.330± 0.016 0.320± 0.014
σ8 0.822± 0.023 0.825± 0.019
Age/Gyr 13.99+0.17

−0.22 13.98+0.16
−0.21

Table B.5: Marginalised constraints on the cosmological parameters for the
woCDM model. Values correspond to the mean and 68% confidence interval.
The first block corresponds to varied parameters in the analysis, while the
second block are derived parameters.
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Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02214± 0.00021 0.02219± 0.00021

Ωch
2 0.1200± 0.0020 0.1197± 0.0019

100θMC 1.04079± 0.00044 1.04085± 0.00045
τ 0.076± 0.019 0.077± 0.019
Σmν/eV < 0.400(95%C.I.) < 0.330(95%C.I.)
ln(1010As) 3.086± 0.037 3.087± 0.037
ns 0.9633± 0.0055 0.9643± 0.0054
H0 66.2+1.2

−1.0 66.6+1.1
−0.93

ΩΛ 0.671+0.017
−0.013 0.677+0.015

−0.012

Ωm 0.329+0.013
−0.017 0.323+0.012

−0.015

σ8 0.804+0.031
−0.023 0.810+0.028

−0.019

Age/Gyr 13.876+0.051
−0.071 13.854+0.047

−0.062

Table B.6: Marginalised constraints on the cosmological parameters for the
νΛCDM model. Values correspond to the mean and 68% confidence interval
(C.I.), except for the sum of neutrino masses where 95% C.I. upper limits are
shown (for 68% C.I. see text). The first block corresponds to varied parameters
in the analysis, while the second block are derived parameters.
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Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02216± 0.00023 0.02215± 0.00022

Ωch
2 0.1199± 0.0021 0.1198± 0.0021

100θMC 1.04081± 0.00048 1.04080± 0.00047
τ 0.078± 0.019 0.077± 0.019
Σmν/eV < 0.486(95%C.I.) < 0.474(95%C.I.)
w −0.998+0.097

−0.064 −1.023+0.063
−0.053

ln(1010As) 3.090± 0.037 3.086± 0.036
ns 0.9636± 0.0064 0.9635± 0.0060
H0 66.1+1.5

−1.7 66.7± 1.1
ΩΛ 0.670± 0.017 0.676+0.015

−0.013

Ωm 0.330± 0.017 0.324+0.013
−0.015

σ8 0.801+0.028
−0.024 0.805+0.030

−0.024

Age/Gyr 13.882+0.054
−0.067 13.871+0.051

−0.072

Table B.7: Marginalised constraints on the cosmological parameters for the
νwCDM model. Values correspond to the mean and 68% confidence interval
(C.I.), except for the sum of neutrino masses where 95% C.I. upper limits are
shown (for 68% C.I. see text). The first block corresponds to varied parameters
in the analysis, while the second block are derived parameters.

Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02219± 0.00022 0.02221± 0.00021

Ωch
2 0.1201± 0.0020 0.1197± 0.0019

100θMC 1.04084± 0.00046 1.04088± 0.00045
τ 0.075± 0.019 0.077± 0.019
ln(1010As) 3.084± 0.036 3.086± 0.036
ns 0.9641± 0.0057 0.9650± 0.0055
γ 0.67± 0.15 0.68± 0.14
H0 67.15± 0.87 67.33± 0.82
ΩΛ 0.683+0.013

−0.011 0.685± 0.011
Ωm 0.317+0.011

−0.013 0.315± 0.011
σ8 0.828± 0.014 0.828± 0.015
Age/Gyr 13.819± 0.036 13.813± 0.034

Table B.8: Marginalised constraints on the cosmological parameters for the
γΛCDM model. Values correspond to the mean and 68% confidence interval.
The first block corresponds to varied parameters in the analysis, while the
second block are derived parameters.
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Parameter CMB + ω(θ) CMB + ω(θ) + SNIa

Ωbh
2 0.02220± 0.00022 0.02220± 0.00022

Ωch
2 0.1199± 0.0021 0.1200± 0.0020

100θMC 1.04086± 0.00046 1.04088± 0.00045
τ 0.076± 0.019 0.076± 0.019
w −0.980± 0.092 −1.013+0.052

−0.047

ln(1010As) 3.086± 0.037 3.086± 0.036
ns 0.9644± 0.0060 0.9643± 0.0059
γ 0.64+0.21

−0.23 0.70+0.16
−0.18

H0 66.6± 2.5 67.6± 1.3
ΩΛ 0.677+0.027

−0.022 0.687± 0.013
Ωm 0.323+0.022

−0.027 0.313± 0.013
σ8 0.822± 0.030 0.832± 0.020
Age/Gyr 13.832+0.053

−0.064 13.809± 0.037

Table B.9: Marginalised constraints on the cosmological parameters for the
γwCDM model. Values correspond to the mean and 68% confidence interval.
The first block corresponds to varied parameters in the analysis, while the
second block are derived parameters.
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zmin zmax ∆z used

0.20000 0.25841 0.05841 yes
0.25841 0.30813 0.04972 yes
0.30813 0.34266 0.03453 yes
0.34266 0.37622 0.03356 yes
0.37622 0.41421 0.03799 yes
0.41421 0.44550 0.03129 yes
0.44550 0.46670 0.02121 yes
0.46670 0.48305 0.01635 yes
0.48305 0.49783 0.01478 yes
0.49783 0.51177 0.01394 yes
0.51177 0.52580 0.01403 yes
0.52580 0.54021 0.01442 yes
0.54021 0.55550 0.01529 yes
0.55550 0.57185 0.01635 yes
0.57185 0.59103 0.01918 yes
0.59103 0.61356 0.02253 no
0.61356 0.64375 0.03018 no
0.64375 0.75000 0.10625 no

Table B.10: Redshift limits and ∆z of the 18 z-shells found to be the optimal
binning scheme for this tomographic analysis of this paper, form which the
three higher redshift were not used. In all the figures, the redshift limits are
shown only to three decimal points.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ×
2 ×
3 × ×
4 × ×
5 × ×
6 × ×
7 × × × ×
8 × × × ×
9 × × × ×
10 × × × ×
11 × × × ×
12 × × × ×
13 × × ×
14 × ×
15 ×

Table B.11: Configuration matrix of the auto- and cross-correlation functions
used in the analysis of the cosmological implications of ω(θ) measured on
BOSS. Crosses indicate the measurements used, where the diagonal terms
are the auto-correlations, and off-diagonal terms correspond to the cross-
correlations included.
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and et al. (2015). The Eleventh and Twelfth Data Releases of the Sloan
Digital Sky Survey: Final Data from SDSS-III. ApJS, 219:12. 49

Albrecht, A., Bernstein, G., Cahn, R., Freedman, W. L., Hewitt, J., Hu, W.,
Huth, J., Kamionkowski, M., Kolb, E. W., Knox, L., Mather, J. C., Staggs,
S., and Suntzeff, N. B. (2006). Report of the Dark Energy Task Force. ArXiv
Astrophysics e-prints. 47

Almeida, C., Baugh, C. M., Wake, D. A., Lacey, C. G., Benson, A. J., Bower,
R. G., and Pimbblet, K. (2008). Luminous red galaxies in hierarchical cos-
mologies. MNRAS, 386:2145–2160. 44
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Asorey, J., Crocce, M., Gaztañaga, E., and Lewis, A. (2012). Recovering 3D
clustering information with angular correlations. MNRAS, 427:1891–1902.
25, 28

Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa,
S., Carlberg, R. G., Fabbro, S., Fouchez, D., Hook, I. M., Howell, D. A.,
Lafoux, H., Neill, J. D., Palanque-Delabrouille, N., Perrett, K., Pritchet,
C. J., Rich, J., Sullivan, M., Taillet, R., Aldering, G., Antilogus, P., Arseni-
jevic, V., Balland, C., Baumont, S., Bronder, J., Courtois, H., Ellis, R. S.,
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Measuring redshift-space distortions using photometric surveys. MNRAS,
415:2193–2204. 25, 31

Saito, S., Leauthaud, A., Hearin, A. P., Bundy, K., Zentner, A. R., Behroozi,
P. S., Reid, B. A., Sinha, M., Coupon, J., Tinker, J. L., White, M., and
Schneider, D. P. (2015). Connecting Massive Galaxies to Dark Matter Halos
in BOSS. I: Is Galaxy Color a Stochastic Process in High Mass Halos? ArXiv
e-prints. 52, 62, 63

Salazar-Albornoz, S., Sánchez, A. G., Padilla, N. D., and Baugh, C. M. (2014).
Clustering tomography: measuring cosmological distances through angular
clustering in thin redshift shells. MNRAS, 443:3612–3623. 25, 26

Samushia, L., Reid, B. A., White, M., Percival, W. J., Cuesta, A. J., Lom-
briser, L., Manera, M., Nichol, R. C., Schneider, D. P., Bizyaev, D., Brew-
ington, H., Malanushenko, E., Malanushenko, V., Oravetz, D., Pan, K.,
Simmons, A., Shelden, A., Snedden, S., Tinker, J. L., Weaver, B. A., York,
D. G., and Zhao, G.-B. (2013). The clustering of galaxies in the SDSS-
III DR9 Baryon Oscillation Spectroscopic Survey: testing deviations from
Λ and general relativity using anisotropic clustering of galaxies. MNRAS,
429:1514–1528. 3

Samushia, L., Reid, B. A., White, M., Percival, W. J., Cuesta, A. J., Zhao,
G.-B., Ross, A. J., Manera, M., Aubourg, É., Beutler, F., Brinkmann, J.,
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