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Zusammenfassung

Aktuell werden großräumige Himmelsdurchmusterungen bei vielen verschiedenen
Wellenlängen durchgeführt. Diese Beobachtungen dienen der Errichtung und Bestäti-
gung eines kosmologischen Standardmodells für unser Universum. In den letzten
Jahren wurden große Fortschritte in Theorie und Beobachtungen gemacht, um Galax-
ienhaufen als Testbett für die Kosmologie zu nutzen. Galaxienhaufen sind die größten
gravitativ gebunden Strukturen und ihre Verteilung folgt der Entwicklung der groß-
skaligen Struktur im Universum. Die Anzahldichte der Galaxienhaufen ist zudem
sensitiv auf das zu Grunde gelegte kosmologische Modell. Durch die Beobachtung
von Galaxienhaufen können die kosmologischen Parameter, zusätzlich zu anderen
Messungen, eingeschränkt werden.

Diese Dissertation behandelt den wichtigen Beitrag von Galaxienhaufen zur Ver-
ifizierung des kosmologischen Standardmodells in einem von dunkler Materie und
dunkler Energie dominierten Universum. Insbesondere untersuchen wir das Clus-
tering von optisch selektierten Galaxienhaufen als zusätzlichen Parameter zu den
üblichen kosmologischen Observablen. Das Clustering von Galaxienhaufen ergänzt
die traditionellen Methoden der Zählung von Galaxienhaufen und der Vermessung
von Masse-Observablen Relationen, weil die Analyse des Clusterings von Galaxien
in den High-Peak, High-Bias Bereich vorangetrieben wird. Diese Methode ist ein
mächtiges Werkzeug um bestehende Entartungen zu durchbrechen und genauere kos-
mologische Parameter zu gewinnen.

Als Erstes legen wir die wichtigsten theoretischen Grundlagen und Beobachtun-
gen für das heutige Standardmodell der Kosmologie dar. Anschließend behandeln
wir die grundlegenden Eigenschaften von Galaxienhaufen und insbesondere ihren
Beitrag als Testbett für kosmologische Modelle.

Als nächstes entwickeln wir den theoretischen Rahmen für die Zählung von Galax-
ienhaufen und die Bestimmung des Leistungsspektrums. Wir überarbeiten die For-
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mulierung und Kalibirierung der Halomassenfunktion, welche im Bereich hoher Mas-
sen von Galaxienhaufen bevölkert ist. Zusätzlich geben wir ein Rezept zur Model-
lierung des Leistungsspektrums von Galaxienhaufen mit dem Ort und der Rotver-
schiebung. Hierbei ist die Modellierung des schwach nicht-linearen Beitrags einge-
schlossen und eine beliebige photometrische Glättung mit der Rotverschiebung ermö-
glicht. Zuletzt zeigen wir welchen Beitrag Galaxienhaufen bei der Beschränkung der
Parameter für nicht Gauß-verteilte primordiale Anfangsbedingungen liefern können.

Anschließend widmen wir ein Kapitel der Präsentation unserer Basisdaten, dem
Sloan Digital Sky Survey maxBCG Katalog. Wir beschreiben die Ableitung un-
serer Datensätze aus diesem Katalog von Galaxienhaufen und die entsprechenden
dazugehörigen Fehlerabschätzungen. Speziell verwenden wir, jeweils mit den ent-
sprechenden Kovarianzmatrizen, die Häufigkeit von Galaxienhaufen in verschiedenen
Reichhaltigkeitsbereichen, Abschätzungen für die schwachen Linsenmassen und das
Leistungsspektrum über Ort und Rotverschiebung. Zusätzlich, durch eine empirische
Skalierungsrelation, setzen wir die Masse der Galaxienhaufen mit ihrer beobachteten
Reichhaltigkeit in Verbindung und quantifizieren die Streuung der Daten.

Im nächsten Kapitel zeigen wir die Ergebnisse unserer Monte-Carlo-Markov-
Ketten-Analyse und die daraus abgeleiteten Beschränkungen der kosmologischen Pa-
rameter. Mit dem maxBCG Datenset können wir sowohl die kosmologischen Parame-
ter einschränken, als auch gleichzeitig die Masse-Observable-Relation vermessen. Wir
finden, dass die Berücksichtigung des Leistungsspektrums eine ∼ 50% Verbesserung
des Fehlers in der Fluktuationsamplitude σ8 und der Materiedichte Ωm ergibt. Für
die anderen kosmologischen Parameter finden wir weniger signifikante Verbesserun-
gen. Außerdem verwenden wir das mit WMAP7 gemessene Leistungsspektrum der
kosmischen Hintergrundstrahlung, zusätzlich zu den Daten über Galaxienhaufen,
und erhalten eine weitere Beschränkung der Vertrauensregionen. Zuletzt wenden wir
unsere Methode auf Modelle des frühen Universums an, und bestimmen den Anteil
der nicht Gauß-verteilten Fluktuationen des primordialen Dichtefelds (lokaler Typ).
Unsere Ergebnisse sind konsistent mit den aktuellsten Beobachtungen.

Im letzten Kapitel präsentieren wir vorläufige Rechnungen zur Kreuzkorrelation
zwischen Galaxienhaufen und Galaxien. Diese Rechnungen sind in der Lage die kos-
mologischen Modelle noch weiter einzuschränken.

Abschließend fassen wir unsere wichtigsten Ergebnisse zusammen und geben einen
Ausblick auf mögliche weiterführende Forschungsprojekte.



Summary

Multi-wavelength large-scale surveys are currently exploring the Universe and es-
tablishing the cosmological scenario with extraordinary accuracy. There has been
recently a significant theoretical and observational progress in efforts to use clusters
of galaxies as probes of cosmology and to test the physics of structure formation.
Galaxy clusters are the most massive gravitationally bound systems in the Universe,
which trace the evolution of the large-scale structure. Their number density and dis-
tribution are highly sensitive to the underlying cosmological model. The constraints
on cosmological parameters which result from observations of galaxy clusters are
complementary with those from other probes.

This dissertation examines the crucial role of clusters of galaxies in confirming the
standard model of cosmology, with a Universe dominated by dark matter and dark
energy. In particular, we examine the clustering of optically selected galaxy clusters
as a useful addition to the common set of cosmological observables, because it ex-
tends galaxy clustering analysis to the high-peak, high-bias regime. The clustering of
galaxy clusters complements the traditional cluster number counts and observable-
mass relation analyses, significantly improving their constraining power by breaking
existing calibration degeneracies.

We begin by introducing the fundamental principles at the base of the concor-
dance cosmological model and the main observational evidence that support it. We
then describe the main properties of galaxy clusters and their contribution as cos-
mological probes.

We then present the theoretical framework of galaxy clusters number counts and
power spectrum. We revise the formulation and calibration of the halo mass func-
tion, whose high mass tail is populated by galaxy clusters. In addition to this, we
give a prescription for modelling the cluster redshift space power spectrum, includ-
ing an effective modelling of the weakly non-linear contribution and allowing for an
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arbitrary photometric redshift smoothing. Some definitions concerning the study
of non-Gaussian initial conditions are presented, because clusters can provide con-
straints on these models.

We dedicate a Chapter to the data we use in our analysis, namely the Sloan Dig-
ital Sky Survey maxBCG optical catalogue. We describe the data sets we derived
from this large sample of clusters and the corresponding error estimates. Specifically,
we employ the cluster abundances in richness bins, the weak-lensing mass estimates
and the redshift-space power spectrum, with their respective covariance matrices.
We also relate the cluster masses to the observable quantity (richness) by means of
an empirical scaling relation and quantify its scatter.

In the next Chapter we present the results of our Monte Carlo Markov Chain
analysis and the cosmological constraints obtained. With the maxBCG sample,
we simultaneously constrain cosmological parameters and cross-calibrate the mass-
observable relation. We find that the inclusion of the power spectrum typically
brings a ∼ 50% improvement in the errors on the fluctuation amplitude σ8 and the
matter density Ωm. Constraints on other parameters are also improved, even if less
significantly. In addition to the cluster data, we also use the CMB power spectra
from WMAP7, which further tighten the confidence regions. We also apply this
method to constrain models of the early universe through the amount of primordial
non-Gaussianity of the initial density perturbations (local type) obtaining consistent
results with the latest constraints.

In the last Chapter, we introduce some preliminary calculations on the cross-
correlation between clusters and galaxies, which can provide additional constraining
power on cosmological models.

In conclusion, we summarise our main achievements and suggest possible future
developments of research.



Chapter 1

Introduction

In this Chapter we introduce the theoretical and experimental research which has
built the current concordance cosmological model. We first introduce the framework
of a homogeneous Universe, based on Einstein equations for General relativity applied
to the Universe as a whole. Secondly, we describe the basics of the evolution of
primordial perturbations, which have led to the formation of the structures we see
today. We then present the main cosmological probes which enable us to estimate
cosmological parameters: the Supernovae Type Ia, the Baryon Acoustic Oscillations
and the Cosmic Microwave Background. An entire Section is dedicated to the clusters
of galaxies, their properties and their role in cosmology. Finally, we present the state-
of-the-art of the constraints on ΛCDM parameters, obtained by combining galaxy
clusters together with other cosmological probes.

1.1 The homogeneous Universe

In this Section, we introduce the mathematical background of modern cosmology
based on Einstein’s theory of gravity, in the assumption of a homogeneous and
isotropic Universe. We describe how the Friedmann-Lemâıtre-Robertson-Walker
metric, together with Einstein’s field equations, leads to the Friedmann equations:
the latter combine the description of the dynamics of the Universe, which depends
on the energy density and pressure of the components, and the energy conservation
of the components themselves.
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1.1.1 Cosmological principle

On sufficiently large scales (> 100Mpc), the Universe is isotropic, namely its prop-
erties are independent of the direction from which it is observed. This feature,
combined with the cosmological principle which states that there is no preferred po-
sition in the Universe, implies that the Universe is also homogeneous on large scales.
Among the four force interactions (electromagnetic, strong, weak, gravitational),
only gravity plays a role on these scales.

1.1.2 Friedmann-Lemâıtre-Robertson-Walker metric

The effects of the gravitational force are described by the General Relativity (GR)
framework (Einstein 1916). GR defines the space-time as a 4-dimensional manifold
with a 4× 4 metric tensor gµν , ten components of which are independent (time-time
component g00, three space-time components g0i and six space-space components
gij). According to standard notation, Greek indices run from 0 to 3, where the 0-
component is time, and refer to 4-d quantities (space-time), while Latin indices run
from 1 to 3 and are used for 3-d (spatial) quantities. Considering the line element
given by

ds2 = gµνdx
µdxν , (1.1)

we can obtain the comoving spatial coordinates for fundamental observers by setting
dxi = 0, which implies g00 = c2, where c is the speed of light. In addition to this,
isotropy condition sets g0i = 0. Thus, Eq. (1.1) can be simplified in terms of a time-
dependent dimensionless scale factor a(t) and a 3-dimensional line element dl for an
isotropic and homogeneous space, as

ds2 = c2dt2 − a2(t)dl2 . (1.2)

Alternatively, the most common reformulation in comoving spatial polar coordinates
(r, θ, φ) is

ds2 = c2 dt2 − a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2θ dφ2

)]
, (1.3)

known as the Friedmann-Lemâıtre-Robertson-Walker metric (FLRW). Here r has a
length dimension, while K has units of inverse squared length and represents the
curvature scale of the Universe: K can assume values of 0,+1,−1 respectively in
a flat (Euclidean), spherical (closed) or hyperbolic (open) model of Universe. Note
that the curvature of space is equivalent to gravity: it is a measure of the energy
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content in the Universe. The scale factor a(t) defines also the deceleration parameter

q = − ä a
ȧ2

, (1.4)

where ä < 0 (q > 0) represents a decelerating Universe, while ä > 0 (q < 0) an
accelerating one.

1.1.3 Einstein’s field equations

A step further, leads us to Einstein’s field equations, which describe the dynamics of
Eq. (1.3) by coupling the metric to the energy content of the Universe, as follows:

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.5)

where Gµν is the Einstein tensor, G is the gravitational constant, Rµν the Ricci tensor
and R the Ricci scalar. An additional term involving the so-called cosmological
constant Λ was originally introduced by Einstein to achieve a static Universe, but
then removed because of the evidence of an expanding Universe observed by Hubble
(see 1.1.7). Tµν is the energy momentum tensor for the various component of the
Universe, given by

Tµν =

(
P

c2
+ ρ

)
uµuν − Pgµν , (1.6)

with the 4-velocity uµ = (c, 0, 0, 0), where P is the pressure and ρ the mass density.
From this definitions, it becomes clear how matter and space are related: matter
tells space how to curve, while space tells matter how to move.

1.1.4 Friedmann equations

We assume hereafter that dots represent time derivatives, e.g. ȧ = da/dt. From
Eq. (1.3), Christoffel symbols, Ricci tensor and Ricci scalar can be computed and
inserted into Eq. (1.5). By solving then the time-time component G00 and the space-
space components Gij we obtain the so called Friedmann equations (FE), which
describe the expansion of the Universe and its evolution in time:

ȧ2

a2
+
K c2

a2
=

8πG

3
ρ+

Λ c2

3
, (1.7)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λ c2

3
. (1.8)
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Here Λ has been reintroduced to explain the observed accelerated expansion of the
Universe, being however still poorly motivated by particle physics (see 1.5). The
pressure P is related to the mass density ρ by means of the perfect fluid equation of
state P = wρc2, where w is a constant dimensionless number and c is the speed of
light, typically set to unity: so we do hereafter.

By differentiating Eq. (1.7) and inserting it in Eq. (1.8), the FE can be recast into
a single equation, known as the continuity equation, which represents the mass-energy
conservation:

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 . (1.9)

It is convenient to introduce the Hubble parameter, defined as

H(t) ≡ ȧ(t)

a(t)
, (1.10)

which represents the relative expansion rate of a homogeneous and isotropic FLRW
Universe. For convention, the scale factor a(t) today (t = t0) is set to unity, i.e.
a(t0) = 1. With this definition, Eqs. (1.7) and (1.9) can be rearranged into the
following:

H2 +
K

a2
=

8πG

3

(∑

i

ρi + ρΛ

)
, (1.11)

∑

i

ρ̇i + 3H
∑

i

(ρi + Pi) = 0 . (1.12)

We have introduced an energy density associated to the cosmological constant as

ρΛ ≡ Λ

8πG
, (1.13)

and we have replaced the density ρ with
∑

i ρi+ ρΛ, where i refers to the various en-
ergy components we are considering. In particular, i = m for non-relativistic matter
density (dust, or more precisely baryons and cold dark matter), i = r for radiation
density (relativistic matter), i = Λ for the cosmological constant (or vacuum energy
or dark energy, DE). Note that, even if the conservation of the total mass-energy
holds because our Universe is an isolated system, there could be exchange/decay
between different species.
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1.1.5 The critical density

By demanding that the Universe is flat (K = 0), Eq. (1.11) gives the definition of
the critical density of the Universe:

ρc(t) =
3H2(t)

8πG
, (1.14)

and its value today is given by

ρc,0 = ρc(t0) =
3H2

0

8πG
= 1.86× 10−29 h2 g cm−3 . (1.15)

This also shows that the gravitational potential of a sphere of radius a(t) filled with
matter at critical density is equivalent to its kinetic energy. The value of ρc today
corresponds to approximately a galaxy mass per Mpc3. The shape of the Universe
and its finiteness depends on the balance between its expansion rate and the counter
action of gravity, which is itself related to the matter density ρm:

i) If ρm > ρc, the Universe is closed with positive curvature (K > 0), like a
sphere surface; it will eventually stop expanding and start collapsing in on
itself (so-called Big Crunch).

ii) If ρm < ρc, the Universe is open with negative curvature (K < 0), like a saddle
surface; it will expand forever.

iii) If ρm = ρc, the Universe is flat with zero curvature (K = 0), like a plane surface;
it will expand forever, decreasing the rate of expansion. Recent measurements
suggest that our Universe is most likely flat (see Section 1.3.3).

1.1.6 Energy density components

The energy density contents of the Universe are expressed by dimensionless param-
eters in units of the critical density ρc, i.e.

Ωi(t) ≡
ρi(t)

ρc(t)
, Ωi,0 ≡

ρi,0
ρc,0

, (1.16)

where the label ‘0’ refers always to the present value. By combining Eqs. (1.13) and
(1.14), the DE dimensionless parameter turns out to be:

ΩΛ(t) ≡
ρΛ(t)

ρc(t)
=

Λ

3H2(t)
, ΩΛ,0 =

Λ

3H2
0

. (1.17)
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Table 1.1: Evolution of energy densities components of the Universe, classified by type,
pressure, equation of state parameter and corresponding scale factor evolution.

Type Pressure w ρ(t) a(t)

non-relativistic matter 0 0 ∝ a−3(t) ∝ t2/3

radiation ρ/3 1/3 ∝ a−4(t) ∝ t1/2

curvature −ρ/3 −1/3 ∝ a−2(t) ∝ t
vacuum energy −ρ −1 ∝ a0(t) ∝ exp(Ht)

Since Ω ≡ Ωtot =
∑

iΩi = 1, the curvature parameter is defined as:

Ωk(t) = 1− Ωm(t)− Ωr(t)− ΩΛ(t) = − K c2

H2(t) a2(t)
, Ωk,0 = −K c2

H2
0

. (1.18)

With this notation, we can calculate explicitly solutions to FE for each density
component of the Universe. Namely, if each component is separately conserved, the
continuity equation (1.12) can be integrated (assuming K = 0) to give

ρi ∝ a−3(1+wi) , a(t) ∝ t
2

3(1+wi) , (1.19)

where the latter is obtained by combining with Eq. (1.11) and represents the evolution
of the scale factor. Table 1.1 lists the behaviours of the various components of the
Universe. Fig. 1.1 shows the evolution of ρm, ρr, ρΛ with respect to the cosmic size.
Fig. 1.2 instead is representing the evolution of the scale factor in time for different
models of the Universe: accelerating Universe, empty Universe, high/critical/low
density Universe. We can finally reformulate in compact form Eq. (1.11) as

H2(z) = H2
0 E

2(z) , (1.20)

E2(z) ≡ Ωm (1 + z)3 + ΩΛ (1 + z)3(1+w) + Ωk (1 + z)2 + Ωr (1 + z)4 .

The relevance of each energy component is evidently dependent on time: the Universe
had a radiation-dominated epoch, up to the matter-radiation equality (ρr = ρm) at
aeq, followed by a matter-dominated era. At late times (z ∼ 0), the DE component
ρΛ starts to dominate, starting the DE-dominated epoch and driving the present
day accelerated expansion of the Universe. Note that if we have a Universe and we
populate it with ordinary particles, it will contract under the effect of gravity. If we
instead populate this space with particles having a negative pressure (like DE), the
space will expand, while GR would be still valid: the negative pressure is the cause
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of the accelerated expansion of the Universe. As an example, if we throw an apple
in a DE-dominated Universe, it will not fall, not because there is no gravity, but
because while falling the space in between is expanding.

Figure 1.1: Log-log plot of energy density components of the Universe and their depen-
dence on the scale factor a(t): radiation energy density (red) scales as ∝ a−4, matter energy
density (blue) as ∝ a−3 and dark energy (black dashed) is constant with respect to a(t).
The scale factor is set to unity today (a0 = 1). The present value of the ratio ρ/ρc = Ω is
unity (i.e. ρ0 = ρc, Ω0 = 1).

Figure 1.2: Scale factor as a function of time for different models of the Universe: ac-
celerating Universe, empty Universe, high/critical/low density Universe. Credit: Pearson
Education, Inc. 2011, http://physics.uoregon.edu/
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1.1.7 Hubble’s law

The discovery that the Universe was not static but expanding, by the astronomer
Hubble (1929), can be considered as the dawn of observational cosmology. The
phenomenon of galaxies appearing to recede from us at a rate proportional to their
distance from Earth, can be quantified in terms of redshift of a galaxy spectrum.
In fact, the intrinsic wavelength of light is stretched linearly, due to the expansion
of the Universe, i.e. λ(t) ∝ a(t). More precisely, we can define the cosmological
redshift (or simply redshift) z for relatively nearby objects as

z ≡ λobs
λem

− 1 =
νem
νobs

− 1 =
a(tobs)

a(tem)
− 1 , (1.21)

where λobs and λem are the observed and the emitted wavelengths, respectively, while
νobs and νem are the observed and the emitted frequencies, respectively. If we locate
the observer at today, as a0 = 1, we obtain the relation a = 1/(1 + z).

Hubble’s observations revealed that the light from galaxies which move away
from Earth is shifted toward the red, while the light from galaxies which move toward
Earth is shifted to the blue. This implies that the more distant a galaxy is, the longer
(redder) is the observed wavelength of its emitted light, the greater its redshift is, and
the faster it is moving away from Earth. The mathematical expression for Hubble’s
law is

v = H0D , (1.22)

where v is the galaxy radial recession velocity in km/s, D is the distance between
galaxy and Earth in Mpc and H0 ≡ H(t0) is the value of the Hubble constant
at present time in km s−1 Mpc−1. The Hubble constant is a scaling factor rep-
resenting the today expansion rate of the Universe. It can be also written as
H0 = 100 h km s−1Mpc−1, where h is a dimensionless number. In Fig. 1.3 we show
the original Hubble diagram, displaying the velocities of distant galaxies (in km/s)
with respect to the distance (in parsec). Filled points, whose best fit is the solid
line, are corrected for the motion of the Sun, while open points, whose best fit is the
dashed line, are not corrected for this effect. The slope in the diagram is the Hub-
ble constant itself. After Hubble’s discovery, it was thought that gravity acting on
matter was slowing the expansion of the Universe. In 1998, however, a campaign of
observations of distant Supernovae Ia, carried out with the Hubble Space Telescope
(HST) revealed that the expansion of the Universe was instead accelerating, giving
hints on an unknown component of DE (Garnavich et al. 1998; Schmidt et al. 1998;
Riess et al. 1998b,a; Perlmutter et al. 1999).
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Figure 1.3: The original Hubble diagram (Hubble 1929). Velocities of distant galaxies
in km/s are plotted with respect to the distance in parsec. Solid line is the best fit to the
filled points, which are corrected for the motion of the Sun. Dashed line is the best fit to
the open points, which are not corrected for this effect. As velocity increases linearly with
distance, there is an evident slope, i.e. the Hubble constant. Credit: Hubble (1929).

Finally, the inverse of the Hubble constant defines the Hubble time, i.e. an
estimate of the age of the Universe, which assumes the following value from the
latest Planck data (Planck Collaboration et al. 2013b):

tH =
1

H0
= 13.813± 0.058× 109yr (68%c.l.) . (1.23)

The Hubble radius or length is instead the speed of light times the Hubble time:

rH =
c

H0

= 3.01× 103h−1Mpc = 9.30× 1025h−1m . (1.24)
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1.1.8 Cosmological distances

The expansion of space-time forces us to generalise the Euclidean concepts of dis-
tances. In a flat Universe, photons travelling to us satisfy c dt = a(t) dr. Thus, the
comoving radial distance can be defined as

r = c

∫ t0

t

dt′

a(t′)
= c

∫ z

0

dz′

a0H(z′)
, (1.25)

where H(z) is given by Eq. (1.20).

The angular diameter distance DA is given by the scale factor times the comoving
radial distance

DA(z) = a(z) r =
c

1 + z

∫ z

0

dz′

H(z′)
. (1.26)

This distance will be used in the Alcock-Paczynski effect for the cluster power spec-
trum in our analysis (see Eq. 2.47).

The luminosity distance DL, instead, links the bolometric observable flux F ,
namely the energy per unit time per unit area from the source to the observer, and
bolometric intrinsic luminosity L of the source:

DL =

√
L

4πF
. (1.27)

This means that farther objects appear dimmer. By observing the apparent lumi-
nosity of light sources, whose intrinsic luminosity is known (standard candles), we
can infer the luminosity distance. Moreover, in a FLRW metric and assuming that
light travels on null geodesics, the following relation holds

DL(z) = a0 (1 + z) r = (1 + z)2DA(z) . (1.28)

This method has been applied to Supernovae Type Ia, which we will introduce in
Section 1.3.1.
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1.2 The theory of structure formation

This Section is entirely dedicated to the process of cosmic structure formation. We
first introduce cosmic inflation and its importance in solving the horizon, flatness and
magnetic monopoles problems. Then, we describe the Jeans gravitational instability
theory, which is at the base of the structure formation scenario. We also present the
evolution of density inhomogeneities of cold dark matter and baryons by means of
linearised perturbation equations and their generalisation to an expanding Universe.
Finally, we introduce the power spectrum of density fluctuations as a fundamental
tool for the statistical description of the large-scale structures.

1.2.1 Cosmic inflation

Another key element of our current understanding of structure formation in the Uni-
verse is cosmic inflation (Guth 1981; Sato 1981). The decelerated expansion of the
standard Big Bang scenario during the radiation-dominated and matter-dominated
eras is not sufficient to solve few questions. One of these questions is known as
the horizon problem: it asks why the Universe had almost the same temperature
across the whole sky at t = 300, 000 yrs (as seen from the last scattering surface),
when regions could not have been in causal contact due to the finite speed of light.
Another problem is related to the flatness of the Universe: even if Ω should shift
away from unity in an expanding Universe, present observations suggest that Ω ∼ 1
(i.e. the current density of the Universe is observed to be very close to this critical
value) and thus was most likely very close to unity in the past too. This implies an
accurate fine-tuning of initial conditions, otherwise the Universe would have already
collapsed or expanded too fast to form structures. Finally, the magnetic monopoles

problem refers to the observed absence of magnetic monopoles in the present Uni-
verse: this contradicts the Grand Unified Theories, unifying electromagnetic, strong
and weak forces, which predict magnetic monopoles of about the same abundance
as protons in the early Universe and thus expected to be present today. Therefore,
a rapid epoch of accelerated, exponential expansion in the early Universe of a factor
∼ 1026 in size (∼ 1078 in volume), from t = 10−33 to t = 10−30 s after the Big
Bang, driven probably by a negative-pressure vacuum energy, is theorised to address
these questions. This means that all the observable Universe is originated in a small
causally-connected region. As a consequences of inflation, the Universe grows up
so quickly that there is no time for the homogeneity to be broken, justifying the
smooth temperature distribution of the last scattering surface. Furthermore, the
quick enormous expansion can force Ωk down to zero, or around it, allowing for a
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tiny growth up to the currently observed value. Finally, despite the huge number of
magnetic monopoles in the early Universe, the chances of observing even one are in-
finitesimally small in such an extended Universe. After setting the initial conditions
of the Universe, cosmic inflation amplifies also the tiny quantum fluctuations already
present before inflation, generating the seeds of cosmic structures which then have
been evolving in time till today.

1.2.2 Jeans gravitational instability

Jeans gravitational instability studies are the starting point of our standard
cosmic structure formation scenario. Jeans (1902) investigated the gravitational in-
stability in clouds of gas to explain how stars and planets form. It was proved
that, in a static homogeneous and isotropic background fluid, small perturbations in
density and velocity can occur and evolve in time. In particular, if pressure is negli-
gible, an overdense region tends to become denser because it attracts material from
the surroundings, and eventually collapse into a gravitational bounded system. The
gravitational Jeans instability which causes the region to collapse can be quantified
in terms of the Jeans length of a fluid

λJ = cs

(
π

Gρ

)1/2

, (1.29)

which represents the length scale to exceed (i.e. λ > λJ) for the fluctuations to grow,
where G is the gravitational constant, cs the speed of sound and ρ the background
fluid mean density. In the case of λ < λJ, instead, fluctuations oscillate as acoustic
waves. This simple theory can be generalised to an expanding cosmological model,
with the additional complications of a matter density which decreases with time
(ρ ∼ G−1t−2) and a slower growing of perturbations, alternatively in accreting and
decaying modes.

1.2.3 Evolution of inhomogeneities

Before the decoupling of photons from baryons, radiation pressure and gravitational
collapse of matter competed with each other, producing oscillations of the baryon-
photon plasma, known as Baryon Acoustic Oscillations (BAO, see Section 1.3.2). On
the other hand, cold dark matter (CDM) inhomogeneities, by means of gravitational
interaction only, could start to condensate and grow: the gravitational Jeans insta-
bility for dark matter (DM) particles allowed compact structures to form because it
was not constrained by any force, such as radiation pressure. After recombination,
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Figure 1.4: Evolution of density perturbations in cold dark matter δX, baryonic matter
δm and radiation δr components, at mass scale M ∼ 1015M⊙, in a Universe with Ω = 1,
h = 0.5. Credit: Coles & Lucchin (1995).

when baryons decoupled from radiation, the first local overdensities in the baryon
density field could form and accrete in amplitude, because no radiative pressure
could counteract the gravitational collapse anymore. The baryonic matter collapsed
directly into the potential wells already created by the DM, forming structures much
faster than it would have done without the presence of DM itself. Without DM, in
fact, stars and galaxies formation would have occurred much later in the Universe
than is observed. Even if, at this point, we can treat the evolution of perturba-
tions in baryons and DM with the same physics description, the power spectrum
of fluctuations in baryonic matter and DM are quite different. In particular, BAO
dominate the baryon density power spectrum at early times, while their signature is
almost negligible in the DM distribution. We will describe mathematically the evo-
lution of perturbation in Sections 1.2.4 and 1.2.5. Fig. 1.4 exhibits the evolution of
density perturbations in CDM δX, baryonic matter δm and radiation δr components,
at a mass scale of M ∼ 1015M⊙, in a Universe with Ω = 1, h = 0.5. It is clearly
shown how the perturbation in the baryon-photon fluid oscillates before decoupling,
and how it grows rapidly to match the dominant dark matter perturbation, after
decoupling.
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1.2.4 Linearised perturbation equations

In order to describe quantitatively the evolution of the density perturbations, it is
useful to introduce the dimensionless density contrast as

δ(~x, t) =
ρ(~x, t)− ρ̄(t)

ρ̄(t)
, (1.30)

where ρ(~x, t) is the matter density field as function of comoving coordinate ~x and
time t, while ρ̄(t) is the average density of the Universe as a function of time t. The
most common representation of this quantity is however in Fourier space:

δ(~x, t) =

∫
d3k

(2π)3
δ̂(~k, t) e−i

~k·~x , δ̂(~k, t) =

∫
d3x

(2π)3
δ(~x, t) ei

~k·~x . (1.31)

It is also useful to define the power spectrum P (k) and its dimensionless expression
∆(k) as

P (k) ≡ 〈|δ(~k, t)|2〉 , ∆2(k) ≡ k3 P (k)

2π2
. (1.32)

If δ(~x, t) is a Gaussian random field, then P (k) completely describes the statistics of
the perturbations field. We will examine the properties of this useful statistical tool
in Section 1.2.6.

If we assume that matter (DM + baryonic) is accreting only via gravitational
interactions, we can use the ideal fluid approximation. The evolution of primordial
fluctuations can be described in the linear regime, if perturbations are small, i.e.
|δ(~x)| << 1. The set of linearised fluid equations is the following:

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 Continuity equation (conservation of mass)

∂~u

∂t
+ (~u · ~∇)~u+

1

ρ
~∇P + ~∇Φ = 0 Euler’s equation (conservation of momentum)

∇2Φ− 4 πGρ = 0 Poisson’s equation,

where ρ = ρ(~x, t) is the density, ~u(~x, t) is the flow velocity, ~∇ is the gradient of a
scalar field or the divergence of a vector field with respect to the spatial component,
∇2 is the Laplace operator (i.e. the divergence of the gradient), Φ is the gravitational
potential. The static solution of this system of equations is ~u0 = 0, ρ0 constant. The
latter can be perturbed as ρ = ρ0 + δρ, P = P0 + δP , ~u = ~u0 + δ~u, Φ = Φ0 + δΦ:
then the system can be recast into a single second order differential equation in δρ
and solved.
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1.2.5 Perturbation equations in an expanding Universe

If we want to extend this framework to an expanding Universe, then the above
equations expressed in δ (see Eq. 1.30) would be the following:

∂δ

∂t
+

1

a
~∇ · [(1 + δ) ~u] = 0

∂~u

∂t
+
ȧ

a
~u+

1

a
(~u · ~∇)~u+

1

a
~∇Φ = 0

∇2Φ− 4πGρ a2δ = 0 .

By assuming small perturbations and keeping only linear terms in δ, we obtain the
following linearised set of equations:

∂δ

∂t
+

1

a
~∇ · ~u = 0

∂~u

∂t
+
ȧ

a
~u+

1

a
~∇Φ = 0

∇2Φ− 4πGρ a2δ = 0 .

The time evolution of linear matter density perturbations δ in an expanding back-
ground fluid, neglecting radiation and DE contributions, can be finally reformulated
in a single equation as

δ̈ + 2Hδ̇ = 4πGρ̄δ +
c2s∇2δ

a
. (1.33)

This represents a damped wave equation: on the left-hand side, the drag term in-
cluding the Hubble parameter suppresses the growth of the perturbation; on the
right-hand side, gravity and pressure act one against the other. Here cs =

√
∂P/∂ρ

is the adiabatic sound speed. Solution to Eq. (1.33) are given as

δ(~k, t) = δ+(~k, t)D+(t) + δ−(~k, t)D−(t) , (1.34)

given that D+ and D− correspond to the fluctuations growing and decaying modes,
respectively. In the case of a collisionless fluid in a flat Universe with Ωm < 1, the
growing mode is given by:

D+(z) =
5

2
ΩmE(z)

∫ ∞

z

1 + u

E3(u)
du , (1.35)

where E(z) is defined as in Eq. (1.20). This redshift dependent quantity is very sensi-
tive to cosmology and complementary to other probes such as luminosity and angular
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Figure 1.5: The growth factor D(z) theory curve for different values of cosmological
parameters, normalised at 1 for z = 0. Left panel: at fixed w = −1.0, we plot D(z) for
Ωm = 0.2, ΩΛ = 0.8 in green; for Ωm = 0.3, ΩΛ = 0.7 in blue; for Ωm = 1.0, ΩΛ = 0.0
in red. Right panel: at fixed Ωm = 0.3, ΩΛ = 0.7, we show D(z) for w = −0.5 in green,
w = −0.75 in blue, w = −1.0 in red.

distances. Fig. 1.5 shows the sensitivity of the growth factor D+(z) to the variation
in Ωm, ΩΛ and w. In the left panel we show the growth function at fixed w = −1.0,
for varying Ωm = {0.2, 0.3, 1.0}, ΩΛ = {0.8, 0.7, 0.0} in green, blue and red curves
respectively: the more matter is present, the steepest the curve is, meaning that the
formation of structure is more rapid but occurs later (at lower z). A similar effect
can be seen for a decreasing value of w, in the right panel: here we show, in fact, the
growth function at fixed Ωm = 0.3, ΩΛ = 0.7, for varying w = {−0.5,−0.75,−1.0}
in green, blue and red lines respectively.

We can model the growth of structures as a function of the cosmic time by
parametrizing the linear growth rate of density perturbations on large scales, f(a),
as follows:

f(a) ≡ d ln δ

d ln a
≃ Ωγm(a) , (1.36)

where Ωm(a) = Ωma
−3E(a)−2, δ ≡ δρm/ρm is the ratio of the comoving matter den-

sity fluctuations with respect to the mean density of the Universe and γ is called
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growth index (see Peebles 1980, 1993; Linder 2005). The growth index allows us
to distinguish GR from modified gravity theories which can mimic the expansion
history of the ΛCDM model. Several of these models predict a time and scale de-
pendent growth index, i.e. γ(a, k). It was obtained γ = 6/11 ≃ 0.55 for ΛCDM
(Wang & Steinhardt 1998), and, for example, γ = 11/16 in the Dvali et al. (2000)
(DGP) braneworld modified gravity model (Linder & Cahn 2007).

Non linear interactions between baryonic matter, dark matter and dark energy
become important when perturbations are not small anymore, i.e. |δ(~x)| ∼ 1.
The complex evolution of structure formation in this regime can be studied only
with numerical simulations (Kuhlen et al. 2012), such as the Millennium Simulation
(Springel et al. 2005), and Millennium XXL (Angulo et al. 2012, 2013). Note also
that for perturbations on large scales, the simple Newtonian approach we introduced
is not valid anymore and we should perturb FLRW metric as gµν = g0µν + hµν , where
|hµν | << gµν .

1.2.6 Power spectrum of density fluctuations

The power spectrum of density fluctuations is an extremely useful tool for the sta-
tistical description of the large-scale structures in general. A correlated quantity is
σ2(M, z), namely the variance in mass of the density fluctuation field, within identi-
cal volume elements corresponding to 1/k length scale, in a linear evolution regime.
To obtain an expression of σ2(M, z), we need to define the filtered density contrast
by convolving it with a window function WR as

δR(~x, t) = δM(~x, t) =

∫
d3x′ δ(~x′)WR(|~x− ~x′|) , (1.37)

where R = R(M) = (3M/4πρ̄m)
1/3 is the characteristic length scale below which we

smooth out all the fluctuations, and WR(x) is usually the spherical top-hat window
function in real space

WR(|~x− ~x′|) =
{

1, if |~x− ~x′| < R,
0, otherwise.

(1.38)

This leads to the definition of the variance of the density field:

σ2(M, z) ≡ σ2
M(z) ≡ σ2

R(z) =
1

2π2

∫ ∞

0

dk k2 P (k, z) |ŴR(k)|2 , (1.39)
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where ŴR(k) is the Fourier Transformation (FT) of the top-hat filter function of R,
given by

ŴR(k) =
3[sin(kR)− kR cos(kR)]

(kR)3
. (1.40)

Here P (k, z) is the power spectrum of linear, independently evolving fluctuations,
which can be expressed as

P (k, z) = Pin(k) T
2(k)D2(z) , (1.41)

where Pin(k) is the primordial power spectrum, T (k) in known as the transfer function
(Eisenstein & Hu 1998) and D(z) is the linear growing mode defined in Eq. (1.35).
The power spectrum at primordial times is usually described by a power law as
Pin(k) = As k

ns. Here ns the primordial scalar spectral index, which is observed to be
close to unity (Spergel et al. 2007), in agreement with inflationary models predictions
(Harrison 1970; Zeldovich 1972), and As is the amplitude of the primordial power
spectrum, which is by definition related to σ2. The transfer function is carrying
all scale-imprinting effects that modified the linear form of the primordial power
spectrum during its evolution to the present day:

T (k) =
δk(z = 0)

δk(z)D(z)
, (1.42)

z being here large enough for δk(z) to mimic the original power spectrum. The scale
keq = (2ΩmH

2
0 zeq)

1/2 in the CDM model, which corresponds to the transition be-
tween the radiation-dominated phase and the matter-dominated epoch, breaks the
transfer function shape: perturbations on small scales (k > keq) are suppressed in am-
plitude (Meszaros effect), while they can grow on larger scales (k < keq). Effectively,
T (k) ∝ k−2 for k ≫ keq and T (k) ∼ 1 for k ≪ keq. As a consequence, for higher
Ωm perturbations are suppressed earlier and the peak of the matter power spectrum
shifts to higher k. On small scales, dissipative processes from baryon-photon inter-
actions leave their imprint (Silk damping, Silk 1968): the more baryons, the more
damped the transfer function is. Finally, BAO appear in the transfer function as well:
the position and amplitude of the wiggles depend on the amount of baryons and DM.

If the features of the power spectrum can be theoretically inferred, the normal-
isation has to be determined observationally. The latter is generally parametrised
by the quantity σ8, which is the variance defined in Eq. (1.39) having comoving ra-
dius R = 8 h−1Mpc. This was motivated by Davis & Peebles (1983) results on early
galaxy surveys, who found the variance of the galaxy number density on this scale
to be about unity.
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1.3 Cosmological probes

In this Section we summarise the main cosmological probes which enable us to mea-
sure cosmological parameters. Here we introduce the Supernovae Type Ia (SNIa),
the Baryon Acoustic Oscillations (BAO) and the Cosmic Microwave Background
(CMB), which respectively place constraints on ΩΛ, Ωb and Ωk. The constraining
power of a single cosmological probe is generally too weak to constrain simultane-
ously all cosmological parameters. However, by combining different probes, it is
possible to place tight constraints on the cosmological parameters, to break degen-
eracies between them and reduce uncertainties. We will see the results obtained from
the combination of these probes together with clusters of galaxies in Section 1.5.1.

1.3.1 Supernovae Type Ia

SNIa are thought to be the result of white dwarfs which accrete and explode upon
reaching the Chandrasekhar mass limit. This process enable the Supernovae to have
a characteristic intrinsic luminosity, which can be standardised empirically: thus,
SNIa are potentially independent distance estimators, i.e. standard candles. Other
types of Supernovae, instead, have more complex collapsing processes and different
intrinsic luminosities, being thus less standardisable. In Fig. 1.6 we show the SNIa
observations from the Supernova Cosmology Project and High-Z Supernova Search
(high z) and from Calan/Tololo Supernova Survey (Hamuy et al. 1993, 1995) (low
z), on a logarithmic redshift scale. The apparent magnitude of SNIa is proportional
to the luminosity distance, which is associated to the redshift of the host galaxy.
The measured luminosity distance can be compared to the theoretical prediction
(see Eq. 1.27) to constrain Ωm, ΩΛ and discriminate between different cosmological
scenarios. In fact, here the SNIa observations are compared to few cosmological
model: data are strongly inconsistent with Λ = 0 models and favour models with
Λ > 0 (Perlmutter 2003). While high-redshift SNIa reveal that the Universe is
now accelerating (Riess et al. 1998a; Perlmutter et al. 1999), nearby ones provide
the most precise measurements of the present expansion rate, H0. The most precise
measurement of H0 comes from the luminosity calibration of nearby SNe Ia through
Hubble Space Telescope observations of Cepheids in their host galaxies, carried on
by the SH0ES program. With this method, Riess et al. (2011) obtained a value of
the Hubble constant of H0 = (73.8± 2.4) km s−1Mpc−1 (68% c.l.), including system-
atics. The combination of this result alone with the WMAP DR7 (see Section 1.3.3)
constraints yields w = 1.08± 0.10 (68% c.l.).
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Figure 1.6: Hubble diagram from SNIa, showing the apparent magnitude on a logarith-
mic redshift scale for nearby (Calan/Tololo Supernova Survey) and distant (Supernova
Cosmology Project, High-Z Supernova Search) Type Ia Supernovae. At redshifts beyond
z = 0.1, the cosmological predictions start to diverge, depending on the assumed cosmic
densities. The red curves represent models with zero vacuum energy and mass densities
from the critical density down to zero. The best fit (blue line) assumes a mass density of
about ρc/3 plus a vacuum energy density of about 2ρc/3, implying an accelerating cosmic
expansion. Credit: Perlmutter (2003).

1.3.2 Baryon Acoustic Oscillations

Prior to the decoupling phase of the Universe, when photons were scattered by
electrons through Thomson scattering, radiation pressure opposed the gravitational
collapse of matter, generating pressure waves, known as BAO. These oscillations left
a signature in the distribution of matter on very large scales and in the features
of CMB anisotropies (Hu & Dodelson 2002). This signature has been measured by
galaxy surveys as an overdensity of galaxies at a characteristic comoving scale of
100h−1 Mpc. For example, Fig. 1.7 shows the statistically significant bump on this
comoving scale, revealed only by models which include baryons. This was obtained
by Eisenstein et al. (2005), who measured the redshift-space correlation function ξ(s)
of the Luminous Red Galaxies from the Sloan Digital Sky Survey (see Section 3.2),
with median redshift z = 0.35, as a function of the comoving separation s.
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Figure 1.7: The measured galaxy redshift-space correlation function of the SDSS LRG
sample as a function of the comoving separation. The green, red and blue curves represent
respectively models with Ωmh

2 = {0.12, 0.13, 0.14}, for fixed Ωbh
2 = 0.024 and ns = 0.98.

The magenta line shows a pure CDM model (Ωmh
2 = 0.105), with no evidence of an

acoustic peak. Credit: Eisenstein et al. (2005).

1.3.3 The Cosmic Microwave Background Radiation

In 1964, the radio-astronomers Arno Penzias and Robert Wilson, accidentally dis-
covered one of the most significant evidence of the Big Bang model: the existence
of the CMB. Its presence probes that the Universe evolved from a hot ionised state
where baryons and photons were strongly coupled. As the early Universe was ex-
panding, the photon-baryon plasma cooled down to the temperature of T ∼ 3000K,
when baryons decoupled from photons to form neutral hydrogen. Photons could
then free stream to us and be observed as the CMB. As photons from the last
scattering surface have interacted weakly with ordinary matter, the CMB is a rep-
resentative picture of the Universe when it was just 380,000 years old (z ∼ 1100).



22 1. Introduction

The CMB appears to us as an isotropic radiation filling the whole Universe in all
directions, with a characteristic black body spectrum at the temperature of approx-
imately TCMB = 2.73K. According to the cosmological principle, the Universe, and
thus the CMB, is approximately isotropic and homogeneous on those large scales.
More accurate investigations and more recent measurement, such as the ones by the
COBE (Boggess et al. 1992; Smoot et al. 1992), WMAP (Bennett et al. 2013) and
Planck (Planck Collaboration et al. 2013a) satellites show the presence of tiny tem-
perature irregularities (see Fig. 1.8): these correspond to regions of slightly different
densities, which represent the seeds of all structures we see today. More precisely,
it has been observed that the distribution of the CMB is isotropic to the precision
of 10−3: the background (monopole, l = 0) appears completely uniform at a tem-
perature of 2.73 K. Most of the residual anisotropy is due to the dipole anisotropy
(l = 1, ∼mK), caused to the Doppler effect from the motion of the Sun with respect
to the background radiation and the primordial anisotropy (l ≥ 2, ∼ µK), due to a
scattering effect and a gravitational effect (Sachs-Wolfe effect, Sachs & Wolfe 1967).
After subtracting all these contributions (including Milky Way emission visible in
the central part of the map), we are left with density fluctuations of

∆T

T
=

∆ρm
ρm

≈ 10−5 . (1.43)

Note that the equality here between temperature and density fluctuations holds only
if perturbations are adiabatic.

Statistical properties of the CMB are represented by the temperature power spec-
trum as a function of angular wavenumber l (small l correspond to large angular
scales). The CMB power spectrum is a measure of the anisotropy power on different
angular scales: the sky is divided up into polar coordinates and the observed temper-
ature field is decomposed into spherical harmonics. The theoretical prediction of the
CMB temperature power spectrum is related to the energy contents of the Universe
and can be used to constrain cosmological parameters, by comparing with observed
data. The CMB gives us information about the early Universe (z ∼ 1100), being
less sensitive to the late Universe, as photons interact rarely with matter. The CMB
anisotropies has been measured by COBE, WMAP, and more recently by Planck,
South Pole Telescope and Atacama Cosmology Telescope up to l ∼ 3000. For the
cosmological analysis presented in this work, we include the CMB spectra measured
by WMAP, for which we now provide some description.
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Figure 1.8: The anisotropies of the CMB as observed by Planck satellite. Cold spots are
in blue, while hot are in red. Copyright ESA and the Planck Collaboration.

Wilkinson Microwave Anisotropy Probe

TheWMAP1 is a NASA Explorer mission which collected a huge amount of data, now
fully analysed to obtain important cosmological achievements. Charles Bennett and
the WMAP team won the 2012 Gruber Cosmology Prize because of these published
results. The WMAP instrument is composed of cooled microwave radiometers, with
1.4 × 1.6 meter diameter primary reflectors, in five frequency bands (22-90 GHz)
to allow the separation of the foreground signals from the CMB. WMAP measures
the temperature difference between two points in the sky to an accuracy of 10−6

degree: this means also that systematics have been carefully handled. The main
achievement of this project has been the first fine-resolution (0.2 deg) full-sky map
of the microwave sky. In addition to this, the inflationary model has been supported,
as well as the Gaussian distribution of temperature fluctuations. Furthermore, the
following constraints on cosmological parameters have been placed : the age of the
Universe is 13.77 billion years old, within a 0.5%; the curvature of space is zero
within 0.4%; the Universe contents are baryons (4.6%), dark matter (24.0%) and
dark energy (71.4%). In our cosmological analysis, we include the CMB spectra
from the WMAP Data Release 7, whose detailed cosmological results have been
published by Komatsu et al. (2011). Fig. 1.9 shows the CMB temperature power

1http://map.gsfc.nasa.gov/
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Figure 1.9: The 7-year temperature (TT) power spectrum from WMAP. The curve is
the CDM model best fit to the 7-year WMAP data: Ωbh

2 = 0.02270, Ωch
2 = 0.1107,

ΩΛ = 0.738, ns = 0.969. The plotted errors include instrumental noise. The grey band
represents cosmic variance. Credit: Larson et al. (2011).

spectrum l(l+1)Cl/2π as a function of multipole l (l = π/θ) as measured by WMAP
DR7 (Larson et al. 2011). The locations and shapes of the first (l ∼ 200) and second
peak (l ∼ 500) has been detected with high precision, while the third peak (l ∼ 800)
is less constrained. The first peak location corresponds to the size of the sound
horizon at the last scattering surface. As we can measure the distance to the last
scattering surface, knowing the redshift of the CMB, we can locate a point in the
Hubble diagram with very high accuracy, and probe the geometry of the Universe.
This method measures the Universe to be spatially flat Ωk ∼ 1. The other peaks
instead represent combinations of Ωr, Ωb, Ωm. The cosmology results of WMAP DR9
have recently been published (Hinshaw et al. 2013).
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1.4 Galaxy Clusters

Clusters of galaxies are a particularly rich source of information about the underlying
cosmological model. They are the largest and most recent collapsed objects in the
Universe. Studies of their evolution and properties can place strong constraints on
the growth of structures and on the current cosmological paradigm. Here we briefly
describe the history of galaxy clusters observations, their main constituents and
observables, their formation process and their role as cosmological probes.

1.4.1 History of galaxy clusters observations

Galaxy clusters were discovered quite early in the history of modern astronomy
by Messier (1784) and Herschel (1785), independently. The extragalactic nature
of these objects was only later confirmed and galaxy clusters were considered as
proper physical objects. Their nature was not recognised until the 1930’s, when the
dynamical analysis of Zwicky (1937) and Smith (1936) enable the first estimation of
their mass. They showed the evidence for much more gravitational material than
indicated by the stellar content of the galaxies in the cluster alone, giving the first hint
of DM in the Universe. This was later confirmed by measurements of cluster masses
using the velocity distribution of the galaxies by means of the Viral Theorem2 (Rood
1974b,a). Then, the studies on galaxy clusters were extended to several aspects:
origin and evolution, dynamical properties, distribution and characterization of the
galaxies inside a cluster. Large catalogues of clusters (Abell 1958; Zwicky et al.
1968) based on eye estimates of the number of galaxies per unit solid angle were
developed. The first all sky X-ray survey with the Uhuru satellite (Giacconi et al.
1972) confirmed that many clusters were spatially extended X-ray sources. More
recently, the discovery of hot high-redshift clusters by Bahcall & Fan (1998) was the
first suggestion of a DE component. Finally, last decades experienced the birth of
numerous surveys in all wavelengths and an exponential increase of publications on
galaxy clusters. More details about these latest scientific results will be covered in
Chapter 3.

2The Virial Theorem states that, for a stable, self-gravitating, spherical distribution of objects
of same mass, it holds Ek = −1/2Ep, where Ek is the total kinetic energy of the objects and Ep is
the total gravitational potential energy.
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1.4.2 Main features, components and observables

Clusters typically have masses of 1013-1015M⊙, sizes of the order of few Mpc, velocity
dispersions of 800-1000 km/s and X-ray luminosities of 1043-1045 erg/s. Clusters of
galaxies are typically larger than groups and contain about 50 to 1000 members:
this limits assign the denomination of rich and poor cluster, respectively. We can
also distinguish clusters between regular, which are spherical with a central region
of higher density, and irregular ones, which are instead not spherical and without a
unique dense central region. Phenomenologically clusters are composed of:

- Galaxies (2-5%), which contain the condensed baryonic matter in the form of
stars and cold gas. The typical population is composed of old and passive (red
and dead) galaxies, which ended their star formation at z > 2 and which sit
on a red-sequence locus in a colour-magnitude diagram.

- Intra-Cluster Medium (ICM) (11-15%), which mainly consists of hydrogen
and helium, represents most of the baryonic matter in a highly ionised form and
low density (∼ 10−3atoms/cm3). As a matter of fact, the ICM reaches tem-
perature of approximately 108K to balance the gravitational pull of the DM
potential well, and emits in the X-ray band. The main X-ray emission pro-
cesses from ICM are collisional: thermal Bremsstrahlung (free-free emission),
recombination (free-bound emission), line radiation (bound-bound emission).
The emissivity of the Bremsstrahlung mechanism is stronger in the densest
innermost regions because is proportional to the squared number density of
particles.

- Dark Matter Halo (80-87%): it follows a universal distribution known as the
Navarro-Frenk-White (NFW) profile (Navarro et al. 1997), which depends on
the central density and scale radius (see Section 2.1.2).

- Intra-Cluster light: it is the optical light from stars which are gravitationally
bounded to the cluster itself.

As a consequence, they are accessible by multiple signals, across the whole electro-
magnetic spectrum. Fig. 1.10 shows the superposition of three views of the galaxy
cluster Abell 520. The optical view represents the galaxy population; the hot ICM is
captured in red in the Chandra X-ray Observatory image; finally, the gravitational
lensing image is instead highlighting the collisionless core of DM component in blue.
In general, the galaxy population and the intra-cluster light are visible in optical
and near-infrared bands. The hot ICM is instead detected by the strong X-ray
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Figure 1.10: Composite image of three views of the galaxy cluster Abell 520. The optical
view shows the galaxies bound together by gravitational force. Diffuse, hot gas in between
the galaxies emits X-rays: this is shown in red in the Chandra X-ray Observatory image.
Gravitational lensing image is representing, instead, the collisionless core of dark matter
component in blue. Credit: X-ray: NASA/CXC/UVic./A.Mahdavi et al.; Optical/Lensing:
CFHT/UVic./A.Mahdavi et al..

emission, while at radio frequencies, synchrotron emission from relativistic electrons
can be detected and provide information on the intra-cluster gas. Furthermore, at
millimetre wavelengths, high-density regions within clusters cause distortions of the
CMB spectrum by inverse Compton scattering, namely the Sunyaev-Zel’dovich (SZ)
effect (Sunyaev & Zeldovich 1972): the low-energy CMB photons enhance their en-
ergy because of the collision with the high energy ICM electrons, causing a local
frequency-dependent shift in the CMB spectrum observed through the cluster. This
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effect is used to detect clusters with no redshift limitation and is quantified by the
Compton y-parameter, i.e. the electron pressure integrated along the line of sight l:

y =

∫
kBTX(l)

c2me
ne(l)σTdl . (1.44)

Here kB is the Boltzmann constant, TX is the X-ray temperature, me and ne are
the electron mass and number density respectively, σT is the Thomson cross-section.
More practically, the quantity which is usually measured is the projection on the
cluster area dA, namely the integrated Compton parameter YSZ ∝

∫
ydA. Finally,

strong features are also detected in the gravitational lensing shear field, which gives
information about the DM halo (see Section 2.1.3).

1.4.3 Cluster mass proxies

One of the key issues in the study of galaxy clusters is the determination of their
true mass. Cluster total masses cannot be directly determined from observation, but
instead they have to be deduced from some observational properties, called mass
proxies, which correlate with the true mass via the so-called scaling relations.
Various mass proxies in different wavelength and associated systematics have been
used so far to determine the mass of clusters from observations, via the respective
scaling relations and scatter around them. Here we only list the most common ones:

i) the optical richness, i.e. number of red galaxies within R200: N200 (Rozo et al.
2010) - this is the observable throughout all our analysis;

ii) the line-of-sight velocity dispersion: σv, which is related to the total mass as
(Longair 2008) M ∝ σ2

vRvir, where Rvir is the virialization radius;

iii) the X-ray temperature, bolometric luminosity, gas mass, gas total thermal
energy;

iv) the integrated SZ parameter at mm wavelength.

Note that another valid technique to measure cluster masses is gravitational lens-
ing: it uses the distortions of background galaxies images caused by the space-time
deformation, which is induced by the cluster halo mass.
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1.4.4 Formation of galaxy clusters

Formation and evolution of clusters of galaxies trace directly the hierarchical growth
of structures in the Universe. The first objects which start to collapse and virialize,
deviating from the Hubble flow, have sub-galactic sizes. Then, these structures merge
to originate the galaxies, which analogously can form galaxy clusters by merging.
Fluctuations inside a region grow until they balance the local expansion: at this
point, the expansion of the region is slowed down till it reaches a maximum radius.
Having no more kinetic energy but only gravitational potential energy, the region
collapses: baryons fall into the gravitational potential wells produced by the DM and
potential energy is converted into kinetic one. This brings the gas to thermalisation,
thus producing the hot plasma. When the Virial Theorem condition is satisfied,
the dynamical equilibrium is reached. The kinetic energy of the galaxies moving
randomly inside the cluster furnishes a pressure which counteracts the gravitational
attraction: this gives stability to the cluster.

1.4.5 Clusters as cosmological probes

As in GR the geometry of the Universe is fully described by the total energy content
(see Eq. 1.5), one can study the structure of the Universe by testing the geometry
by means of probes such as SNIa, BAO and CMB. Alternatively, it is possible to
test both the geometry and the structure with different probes and then compare
the constraints. Clusters of galaxies are fundamental because they provide both an
independent measure of cosmological parameters with different systematics to the
CMB, SNIa and BAO, and a probe of the growth of structures. In particular, galaxy
clusters are used to test cosmology my measuring their mass function, namely the
number density of clusters as a function of their mass and redshift. The precise
determination of the mass function and its evolution can place constraints on the
energy components of the Universe. As an example, we show in Fig. 1.11 an early
result for the cluster mass function obtained by Bahcall & Cen (1992). The optical
data are based on richness, velocities and luminosity function of clusters, while the
X-ray data refer to the temperature distribution of clusters. Here the observations
of optical and X-ray galaxy clusters are compared with expectations from different
cosmologies using CDM large-scale (box size of 400h−1Mpc) simulations. The com-
parison shows that the cluster mass function is a powerful discriminant among mod-
els: the Ωm = 1 model cannot reproduce the observations for any bias parameter. In
fact, when normalised to the COBE CMB fluctuations on large scales (Smoot et al.
1992), this model predicts a much larger number of massive clusters then is ob-
served. On the other hand, a low-density CDM model, with Ωm = {0.25, 0.35} and
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Figure 1.11: Cluster mass function observations of optical and X-ray data, compared
with CDM simulations. A model with Ωm = {0.25, 0.35} (with or without a cosmolog-
ical constant), appears to match the observations. The Ωm = 1 model, instead, fails in
reproducing data. Credit: Bahcall & Cen (1992).

bias b = {1.0, 1.3}, with or without a cosmological constant, appears to fit well the
observations. Precise observations of large numbers of clusters have later provided
an important tool for understanding better their abundances. The full theoretical
derivation, numerical calibration and discussion on the cosmology dependence of the
mass function are provided in Section 2.2. In addition to a predicted mass function
and a well-determined relation between the true cluster mass and the observable, a
cluster experiment needs a large, clean, complete survey with a well-defined selection
function. We list the main X-ray, millimetre, weak lensing and optical cluster surveys
in Section 3.1. Complementary to the abundances, the clustering of galaxy clusters,
i.e. their spatial distribution at z = 0 and its evolution to higher redshifts, contains
fundamental information on the underlying matter distribution as well. We give a
detailed description of the cluster power spectrum and its cosmology dependence in
Section 2.4.

Detailed theoretical modelling of clusters is a complicated astrophysics problem
involving a variety of physical phenomena. Useful tools in this regards are numerical
simulations. While the pure gravitational interactions of DM particles can be treated
in a linear regime and their behaviour is well described, baryonic physics is far more
complex, non-linear and involves hydrodynamical processes.
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1.5 ΛCDM standard model

Several observations over the past decades confirmed that the Universe is experienc-
ing a phase of cosmic acceleration, driven by a dark form of energy with negative
vacuum pressure. Perlmutter et al. (1999) with SNIa, Allen et al. (2004, 2008) with
clusters of galaxies, Eisenstein et al. (2005) with Large-Scale Structure (LSS) and
Komatsu et al. (2011) with the CMB, independently confirm the accelerated expan-
sion epoch which is currently ongoing. Therefore the concordance Lambda Cold
Dark Matter (ΛCDM) cosmological model has been formulated. It affirms that
the Universe is composed of:� ∼ 5% of ordinary baryonic matter Ωb, mainly made up by hydrogen atoms (∼

75%), Helium atoms (∼ 25%), while heavier elements are only a tiny fraction;� ∼ 25% of unknown (dark) form of matter Ωcdm, made up by species of sub-
atomic particles that interact almost only gravitationally (and not electromag-
netically) with ordinary matter, being thus totally collisionless;� ∼ 70% of unknown (dark) form of energy ΩΛ, responsible of the late time
accelerating expansion;� a radiation component Ωr, which is negligible today, as Ωr/Ωm ≃ 1/3250.

There are few probes of the existence of the DM component. One is related
to the rotation curves of galaxies (see Fig. 1.12 and Freeman 1970) which do not
reveal a Keplerian decline (namely the squared velocity is not proportional to the
inverse radius), giving evidence of an undetected matter component. Furthermore,
the gravitational lensing in galaxy clusters shows a mismatch between the amount of
normal matter and the estimated total mass. In addition to this, the evidence of the
collisionless nature of dark matter has been observed in few objects (e.g. the ’bullet
cluster’ in Markevitch et al. 2004; Clowe et al. 2004). A fundamental property of
DM is that it is non-relativistic (i.e. cold): this is necessary to explain the struc-
ture formation model currently accepted. Possible candidates for a DM particle are
provided by theoretical particle physics, e.g. Weakly Interacting Massive Particles
(WIMPSs), which are massive particles interacting through the weak nuclear force
and gravity.

The simplest way to define the DE dominant component is a positive value of
the cosmological constant Λ introduced in Einstein field equations, with constant
equation of state w = −1. However, few problems arise from this choice. First of all,
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Figure 1.12: Rotation curve of galaxy NGC 6503: the data points with error bars are
the observed velocities, the disk stars contribution is shown by the dashed line, while the
contribution of the gas is represented by the dotted line. As Freeman (1970) first noticed
that the expected Keplerian decline (i.e. v2 ∝ r−1) was not present in NGC 300 and M33
galaxies, also here there is clear evidence of an undetected dark matter halo component,
with density ρDM(r) ∝ r−2. Credit: Kamionkowski (1998).

the cosmological constant problem appears if we associate Λ to the vacuum energy,
i.e. the background energy in absence of matter: the observed cosmological constant
is smaller by a factor of ∼ 10120 than the value for the vacuum energy predicted by
quantum field theories. In addition to this, the coincidence problem asks why we
live at the special epoch where DE density is approximately equal to matter density.
Numerous alternative theories try to explain the nature of this constituent (e.g.
quintessence,...). For example, by assuming that the equation of state of DE evolves
in time, we obtain w(z) = w0+w

′z (Maor et al. 2001; Weller & Albrecht 2001, 2002),
which diverges at high redshift, or w(z) = w0 + w1 z/(1 + z) (Chevallier & Polarski
2001; Linder 2003). Alternatively, modification of gravity can be performed: they do
not invoke a new form of energy, but instead introduce new physics which modifies
Einstein’s equations on large scales (e.g. Dvali et al. 2000).
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1.5.1 Cosmological constraints from observations

For completeness, we now list the main cosmological parameters in the concordance
ΛCDM model, which govern the global properties of the Universe and the spectrum
of the initial density perturbations, together with their current constraints from the
latest Planck mission (Planck Collaboration et al. 2013b) (see Table 1.2).

Symbol Definition Constraint

ωb = Ωbh
2 Baryon density 0.02214±0.00024

ωcdm = Ωch
2 Cold Dark Matter density 0.1187±0.0017

Ωk Spatial curvature -0.0005+0.0065
−0.0066

ΩΛ Dark Energy density 0.692±0.010
ln(1010As) Primordial pert. amplitude 3.091±0.025

σ8 RMS matter fluctuations 0.826±0.012
w Constant EoS of Dark Energy -1.13+0.23

−0.25

τ Reionization optical depth 0.092±0.013
ns Primordial scalar spectral index 0.9608±0.0054∑
mν Sum of the neutrino masses in eV <0.230

Neff Effective number of neutrino-like species 3.30+0.54
−0.51

H0 Hubble constant 67.80±0.77
t0 Age of the Universe (Gyr) 13.798±0.037
zre Redshift of half-reionization 11.3±1.1

100θ∗ 100 × angular size of sound horizon 1.04162±0.00056

Table 1.2: List of the main cosmological parameters of ΛCDM model, together the con-
straints from Planck+WMAP+highL+BAO (Planck Collaboration et al. 2013b) for the
following models: six parameter base ΛCDM model and derived parameters (blue, 68%
limits) and extensions to the base ΛCDM model (green, 95% limits).

We conclude this Chapter by highlighting the constraining power on cosmolog-
ical parameters of clusters of galaxies: in combination with other probes, such as
SNIa, BAO and CMB, some parameters degeneracies can be broken and the errors
tightened.
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Ωm − σ8 constraints

Constraints on Ωm−σ8 plane were investigated by Mantz et al. (2010) comparing and
combining three Rosita All Sky Surveys (RASS). Independent clusters studies of op-
tical clusters (Rozo et al. 2010) (see left panel of Fig. 1.13), Sunyaev-Zeldovich clus-
ters in combination with X-ray measurements (Benson et al. 2013) and X-ray clusters
(Vikhlinin et al. 2009) showed consistent results. In the right panel of Fig. 1.13 we
show Allen et al. (2008) constraints on the Ωm −ΩΛ plane, from the combination of
Chandra measurements of the X-ray gas mass fraction fgas of galaxy clusters, SNIa
data and CMB measurements.

Neutrinos

As any particle with a non-zero mass transits while cooling from a relativistic state
to a non-relativistic state, the mass of neutrinos influences the background evolution
and cosmic structure formation. The quantity typically used to describe neutrinos
mass is

∑
mν , which is the species-summed mass. Constraints on this quantity

come from clusters combined with CMB data (Burenin & Vikhlinin 2012). Few
more considerations on this topic are included in Chapter 6.
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Figure 1.13: Left panel: Joint 68.3% and 95.4% confidence regions in the Ωm − σ8
plane from optical galaxy cluster of the maxBCG catalogue combined with WMAP5
(Dunkley et al. 2009). Right panel: contours for Ωm − ΩΛ from the combination of X-
ray gas mass fraction (pink), CMB (blue) and SNIa (green). The orange contours show
the constraint obtained from all three data sets combined. Credit: Rozo et al. (2010);
Allen et al. (2008).
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DE equation of state

Allen et al. (2011) analysed the constraints on the DE equation of state together
with Ωm (see left panel of Fig. 1.14) or σ8. He combined the abundance and
growth of RASS clusters (Mantz et al. 2010), fgas measurements (Allen et al. 2008),
WMAP5 results (Dunkley et al. 2009), Supernovae Ia data (Kowalski et al. 2008)
and BAO measurements (Percival et al. 2010, 2011). Constraints on DE equation
of state from data were also performed by Rapetti et al. (2005) with X-ray clus-
ters+SNIa+CMB, by Mantz et al. (2010); Benson et al. (2013) with X-ray clusters,
while Vikhlinin et al. (2009) constrained w and ΩΛ.

Cosmic growth γ

Rapetti et al. (2013) tested the cosmic growth predicted by GR (γ = 0.55) with
three independent measurements: galaxy clusters abundances and fgas from RASS
and Chandra, galaxy clustering from WiggleZ Dark Energy Survey, 6-degree Field
Galaxy Survey and CMASS BOSS, and CMB from WMAP. The cosmic growth is
modelled by the growth index γ defined in Eq. (1.36) and σ8. We show in the right
panel of Fig. 1.14 the constraints obtained on these parameters.
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Figure 1.14: Left panel: Joint 68.3% and 95.4% confidence regions for w−Ωm, from the
abundance and growth of RASS clusters (violet), X-ray gas mass fraction (pink), WMAP5
(blue), SNIa (green) and BAO (brown). Right panel: joint contours in the σ8 − γ plane,
from galaxy growth (green), CMB (blue) and cluster growth (red). The gold contours show
the combination of the data sets. Credit: Allen et al. (2011); Rapetti et al. (2013).
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Chapter 2

Galaxy Clusters from theory side

In this Chapter the theoretical framework of galaxy clusters one-point (number
counts) and two-points statistic (power spectrum) is introduced, in order to un-
derstand why they are fundamental probes of the LSS of the Universe. For the study
galaxy clusters, in fact, one needs to have first an estimate of their masses, which
are not directly accessible. Here, we define the cluster masses and density profiles,
with a particular emphasis to the weak lensing mass estimation, as this is the one we
use in our analysis. Secondly, to understand how the cluster number counts change
with the mass and with the cosmological model assumed, we revise the formulation
and calibration of the cluster mass function and its sensitivity to cosmology. In
addition to this, the spatial distribution of clusters can give additional information
on cosmology. We thus introduce the concept of the model bias and a prescription
for the clusters redshift space power spectrum. Finally, some definitions concerning
the study of non-Gaussian initial conditions are provided, as clusters can be a good
probe in this context.

2.1 Cluster masses

As the mass of galaxy clusters is not directly measurable, we describe here how to
get an estimate of it. Cosmologists usually define the cluster mass with respect to
the critical or the mean density of the Universe and assume a halo density profile.
We then focus on the gravitational weak lensing technique to reconstruct the mass
distribution, as it is part of the data sets we need for our combined cosmological
analysis.
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2.1.1 Definition

A common way to define a cluster mass is with respect to the critical density of the
Universe, ρc(z) (see Eq. 1.14). One considers a spherical region of a virialized halo
of radius R∆ and volume V∆ = 4 π/3R3

∆, with mean density of ρ̄(z) = ∆ ρc(z). The
total amount of matter contained in this region is defined to be the mass M∆ as

M∆ = V∆ ρ̄(z) =
4 π

3
R3

∆ ∆ ρc(z) . (2.1)

Typical values of ∆ are 200 (this work) or 500, because cluster properties are more
evident to observe in high density contrast regions. Alternatively, the mass can
be defined with respect to the background mean density of the Universe, ρm(z): the
mean density inside the virial radius is then ρ̄(z) = ∆ ρm(z) = ∆Ωm(z)ρc(z) (because
of Eq. 1.16), and the value of Ωm(z) has to be assumed.

2.1.2 Halo density distribution

In order to estimate the mass of a cluster, we need to have a prescription for its density
profile. Observation of galaxy clusters show that the velocity dispersion σv of galaxies
inside a cluster remains nearly constant with distance from the cluster centre: this
implies an underlying mass-density distribution, ρ(R) ∝ R−2. Binney & Tremaine
(1987) found that the Singular Isothermal Sphere (SIS) was the simplest analytical
model consistent with the observed mass distribution. Such a profile resembles the
density structure of an isothermal self-gravitating system of particles, which encoun-
tered a violent relaxation process (Lynden-Bell 1967) from a chaotic initial state to
a quasi-equilibrium. This density distribution is characterised by a constant and
isotropic velocity dispersion σv, and has the following form

ρSIS(R) =
1

2πG

σ2
v

R2
. (2.2)

This approximation is, however, incomplete because the mass diverges with R lin-
early. Later, cluster formation numerical simulations obtained a more accurate form
of density profile:

ρ(R) ∝ R−p(R +Rs)
p−q , (2.3)

where p and q describe the slopes of inner and outer regions, and Rs is the scale
radius where the profile steepens. Fits of Eq. (2.3) to simulated clusters give, for
example, the Moore et al. (1999) profile (p = 1.5, q = 3) and Rasia et al. (2004)
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profile (p = 1, q = 2.5). Navarro et al. (1997) best fit values were instead p = 1, q =
3: more precisely they obtained the following expression (for ∆ = 200)

ρNFW(R) =
ρc(z)λc

(R/Rs)(1 +R/Rs)2
, (2.4)

where λc is the density contrast given by

λc =
200

3

c3

ln(1 + c)− c/(1 + c)
, (2.5)

being c = R200/Rs the concentration of the halo, namely the ratio of the virial radius
R200 to the scale radius Rs. The concentration parameter is a function of halo mass
and redshift and depends on cosmological parameters: typically, the earlier the halo
forms, the higher is the value of c. Eq. (2.4) is known as the Navarro-Frenk-White
(NFW) profile and it is the most widely used fitting formula for haloes density: we
will assume this profile in this work.

Note that on large scales (clusters) CDM simulations have proven very successful,
while on galaxy scales their predictions seem to be in conflict with some observations.
Among these, the cusped central density profile given by the NFW profile, which is
not observed in dwarf galaxies. Burkert (1995) empirically modified the analytic
form of the NFW profile, trying to find the best-fitting density law to the observed
rotation curves of dwarf galaxies. The Burkert’s profile can be expressed as:

ρB(R) =
ρ0R

3
s

(R +Rs)(R2 +R2
s )
, (2.6)

where the central density ρ0 and the scale radius are free parameters. This density
law resembles an isothermal profile in the inner regions (R < Rs) and predict a finite
central density ρ0, while in the outer regions it diverges logarithmically with radius,
in agreement with the NFW profile.

2.1.3 Weak Lensing signal

According to GR, light rays propagate along null-geodesics of the space-time metrics.
The presence of mass distribution perturbs the metrics, deflecting the light trajec-
tories. This deflection distorts the shape of distant galaxies, allowing the study of
the mass distribution of objects in the Universe. This distortion is called gravita-
tional lensing effect. In 1804 Johann Soldner wrote the first paper on this topic,
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predicting with Newtonian physics that a light ray passing close to the Sun is de-
flected by an angle of ∼ 0.84 arcsec. In 1919, Einstein obtained the same value
α̂ = 2GM⊙/c

2R⊙ ∼ 0.83 arcsec, by applying Huygens principle to a wave front pass-
ing through a region in which the speed of the wave varies with position (the closer
to the massive body, the smaller the speed is). After completing GR, he realised the
correct equation for the deflection angle of a light ray passing at a distance R from
an object with mass M was:

α̂ =
4GM

c2R
, (2.7)

finding for the Sun the value of 1.74 arcsec. The additional factor of two is due to
the spatial curvature which is missing in the Newtonian approach. More precisely,
the full theory takes into account not just the variation of the time-time component
of the metric, but also the variation of the spatial components.

By measuring the gravitational lensing distortions of background galaxies caused
by clusters of foreground galaxies, it is possible to probe their matter distribution.
It plays a critical role, because it can measure the total cluster mass regardless of
the baryonic content, star formation history, or dynamical state. Thus, lensing is
crucial for calibrating the mass-observable relation, as we will detail in Chapter 3. In
order to describe how gravitational lensing works, we need to introduce some basic
notation following Bartelmann & Schneider (2001). If the lens is thin compared to
the total length of the light path, the lens mass distribution can be projected on an
orthogonal plane with respect to the line-of-sight, called lens plane. This mass sheet
is characterised by its surface mass density

Σ(~ξ) =

∫
ρ(~ξ, z) dz , (2.8)

where ρ is the density and ~ξ is a two-dimensional vector in the lens plane. The
deflection angle at ~ξ is the sum of all mass elements deflections in the lens plane:

~̂α(~ξ) =
4G

c2

∫
(~ξ − ~ξ′)Σ(~ξ′)

|~ξ − ~ξ′|2
d2ξ′ . (2.9)

The geometry of a typical gravitational lens system is shown in Fig. 2.1. A light
ray from a source S, assumed to lie in the so-called source plane, is deflected by the
angle ~̂α at the lens plane before reaching observer O. The angle between the optical
axis and the image I is ~θ, while the one between the optical axis and the true source
is ~β. The angular diameter distances observer-lens, lens-source, observer-source are
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Figure 2.1: The gravitational lensing system representation. Angular diameter distances
between observer (O) and source (S), observer and lens, lens and source are respectively
Ds, Dd and Dds. A light ray is emitted from a source at transverse distance ~η from the
optical axis to the observer O, crossing the lens plane at transverse distance ~ξ, deflected
by an angle ~̂α. The angular separations of the observed image (I) and the source from the
observer optical axis are ~θ and ~β, respectively. The reduced deflection angle ~α and the real
deflection angle ~̂α are related by Eq. (2.10). The picture is from Narayan & Bartelmann
(1996).

respectively Dd, Dds, and Ds. Note that Dd + Dds 6= Ds. With this notation, one
can also define a reduced deflection angle as

~α =
Dds

Ds

~̂α . (2.10)

We now simply derive the lens equation, which relates the observed image and true
source positions, from the geometry of Fig. 2.1:

~β = ~θ − ~α(~θ) . (2.11)

The solutions ~θ of this equation yield the angular positions of the images of the source
at ~β. Eq. (2.11) is generally non-linear and hence allows for multiple images corre-
sponding to a single source position. It is also useful to introduce the convergence
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parameter, which is the dimensionless surface mass density, as

κ(~θ) =
Σ(Dd

~θ)

Σc
with Σc =

c2

4πG

Ds

DdDds
, (2.12)

where Σc is the critical surface mass density, and thus rewrite the reduced deflection
angle as

~α(~θ) =
1

π

∫
d2θ′

(~θ − ~θ′)κ(~θ′)

|~θ − ~θ′|2
. (2.13)

The lens mapping can then be linearised locally: the Jacobian describing the distor-
tion of images is given by

A =
∂~β

∂~θ
=

(
1− κ− γ1 −γ2

−γ2 1− κ + γ1

)
. (2.14)

Here γ = γ1+ iγ2 = |γ|e2iψ = |γ|(cos 2ψ+ i sin 2ψ), ψ being the angle between ~α and
the x-axis, is the tangential shear which stretches the image around the lens, while
the magnification of the image is described by the convergence κ. The weak lensing
approximation is valid for κ≪ 1 and |γ| ≪ 1.

In order to estimate the mass of galaxy cluster, we have to employ a model for
its density distribution, e.g. the NFW of Eq. (2.4). For any value of the NFW
profile parameters (scale radius Rs and density contrast λc), the convergence and the
shear can be analytically inferred. By introducing a dimensionless radial distance
x = r/Rs = θ/θs (where θs = Rs/Dd), we can in fact reformulate the convergence as

κ(x) =





(2Rsλcρc)/[Σc(1− x2)][1− 2/
√
1− x2 atanh

√
(1− x)/(1 + x)] x < 1,

(2Rsλcρc)/3 x = 1,

(2Rsλcρc)/[Σc(x
2 − 1)[1− 2/

√
x2 − 1 atan

√
(x− 1)/(x+ 1)] x > 1.

The gravitational shear can instead be recast as

γ(x) =





(Rsλcρc)/Σcg<(x) x < 1,

(Rsλcρc)/Σc [10/3 + 4 ln(1/2)] x = 1,

(Rsλcρc)/Σcg>(x) x < 1,

where the functions g<(x) and g>(x) are given by

g<(x) =
8 atanh

√
(1− x)/(1 + x)

x2
√
1− x2

+
4 ln(x/2)

x2
− 2

(x2 − 1)
+

4 atanh
√
(1− x)/(1 + x)

(x2 − 1)(1− x2)1/2
,

g>(x) =
8 atan

√
(x− 1)/(1 + x)

x2
√
x2 − 1

+
4 ln(x/2)

x2
− 2

(x2 − 1)
+

4 atan
√

(x− 1)/(1 + x)

(x2 − 1)3/2
.
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In the case of galaxy clusters, the observable is the reduced shear γ̂, which is obtained
by averaging over observed galaxies shapes, and is defined as

γ̂(θ) =
γ(θ)

1− κ(θ)
. (2.15)

In order to estimate the mass of the cluster (lens), having assumed a density profile,
we can compare the observed reduced shear with its theoretical prediction obtained
combining the analytical expressions for κ and γ. We will use cluster mass estimates
done with this technique in our cosmological combined analysis.

2.2 Mass function

Once the definition of the cluster mass is given, we can investigate the number density
of clusters as a function of it, namely the mass function. This represents the expected
number density of virialized dark matter halos at redshift z, with mass in the range
[M,M + dM ], and can be expressed as

dn(M, z)

d lnM
= ρ̄m

∣∣∣∣
d ln σ−1

dM

∣∣∣∣ f(ν) . (2.16)

Here, ρ̄m is the mean matter density of the Universe, ν ≡ δc/σ(M, z), δc being the
critical linear overdensity and σ2(M, z) is the variance of the density fluctuation field
filtered at scale M in the linear evolution regime (see Eq. 1.39).

To calculate the value for δc analytically, we assume a spherical top-hat col-
lapsing model. A closed spherical region of radius R and overdensity δ (see
Eq. 1.30), in a homogeneous expanding background field with mean density ρ̄, evolves
independently of the environment influenced by local properties only (Birkhoff’s the-
orem). This region expands up to a maximum radius Rmax at the turn-around time
tturn and then decouples from Hubble expansion and recollapses to a bound system
of radius Rvir = Rmax/2 at the collapse time tcol = tvir = 2tturn, reaching the virial
theorem equilibrium condition. For an Einstein-de Sitter Universe (Ωm = 1, Ωk = 0),
the overdensity reaches the value of ∆vir ∼ 178 at tvir. If one linearly extrapolates
the density contrast at tvir, according to Eq. (1.35), then obtains δc ≡ δ(tvir) = 1.686.
This value represents the threshold that a perturbation in the initial density field
has to exceed to be able to collapse and virialize.
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The analytic function f(ν) was first derived theoretically by Press & Schechter
(1974), then formalised by the excursion set approach (Bond et al. 1991) and gener-
alised to non-spherical model by Sheth & Tormen (1999). More accurate estimations
were obtained by means of a full fitting to N -body simulation (e.g. Jenkins et al.
2001; Tinker et al. 2008, 2010).

2.2.1 Press-Schechter formalism

Press and Schechter (Press & Schechter 1974, PS) combined the linear growth of den-
sity fluctuation field and the spherical top-hat collapse model to analytically derive
a prescription of the mass function. They assumed that the density perturbations
collapse and virialize when their linear density contrast exceeds a critical threshold
δc (as already seen, δc = 1.686 for spherical collapse). They also assigned a Gaussian
probability distribution to the smoothed density field δM (where position and time
dependences are left understood),

p(δM) =
1√

2πσM
exp

(
− δ2M
2σ2

M

)
, (2.17)

whereM = 4πR3ρ̄m/3 and σM is the square root of Eq. (1.39). Then, the probability
that a given point in space has an overdensity greater than the critical one, namely
δM > δc, is simply

pδM>δc(M) =

∫ ∞

δc

p(δM)dδM =
1

2
erfc

(
δc√
2σM

)
. (2.18)

Here erfc(x) = 1− erf(x) = 2/π
∫∞

x
exp(−t2)dt is the complementary error function.

The Press and Schechter argument takes the latter probability to be proportional
to the probability of a point being part of a collapsed object of mass greater than
M (or equivalently scale greater than R). This means that the fraction of space
in which δM > δc corresponds to the fraction of cosmic volume filled with haloes
of mass greater than M . Considering the whole mass range and in the limit of
M → 0, one should be able to account for the whole mass in the Universe and ob-
tain

∫∞

0
pδM>δc(M) = 1. In reality, this formalism gives only

∫∞

0
pδM>δc(M) = 1/2,

meaning that half of the mass is miscounted. The problem of this approach is the
so-called cloud-in-cloud problem: a point with δM < δc at a certain mass scale M ,
has zero probability of reaching later the condition of δM ′ > δc, at some larger scale
M ′ > M . In other words, a non-collapsed object at scale M has no chance of being
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later part of another collapsed object on some scale M ′ > M . This means that at
a given epoch we are accounting only for the objects which have just collapsed, i.e.
for which δM = δc. Press and Schechter solved the problem by adding by hand a
corrective factor of 2, but later Bond et al. (1991) justified the missing factor of 2,
with the theory of excursion sets.

By differentiating now Eq. (2.18) with respect to the mass M , we obtain

dn(M, z)

dM
=

2

V

∂pδM>δc(M, z)

∂M
= −

√
2

π

ρ̄mδc
Mσ2

M

dσM
dM

exp

(
− δ2c
2σ2

M

)
, (2.19)

where we have divided by V = M/ρ̄m to obtain a quantity with units per volume.
The previous formula gives the comoving number density of collapsed objects of mass
M at redshift z, in terms of σM and δc: this is indeed the Press-Schechter mass
function. Following the notation of Eq. (2.16), we can write

fPS(ν) =

√
2

π
ν exp

(
−ν

2

2

)
. (2.20)

The shape of this mass function and its evolution is in reasonable agreement with
what is measured in numerical simulations of hierarchical clustering from Gaussian
initial conditions (e.g. Lacey & Cole 1994), although it underpredicts the abundances
of low mass haloes and over-estimates the number of high mass ones. Sheth & Tormen
(1999); Sheth et al. (2001); Sheth & Tormen (2002) (ST), following the method of
Bond et al. (1991), incorporated into the PS mass function the effect of a non-
spherical collapse approximation. In particular, they adopted an ellipsoidal model,
where the collapse of a region depends not only on the initial overdensity, but also
on the surrounding shear field. Since the mass of a region is related to its initial
size, in this model there is a relation between the density threshold value required
for collapse and the mass of the final object. However, they needed a fit to numerical
simulations in order to estimate the mass function parameters, as we will describe
in the next Section.
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2.2.2 N-body simulations calibration

As we just mentioned, the ST semi-analytical mass function, which generalised the
PS one, is a cosmology dependent fitting formula, which can be expressed as

fST(ν) = AST

√
2αST

π
ν
[
1 + (ν2 αST)

βST
]
exp

(
−ν

2 αST

2

)
, (2.21)

where the coefficients are obtained by a fit to GIF/Virgo Collaboration simulations
of clustering (Kauffmann et al. 1999a). These simulations were performed with 2563

particles, in two boxes of sizes L1 = 85Mpc/h and L2 = 141Mpc/h, for three cosmo-
logical models. They used a spherical overdensity (SO) group finder (Tormen 1998)
to measure the mass function in the simulations. The best-fitting values they ob-
tained are αST = 0.707 and βST = 0.3, while AST = 0.3222 is derived assuming that
all mass is collapsed into haloes (i.e. the integral of the mass function to infinity is
equal to unity). The PS case follows easily from αST = 1, βST = 0 and AST = 0.5. ST
improve the analytical fit to N-body simulations results, but nevertheless remaining
still poor in the agreement for rare high redshift haloes (Reed et al. 2007).

By means of larger and more elaborated N-body simulations, it has been found
empirically that the mass function determined for a wide range of redshifts and
cosmological models can be fitted accurately by a universal function (Jenkins et al.
2001; Evrard et al. 2002; Warren et al. 2006; Tinker et al. 2008). Some expressions,
based on fits to simulation data, have been calculated and they agree at the 10−30%,
with the largest discrepancy on the high mass tail. Jenkins et al. (2001) showed
that the mass function of DM haloes from galaxies to clusters masses is quite well
described by the ST function up to redshift z = 5, with some suppression at high
masses. He analysed the results of the Hubble Volume simulation, a simulation of
DM clustering in a cubic volume of size L = 3Gpc/h, with 10243 DM particles.
This yields a DM particle mass of 2.2 × 1012M⊙, implying that a galaxy cluster
halo typically contains 100-1000 particles. Despite the poor mass resolution, the
very large volume allowed to explore the mass function on a broad range of masses,
including the very high mass end, where clusters reside. They identified DM halos
using the friends-of-friends algorithm (Davis et al. 1985). Jenkins proposed finally
the following alternative analytic fitting formula to the simulations:

fJ(σM) = AJ exp
(
−|lnσ−1

M + αJ|βJ
)
, (2.22)

where AJ = 0.301, αJ = 0.64 and βJ = 3.82. Its accuracy is well tested by the Mil-

lennium simulation of Springel et al. (2005) and by the high precision mass function
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Figure 2.2: Left panel: Tinker’s f(σ) at z = 0 and for ∆ = 200, from all simulations.
The solid line is the best fit function. The lower window shows the residuals with respect
to the fitting function. Left panel: f(σ) at z = 1.25 and for ∆ = 200. The lower window
shows that the z = 1.25 mass function is offset by ∼ 20% with respect to the z = 0 one.
Credit: Tinker et al. (2008)

at redshift zero measured by Warren et al. (2006). This last work was aimed to test
the mass function over a wider range of mass scales than the one obtained from a
single simulation. For this purpose, they simulated 16 boxes of different physical size
but the same number of DM particles (10243), nested in such a way that they defined
a composite halo mass function covering five orders of magnitude in mass scale.

The current state-of-the-art halo mass function has been estimated by Tinker et al.
(2008, 2010), who achieved a fit at the 5% precision level, for a ΛCDM cosmology.
The simulations used to obtain this result were based on variants of the flat ΛCDM
model, where the parameters referred to the first-year or three-year WMAP results
(Spergel et al. 2003, 2007). They used fifty realizations of a simulation on a cubic box
of L = 1280Mpc/h size, performed with the GADGET2 code (Springel 2005) and
six simulations using the adaptive refinement technique of Kravtsov et al. (1997).
They employed the standard SO algorithm Lacey & Cole (1994), but relocating the
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centres of haloes at their density peaks, instead that on the centre of mass of the
particles within the sphere. The results of all these simulations can be visualised in
Fig. 2.2, showing the mass function best fit (solid line) at z = 0, 1.25, for ∆ = 200.
The model they obtained, valid over wide redshift and mass ranges, has the following
form:

fT (ν) = AT

[
1 + (βTν)

−2φT
]
ν2ηT+1e−γTν

2/2 , (2.23)

where AT = 0.368 and the other parameters evolve in redshift as

βT = 0.589 (1 + z)0.20 ,

φT = −0.729 (1 + z)−0.08 ,

ηT = −0.243 (1 + z)0.27 ,

γT = 0.864 (1 + z)−0.01 . (2.24)

The above results are only valid for cluster mass at R200, with an overdensity of
∆ = 200 in units of the mean mass density of the Universe, which is the case we
restrict to.

In none of the above calibrated mass functions, the effects of baryon physics is
taken into account. An interesting analysis on the effect on the halo mass function
caused by the inclusion of baryons has been performed by Cui et al. (2012). They
employed two hydrodynamical simulations: one including radiative cooling, star for-
mation and kinetic feedback from Supernovae, and a non-radiative simulation. These
were based on the TreePM/SPH GADGET-3 code (Springel 2005), having a cubic
volume of size L = 410Mpc/h, with 2 × 10243 DM particles and using a SO halo
finder algorithm. They obtained that the inclusion of baryons increases the mass of
1-2% at ∆ = 200 and of 4-5% at ∆ = 500.

2.2.3 Cosmology dependence of the mass function

Galaxy clusters reside in the tail of the halo mass function and thus their numbers
are exponentially sensitive to variations in cosmology, as evident from all the expres-
sions for the cluster mass function that we have just shown (see Eqs. 2.20, 2.21, 2.22,
2.23). Thanks to this dependence, the mass function is a powerful probe of cosmo-
logical models: the cosmological parameters enter in the mass function through σM,
which depends on the power spectrum and on the linear perturbation growth factor.
In Fig. 2.3 we show the sensitivity of the Tinker mass function to variation in Ωm

and σ8 parameters. For increasing values of Ωm, the number of clusters increases
similarly on all mass scales. On the other hand, an increasing values of σ8 enhances
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Figure 2.3: Left panel: mass function cosmological dependence on Ωm. Here we show
the Tinker mass function at z = 0.2 for Ωm = {0.1, 0.2, 0.3, 0.4} respectively in dotted
magenta, dashed cyan, black dotted-dashed and green long-dashed curves and for fixed
σ8 = 0.8, assuming a flat Universe. Right panel: mass function cosmological dependence
on σ8. Here we show the Tinker mass function at z = 0.2 for σ8 = {0.6, 0.7, 0.8, 0.9}
respectively in dotted magenta, dashed cyan, black dotted-dashed and green long-dashed
curves and for fixed Ωm = 0.25, assuming a flat Universe.

mainly the number of massive clusters. If considering the mass function evolution in
redshift, for a fixed mass, the higher the amplitude of mass fluctuations is, the more
rapidly structures form at early times. On the other hand, the lower the amplitude
of mass fluctuations is, the more slowly structures form at early times. Therefore,
the normalisation of the power spectrum, has an evident influence on structure for-
mation and evolution. Note that cluster counts and their redshift evolution are a
powerful probe of cosmology, but nevertheless any systematics in the cluster mass
measurements are enhanced by the steepness of the function itself.

Recently, the discovery of high redshift, massive clusters have led to possible
tension with the ΛCDM model, because the cluster mass function is particularly
sensitive to the cosmological parameters at high masses and redshifts. In Fig. 2.4 we
show how high redshift clusters can help to discriminate between different cosmologi-
cal models. Vikhlinin et al. (2009) presented the cosmological parameter constraints
obtained from Chandra observations of high and low redshift clusters, detected in
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Figure 2.4: Left panel: the measured mass function and predicted models for a nearly
ΛCDM cosmology. Right panel: the data and the models are computed for a cosmology
with ΩΛ = 0. The predicted number density of z > 0.55 clusters is in strong disagreement
with the data, and therefore the model with Ωm = 1 and ΩΛ = 0 has to be discarded.
Credit: Vikhlinin et al. (2009)

X-ray by ROSAT survey. In particular, they used 37 clusters at < z >= 0.55 and 49
clusters at < z >= 0.05. In the left panel, we show their measured mass function for
a cosmology with Ωm = 0.25 and ΩΛ = 0.75, which is reproduced for both the high-z
and low-z clusters. In the right panel, the cosmology adopted is with Ωm = 0.25
and ΩΛ = 0 and the measured mass function is changed. The high-z cluster number
density is clearly in strong disagreement with the data, and therefore the model with
Ωm = 0.25, ΩΛ = 0.75 has to be preferred to the Ωm = 0.25, ΩΛ = 0 one.

In addition to this, the high mass tail of the mass function, which corresponds
to rare events, is sensitive to primordial non-Gaussianities, as we will investigate in
Section 2.5.
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2.3 Modelling cluster counts and total masses

We now are interested in predicting the number of observed galaxy clusters as a
function of an observable Mobs, that we need to relate to the true mass M of the
clusters via the scaling relation. In case of optical surveys, which is the case we
restrict to, the observable is defined to be the richness Nobs

gal , i.e. the number of red
galaxies within the radius R200 from the cluster centre. As already defined, R200 is
the radius within which the average overdensity is ∆ = 200 times the mean density
of the Universe. We first consider the probability of observing Nobs

gal member galaxies
at R200 for a given true mass M of the cluster. We can write this as:

p(Nobs
gal |M) =

∫
p(Nobs

gal |Ngal) p(Ngal|M) dNgal , (2.25)

where the distribution p(Ngal|M) is a delta function, because the relation betweenM
and Ngal is the empirical mass-observable relation, which we will detail in Chapter 3
(see Eq. 3.11). We then assume p(Nobs

gal |Ngal) to follow a log-normal distribution as
suggested by Lima & Hu (2005)

p(Nobs
gal |Ngal) =

1√
2πσ2

lnNobs
gal |M

exp[−x2(Nobs
gal )] , (2.26)

where

x(Nobs
gal ) =

lnNobs
gal − lnNgal(M)√
2σ2

lnNobs
gal |M

, (2.27)

and σlnNobs
gal |M

≡ σlnNobs
gal |Ngal

is the scatter around the meanNgal(M) given by Eq. (3.11)

(Lima & Hu 2005; Battye & Weller 2003): the equality between the two sigmas holds
because p(Ngal|M) is a delta function. The cluster average number density within a
richness bin [Nobs

gal, i, N
obs
gal, i+1] is then given by

ni =

∫ Nobs
gal, i+1

Nobs
gal, i

d lnNobs
gal

∫
d lnNgal

dn

d lnNgal

p(Nobs
gal |Ngal) =

=

∫
d lnNgal

dn

d lnNgal

1

2
[erfc(xi)− erfc(xi+1)] , (2.28)

where p(Nobs
gal |Ngal) is given by Eq. (2.26), xi ≡ x(Nobs

gal, i) from Eq. (2.27). Note that

dn

d lnNgal

=
dn

d lnM

d lnM

d lnNgal

, (2.29)
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and for the mass function dn/d lnM , defined in Eq. (2.16), we use the Tinker fit
of Eq. (2.23). Hence, the total number of predicted galaxy clusters in the redshift
range [zmin, zmax] and within the richness bin [Nobs

gal, i, N
obs
gal, i+1] can be calculated as

∆Ni = ∆Ω

∫ zmax

zmin

dz
d2V

dz dΩ
ni , (2.30)

where ∆Ω is the survey sky coverage and d2V/dz/dΩ is the comoving volume ele-
ment. In the above formula, cosmology enters through both the mass function and
the volume element. We will show the sensitivity to cosmology, in particular to Ωm

and σ8, of the number counts in the results of our analysis.

Similar to Eqs. (2.28) and (2.30), we can compute the total mass contained in the
clusters. The average total mass contained in clusters within a bin can be obtained
by weighting the integrand of Eq. (2.28) by mi, i.e. the mean mass of clusters within
the bin, estimated via the mass-observable relation:

(nm)i =

∫
d lnNgal

dn

d lnNgal

1

2
mi [erfc(xi)− erfc(xi+1)] . (2.31)

The total mass of clusters in the redshift range [zmin, zmax] and within the richness
bin [Nobs

gal, i, N
obs
gal, i+1] is thus

(
∆NM̄

)
i
= β ∆Ω

∫ zmax

zmin

dz
d2V

dz dΩ
(nm)i . (2.32)

The parameter β is a nuisance parameter introduced to account for possible mis-
match with the WL mass estimates, as discussed in Rozo et al. (2010): we will make
this point more clear in Section 3.4.1.

To conclude, for our analysis we will need both Eqs. (2.30) and (2.32) and the
respective binned data sets, in order to fit the richness-mass relation and constrain
cosmological parameters simultaneously.
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2.4 Clustering of clusters

Galaxy clusters are tracers of the LSS of the Universe (Mo et al. 1996), as they
select the highest-density regions of the dark matter overdensity field, namely the
dark matter haloes. The overdensity of the latter is related to the underlying
dark matter distribution by the halo bias parameter, whose derivation from the
mass function is provided here. We then give a prescription for the cluster two-
points statistics (power spectrum) calculation. As the effect of baryons is negligible
for the clustering properties of the clusters, in the following we use the naming
’cluster’ and ’halo’ interchangeably. This simplification is an advantage with respect
to the clustering of galaxies, where additional assumption on the halo occupation
distribution must be made to model correctly the galaxy clustering.

2.4.1 Halo bias

Fluctuations in the cluster number density on large scales are more pronounced
than the fluctuations of the underlying matter density field (Bahcall & Soneira 1983;
Klypin & Kopylov 1983): the ratio between the two is known as the bias parameter.
Equivalently, the squared bias can be defined as the ratio between the halo power
spectrum and the linear matter power spectrum. The halo bias can be derived
from a theory of the mass function by using the peak-background split formalism
(Cole & Kaiser 1989; Mo & White 1996), in which the density perturbations are
split between long-wavelength δl and short-wavelength δs modes. This method gives
a prediction for the halo bias in Lagrangian space bL(~q,M), that at linear order looks
as

δLh(~q,M) = bL0 + bL(~q,M) δ(~q) . (2.33)

The Lagrangian coordinate ~q represents the position in space of the initial condi-
tions, which will move to the position ~x after evolution. Assuming linear Gaussian
perturbations, spherical collapse model and neglecting a large-scale velocity bias, the
Lagrangian bias can be related to the Eulerian one by (Mo & White 1996)

b = bE = 1 + bL , (2.34)

leaving out the known dependences. The bias parameter can be assumed to be
scale-independent (except for the modifications in the presence of primordial non-
Gaussianity), as long as only linear scales are considered.

Cluster bias can be seen also as a variation of δc parameter by long-wavelength
density modes (Kaiser 1984; White et al. 1987). According to the peak-background
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split model, the long modes modulate the overall amplitude, so that the halo over-
density is given by (Cole & Kaiser 1989; Mo & White 1996)

δLh (~q,M) =
n[M, δl(q)]

n̄
− 1 =

f
[
δc−δl(~q)
σ(M)

]

f
[

δc
σ(M)

] − 1 , (2.35)

where the second equality follows from expressing the number of halos n and their
mean n̄ using the mass function f(δc/σ) ≡ f(ν). The formula for the Lagrangian
bias at any order then follows by expanding this equation in a Taylor series of δl. For
example, at linear order, the Lagrangian bias as a function of mass M and redshift
z is simply

bL(M, z) = − f ′(ν)

f(ν) σ
, (2.36)

where the derivative of the mass function is taken with respect to ν, and the mass
and redshift dependences of ν and σ are implicit. The linear Eulerian bias is then
obtained by simply adding unity. Note that small values of σ(M) (large values of
M) correspond to large values of b(M): this means that rare, high-mass objects are
more likely to be observed in regions where the underlying matter density is much
higher than the average one.

Considering the PS mass function of Eq. (2.20), the Eulerian bias function takes
the form

bPS(ν) = 1 +
ν2 − 1

δc
= 1− 1

δc
+
δc
σ2

. (2.37)

However, the PS bias does not match properly the simulations (Sheth & Tormen
1999; Jing 1999), due to the already discussed discrepancy between the PS mass
function and simulated data. When using the ST mass function of Eq. (2.21), instead,
we recover the following improved expression (Sheth et al. 2001):

bST(ν) = 1 +
1√
aδc

[√
a(aν2) +

√
ab(aν2)1−c − (aν2)c

(aν2)c + b(1− c)(1− c/2)

]
, (2.38)

where a = 0.707, b = 0.5 and c = 0.6. Finally, by plugging in the Tinker’s mass
function of Eq. (2.23) and keeping the leading order terms, the Eulerian bias is
(Tinker et al. 2010):

bT(M, z) ≃ 1 +
γ̂ν2 − (1 + 2η̂)

δc
+

2φ̂/δc

1 + [β̂ν]2φ̂
, (2.39)
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where all parameters are defined in Eq. (2.24).

We can finally calculate the average cluster bias b̄ over a certain mass range by
weighting the bias function with the mass function (Lima & Hu 2005):

b̄(z) =
1

∆N

∫ Mmax

Mmin

d lnM
dn(M, z)

d lnM
b(M, z) , (2.40)

where the normalisation factor ∆N is the full integral of the mass function in the
observed range and where we restrict to the Tinker’s case, namely b(M, z) = bT
through all our analysis.

2.4.2 Cluster power spectrum

Clustering is analysed statistically by the two-point correlation function, which is
defined as the variance of the density field in two points separated by a distance ~r:

ξ(~x,~r) ≡ 〈δ(~x+ ~r)δ(~x)〉 . (2.41)

By assuming homogeneity and isotropy conditions, ξ depends only on the modulus of
the distance between the two points, i.e. ξ(|~r|) ≡ ξ(r). The corresponding function
in Fourier space is the power spectrum. We also know that for a DM halo it holds

δ̃h(~k,M) = b̃(~k,M) δ̃(~k) , (2.42)

thus in linear approximation the halo-halo power spectrum Phh can be related to the
linear matter power spectrum Plin as

Phh(k,M, z) = b2(M, z)Plin(k, z) = b2(M, z)D2(z)Plin(k, 0) , (2.43)

where D(z) is the linear growth function and Plin(k, 0) = Pin(k) T
2(k), Pin(k) being

the primordial power spectrum and T (k) the transfer function (see Eq. 1.41). In
order to integrate the mass dependence, we need to weight the bias as described in
Eq. (2.40) and compute all quantities at a fixed redshift (which in our case is the
mean redshift of the cluster sample, z̄ ≃ 0.2). This is further justified by observing
that the growth of b̄(z) is compensated by a similar drop in D(z); we have checked
that for our fiducial cosmology, in the observed range 0.1 ≤ z ≤ 0.3 the variation of
b̄(z)D(z) is at the percent level.

Furthermore, to be able to correctly fit models to the data, the following five
effects have to be taken into account (Hütsi 2010):
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comparable (and larger) to the survey size;� the photo-z errors, which are responsible for a damping of the spectrum on
small scales;� the weak non-linearities, which add power on small scales;� the redshift-space distortions (RSD) contribution;� the Alcock-Paczynski effect.

We first define the full power spectrum PNL to be

PNL(k) =
(
bobs
)2

(1 + qNLk
3/2) s(k) Plin(k)

[
1 +

2

3
βz +

1

5
β2
z

]
. (2.44)

Here the bias is rescaled as bobs = b̄ B, where we include a nuisance parameter B to
represent the uncertainty on the bias derived from the mass function. The second
term in Eq. (2.44) models the effect of residual weak non-linearities with a simple
effective fitting function with one free parameter qNL, considering the fact that in
our analysis we only use data up to kmax = 0.15 h Mpc−1. This form is similar to the
one of Cole et al. (2005), but the index 3/2 is found by Hütsi (2006c) to be a better
fit. We then model the photo-z smoothing with the corrective factor

s(k) =

( √
π

2 σz k

)
erf (σz k) , (2.45)

assuming that photo-z errors follow a Gaussian distribution with dispersion δz and
corresponding spatial smoothing scale σz = δz c/H0. The last term of Eq. (2.44) is
the linear correction due to redshift space distortions, for which we assume (Kaiser
1987)

βz(z̄) ≃ Ω0.55
m (z̄)/bobs(z̄) . (2.46)

These distortions arise because of the cluster galaxies peculiar velocities: the red-
shift space power spectrum is modified with respect to the power spectrum in the
real space. We have checked that the RSD correction changes at most at the percent
level if we calculate it at the limits of our redshift range.

We finally take into account the Alcock-Paczynski effect (Alcock & Paczynski
1979): we rescale the full theoretical power spectrum with respect to the cosmology
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used to convert redshifts to distances in the measurements (denoted by the super-
script ‘fid’), assuming a single isotropic dilation applies (Eisenstein et al. 2005; Hütsi
2006c), i.e.

P̃ obs(k) =
1

c3isotr
P obs

(
k

cisotr

)
. (2.47)

Here cisotr =
(
c‖ c

2
⊥

)1/3
, c‖ = Hfid/H , c⊥ = DA/D

fid
A , DA is the angular diameter

distance of Eq. (1.26). All quantities are calculated at the mean redshift z̄.

After including the convolution with the survey window, the total observed power
spectrum P obs is modelled as

P obs(k) =

∫
d ln κ κ3 PNL(κ)K(κ, k) . (2.48)

Here the kernel K(κ, k), accounting for the effect of the finite survey area, can be
described by the analytic fit of Hütsi (2010, 2006a):

K(κ, k) = K(k, κ) =
c

kκ
[g(k + κ)− g(k − κ)] , (2.49)

where

g(y) = atan

(
e4 + 2d2y2

e2
√
4d4 − e4

)
. (2.50)

By imposing the condition
∫
K(κ, k)κ2dκ = 1 one obtains the normalisation constant

c =
1

πe
√
2− (e/d)2

. (2.51)

In the case of the maxBCG catalogue survey geometry, the best fitting parameters
are d = 0.0044 and e = 0.0041.
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2.5 Primordial non-Gaussianity

The simplest single-field, slow-roll model for inflation gives rise to nearly Gaus-
sian distributed curvature perturbations (Maldacena 2003; Acquaviva et al. 2003).
However, many generalizations, such as multi-field models, predict evidence for
large primordial non-Gaussianities (PNG, Bartolo et al. 2004). In general, non-
Gaussianity arises from any source of non-linearities. Free fields having no interac-
tions have a precisely Gaussian wave function. In the case of a single scalar field Φ
(inflaton field), the equation of motion is given by

Φ̈ + 3HΦ̇ + V ′(Φ) = 0 , (2.52)

where V ′(φ) = dV (Φ)/dΦ is linear and the potential V (Φ) can be expressed as

V (Φ) = V0 +
1

2
m2Φ2 , (2.53)

with a constant V0 and mass m. This leads to a linear system, with no trace of
non-linearities, implying that if Φ is Gaussian, it cannot gain deviations from Gaus-
sianity. Self-interactions of the field Φ are defined to be the higher orders terms in
the potential, i.e.

V (Φ) = V0 +
1

2
m2Φ2 +

µ

3
Φ3 +

λ

4
Φ4 + .... , (2.54)

which cause V ′ to be non-linear anymore and thus giving rise to non-linearities.
However these self-interactions cannot be large for the inflation to happen: they
need to satisfy the slow-roll condition

ǫ = − H

H2
≃ 1

2

(
V ′

V

)2

≪ 1 , (2.55)

which implies a severe limit on the flatness of the potential and for H(t) to vary
slowly. The curvature perturbations are then related to the scalar field perturba-
tions δΦ: even if δΦ is Gaussian, non-Gaussianities could be detected, because the
metric perturbations are not linear in δΦ, even if they are always of the order of ǫ.
To summarise, Gaussian quantum fluctuations by means of self-interactions generate
non-Gaussian fluctuations in the inflaton field. The latter produce non-Gaussian cur-
vature perturbations, which then generate non-Gaussian signature in the large-scale
structures.
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PNG would have multiple observable consequences, of which we will here con-
sider only two: the halo mass function changes as a function of the non-zero (posi-
tive) skewness (LoVerde et al. 2008; Pillepich et al. 2010), and the halo bias becomes
strongly scale-dependent due to the coupling of long- and short-wavelength modes
(Dalal et al. 2008; Matarrese & Verde 2008; Slosar et al. 2008; Afshordi & Tolley
2008; Desjacques et al. 2009; Giannantonio & Porciani 2010; Desjacques & Seljak
2010; Schmidt & Kamionkowski 2010; Desjacques et al. 2011). As a consequence
on the structure growth, we expect more massive collapsed structures at high red-
shift, because of the change in the timing of structure formation, and shape and
evolution of the mass function, and a scale dependence on the linear large-scale bias.
Therefore, the effects of PNG are mainly visible at high redshifts, high masses ob-
jects and on the large scale power spectrum.

Constraints on PNG can be investigated by measurements of abundances and
clustering of galaxy clusters. This is the main motivation that leads us to extend
our model to constrain primordial non-Gaussianity from both bias and abundances
of the maxBCG clusters sample.

2.5.1 Definition of fNL parameter

We first introduce some useful notation, following Giannantonio & Porciani (2010).
The fNL parameter quantifies the amount of PNG in the simplest local, scale-
independent case as

Φ(~x, z∗) = ϕ(~x, z∗) + fNL ∗
[
ϕ2(~x, z∗)− 〈ϕ2〉(z∗)

]
, (2.56)

where Φ is the Bardeen’s potential at redshift z∗ and position ~x, ϕ is an auxiliary
Gaussian potential with same dependences, and ∗ represents convolution (which
reduces to multiplication in case of constant fNL). Throughout this work, we define
fNL at early times (z∗ ≈ 1100), according to the CMB convention (opposite to the
LSS one, which refers instead to z = 0). We then assume the local shape for the
bispectrum

Bϕ(~k1, ~k2, ~k3) = 2 fNLB
2
s (k

n′

1 k
n′

2 + kn
′

1 k
n′

3 + kn
′

2 k
n′

3 ) , (2.57)

where Bs is the amplitude of Pϕ(~k) and n′ = ns − 4, ns being the index of the
primordial density fluctuation spectrum P (k) = As k

ns . The relation between the
spectral amplitudes As and Bs is given by

Bs

As

=
9

4
H4

0Ω
2
m .
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At leading order in fNL and neglecting trispectrum corrections, the potential power
spectrum can be approximated by its Gaussian part:

PΦ(k) ≃ Pϕ(k) . (2.58)

The matter perturbations are related to the primordial potential by the Poisson
equation:

δ̃(~k, z) = α(~k, z) Φ̃(~k, z∗) , (2.59)

where

α(k, z) =
2

3

c2k2T (k)D(z)

ΩmH2
0

g(0)

g(z∗)
. (2.60)

Here T (k) is the transfer function, D(z) the linear growth function, c = 300000 [km/s]
is the speed of light and g(z) ∝ (1+z)D(z). We can then write for the matter power
spectrum P as follows

P (k, z) = α2(k, z)PΦ(k, z∗) ≃ α2(k, z)Pϕ(k, z∗) (2.61)

and, as we consider linear theory only, we assume throughout P = Plin.

2.5.2 Modified mass function

The halo mass function is modified in the presence of PNG as it gains a dependence
on the skewness. We use the LoVerde et al. (2008) mass function (LV), which is
given by

fLV(ν) =

√
2

π
e−

ν2

2

[
ν + S3

σ

6
(ν4 − 2ν2 − 1) +

dS3

d lnσ

σ

6
(ν2 − 1)

]
, (2.62)

where ν = δc/σ and σ is defined in Eq. (1.39). S3 is the normalised skewness of the
matter density field (the mass dependence is implicit), defined as

S3 =
µ3

σ4
=

〈δ3M〉
〈δ2M〉2

, (2.63)

in terms of the third-order momentum µ3 of the smoothed density field.

µ3 ≡ 〈δ3M〉 =
∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

〈δM(~k1)δM(~k2)δM(~k3)〉 , (2.64)

and dS3/d lnσ is its first derivative with respect of ln σ, defined as in Desjacques et al.
(2009). To improve the agreement withN -body simulations, and for consistency with
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Figure 2.5: We show a comparison between various mass functions, computed for our
fiducial cosmology at z = 0. Press-Schechter (magenta dotted), Sheth-Tormen (green long-
dashed), Jenkins (blue dashed), Tinker (black solid) and LoVerde (red dotted-dashed) for
fNL = 200.

the rest of our analysis, we replace the Gaussian limit of the mass function from the
Press-Schechter form to the Tinker one, so that we will use the rescaled form defined
as:

f̃LV(ν) ≡
fT(ν)

fPS(ν)
fLV(ν) , (2.65)

where fPS and fT are respectively given by Eqs. (2.20) and (2.23). In Fig. 2.5 we
show a comparison between all the mass functions introduced so far, computed at
z = 0 for the fiducial cosmology of our analysis: PS (magenta dotted), ST (green
long-dashed), Jenkins (blue dashed), Tinker (black solid) and LV (red dotted-dashed)
mass function for fNL = 200.
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2.5.3 Modified bias

By applying the peak-background split formalism, we analytically derive the La-
grangian linear halo bias associated to the LV mass function of Eq. (2.62), using
Eq. (2.36):

bLLV(ν) =
δc
σ2

− 1

σ

6 + S3 σ (4ν
3 − 4ν) + 2 dS3

d lnσ
σ ν

6ν + S3 σ (ν4 − 2ν2 − 1) + dS3

d lnσ
σ (ν2 − 1)

. (2.66)

It follows that the Lagrangian bias associated to the rescaled mass function of
Eq. (2.65) is hence

b̃LLV(ν) = −1

σ

∂f̃LV (ν)

∂ν
= bLLV(ν) + bLT(ν)− bLPS(ν) , (2.67)

where bLLV is given in Eq. (2.66), while bLT and bLPS are derived from the Eulerian
biases of Eqs. (2.39) and (2.37) by subtracting unity.

In the presence of PNG, the halo density perturbations depend not only on the
dark matter perturbations δ, but also on the potential ϕ. The latter can then be
related back to the density in Fourier space by using the Poisson equation, so that
the effective Eulerian bias can be written at a fixed redshift z̄ as

bobseff (M, k, fNL) = b(M, fNL) + ∆b(M, k, fNL) , (2.68)

where the bias contains implicitly the following two corrections:

(i) a scale-independent correction with respect to the Gaussian case, following
from the difference in the mass function, given by

δb(fNL) ≡ b(M, fNL)− b(M, 0) ; (2.69)

(ii) a scale-dependent correction, given by

∆b(M, k, fNL) ≡
2 fNL δc b

L(M, fNL)

α(k, z̄)
. (2.70)

Fig. 2.6 shows the linear Tinker halo bias bT(M) as a function of halo mass M at
z̄ = 0.2, compared with the PS case, and with the scale-independent part of the bias
in the presence of primordial non-Gaussianity described in Eq. (2.68): the cosmology
is fixed to the best-fit model for our analysis. As in the Gaussian case, we will then
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Figure 2.6: Mass dependence of the linear halo bias at z̄ = 0.2 for three mass functions:
Press-Schechter (cyan dotted), Tinker (black solid) and modified LoVerde mass function
in the presence of primordial non-Gaussianity (magenta dot-dashed), with fNL = 400. The
cosmological model is fixed at the fiducial model in our analysis.

.

average the bias over the masses in our catalogue, following Eq. (2.40). To include
the uncertainty on the assumption of a mass function, we introduce a nuisance pa-
rameter B, which rescales the bias as bobs = b̄ B.

The scale-independent correction δb(fNL) is small, easily confused with other
normalisation effects, and relies on the assumed form of the mass function and the
peak-background split method. For these reasons, it is worth ensuring that the re-
sults do not depend on this contribution. We make sure this happens in our case
because any constant rescaling of the bias can be equally explained by either a change
in the nuisance parameter B or a change in fNL. But since a model with fNL 6= 0
also predicts the scale-dependent bias, it will be favoured only in case such a feature
is indeed observed in the data, otherwise the B 6= 1 model will be assigned a better
likelihood. In practice, we impose a Gaussian prior centred on B = 1 (details in
Chapter 4), but we have checked that the results on fNL do not depend significantly
on this choice.
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Figure 2.7: The effect of PNG on the cluster power spectrum. We compare here the
predictions for the best-fit model we obtain with fNL = −46 (red solid) and for two cases
with fNL = −200 (blue dashed) and fNL = 200 (green dot-dashed). The dotted line at
kmax = 0.15h Mpc−1 represents the smallest scale we use in the analysis.

Finally, we show in Fig. 2.7 the full power spectrum P̃ obs(k) in the presence of
PNG for a choice of fNL values. High and positive values of fNL increase evidently
the power spectrum on large scales, while weakly suppressing it on small scales. The
scale-dependent bias induced by PNG impacts on large scales, while the smaller scale-
independent contribution affects the small scales. The survey window convolution
partially suppresses the effect of PNG on the largest scales, which become comparable
with the survey volume.



Chapter 3

Observations, data and errors

This Chapter is dedicated to the description of the data sets and error estimates we
use in our combined cosmological analysis. First, we describe briefly galaxy cluster
observations through the whole electromagnetic spectrum. We list the most impor-
tant X-ray, millimetre (SZ), weak lensing and optical surveys of past, present and
future times, as well as the cosmological constraints obtained from previous works
with cluster catalogue. A particular focus is given to the Sloan Digital Sky Sur-
vey maxBCG optical catalogue, which is used in this work, and to the data sets we
derived from it. We first describe the cluster counts and their covariance matrix. Sec-
ondly, we concentrate on the weak lensing mass estimates, the richness-mass scaling
relation and the cluster total masses. Finally, the description of the redshift space
cluster power spectrum is provided, together with its covariance error matrix. We
end with some considerations on the cross-covariance matrix between counts and
power spectrum.

3.1 Multi-wavelength surveys of galaxy clusters

Clusters have been detected across multiple wavelengths with varying degrees of suc-
cess. To date, a few hundreds have been observed in the millimetre, few thousands
in the X-ray, many tens of thousands in the optical. The efficiency of a survey is due
to the combination of the technical properties of the detection instrument (e.g. flux
sensitivity and angular resolution) and the physical features of the observed objects
(e.g. intrinsic luminosity and redshift). Surveys are thus characterised by complete-
ness (namely amount of objects that should have been detected), and purity (i.e.
contamination due to spurious detected objects). This section includes a description
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of the the various detection methods as well as the main galaxy cluster surveys and
the derived catalogues.

3.1.1 X-ray surveys

The peculiar X-ray extended emission from the hot intra-cluster medium in galaxy
clusters is relatively simple to identify. However, X-ray surveys are limited in surface
brightness: too diffuse or too faint sources are missed. The deep knowledge of the
X-ray emission from galaxy clusters enables to predict exactly the completeness and
the purity of the survey, by means of extensive numerical simulations. The first X-
ray cluster catalogues (Edge et al. 1990; Gioia et al. 1990) were derived from Ariel
V1 and HEAO-12 all-sky surveys and made use of the Einstein Observatory and
EXOSAT3 (Lahav et al. 1989). Later, the ROSAT satellite All-Sky Survey (RASS4,
Voges et al. 1999) provided data used to create few catalogues: e.g. the ROSAT-ESO
Flux Limited X-ray (REFLEX) galaxy clusters survey (Böhringer et al. 2004); the
HIFLUGCS (Reiprich & Böhringer 2002) and the Massive Cluster Survey (MACS,
Ebeling et al. 2010). Another catalogue of serendipitously observed clusters at high
z is the ROSAT Deep Cluster Survey (RDCS, Rosati et al. 1998). Later NASA’s
Chandra X-ray Observatory5 and ESA X-ray Multi-Mirror Mission Newton (XMM-
Newton6) represented a breakthrough in X-ray observations, thanks to the improved
angular resolution (θ ∼ 0.5′′), and the high sensitivity due to the large collecting
area, respectively.

3.1.2 SZ surveys

Galaxy clusters can distort the spectrum of the CMB by the SZ effect, which is ob-
served at millimetre wavelengths. SZ surveys are able to detect high-redshift, massive
clusters, due to the redshift-independent SZ signature on the CMB: they can poten-
tially observe the most distant clusters in the Universe, being only limited in the in-
trinsic SZ signal (related to the mass) and not in flux. However, the current mm tele-
scopes have a poor spatial resolution (θ ∼ 60′′), being unable to resolve substructures
or possible contaminating sources. The current operating SZ surveys are the Atacama

1http://heasarc.gsfc.nasa.gov/docs/ariel5/ariel5.html
2http://heasarc.gsfc.nasa.gov/docs/heao1/heao1.html
3https://heasarc.gsfc.nasa.gov/docs/exosat/exosat.html
4http://www.xray.mpe.mpg.de/cgi-bin/rosat/rosat-survey
5http://chandra.harvard.edu/
6http://xmm.esac.esa.int/
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Cosmology Telescope (ACT7, Kosowsky 2006; Marriage et al. 2011; Menanteau et al.
2013), the South Pole Telescope (SPT8, Vanderlinde et al. 2010; Carlstrom et al.
2011; Reichardt et al. 2013) and Planck9 satellite (Planck Collaboration et al. 2011).

3.1.3 WL surveys

Clusters have also been detected as peaks in the shear field of deep weak gravita-
tional lensing surveys (Wittman et al. 2001, 2003; Dahle et al. 2003). This method
directly detects the projected surface mass density of the clusters, but introducing
relevant noise in the mass estimation for individual systems (White & Kochanek
2002; de Putter & White 2005). In order to detect a cluster via its gravitational
lensing signal, numerous images of many background faint galaxies need to be taken,
thus this is a quite expensive technique. Despite the fact that WL is probably not
an optimal method for cluster detection, it is a valid tool in cluster mass calibration
(Sheldon et al. 2001; Johnston et al. 2007a) for clusters detected with other methods:
more details will come in Section 3.4.1.

3.1.4 Optical surveys

Optical selection is based on overdensity of galaxies on the sky. This method was
used first in 1784 by Charles Messier in the discovery of the Virgo Cluster. It
yielded to the first statistically complete sample of galaxy clusters built by George
Abell (Abell 1958) using the Palomar Observatory Sky Survey, then extended to
include more than 4000 objects (ACO, Abell et al. 1989), and to the catalogue by
Zwicky et al. (1968). These catalogues are biased towards identification of massive
objects, with centrally peaked galaxy distribution, and nearby systems. Another
identification technique is based on the overdensity of red galaxies which typically
populate the well-evolved galaxy clusters and results into a tight red-sequence in a
colour-magnitude diagram. This method has been used by the Red-Sequence Clus-
ter Survey (RCS, Gladders & Yee 2005) using the Canada-France-Hawai’i Telescope
and Cerro Tololo Inter-American Observatory, leading to the first cosmological con-
straints in optical surveys (Gladders et al. 2007). The large amount of data from
the Sloan Digital Sky Survey (SDSS10) with its multi-band imaging and hundreds
of thousands spectroscopic targets (Ahn et al. 2012) has been used to select several

7http://www.princeton.edu/act/
8http://pole.uchicago.edu/
9http://www.esa.int/Our Activities/Space Science/Planck

10http://www.sdss.org/
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samples, such as the maxBCG cluster catalogue (Koester et al. 2007b) discussed in
Section 3.2.1. This has later been extended to the GMBCG catalogue by Hao et al.
(2010). Other larger SDSS cluster samples include the work of Wen et al. (2009)
and Szabo et al. (2011). Although the large number of detected clusters, the main
issue with optical clusters is the difficult choice of a low-scatter mass proxy, as these
are affected by selection effects. Another problem is that, while in the local Uni-
verse most galaxies members of a clusters are known to be red, this may not be
valid anymore at high redshift, where galaxies seem to have star formation processes
(Fassbender et al. 2011), causing then the lack of red-sequence feature.

3.1.5 Future surveys

The optical and near-infrared current and upcoming generation of galaxy cluster
surveys will include the Panoramic Survey Telescope and Rapid Response System
(PanSTARRS11), the Dark Energy Survey (DES12), the KIlo-Degree Survey (KIDS13)
and VISTA Kilo-degree INfrared Galaxy Survey (VIKING14), the Large Synoptic
Survey Telescope (LSST15), and the Euclid mission16. X-ray observations will be im-
proved by the eROSITA all-sky survey, while for the SZ signal the future data releases
of Planck, ACT, SPT, and the Cerro Chajanantor Atacama Telescope (CCAT17) will
play a key role. Great improvements in the mm-band observations are expected to
come from the Atacama Large Millimetre Array (ALMA18 Testi et al. 2010), reaching
θ ∼ 0.01′′.

3.1.6 Cosmological constraints from cluster catalogues

The cluster number counts from some of the catalogues listed above have been used
to constrain cosmology via the mass function. Efforts on this front have been led by
Rozo et al. (2010); Zu et al. (2012) who derived cosmological constraints from the
maxBCG cluster sample. The tightest scaling relation between observable and clus-
ter mass comes from fgas measurements of X-ray data (< 10% scatter, Allen et al.

11http://pan-starrs.ifa.hawaii.edu/public/
12http://www.darkenergysurvey.org/
13http://kids.strw.leidenuniv.nl/
14http://www.eso.org/public/teles-instr/surveytelescopes/vista/surveys.html
15http://www.lsst.org/lsst/
16http://sci.esa.int/euclid
17http://www.ccatobservatory.org/
18http://www.almaobservatory.org/
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2008). Constraints on dark energy with ∼ 20% uncertainty were obtained from X-
ray cluster samples studied by Mantz et al. (2008, 2010) and Vikhlinin et al. (2009).
Preliminary results for SZ surveys show agreement with the concordance WMAP
CMB results (Komatsu et al. 2011).

Data on the cluster masses obtained from weak-lensing analyses of background
galaxies have been combined with the number counts to improve the constraining
power (Johnston et al. 2007b; Sheldon et al. 2009; Mahdavi et al. 2007).

The statistics of rare events in the high-peak, high-mass limit has been used to
constrain cosmology by Hotchkiss (2011); Hoyle et al. (2012).

The uncertainty in the scaling relation is one of the biggest obstacles in using
galaxy clusters as cosmological probes (e.g. Haiman et al. 2001; Battye & Weller
2003). Majumdar & Mohr (2003) suggested to use the clustering of clusters as a
complementary probe. So far, only limited efforts have been dedicated to the mea-
surement of the clustering properties of galaxy clusters: Hütsi (2010) measured the
power spectrum of maxBCG clusters resulting in weak detection of baryon acous-
tic oscillations, Estrada et al. (2009) measured the correlation function for the same
catalogue, and Hong et al. (2012) measured the correlation function of the cluster
catalogue by Wen et al. (2009). Collins et al. (2000) measured the spatial correlation
function of the REFLEX X-ray cluster catalogue, while Balaguera-Antoĺınez et al.
(2011) measured its power spectrum. From the same survey, Schuecker et al. (2003)
derived cosmological constraints from cluster abundances and large-scale clustering.

Finally, the constraining power of these data on measurements of the amount of
primordial non-Gaussianity in the initial density perturbations field, which can po-
tentially rule out entire classes of inflationary models (Bartolo et al. 2004), has been
investigated by several authors. Bounds from the LSS using multiple galaxy cata-
logues have been studied by Afshordi & Tolley (2008); Slosar et al. (2008); Xia et al.
(2010a,b, 2011); Sefusatti et al. (2012); Giannantonio et al. (2013); Ross et al. (2013).
In particular Slosar et al. (2008) found −29 < fNL < 70 at 95% c.l., while Xia et al.
(2011) reported hints of detection at 8 < fNL < 88 (95% c.l.) for the local model.
Other constraints come from the CMB bispectrum analyses: from WMAP data
it was obtained −3 < fNL < 77 at 95% c.l. (Hinshaw et al. 2013; Bennett et al.
2013), Shandera et al. (2013) found fNL = −3+78

−91 at 68% c.l. from X-ray cluster
data combined with the WMAP7 data, while latest constraints on fNL local pa-
rameter from Planck are 2.7 < fNL < 5.8 at 68% c.l. (Planck Collaboration et al.
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2013c). Future galaxy surveys such as Euclid are expected to reach an accuracy
of ∆fNL ∼ 3 (Giannantonio et al. 2012). Oguri (2009) suggested that measur-
ing the variance of cluster counts can yield significant constraints on PNG, while
Sartoris et al. (2010) showed in principle how such constraints can be improved by
using the cluster power spectrum. Forecasts for cosmology and PNG have been also
investigated by Pillepich et al. (2012), with the future eROSITA X-ray cluster survey.

3.2 The Sloan Digital Sky Survey

The SDSS is an imaging (5 bands (u, g, r, i, z), spanning from ultraviolet to in-
frared) and spectroscopic survey in the North Galactic Cap and a small region in
the South, encompassing 10,000 deg2. It contains more than 930,000 galaxies and
120,000 quasars. SDSS-I operated between 2000 and 2005, while SDSS-II between
2005 and 2008. The final public data release from SDSS-II in 2008 was the Data
Release 7 (DR7, Abazajian et al. 2009). Meanwhile, SDSS-III will operate till 2014
and already produced Data Release 8 (DR8, Aihara et al. 2011) in 2011 and Data
Release 9 (DR9, Ahn et al. 2012), which contains the first results of the Baryon Os-
cillation Spectroscopic Survey (BOSS19). The survey employs a 2.5-meter telescope
at Apache Point Observatory in New Mexico, equipped with a 120-mega-pixel cam-
era and a pair of spectrographs. In 2009 the Nobel Prize in Physics was awarded
for the optical fibres and the digital imaging detectors (CCDs) technologies used in
SDSS. The great quality and quantity of these data were crucial to the development
of significant research in astrophysics and cosmology, including structure and stellar
populations of the Milky Way, properties of galaxies, LSS, DM and DE.

3.2.1 MaxBCG catalogue

The maxBCG catalogue 20 (Koester et al. 2007a) is a sample of 13,823 galaxy clus-
ters compiled from SDSS DR5 photometric data. The clusters are chosen in an
approximately volume-limited way from a 500 Mpc3 region, covering ∼7,500 deg2 of
sky with a photometric redshift (photo-z) range of 0.1 ≤ z ≤ 0.3. The photo-z errors
are small and of the order of ∆z = 0.01. Each of these clusters contains 10 to 190
E/S0 ridgeline galaxies, which are brighter than 0.4 L∗, within the scale radius R200.
Two catalogues derived from SDSS data are used to construct the maxBCG sample:

19http://www.sdss3.org/surveys/boss.php
20http://umsdss.physics.lsa.umich.edu/catalogs/maxbcg public catalog.dat
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a photometric catalogue, used for the cluster detection, and a spectroscopic one,
useful to test the validity of the photo-z estimates. The maxBCG sample is assem-
bled by selecting the brightest cluster galaxies and applying a red-sequence method

to identify cluster members in its neighbourhood. This relies on two key features of
galaxy clusters: there is an almost ubiquitous population of galaxies which occupies
a tight-scattered region in a colour-magnitude diagram (the E/S0 ridgeline), and
the brightest cluster galaxies (BCG), typically located in the centre of the clusters,
have similar colours and luminosities. The maxBCG algorithm considers two spatial
dimensions (RA,DEC), two colour dimensions (g-r, r-i), one brightness dimension (i)
and the redshift, and calculates the membership likelihood of each galaxy.

The pipeline calculates two likelihoods for each galaxy: the likelihood to be part
of the E/S0 ridgeline and the likelihood to check the similarity to a BCG at redshift
z. These likelihoods are computed over a grid of redshifts in the range 0.1 ≤ z ≤ 0.3.
The redshift corresponding to the maximum likelihood gives a first estimate of the
redshift of the object. Subsequently, the algorithm assigns the status of BCG to the
galaxy which maximises the product of these likelihoods. Then, it calculates the
number of galaxies Ng within 1h−1Mpc from the BCG, with luminosity greater than
0.4 L∗ (where L∗ is the SDSS typical galaxy luminosity) and smaller than the BCG
luminosity. This quantity is converted by Hansen et al. (2005) empirical relation to
R200, which is the radius at which the overdensity of galaxies with an absolute r
band magnitude of −24 ≤Mr ≤ −16 is 200 times that of the average galaxy density.
The galaxies within R200, with similar colours (±2σ) and magnitude of the BCG
and within a ∆z = 0.02 are then promoted as members of a cluster. This selection
process starts from the richest cluster, and removes the BCG and cluster members
from the galaxy catalogue before identifying the next highest likelihood, and thus
the next BCG and associated cluster. In this way, previously flagged BCG and cor-
responding cluster members can be absorbed by richer clusters. The procedure is
iterated until all galaxies are either BCGs or cluster members. Finally a cut on the
number of cluster members is imposed, i.e. Ng > 10.

An analysis of N-body mock galaxy catalogues shows that the maxBCG algorithm
results in more than 90% purity and more than 85% completeness, for clusters with
masses M ≥ 1014M⊙ (Wechsler et al. 2006; Koester et al. 2007a). These simulations
ensure that each cluster has a BCG by locating the brightest galaxy within the
halo at the bottom of the dark matter potential well. Then, two quantities are
computed for each mock cluster detected by the maxBCG algorithm: the fraction fc
of cluster galaxies within the richest DM halo, and the fraction fh of galaxy halos
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within the cluster halo. The first quantity represents the purity of the cluster finding
algorithm: for each cluster, the halo with the maximum fraction of cluster members
is identified. The second measurement, instead, estimates the completeness: for each
halo, the cluster with the largest fraction of members is selected. A low value of fc
denotes a false positive detection of cluster, due to the fact that galaxies cannot be
clearly associated to a single DM halo. If fh falls below a threshold, the cluster is
not detectable, because the number of identified galaxy halos within the cluster is
too low. They obtained that for fc = 0.3 the purity is > 90% for cluster Ng > 10
and 95− 100% pure for clusters with Ng > 20. On the other hand, for fh = 0.3, the
completeness of the sample is > 90% above a mass of ∼ 2× 1014M⊙ and 95− 100%
complete above a mass of ∼ 3× 1014M⊙ .

3.3 MaxBCG cluster number counts

This Section introduces the first data set we need for the combined cosmological
analysis presented here, namely the maxBCG cluster abundances. We also describe
in detail the counts covariance error matrix which is composed of Poisson errors,
sample variance and observational uncertainties.

3.3.1 Cluster abundances

As already introduced in Section 2.3, the richness Ngal of a galaxy cluster is defined
as the number of red galaxies within the radius R200 from the cluster centre. The
cluster abundances we use in our analysis (see Table3.1) are divided into nine richness
bins in the range

11 ≤ Ngal ≤ 120 ,

which approximately corresponds to (Rozo et al. 2010)

7× 1013h−1M⊙ ≤M ≤ 1.2× 1015h−1M⊙ .

The relatively low mass limit of this sample evolves weakly with redshift, resulting in
a sample that is significantly large. The sample also includes five additional clusters
with richness Ngal > 120, that we decide not to consider because of their negligible
impact on the cosmological analysis. We extend the counts data used by Rozo et al.
(2010) by including an additional bin at 9 ≤ Ngal ≤ 11 (Eduardo Rozo, private
communication). However, we checked the results are not affected by this choice.
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Table 3.1: MaxBCG counts data, binned into ten richness intervals: first column gives
the mean Ngal value for each bin, while second one is the corresponding number of clusters.

Ngal ∆N

9.9 6070
12.8 5167
16.9 2387
21.4 1504
26.8 765
34.2 533
43.7 230
55.1 134
70.0 59
97.8 31

3.3.2 Counts covariance matrix

For the cosmological analysis we need to provide theoretical expectations of the
counts covariance matrix C∆N between various bins, which is given by

C∆N = 〈
(
Ni − N̄i

) (
Nj − N̄j

)
〉

=
[
(CPoisson+Obs|∆N)−1 + (CSample|∆N)−1 + (CPhotoz|∆N)−1

]−1
. (3.1)

The partial error matrices include the intrinsic error estimates, such as Poisson errors
and sample variance, and observational systematics, such as photometric redshifts
errors and uncertainties in purity and completeness of the sample. Following the
prescription of Rozo et al. (2004, 2007), CPoisson+Obs|∆N represents the Poisson error
matrix, including the uncertainties on purity and completeness, while CSample|∆N
represents the sample variance matrix and CPhotoz|∆N the photometric redshift errors.
In the top panel of Fig. 3.1 we show the counts data and errors, together with the
predicted counts for a selection of different cosmologies. The red solid line represents
the best-fit model to our full data set, while in green dotted-dashed and in blue
dashed we represent the predicted counts for Ωm = 0.41, σ8 = 0.65 and Ωm = 0.15,
σ8 = 0.94, respectively. From this plot we deduce that a Universe with higher Ωm has
more clusters at low richness. At the same time, a lower σ8 implies a suppression of
the high richness (mass) counts. Vice versa, a low Ωm value brings less low richness
objects and a higher σ8 allows for more high richness (mass) counts.
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Poisson errors

When counting a discrete number of events in cells, the first associated uncertainty
is the Poisson error. Therefore, if we count clusters in bins, the probability of
observing ∆N clusters in a bin of given redshift and richness, is determined by the
following Poissonian distribution:

P (∆N |N) =
N∆N

∆N !
e−N , (3.2)

where N = 〈∆N〉 = Var[∆N ] is positive. This distribution is uni-modal, centred
roughly on the mean and exhibits positive skew which decreases as the mean in-
creases. Let us assume now that the mean N fluctuates in different bins as

Ni =

∫
d3xWi(~x)n(~x, zi) , (3.3)

where n(~x, zi) is the spatial number density and Wi(~x) is the usual top-hat window
function. The sample averaged number counts is

N̄i = n̄i Vi , (3.4)

where Vi =
∫
d3xWi(~x) and n̄i is the averaged cluster density given by Eq. (2.28).

Thus, the Poisson error contribution to the covariance matrix is

CPoisson
ij |∆N = 〈

(
Ni − N̄i

) (
Nj − N̄j

)
〉 Poisson = δij N̄i , (3.5)

where Var[N̄i] = N̄i.

Purity and completeness

For a correct analysis, we need to take into account for purity and completeness
issues. For the cosmological analysis presented here, we assume 100% purity and
completeness, adding a 5% uncertainty in quadrature (Rozo et al. 2010). This means
adding a parameter λ = λ̄±σλ = 1.00±0.05 which transforms N̄i to λN̄i. According
to error propagation formulae, the variance of λN̄i is given by:

Var[λN̄i] =

(
∂λN̄i

∂λ

)2

σ2
λ +

(
∂λN̄i

∂N̄i

)2

σ2
N̄i

= N̄2
i σ

2
λ + λ2N̄i . (3.6)

Thus the Poisson error matrix diagonal elements change as:

CPoisson+Obs
ij |∆N = 〈

(
Ni − N̄i

) (
Nj − N̄j

)
〉 Poisson+Obs = δij

(
N̄2
i σ

2
λ + N̄i

)
. (3.7)
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Sample variance

Another important source of uncertainty is the cell-to-cell variance due to large-scale
structure (Hu & Kravtsov 2003; Lima & Hu 2004), usually called sample variance
(or cosmic variance). In fact, observational estimates of number densities of a clus-
tered population in finite volumes are subject to uncertainties which exceed the
Poisson noise, arising from the underlying large-scale density fluctuations. If the
typical clustering scale of the observed objects is much smaller than the sample vol-
ume, then cosmic variance is negligible. On the contrary, if the observed volumes are
smaller than the clustering scale, one might count more or less objects with respect
to the average number: in this case, cosmic variance becomes dominant and should
be taken into account. For example, cosmic variance is relevant for deep galaxies
surveys, because galaxies at high redshifts are more strongly clustered than dark
matter compared to the local Universe (Kauffmann et al. 1999b). To check if a sur-
vey is independent of cosmic variance and accurately samples the Universe, one can
compare the variation between the number counts for samples of different angular
sizes which mimic different survey fields. In the case of strong cosmic variance, the
number counts depend on where the samples are located in the sky and differ signif-
icantly for each region. If instead the counts agree while approaching the total size
of the survey, the cosmic variance can be neglected. For clusters, we can recast the
counts of Eq. (3.3) as

Ni =

∫
d3 xWi(~x) (n̄i + δni) =

∫
d3 xWi(~x) [n̄i (1 + bi δi)] , (3.8)

where δi ≡ δ(~x, zi) is the underlying linear density field and bi is the average bias
given by Eq. (2.40). Note that the index i identifies unique cells in redshift, angle
and observable mass. The covariance matrix between cluster counts found in each
bin due to sample variance is given by

CSample
ij |∆N = 〈

(
Ni − N̄i

) (
Nj − N̄j

)
〉 Sample =

= bi bj n̄i n̄j

∫
d3x

∫
d3xWi(~x)Wj(~x)〈δi δj〉 =

= bi bj n̄i n̄j

∫
d3k

(2π)3
Wi(~k)Ŵj(~k)P (k) , (3.9)

where P (k) is the linear power spectrum and Ŵj(~k) is the Fourier transform ofWj(~k).
In our cosmological analysis, however, the survey volume is big enough (∼7,500 deg2)
to have a negligible sample variance contribution.
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Photometric redshift errors

The observational uncertainties associated to the photometric redshifts estimates are
described by the probability distribution p(zc|zh)dzc, where zc is the photo-z estimate
and zh is the true halo redshift. This probability depends on the richness measure
because the number of galaxies contributing to the photometric estimate increases
with Ngal. However, systematics can reduce the sensitivity to cluster richness. We
have found that the photo-z errors have a negligible impact on the number counts
analysis presented here, so we neglect their contribution CPhotoz|∆N in the number
counts covariance matrix.

3.4 MaxBCG cluster masses

This Section describes the estimation of the mean cluster masses and errors from
the maxBCG catalogue by the WL technique. We also specify the nature of the
mass-richness relation and constraints on its scatter from previous works. Finally,
we introduce the second data set we need for our analysis, namely the total cluster
masses together with their covariance error matrix.

3.4.1 Mean cluster masses from weak lensing observations

Sheldon et al. (2009) first measured the weak lensing effect from maxBCG galaxy
clusters. By stacking the clusters in narrow richness bins, the signal-to-noise was
improved considerably compared to the measurement of the profile of an individ-
ual cluster. In this way, they could measure the cluster average weak lensing shear
profile. These profiles were then converted to surface mass density contrast profiles
(see Eq. 2.8) for different luminosity and richness bins, by means of the photomet-
ric redshift distribution of the background galaxies, estimated with the methods of
Lima et al. (2008) and Oyaizu et al. (2008). Johnston et al. (2007b) fit the resulting
profiles and reconstructed the mean 3D cluster density and mass profiles: this allows
one to estimate the mass and the concentration of clusters in a given redshift bin.
For this reconstruction a Navarro-Frenk-White profile (Navarro et al. 1997) for the
cluster density was assumed (see Eq. 2.4). They found for the whole sample, the
following mean mass-richness relation:

M200(Ngal) ≃ 8.8× 1013h−1M⊙ (Ngal/20)
1.28 , (3.10)
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whereM200 is the mass contained within the radius R200. Mandelbaum et al. (2008b)
used a different method for estimating the redshift of the background sources, which
corrected the biased mass estimates of Sheldon et al. (2009) upwards by a factor of
1.18, as described also in Rozo et al. (2009). Mandelbaum et al. (2008a) performed
a similar but independent weak lensing analysis of the maxBCG clusters, but us-
ing a slightly different overdensity threshold for the mass definition (180 instead
of 200), which added only a 2% correction. Applying this correction, the slopes
of Johnston et al. (2007b) and Mandelbaum et al. (2008a) agreed almost perfectly,
but the latter found a mean mass difference of approximately 6% with respect to
Johnston et al. (2007b). Rozo et al. (2010) included this discrepancy by introducing
an offset factor β with a suitable chosen prior, as we will described in Chapter 4.

For the cosmological analysis presented here we follow Rozo et al. (2010) and fit
for the mass-richness relation using the Johnston et al. (2007b) data and their errors
(see Table 3.2). We use five richness bins for this, in the range 12 ≤ Ngal ≤ 300, plus
another extra bin at 9 ≤ Ngal ≤ 12 (Eduardo Rozo, private communication). The
bottom panel of Fig. 3.1 shows the mean weak lensing mass estimates with errors,
together with the theoretical expectations for a selection of different cosmologies.
The red solid line represents the best-fit model to our full data set (counts, total
masses and power spectrum). The green dotted-dashed (blue dashed) curve repre-
sent the theoretical predictions for Ωm = 0.41, σ8 = 0.65 (Ωm = 0.15, σ8 = 0.94).
From this plot we can deduce that in a Universe with low Ωm, structures form early,
thus being more numerous at high z. In addition to this, they have more time to
accrete, implying the reach higher masses. On the contrary, if Ωm is high, structures
form late, resulting in less structures at high z. Furthermore, they have less time to
accrete and thus they will end up with lower mean masses.

Note that in general the estimated WL mass of a galaxy cluster depends on the
underlying cosmological model. For the analysis presented here, this dependency is
through the angular diameter distance, which is modified by the total matter density
Ωm. In order to estimate the size of this cosmology dependence, we placed a galaxy
cluster with mass M = 1.1 × 1015h−1M⊙ at redshift z = 0.2 and produced a mock
catalogue of sheared background galaxies. From this catalogue we estimated the
mass of the cluster by fitting to a NFW profile. We found that, if we allow Ωm to
change within the 1-σ level of our best fit cosmology, the mass varies within 5%.
However, we allow for an uncertainty in the mass estimation with the offset factor
β with a prior width of 6%. Hence any change due to a different Ωm is completely
degenerate with the β parameter, which we assume does not depend on cosmology.
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Table 3.2: MaxBCG mean mass data, binned into six richness intervals. From left to right,
we have respectively: the mean Ngal value for each bin, the corresponding abundances, the
WL mean mass and relative error on it.

Ngal ∆N M̄ [1014M⊙] σM/M̄

10.4 7986 0.9659 0.11
14.7 5651 1.3 0.08
21.6 2269 1.986 0.10
32.6 1021 3.851 0.09
54.0 353 5.482 0.12
145.9 55 13.04 0.17

3.4.2 Mass-richness scaling relation

In order to perform a cosmological analysis, we need to make some assumptions on
the scaling relation between the true mass of a cluster M and its observed richness
Ngal. Following Johnston et al. (2007b) and Rozo et al. (2010), we assume the scaling
relation to be a power law in mass,

lnM = lnM200|20 + αN ln(Ngal/20) , (3.11)

with M200|20 the mass of a cluster with 20 member galaxies within a radius of R200

and αN the slope of the relation. This provides the mean of the distribution between
Nobs

gal and M , given by Eq. (2.25). We fit this relation by fixing two pivot points in
mass

M1 = 1.3× 1014M⊙ and M2 = 1.3× 1015M⊙ ,

while the corresponding richness values

lnN1 ≡ lnNgal|M1 and lnN2 ≡ lnNgal|M2

are kept as free parameters. Note that we use σlnNobs
gal |Ngal

= σlnNobs
gal |M

, which holds

because p(Ngal|M) is a delta function, according to Eq. (2.25). The statistical scat-
ter around the scaling relation is assumed to be constant with redshift and mass for
individual clusters. To get an estimate of this quantity is not trivial; however, by de-
manding consistency between the X-ray and weak lensing measurements, Rozo et al.
(2009) found

σlnM |Nobs
gal

= 0.45+0.20
−0.18 (95%c.l.),

which is the scatter in mass given the richness. Specifically, Rozo et al. (2009) used
observational constraints from maxBCG clusters on the mean M − Ngal relation,
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Figure 3.1: Top panel: MaxBCG cluster counts data (black points) and theoretical
predictions for a choice of different cosmologies (without primordial non-Gaussianity). The
red solid line represents the best-fit model to our full data set (counts, total masses and
power spectrum). In green dotted-dashed and in blue dashed we represent the predicted
counts for Ωm = 0.41, σ8 = 0.65 and Ωm = 0.15, σ8 = 0.94, respectively. Bottom panel:

Mean masses of maxBCG clusters (black points) and theoretical predictions for different
cosmologies, as above.

from weak lensing measurements, and on the mean and scatter of the LX −Ngal re-
lation, from X-ray measurements. The former analysis was done by Johnston et al.
(2007a,b); Sheldon et al. (2009); Mandelbaum et al. (2008a,b). Rykoff et al. (2008)
measured instead the cluster X-ray luminosity and scatter by stacking the RASS
(Voges et al. 1999) photon maps, centred on maxBCG clusters, in narrow richness
bins. In addition to these data sets, they also placed priors on the LX −M relation
from the constraints obtained by Vikhlinin et al. (2009), based on clusters from the
400 days cluster X-ray survey (Burenin et al. 2007). By combining these data, they
obtained a constraint of the scatter in mass which is consistent with other analysis
(e.g. Becker et al. 2007).
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For our cosmological analysis we need to place a prior on the converse scatter,
σlnNobs

gal |M
. The scatter and the converse scatter can be readily related to each other

by invoking the relation of Eq. (3.11), which results in

σlnM |Nobs
gal

= αN σlnNobs
gal |M

.

3.4.3 Cluster total masses

In our combined analysis, we do not use the WL cluster mean masses as an additional
data set to the cluster abundances. Instead, we use the cluster total masses ∆NM̄ ,
i.e. the product of counts and mean mass in the corresponding richness bins. The
covariance matrix of the total masses is calculated in an analogous way as done for
counts (see Eq. 3.1):

C∆NM̄ = 〈
(
NiM̄ − N̄iM̄

) (
NjM̄ − N̄jM̄

)
〉 . (3.12)

Note that when introducing the uncertainty λ = λ̄± σλ = 1.00± 0.05 on purity and
completeness, as described for counts already (see also (Rozo et al. 2010)), the total
masses change from N̄iM̄ to λN̄iM̄ . According to error propagation formulae, the
variance of λN̄iM̄ is thus given by:

Var[λN̄iM̄ ] =

(
∂λN̄iM̄

∂λ

)2

σ2
λ +

(
∂λN̄iM̄

∂N̄i

)2

σ2
N̄i

+

(
∂λN̄iM̄

∂M̄

)2

σ2
M̄ =

= (N̄iM̄)2σ2
λ + λ2M̄2N̄i + N̄2

i σ
2
M̄ . (3.13)

The Poisson error matrix diagonal elements then become:

CPoisson+Obs
ij |∆NM̄ = δij

[
(N̄iM̄)2σ2

λ + M̄2N̄i + N̄2
i σ

2
M̄

]
. (3.14)
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3.5 MaxBCG cluster power spectrum

This Section details the measurements of the third data set we need, namely the
maxBCG cluster power spectrum and corresponding covariance matrix.

3.5.1 Cluster power spectrum calculation

We will now describe the calculation of the redshift-space power spectrum of the
maxBCG sample, as measured by Hütsi (2010). For the full details of the power
spectrum measurement, along with systematics tests, we also refer the reader to
Hütsi (2006a,b). From the SDSS DR5 full data set, the three southern stripes are
removed: Fig. 3.2 shows angular distribution of the remaining clusters of galaxies, in
the Sloan survey coordinate system (Stoughton et al. 2002), together with the recon-
structed angular mask. The power spectrum calculation is then based on these 12,616
galaxy clusters, with redshift 0.1 ≤ z ≤ 0.3, over ∼ 6800 deg2 and ∼ 0.4 h−3Gpc3

of comoving volume. The distribution is divided into 25 regions in the latitude-
longitude plane and in 3 redshift slices: in total, the divisions are 75, with ∼ 168
objects each. The selection function of the survey is given by n(r) = n(r̂)n(r), where
r = |r|, r̂ = r/r, n(r) is the radial selection function, obtained from the redshift dis-
tribution of clusters assuming a flat ΛCDM model with Ωm = 0.27, and n(r̂) the
angular selection function, which is 1 (0) if the point is inside (outside) the mask.

The power spectrum has been calculated with the direct Fourier method (FKP,
Feldman et al. 1994), which is appropriate for large k-modes (Tegmark et al. 1998),
where the Fast Fourier Transforms (FFTs) were used to speed up instead of sums.
This method actually yields the pseudo-spectrum, namely the measurement products
are convolved with the window function of the survey. We take this into account
when modelling the theoretical spectra in our analysis. More precisely, the following
steps were followed:

1. The survey selection function n(r) was represented using a random catalogue
with 100 times more points than maxBCG sample.

2. The density field has to be defined on a regular grid, with cells of finite size,
thus we have to take into account for a smoothing effect. Jing (2005) connected
the results from FFTs and those from Fourier summations, introducing a mass
assignment window to construct the overdensity grid: the latter was the Tri-
angular Shaped Cloud (TSC) filter (Hockney & Eastwood 1988), which can be
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Figure 3.2: The angular distribution of the selected maxBCG clusters (after the removal
of the southern stripes). The coordinates are taken from the Sloan survey convention: µ
is the latitude and λ is the longitude. The black-grey pattern represents the division used
in the jackknife error calculation. The complete angular mask is given by the union of the
rectangles. Credit: Hütsi (2010).

written in Fourier space as

W(k) =

{[
3∏

i=1

sin

(
πki
2kN

)]/[
3∏

i=1

πki
2kN

]}3

, (3.15)

where k = (k1, k2, k3).

3. The gridded overdensity field δg(k) was transformed to Fourier space using the
FFTs.

4. The raw 3D power spectrum was estimated by taking the modulus squared of
the previous, i.e. Praw = 〈|δg(k)|2〉.
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Figure 3.3: The redshift-space power spectrum of maxBCG cluster sample (black points)
and errors. The dashed line corresponds to the linear matter power spectrum, dotted-
dashed and solid magenta lines represent the final best fitting model in Hütsi (2010),
without survey window convolution and with, respectively. Credit: Hütsi (2010).

5. When applying the TSC method, the shot noise term takes the form

Pshot =
1

N

3∏

i=1

[
1− sin2

(
πki
2kN

)
+

2

15
sin4

(
πki
2kN

)]
. (3.16)

The latter was subtracted from the raw 3D power spectrum.

6. It was checked that the aliasing effects due to the finite grid size were negligible
for the measurements, and were nonetheless corrected with the iterative method
by Jing (2005) to obtain finally the angle averaged pseudo-spectrum, i.e. with
smoothing effect of the TSC deconvolved.
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Figure 3.4: The different lines represents the theoretical models for best fit (red solid), for
Ωm = 0.15, σ8 = 0.94 (blue dashed) and for Ωm = 0.41, σ8 = 0.65 (green dotted dashed),
while data are in black. The dotted line at k = 0.15 represents the data cut to linear scales.
Top panel: linear matter power spectrum. Bottom panel: full non-linear observed power
spectrum.

3.5.2 Cluster power spectrum covariance matrix

The uncertainties on the power spectrum measurements have been estimated by
Hütsi (2010) with three different methods, shown to be comparable:

i) with the original FKP theoretical prescription, which assumes Gaussian errors
from cosmic variance and a shot noise, neglecting redshift space distortions;

ii) with a jackknife method (Lupton 1993), implemented by dividing the survey
into the 75 regions with ∼168 clusters each;

iii) with a Monte Carlo method, based on the fiducial ΛCDM cosmology, in which
1000 mock realisations of the maxBCG survey were generated, including redshift-
space distortions and photo-z errors.

In our analysis we used only the Monte Carlo covariance matrix, so that we can
write the covariance matrix CP for the cluster power spectrum as

CP = R · σ2
P , (3.17)
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where R is the correlation matrix, namely the covariance with diagonal elements
equal to unity and off-diagonal ones showing the correlation between the errors, and
σ2
P is the variance of P (k).

The power spectrum measurements and errors are reported in Table 3.3 and
shown in Fig. 3.3 (black points). The dashed line represents the linear power
spectrum. The dotted dashed curve is the theoretical model (see Eq. 2.44), in-
cluding the photo-z smoothing and the non-linearities, without the survey window
convolution. Finally, solid magenta line shows the best fitting model convolved
with the survey window. Note that to take into account data in the quasi-linear
regime only, we restrict ourselves to scales larger than (wavenumbers smaller than)
kmax = 0.15 hMpc−1.

We show in Fig. 3.4 the linear matter power spectrum Plin(k) and the full halo

power spectrum P̃ obs(k) from Eq. (2.48) respectively, as a function of k. The different
lines correspond to the theory curves for our combined best-fit cosmological model
(red solid) and for two other models (Ωm = 0.15, σ8 = 0.94 for the blue dashed line
and Ωm = 0.41, σ8 = 0.65 for the green dotted dashed curve), chosen to be at the
2σ limit of the marginalised Ωm − σ8 contour, compared with data and errors from
Hütsi (2010) in black. We are assuming Gaussian initial condition and fixing all the
other model parameters to our best-fit values.

3.6 The counts-clustering off-diagonal covariance

We estimate now the off-diagonal terms of the covariance matrix between the cluster-
ing and the binned number distributions ∆N of the maxBCG clusters. For simplicity,
instead of the power spectrum we use, as a clustering estimator here, the projected
two-point angular correlation function w(θ) of objects at a given angular distance θ
(Peebles 1980). The angular separation θ is usually defined as

cos(θ) = n̂1 · n̂2 ,

where n̂1 and n̂2 are the unit vectors pointing to the objects locations. So the
projected correlation function can be written as

w(θ) ≡ 〈δh(n̂1) δh(n̂2)〉 , (3.18)

where δh(n̂) is the halo (cluster) projected overdensity in a direction n̂ and the average
is carried over all pairs at an angular distance θ. We use the jackknife technique as
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follows: we split the maxBCG footprint into 100 equal-area jackknife regions using
healpix21(Górski et al. 2005) and populate the full footprint with 50 random points
for each maxBCG cluster, to reduce shot noise. A common approach for estimating
the correlation function of objects is to count pairs and to compare the data with
an approximately ten times bigger random (unclustered) sample with same redshift
distribution and angular coverage. It is then possible to define some estimators
which combine data and random objects as number of data-data (DD), random-
random (RR) and data-random (DR) pairs. We use the Landy-Szalay-estimator
(Landy & Szalay 1993), given by:

wLS(θ) =
DD − 2DR+RR

RR
. (3.19)

We also bin the number of clusters within six equal-width bins in log10 space. We
iteratively remove and replace each jackknife region and calculate the number his-
togram and correlation function at each iteration. In general, the covariance matrix
CJK between measured statistics x = x(α) and y = y(β) can be estimated from N
jackknifes using (see e.g. Efron 1982):

[
CJK(xi, yj)

]
α,β

=
N − 1

N

N∑

k=1

(xk−i − x̄i)α (y
k
−j − ȳj)β , (3.20)

where x−i (y−j) is the statistic with jackknife region i (j) removed, and x̄i (ȳj) is the
average value of all x−i (y−i). We note that typically, but not necessarily, x and y
are the same statistic. We compare the square root of the diagonal elements of the
w(θ) covariance matrix, i.e.

CJK
w(θ) ≡ CJK

[
w(θ), w(θ)

]
, (3.21)

with the error expected from Poisson counting statistics and find agreement with
the theoretical expectations (as described by e.g., Ross et al. 2009). Moreover, the
diagonal elements of the counts covariance matrix, i.e.

CJK
∆N ≡ CJK

(
∆N,∆N

)
, (3.22)

are approximately Poissonian, independently of the number of jackknifes used, as
we would expect. Finally, the off-diagonal terms of the normalised counts-clustering
covariance, i.e.

CJK
∆N,w(θ) ≡ CJK

[
∆N,w(θ)

]
, (3.23)

21http://healpix.jpl.nasa.gov/
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Figure 3.5: The off-diagonal elements of the normalised covariance matrix of the correla-
tion function w(θ) and the histogram distribution of ∆N , as calculated using the jackknife
technique.

are shown in Fig. 3.5. Note that the average value of the off-diagonal terms is
−0.03 ± 0.10 (1σ), which is consistent with zero. We observe that as the number
of jackknifes increases, the mean of the average value of the off-diagonal terms ap-
proaches zero.

We also compare the magnitude of the off-diagonal terms obtained from the
maxBCG clusters with simulated clusters from the Millennium Simulation (see e.g.
Springel et al. 2005; Lemson & Virgo Consortium 2006). Specifically, we join the
light-cone table of Henriques2012a.wmap1.BC03 AllSky 00 (Henriques et al. 2012;
Guo et al. 2011) with the halo-tree table MPAHaloTrees..MHalo. We apply the same
redshift and survey footprint constraints to mimic the maxBCG sample and calculate
the correlation function and histogram distribution of ∆N . We find the data and
simulations agree closely: e.g., for 100 jackknifes the mean and 1σ error of the off-
diagonal terms are 0.00 ± 0.10 from the simulations. From these tests we conclude
that our choice of ignoring the off-diagonal covariance matrix between clustering and
number counts is a reasonable approximation.
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Table 3.3: MaxBCG power spectrum data binned into k-intervals. From left to right:
the mean k value for each bin, corresponding observed power spectrum value and standard
deviation on it. Note that we restrict to the quasi-linear regime only, thus we will use
in our cosmological analysis only the first 18 k-bins, corresponding to data up to kmax =
0.15 [hMpc−1].

k[hMpc−1] P̃ obs[104 h−3Mpc3] σP [10
3]

0.0065 19.470 76.180
0.0131 23.100 46.270
0.0212 17.340 26.140
0.0292 12.060 15.320
0.0371 7.0390 9.4570
0.0452 5.1410 6.4090
0.0534 4.0760 4.4630
0.0616 3.3410 3.4820
0.0698 3.2410 2.8120
0.0779 2.2220 2.1470
0.0860 1.7980 1.8040
0.0942 1.7570 1.5610
0.1024 1.2610 1.3170
0.1105 1.1110 1.1260
0.1188 1.0820 1.0180
0.1270 0.9194 0.9048
0.1351 0.7111 0.8153
0.1433 0.6027 0.7900
0.1514 0.5924 0.6750
0.1596 0.4517 0.6517
0.1678 0.4524 0.6199
0.1760 0.4414 0.5735
0.1841 0.4318 0.5392
0.1923 0.4423 0.5494
0.2005 0.3285 0.5095
0.2087 0.2738 0.4683
0.2169 0.2354 0.4751
0.2251 0.2384 0.4552
0.2332 0.3122 0.4222
0.2414 0.2882 0.4019
0.2496 0.2127 0.4108
0.2578 0.1852 0.4121



Chapter 4

Cosmological analysis

This Chapter is entirely dedicated to the statistical analysis of data for cosmological
parameters estimation. The standard approach for extracting cosmological parame-
ters from observational data sets makes use of maximum likelihood methods, based
on the Bayes Theorem. If the dimensionality of the parameter space is very large,
there are ways to study the likelihood surface efficiently, sampling the space more
densely where the likelihood is high: these are the Monte Carlo Markov Chain meth-
ods (MCMC), a combination of Monte Carlo methods and the advantages of the
Markov chains. Our primary MCMC tool for cosmological analysis is the cosmomc
software, for which we provide here a description. In particular we focus on the results
of Rozo et al. (2010) and Zu et al. (2012), who derived cosmological constraints from
the maxBCG cluster sample, using cluster counts and weak lensing mass estimates.
The goal of this project is to extend their analysis to fully include the clustering
information: we show that the inclusion of the cluster power spectrum significantly
improves the cosmological constraints, and also reduces the degeneracies between the
scaling relation nuisance parameters. We present the improved cosmological results
obtained in this way from the maxBCG cluster counts, weak lensing masses and
power spectrum. As an interesting application, we present the constraining power
of these data on the amount of primordial non Gaussianity of the initial density
perturbations.

4.1 Parameter estimation

One of the main purposes in cosmology is to estimate the parameters describing a
model of the Universe and their confidence limits, on the basis of a set of observational
data. This is a non-trivial task when more than few parameters are involved. In this
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Section, we first introduce the importance of Bayesian statistics, which is based on
the interpretation of probability as a conditional measure of uncertainty. We then
consider the posterior calculation in case of Gaussian (χ2 statistics) and Poissonian
(C-statistics) distributions. Finally we introduce some useful concepts in parameters
estimation, such as confidence regions and marginalisation.

4.1.1 Bayes theorem

Suppose that D is some set of data, Θ = (θ1, ...θm) is the m-dimensional unknown
parameter vector of a certain model, then the Bayes theorem states that

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
=

P (D|Θ)P (Θ)∫
P (D|Θ)P (Θ) dΘ

, (4.1)

where P (Θ|D) is the multivariate posterior distribution, namely the inferred joint
probability distribution of the parameters, after considering the data. This is achieved
by calculating the likelihood P (D|Θ) ≡ L(D|Θ), which is the conditional proba-
bility of obtaining the observed data given a set of input parameter values, and by
setting a prior probability on the parameters themselves, P (Θ). The likelihood tells
us about the mismatch between data and theoretical predictions. The prior, instead,
represents literally the a priori knowledge on the distribution of the expectation
values of the parameters, before considering any measurement. The normalization
constant P (D) plays a key role in the model selection and it is called evidence or
marginal likelihood: from Eq. (4.1) it can be seen that is equal to the integral over Θ
of the likelihood times the prior. Throughout our analysis, however, P (D) = 1. The
general problem of posterior estimation is then to calculate an integral: compressing
the posterior distribution to a set of samples can save a vast amount of computational
time, if compared to the integration over the m-dimensional parameter space. This
can be done efficiently by a Monte Carlo integration method. This sampling method
is very convenient when calculating quantities, like moments, which typically are the
expectation values of a function of the model parameters.

4.1.2 Gaussian χ2 statistics

When comparing a theoretical model to real data, one has to determine the best fit
model to the data and the corresponding errors. The χ2 statistics is a measure of
how good the fit of the model to the data is. The best fit condition is fulfilled by the
model which minimises the χ2. This is also equivalent to maximise the likelihood
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that the observations were produced by the theory we fit, when the samples are
described by a Gaussian distribution. We assume then the following: Θ represents
the parameters of the model we need to estimate, xi and µi ≡ µi(Θ) are respectively
the n observed data and corresponding theoretical predictions in some bin i, σi the
errors associated to the data. We also assume that the probability of observing a
given value xi is its Gaussian probability

Pi ∝ exp
(xi − µi)

2

2σ2
i

. (4.2)

If data are uncorrelated, then the probability of observing a set of samples is the
product of the single probabilities over all the bins. The logarithm of the latter is
the χ2:

χ2 ≡ ln
n∏

i=1

Pi =
n∑

i=1

[xi − µi]
2

σ2
i

. (4.3)

Finally, the posterior probability, proportional to the likelihood assuming a flat prior,
is then given by

P (Θ|D) ∝ L(Θ|D) ∝ exp

[
−1

2
χ2

]
, (4.4)

from which is clear that a maximum likelihood corresponds to the minimum value
of χ2. In the case of correlated data, the modified χ2 equation is

χ2 =

n∑

i=1

n∑

j=1

[xi − µi]
T {C−1}ij [xj − µj] , (4.5)

where
Cij = 〈(xi − µi) (xj − µj)〉 (4.6)

is the covariance error matrix, describing the covariance between the data. The
latter can be also decomposed into the product of the correlation matrix Rij =
Cij/

√
CiiCjj, i.e. a normalised version of the covariance matrix, and the diagonal

elements Cii = Var(xi) = σ2
i .

We can also define the degrees of freedom as ν = n−m, where n the number
of independent data points and m is the number of parameters. In addition to this,
one can use the so-called reduced chi-square, which is given by χ2

red = χ2/ν. A useful
practical rule is that a good fit is achieved for a reduced chi-square equal to unity,
i.e. χ2 ∼ ν.
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The binned data sets we use in our analysis (see Table 3.1) show that each bin
contains a sufficient number of observations to be approximated by the Gaussian
limit of the Poisson distribution. In the case of the cluster power spectrum, the
Gaussian approximation is standard. Thus we restrict to the Gaussian picture here-
after. In addition to this, our data are correlated and we use the covariance matrices
already defined.

4.1.3 C-statistics

The probability distribution for bins with a small number of observations is Poisso-
nian and the χ2 statistics is not appropriate anymore. In fact, if the counts in a bin
are less then ∼10, the Poisson distribution differs significantly from the Gaussian
one. In this case one can use the C-statistics (Cash 1979):

Pi =
µxii e

−µi

xi!
, P =

n∏

i=1

Pi , (4.7)

where xi is the observation and µi the theoretical expectation in the bin i. The
quantity which needs to be minimised to obtain the best fit model is then:

χ2
cash = −2 lnP = −2

N∑

i=1

(xi lnµi − µi − ln xi!) ≈ −2
N∑

i=1

(xi lnµi − µi) . (4.8)

4.1.4 Confidence regions and marginalisation

Once the best fit parameters are obtained, the accuracy of estimates can be visu-
alised by showing the confidence limits (or region) around them. This can be done by
selecting a region in the m-dimensional parameter space, around the best fit value,
which encloses a given percentage of the probability distribution. One should thus
integrate the likelihood surface and compute where a certain percentage of points lie.
Typically this is obtained by considering compact regions of constant χ2 boundaries.
However, in case the χ2 has more than one minimum, a non-connected confidence
region is more appropriate. For multi-variate Gaussian distributions the regions of
constant χ2 are ellipsoidal regions. The usually defined confidence levels are the
68.3%, 95.4% and 99.5%, which correspond to the conventional 1, 2 and 3σ, in the
case of Gaussian distributions.
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Knowing the joint posterior probability distribution of m parameters, i.e.

P (Θ|D) ≡ P (θ1, ..., θm|D) ≡ P (θ1 = t1, ..., θm = tm|D) , (4.9)

one could be interested into the probability distribution of a single parameter, for
example θ1, regardless of the others, θ2, ..., θm. In this case, one can derive the
marginal probability by integrating over all the parameters, except the one of
interest. Mathematically, this translates into

P (θ1|D) =

∫
dθ2 ...

∫
dθm P (θ1, ..., θm|D) . (4.10)

This is the simplest 1D case, where the marginalised distribution of a parameter is
given by the maximum (or the mean) of the distribution, together with confidence
limits. In cosmological analysis, however, the marginalisation is often used to obtain
2D posterior distributions for various combination of parameter pairs θ1, θ2, which
can show possible degeneracies. This translates simply into:

P (θ1, θ2|D) =

∫
dθ3 ...

∫
dθm P (θ1, θ2, ..., θm|D) . (4.11)

We include few 2D marginalised posterior probabilities contour plots of our results,
together with their interpretation.

4.2 Sampling methods

Bayesian methods are often used to compare physical models to data. The parame-
ters in different models are most easily constrained by sampling from the posterior
distribution. The sampling methods scale at best linearly with the dimension of
the parameter space, compared to integration which is computationally more ex-
pensive. The most common method for sampling from a general distribution in
high-dimensions is the Markov Chain Monte Carlo (MCMC), based on the Monte
Carlo approximation method and on the useful properties of the Markov Chains,
which we both revise in this Section. MCMC generates a set of points in the param-
eter space, which have the same distribution as the target posterior distribution, by
computing the Bayesian likelihood at random points selected using the Metropolis
Hastings algorithm. Then, from the correlated samples of the posterior distribution
it is possible to derive other significant statistical quantities.
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4.2.1 Markov chains

Let us assume that X is a random variable and Xt is its value at time t. We define
X as a Markov process if the probability distribution at the present status, Xt,
depends only on the previous status, Xt−1, and not on the entire history:

P (Xt = xt|X0 = x0, ..., Xt−1 = xt−1) = P (Xt = xt|Xt−1 = xt−1) . (4.12)

A Markov chain {Xt} is a sequence of random variables X0, X1 , ... , Xt generated
by a Markov process. If the probability is regular, the chain will gradually forget
about the initial state X0 and approach an invariant distribution after a sufficient
number of steps. In fact, the main property of Markov chain is stationarity : there
exists a probability distribution φ(x) such that if Xt ∼ φ(x), then Xt+1 ∼ φ(x). In
Fig. 4.1 we show an example of a sequence which approaches an asymptotic stationary
distribution. If a chain starts in a random position of the parameter space, it will
take some time (few hundreds of steps) to equilibrate. The term burn-in period refers
to those iterations at the beginning of the chain, which are still far from converging to
the invariant distribution: these chain steps are usually discarded, before computing
the chain analysis. It could happen that a Markov chain looks like it has reached
its invariant distribution when it has not: this is called pseudo-convergence. This
happens when there are regions of the parameter space which are weakly connected
by the chain, so that the chain remains there for many iteration. In the opposite
case of a good mixing, the true convergence is reached after a sufficient number of
steps.

4.2.2 Monte Carlo methods

The Ordinary Monte Carlo (OMC) is based on the idea of using independent
and identically distributed (IID) simulations X1, ..., Xn of a random process X to
approximate the expectation

µ = 〈h(X)〉 =
∫
h(x)π(x) dx , (4.13)

where h is a real-valued function and π(x) is the common distribution of the variables.
The OMC method works by selecting n samples Xi from π(x) and then approximat-
ing Eq. (4.13) by the sample average of the h(Xi) = Yi, having 〈Yi〉 = µ and variance
Var[Yi] = σ2:

µ̂n ≃ 〈h(X)〉 = 1

n

n∑

i=1

h(Xi) =
1

n

n∑

i=1

Yi . (4.14)
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Figure 4.1: Four MCMC chains (blue, red, green, cyan) from our runs, which are
approaching a stationary distribution for the Ωm parameter. The horizontal line repre-
sents the best fit value, Ωm = 0.22, while the marginalised mean value and 1σ error are
Ωm = 0.215 ± 0.02. Left panel: first 1000 steps (burn-in). Right panel: full chains. Note
that the number of parameters being varied in total here is nine, which justifies the quite
significant spread of the chains.

The Central Limit Theorem (CLT) states that the mean of n independent random
variables, with the same mean and variance, is well-approximated by a normally
distributed random variable, for a large enough n and regardless of the variables
distribution. The mean of this normal distribution is equal to the mean of random
variables. The variance is instead equal to the variance of the random variables
divided by the sample size. According to the CLT then, µ̂n ∼ N (µ, σ2/n) .

4.2.3 MCMC methods

MCMC methods are used to simulate non-standard, complex multivariate distribu-
tions. The most important of these methods is the Metropolis-Hastings (M-H)
algorithm, created by Metropolis & Ulam (1949); Metropolis et al. (1953) and im-
proved by Hastings (1970). According to the previous definitions, a MCMC is an
OMC where the IID simulations are replaced by a Markov Chain process with a
certain equilibrium distribution. Following the notation in the previous sections, one
needs to create a Markov chain which has π(x) as asymptotic invariant distribution.
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Assuming that we have m burn-in steps, we are then able to estimate 〈h(X)〉 as (see
Eq. 4.14)

µ̂∗
n =

1

n−m

n∑

i=m+1

h(Xi) . (4.15)

One of the advantages of the MCMC methods is that the number of iterations re-
quired for convergence roughly scales linearly with the number of parameters. How-
ever as the number of parameters in the models grows, the computational cost can be
quite challenging. There is furthermore a dependence on the nature of the posterior
distribution itself: longer chains need to be constructed when the posterior departs
from a Gaussian distribution. In this Section, we revise only the parts concerning the
MCMC methods which are relevant for our work. For a more detailed description,
we refer to: MacKay (2003); Gamerman & Lopes (2006); Neal (1993); Gilks (1999);
Hobson et al. (2010); Geyer (2011).

Metropolis-Hastings algorithm

The most interesting aspect is to understand how the Metropolis-Hastings algorithm
generates a sequence of correlated variables from a certain distribution. This can be
summarised into the following steps.

i) Set any initial random value X0.

ii) Sample a candidate point X∗ from a conditional probability density given the
current state Xt, denoted ψ(·|Xt). The latter can have any form, but the final
stationary distribution of the chain will be π(x).

iii) Calculate the Hastings ratio defined as

r(X∗|Xt) =
π(X∗)ψ(X|X∗)

π(X)ψ(X∗|X)
. (4.16)

iv) Sample a Uniform variable U in (0, 1).

v) Define the acceptance probability for the state X∗ as

a(X∗|Xt) = min [1, r(X∗|Xt)] = min

[
1,
π(X∗)

π(X)

]
. (4.17)

The last equivalence comes from the fact that this algorithm typically considers
only symmetric proposals: ψ(X∗|X) = ψ(X|X∗). Then, if U ≤ a(X∗|Xt), the



4.2 Sampling methods 97

candidate point is accepted and the next state becomes Xt+1 = X∗. Otherwise,
the candidate point is rejected and the chain does not move, i.e. Xt+1 = Xt.
This step is usually called Metropolis rejection.

vi) Increment t and start again from step ii).

Note that in general, the choice of the proposal density ψ(·|Xt) is relevant for the
algorithm efficiency: for a quicker convergence, it is more appropriate to choose one
with a shape which is similar to the posterior. Similarly, the choice of its covariance
matrix is important. A tight distribution will cause slow mixing and high acceptance
rate, while a wide distribution will result in low acceptance and no movement of the
chain, hence resulting in slow mixing as well.

Convergence

The next question to address is about how long do we need to run the chain to be
sure that it has converged. Having sampled sufficiently enough points in the param-
eter space the MCMC chain equilibrates to the target distribution and it is said to
have reached convergence. In practice, convergence may be tested through one of
the many convergence tests.

The simplest method to solve the convergence issue is by running multiple chains
in parallel, with over-dispersed initial values and compare the estimates µ̂∗

n. A fun-
damental problem is that there will always be regions of the target distribution that
have not been covered by the finite chain. Over-dispersion can be obtained after
running a single chain and use the variance from the chain itself. Let us assume we
are interested in a quantity φ from the chain, e.g. some parameters or any function of
them. Let us further assume that we run m parallel sequences of length n and label
the quantities (φij), j = 1, ..., n and i = 1, ..., m. We hence compute two quantities:
the between-sequence variance V and the within-sequence variances W , i.e.

V =
n

m− 1

m∑

i=1

(
φ̄i − φ̄

)2
, W =

1

m

m∑

i=1

s2i , (4.18)

where

φ̄i =
1

n

n∑

j=1

φij , φ̄ =
1

m

m∑

i=1

φ̄i , s2i =
1

n− 1

n∑

j=1

(
φij − φ̄i

)2
. (4.19)

W is the average variance of all the chains, while V measures the variance of the

averages of the chains. Note that the between-sequence variance V contains a factor
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n because it is based on the variance of the within-sequence means, φ̄i, each of which
is an average of n values φij . An overestimate of the variance of φ in the target
distribution is

Var∗(φ) =
n− 1

n
W +

1

n
V . (4.20)

Further, W is an underestimate of the target variance Var(φ), because individual
chains do not have time to cover the entire target distribution. However it holds
that:

lim
n→∞

Var∗(φ) = lim
n→∞

W = Var(φ) . (4.21)

Convergence can now be established by monitoring

√
R =

√
Var∗(φ)

W
, (4.22)

which approaches 1 at convergence, in the so-called (R-1) test. Note that there
are many other convergence criteria (see for example Cowles & Carlin 1996), which
however we do not consider in our work.

4.3 The Cosmological Monte-Carlo

The MCMC method in a cosmological context has been developed by the Cosmo-
logical Monte-Carlo (cosmomc1) publicly available parameter estimation tool. This
software has been developed by Lewis & Bridle (2002) and it is supported by the
software forum2. It includes two main Fortran 90 programs: a MCMC code for
exploring cosmological parameter space (cosmomc*) and a code for analysing Monte-
Carlo samples and importance sampling (getdist*). cosmomc is originally based
on the M-H sampler, but there are options for other sampling and methods for explor-
ing fast/slow parameter space. It contains the Boltzmann code camb 3, i.e. the Code
for Anisotropies in the Microwave Background by Lewis et al. (2000) for calculating
theoretical matter power spectrum and CMB anisotropies, based on cmbfast 4 by
Seljak & Zaldarriaga (1996). Useful overviews can be found also in Lewis & Bridle
(2006); Lewis (2011). The data sets available include WMAP7, SN-Ia, BAO and
HST. The last version contains also Planck data via a specific Planck likelihood
code.

1http://cosmologist.info/cosmomc/
2http://cosmocoffee.info/
3http://camb.info/
4http://cmbfast.org
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How does it work?

The cosmomc* algorithm produces chain files, containing all the accepted set of
parameters: the first column gives the sample weight, the second the likelihood
and from third on all the parameters (primary and derived ones). The program
takes as inputs the central values, ranges and standard deviations of the parameters,
from an input file called params.ini. The default primary parameters are: Ωbh

2,
Ωch

2, Ωk, log(10
10As), w, τ , ns, nt, θ, mν , nν , nrun and r = At/As. The derived

ones are instead: H0, t0 and ΩΛ. Priors on the fundamental parameters have to be
assigned: the final results should not depend on this choice. This helps the program
to estimate a proposal distribution: if one provides an input covariance matrix with
the parameters correlation, the estimation procedure can be significantly improved.
It is also possible to get an estimated covariance matrix for the best fit model, as
well as to learn the proposal distribution from the covariance with the MPI option
(run on different cluster nodes). The process will stop when convergence is reached
and the diagnostics for multiple chains is done by the (R-1) test (see Eq. 4.22), using
the second half of each chain. Note that varying some parameters can be much more
computationally expensive (the so-called slow parameters) than varying others (the
so-called fast parameters).

Chains analysis

Once the convergence is reached and the burn-in steps removed, the getdist* anal-
yses the chains and generates the following outputs:

i) .likestats, which contains the best fit sample model and likelihood, as well
as the limits from the extremal values of the posterior distribution;

ii) .margestat, which gives mean, standard deviation and marginalised limits for
all the parameters;

iii) .covmat, which is a covariance proposal matrix for generating other chains;

iv) Matlab or Python files for generating marginalised plots (1D, 2D, 3D).

Generally, it is useful to consider both the likelihood and marginalised distributions.
The likelihood function is used to estimate the best fit model parameters as those
which maximise the likelihood itself, or equivalently the logarithm of the likelihood.
The marginalised distribution instead gives the projected shape of probability density
in one or two dimensions only. We show in Fig. 4.2 an example of 1D and 2D
marginalised posteriors for the parameters Ωm and σ8, obtained from one of our
runs.
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Figure 4.2: 1D and 2D marginalised posterior probabilities for parameters Ωm and σ8,
for same run used in Fig. 4.1. The best fit values of the parameters are Ωm = 0.22
and σ8 = 0.83, while the marginalised mean and 1σ error are Ωm = 0.215 ± 0.02 and
σ8 = 0.84 ± 0.04. Left panel: the solid lines show the fully marginalised posterior, the
dotted lines show the mean likelihood of the samples. For Gaussian distributions they
should be the same. However, for skewed distributions, or if chains are poorly converged,
they will not be. Right panel: 2D marginalised posterior probability for the pair Ωm − σ8.
The external contour corresponds to the 95% confidence level, while the internal contour
corresponds to the 68% c.l.

Importance sampling

This program also does post-processing on chains, like importance sampling: this
is a quick way to re-weight the results for different priors, new data sets or small
theoretical corrections. More precisely, according to the previous notation, the ex-
pectation value of a function h under the distribution π(x) (see Eq. 4.13) can be
converted into:

〈h(X)〉π =

∫
h(x) π(x) dx =

∫
h(x)

π(x)

π′(x)
π′(x) dx = 〈h(x) π(x)

π′(x)
〉π′ , (4.23)

where π′(x) is another distribution.
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4.4 Combined maxBCG analysis

The purpose of our analysis is to constrain cosmology and fit for the richness-mass
relation and scatter around it, simultaneously. To do this, we perform a Bayesian
parameter estimation by running an MCMC, using M-H sampler with a modified
version of cosmomc. In this Section we describe the set up of the runs, namely the
code which produces the theory, the data sets we need and the parameters we vary.
We also list the different runs, which are characterised by different combinations of
data sets and free parameters.

The code

We work on a Fortran 90 code, which implements the standard cosmological frame-
work and cluster statistics, first developed by Battye & Weller (2003). In particular,
the code provides calculation of the mass function and cluster number counts, by
linking to camb and solving perturbation equation. The code has been adapted to
the data sets we want to use, by applying some crucial modifications. In particular,
we need first to introduce the mass-observable relation and convert functions of the
true mass into functions of the real observable (optical richness). Secondly, we have
to implement the bias and the observed power spectrum theoretical expectation. Fi-
nally, the coding of primordial non-Gaussianity routines is necessary to introduce
fNL parameter in the analysis. We then need to link properly the modified code to
cosmomc in order to compare theory and real data for the parameter estimation,
by means of the χ2 statistic.

The data sets

As already introduced, we use the following data sets from the maxBCG sample,
integrated over all the redshift range:

(i) cluster number counts ∆N , divided into 10 richness bins;

(ii) total mass of clusters ∆NM̄ , divided into 6 richness bins;

(iii) cluster power spectrum P̃ obs, divided into 18 k-bins.

We also include the corresponding covariance matrices. In addition to the cluster
data, we also use the CMB power spectra from WMAP7 (Larson et al. 2011), in the
cases specified below.
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The parameters

We assume a flat ΛCDM cosmological model. In Table 4.1 we list all the parameters
of the analysis, including their flat or Gaussian priors. The main parameters we
consider in our analysis are:

i) standard cosmological parameters: CDM energy density Ωc, amplitude of pri-
mordial perturbations log(1010As), primordial non-Gaussianity parameter fNL;

ii) scaling relation parameters: lnN1, lnN2 and the scatter σlnM |Nobs
gal

;

iii) nuisance parameters: weak lensing mass bias β, power spectrum non-linear
correction qNL, photo-z errors σz, scatter on bias B.

When using cluster data alone, we fix the Hubble parameter h = 0.7, primordial
spectral index ns = 0.96 and baryon density Ωb = 0.044, as these parameters are
not easily constrained in this case. When adding the external CMB data instead,
we relax the assumptions on h, ns, Ωb and we add the optical depth τ as well as the
amplitude of CMB SZ template Asz. Note that for us the total matter energy density
Ωm and the power spectrum normalization σ8 are always derived parameters.

The runs

In order to understand the constraining power of each data set, we estimate the
high-dimensional posterior parameter distributions in the following cases:

1. counts only: 6 free parameters [Ωc, log(10
10As), lnN1, lnN2, σlnM |Nobs

gal
, β],

with counts and masses data sets;

2. counts with fNL: 7 free parameters [Ωc, log(10
10As), lnN1, lnN2, σlnM |Nobs

gal
,

β, fNL], with counts and masses data sets;

3. counts+P (k): 9 free parameters [Ωc, log(10
10As), lnN1, lnN2, σlnM |Nobs

gal
, β,

qNL, σz, B], with cluster counts, masses and cluster power spectrum;

4. counts+P (k) with fNL: 10 free parameters [Ωc, log(10
10As), lnN1, lnN2,

σlnM |Nobs
gal

, β, qNL, σz, B, fNL], with cluster counts, masses and cluster power
spectrum;

5. P (k) only: 9 free parameters [Ωc, log(10
10As), lnN1, lnN2, σlnM |Nobs

gal
, β, qNL,

σz, B], with cluster power spectrum only;
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6. CMB only: 7 free parameters [Ωb, h, τ , ns, Asz, Ωc, log(10
10As)], with CMB

data only;

7. CMB+clusters: 14 free parameters [Ωb, h, τ , ns, Asz, Ωc, log(10
10As), lnN1,

lnN2, σlnM |Nobs
gal

, β, qNL, σz, B], with CMB and all cluster data;

8. CMB+clusters with fNL: 15 free parameters [Ωb, h, τ , ns, Asz, Ωc, log(10
10As),

lnN1, lnN2, σlnM |Nobs
gal

, β, qNL, σz, B, fNL], with CMB and all cluster data.

The addition of the fNL parameter significantly affects the computational time be-
cause of the complexity of the calculations (integrations mainly). Obviously, the
runs including the CMB data set take longer to converge because more parameters
are varying simultaneously. Typically, we run chains of the order of 20, 000 steps,
reaching a convergence of R-1 ≤ 0.03.

4.5 Results

We summarise our results in Table 4.2, and we show in Figs. 4.3, 4.6, 4.7, 4.9 and 4.10
the 2D 68% and 95% marginalised confidence regions for different pairs of parameters
in our analysis. The colour scheme is the same for all figures: blue contours refer to
runs with counts and WL mean masses data only, green contours include in addition
the cluster power spectrum data, while orange contours also include CMB data.

4.5.1 Ωm − σ8 contours

The joint constraint in the Ωm − σ8 plane in Fig. 4.3 displays the typical degeneracy
from cluster counts: the counts increase with increasing Ωm and σ8 values, hence
any increase in Ωm must be balanced by a decrease in σ8 (and vice versa), to keep
the abundances at the observed values. This behaviour is also confirmed by Fig. 4.4,
showing the dependence of the richness binned number counts on Ωm, σ8 parameters.
We already discuss this dependence for the mass function and in Fig. 3.1, but it is
worth to recall it here. In both panels, the red curve corresponds to the best fit of the
run counts only: Ωm = 0.25 and σ8 = 0.80. In the left panel, for fixed σ8 = 0.80,
we see that the predicted abundances increases for increasing value of Ωm. In the
right panel, for fixed Ωm = 0.25, it is evident that any increase of σ8 leads to an
increase of counts more evident at high richness than the increase at low richness.
Thus, if one of the two parameters increases, the other one has to decrease to match
the observed counts.
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Figure 4.3: Marginalised posterior probability distributions on the parameters Ωm − σ8
for the runs using counts only (blue), counts+P (k) (green) and counts+P (k)+CMB
(orange), at 68% and 95% confidence levels. The yellow contours show the joint constraints
in the case of P (k) data only.

The constraints on individual parameters with counts and masses only are con-
sistent with Rozo et al. (2010), and we find Ωm = 0.25 ± 0.06, σ8 = 0.80± 0.06 (1σ
errors throughout), while the errors are improved by a factor between 1.5 and 3, de-
pending on the parameter, when adding the maxBCG power spectrum: in this case
we obtain Ωm = 0.215 ± 0.022, σ8 = 0.84 ± 0.04. Combining these results with the
CMB data, the constraints then shrink to Ωm = 0.255±0.014 and σ8 = 0.790±0.016:
the contribution of the CMB tightens the errors by a further factor of two.

As an interesting comparison, we also show the joint constraints for the case of
P (k) data only (yellow contours in Fig. 4.3), with a prior on the scaling relation
parameters: the degeneracy direction is complementary to that of the counts. It
is evident that P (k) essentially constraints only the Ωm parameter, because of the
degeneracy with σ8, as we would expect by definition. To have a better understanding
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Figure 4.4: Cluster number counts for different values of Ωm (left panel) and σ8 (right
panel). The red curve corresponds to the best fit of the run counts only: Ωm = 0.25 and
σ8 = 0.80. In the left panel, we fix σ8 = 0.80 and give Ωm the values 0.2 (blue dashed),
0.25 (red solid), 0.3 (green dotted-dashed). In the right panel, we fix Ωm = 0.25 and assign
to σ8 the values 0.75 (blue dashed), 0.80 (red solid), 0.85 (green dotted-dashed).

Figure 4.5: Full observed power spectrum for different values of Ωm (left panel) and σ8
(right panel). The red curve corresponds to the best fit of the run P (k) only: Ωm = 0.21
and σ8 = 0.83. The other curves select values at approximately 1σ level of the marginalised
posterior distribution. In the right panel, we fix σ8 = 0.80 and give Ωm the values 0.17 (blue
dashed), 0.21 (red solid), 0.25 (green dotted-dashed). In the right panel, we fix Ωm = 0.21
and assign to σ8 the values 0.95 (blue dashed), 0.83 (red solid), 0.7 (green dotted-dashed).
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of the power spectrum dependence on these parameters, we show the full observed
power spectrum for different values of Ωm and σ8 in Fig. 4.5. In both panels, the red
curve corresponds to the best fit of the run P (k) only: Ωm = 0.21 and σ8 = 0.83.
The left panel shows the power spectrum varying Ωm, at fixed σ8 = 0.83, while the
right panel shows the power spectrum varying σ8, at fixed Ωm = 0.21. We notice that
if we increase (decrease) Ωm, the peak of the power spectrum decreases (increases)
while also being shifted to higher (lower) values of k, while σ8 simply changes the
overall normalisation. In our case, the size of the posterior on σ8 depends on the
assumptions made on the cluster bias: allowing for a completely free bias would
cause a complete degeneracy with σ8. However here the degeneracy is partially
broken because we are assuming that the bias is centred around the predicted values
from the mass function, allowing only for deviations from this (parametrised by the
scatter B), whose amplitude is limited by the prior on B.

4.5.2 Scaling relation parameters contours

In Fig. 4.6, left panel, we show the marginalised posterior probability contours of the
scaling relation parameters lnN1 − lnN2. These two parameters correspond to the
two pivot points in (log) mass lnM1, lnM2, which define a linear scaling relation in
the lnNgal − lnM plane, with slope αN , intercept lnM200|20 and scatter σlnM .

From Fig. 4.8 we can better understand the degeneracy between these two pa-
rameters. The left panels show the mean masses estimates in richness bins, while
the right panels show the counts in richness bins. In all plots the best fit is shown
by a red solid curve, while any increase or decrease of scaling relation parameters or
scatter is plotted in green dotted-dashed or blue dashed line, respectively. Note that
we do not plot the linear relation across the two points (lnN1, lnM1), (lnN2, lnM2),
but instead we connect the mass estimates in each richness bin. This can give us an
intuition on the approximate scaling relation behaviour. If we fix the two pivot points
in mass, as lnN1 increases, so does lnN2, to keep the slope of the linear relation at
the observed value: this is shown by the green dotted-dashed curve in the top left
panel of Fig. 4.8. At the same time, the intercept lnM200|20 decreases, resulting in
a parallel displacement of the linear scaling relation towards higher richness values.
We also notice that for fixed lnNgal, the corresponding mass has now decreased. On
the other hand, the blue dashed line displays the case of a decreasing lnN1, and thus
lnN2, and an increasing intercept.
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Figure 4.6: Left panel: constraints on the scaling relation parameters lnN1 − lnN2.
Note that lnN1 ≡ lnNgal|M1 and lnN2 ≡ lnNgal|M2, where M1 = 1.3 × 1014M⊙ and
M2 = 1.3 × 1015M⊙. Right panel: constraints on the slope αN and intercept lnM200|20 of
the scaling relation. The runs used for this plot are: counts only (blue), counts+P (k)
(green) and counts+P (k)+CMB (orange). The confidence levels are at 68% and 95%.
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Figure 4.7: Left panel: constraints on the scaling relation parameters lnN1 − σlnM .
Right panel: constraints on the scaling relation parameters lnN2 − σlnM . The runs used
for this plot are: counts only (blue), counts+P (k) (green) and counts+P (k)+CMB
(orange). The confidence levels are at 68% and 95%.
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Figure 4.8: Predictions for mean masses (left panels) and number counts (right pan-
els) varying scaling relation parameters. First row: for fixed scatter σlnM = 0.36,
lnN1 ≡ lnNgal|M1, with M1 = 1.3 × 1014M⊙, is equal to {2.38, 2.48, 2.58} and
lnN2 ≡ lnNgal|M2 , with M2 = 1.3×1015M⊙, is equal to {4.02, 4.12, 4.22}, which we both
plot in blue dashed, red (best fit) and green dotted-dashed respectively. Second row: for
fixed lnN1 = 2.48, lnN2 = 4.12, σlnM is equal to {0.26, 0.36, 0.46}, which we show in blue
dashed, red (best fit) and green dotted-dashed respectively. The run used for these plots
is counts+P (k).
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In order to keep the scaling relation to the observed value, then, the scatter plays
a key role: even if the slope is kept constant by the increasing of both lnN1 and
lnN2, the decrease of the intercept is compensated by a decrease of σlnM . This is
confirmed by Fig. 4.7, showing the joint constraints lnN1 − σlnM and lnN2 − σlnM :
any increase of lnN1 or lnN2 corresponds to a decrease of σlnM . The converse is of
course also true. Furthermore, the bottom left panel of Fig. 4.8 displays an analogous
displacement of the predicted masses to higher Ngal values obtained by increasing the
scatter (green dotted-dashed line) and to lower Ngal values obtained by decreasing
the scatter (blue dashed line). As a consequence, the mean masses corresponding to
the same richness result lower or higher, respectively.

Finally, from the right panels of Fig. 4.8 we can deduce another confirmation from
the cluster number counts. If the scaling relation parameters or scatter increase, we
will count more objects in general, thus the counts increase in each richness bin. This
is motivated by the fact that if we have lower mass estimates, we automatically have
more structures due to the shape of the mass function. The opposite arguments can
also be formulated for a decrease in lnN1, lnN2 and σlnM . As a consequence, again,
any increase of lnN1 and lnN2 implies a decrease of σlnM , to keep the abundances
to the observed values.

Constraints on individual parameters using counts and masses are only compat-
ible with Rozo et al. (2010) (lnN1 = 2.44 ± 0.11, lnN2 = 4.16 ± 0.15), while errors
are reduced when adding the power spectrum, even if less significantly (lnN1 =
2.49 ± 0.09, lnN2 = 4.13± 0.13). Combining these results with the CMB data, the
constraints are almost identical, as the CMB is not sensitive to the clusters scaling
relation. Our constraints on the scaling relation scatter σlnM are in agreement with
Rozo et al. (2010), and they are not improved by the addition of power spectrum
and CMB data.

We then calculated the likelihood contours on the derived parameters αN −
lnM200|20: these are shown in the right panel of Fig. 4.6. By definition of slope and in-
tercept, it is evident that any increase of αN implies a decrease of lnM200|20 (and vice
versa), motivating the degeneracy line of these two parameters. The marginalised
mean values and 1σ errors on individual parameters, using counts and masses only,
are αN = 1.35 ± 0.11, lnM200|20 = 28.85 ± 0.33. When adding the power spec-
trum, the errors reduce to αN = 1.41 ± 0.06, lnM200|20 = 28.64 ± 0.17. Combining
then with the CMB data, the constraints are further improved to αN = 1.32± 0.03,
lnM200|20 = 28.93± 0.09.
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4.5.3 log(1010As)− σ8 contours

In Fig. 4.9, left panel, we show the degeneracy between the amplitude of primordial
fluctuations log(1010As) and power spectrum normalization σ8, being respectively a
primary and a derived parameter of our analysis. The constraints on individual pa-
rameters with counts and masses only are σ8 = 0.8±0.06, log(1010As) = 3.2±0.5, and
adding the maxBCG power spectrum they become σ8 = 0.84 ± 0.04, log(1010As) =
3.5 ± 0.25. Finally, the inclusion of the CMB data shrink the constraints to σ8 =
0.079± 0.016 and log(1010As) = 3.06± 0.03.

4.5.4 fNL − Ωm and fNL − σ8 contours

In Fig. 4.10 we show the constraints on the amount of primordial non-Gaussianity
and its degeneracies with Ωm and σ8. First, it is evident that when only counts and
masses are used, the constraints on fNL are weak as expected. In Fig. 4.9, right
panel, we show how the relative counts with respect to the fNL = 0 vary for different
fNL values. For this theoretical expectations we use the run counts with fNL. It is
clear that the difference between the curves is more relevant at large values of Ngal:
higher fNL corresponds to higher skewness, which implies more rare (massive) objects.

The situation improves when adding the cluster power spectrum: in this case, the
constraints are tighter, and we observe a positive correlation between fNL and Ωm

and an anti-correlation with σ8. To understand this behaviour, we can refer again to
the power spectrum dependence on Ωm and σ8 parameters. Any increase of Ωm tilts
the power spectrum, decreasing and shifting the peak to higher values of k, while
any increase of σ8 shifts up the whole shape. The converse of this is also true. We
have also understood that an increase in fNL causes a boost in the power spectrum
on large scales (small k), so that σ8 needs to decrease to compensate a higher fNL:
this is exactly what is shown in the right panel of Fig. 4.10. In addition to this Ωm

should increase to compensate a higher fNL: this can be seen in the left panel.

We also see that the addition of the CMB power spectrum data improves the
constraints on Ωm and σ8 and only indirectly reduces the bounds on fNL, since PNG
simply affects the higher-order statistics of the CMB.

Our constraints on PNG are fNL = 12 ± 157 (1σ) (without CMB) and fNL =
194 ± 128 (with CMB), which are statistically compatible with zero and with each
other. The shift in the mean between the two results is clear by looking at Fig. 4.10:
the addition of the CMB favours lower values of σ8 (and higher values of Ωm), thus



4.5 Results 111

log (1010 A
s
)

σ 8

2 2.5 3 3.5 4 4.5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

counts only

counts+P(k)

counts+P(k)+CMB

Figure 4.9: Left panel: marginalised posterior probability distributions on log(1010As)−
σ8 parameters. The runs used are: counts only (blue), counts+P (k) (green) and
counts+P (k)+CMB (orange), at 68% and 95% confidence levels. Right panel: counts
predictions for fNL = {300, 100, 0,−100,−300}, relative to the fNL = 0 case. The run used
in this plot is counts with fNL.
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Figure 4.10: Marginalised posterior probability distributions on the parameters fNL−Ωm

(left panel) and fNL − σ8 (right panel). The runs used for these plots are counts with
fNL (blue), counts+P (k) with fNL (green) and CMB+clusters with fNL (orange),
at 68% and 95% confidence levels.
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shifting the favoured fNL values in the process. While not competitive with results
from the CMB bispectrum or from combined analyses of multiple galaxy surveys, it
is interesting to find such constraints independently and for the first time with the
clustering of optically selected galaxy clusters.

It is also worth mentioning the results on the B parameter, which was introduced
to take into account the uncertainty in the bias expression derived from the mass
function. As this parameter allows an arbitrary constant rescaling of the bias, it
also has the desirable property of cancelling the effect of the scale-independent bias
correction δb(fNL), as described in Section 2.5. To check that the Gaussian prior
we are imposing B = 1.0 ± 0.15 is large enough for both purposes, we made an
additional run replacing it with a flat prior, B ∈ [0.0001, 5]. In this way, we obtain
nearly unchanged results on fNL. We also obtain no relevant degeneracies of B with
any of the other parameters in the analysis.

Finally, since we restrict our analysis to near-linear scales by imposing the data
cut at kmax = 0.15 h Mpc−1, we are not expecting strong constraints on qNL. The
constraints we found are indeed broad and in agreement within the errors with the
results by Hütsi (2010), who found qNL = 14.2 ± 2.8 when marginalising over three
parameters only. We instead obtain qNL = 26± 10 (without CMB) and qNL = 14± 6
(with CMB).
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Table 4.1: Parameters used in the analysis and their assumed priors (with or without the CMB data). In the prior columns
a single number n stands for a fixed value, [a, b] stands for a flat prior, µ± σ means a Gaussian prior of mean µ and standard
deviation σ.

Type Symbol Definition Prior (no CMB) Prior (+CMB)

Cosmology h Dimensionless Hubble parameter 0.7 [0.4, 0.9]
ns Scalar spectral index 0.96 [0.5, 1.5]
Ωb Baryon energy density 0.04397 [0.01, 0.2]
Ωc Cold dark matter energy density [0.1, 0.9] [0.1, 0.9]

log(1010As) Amplitude of primordial perturbations [0.1, 6.0] [0.1, 6.0]
τ Optical depth 0.09 [0.01, 0.125]
fNL Primordial non-Gaussianity [−900, 900] [−900, 900]

Scaling relation lnN1 ≡ lnNgal|M1 Richness at M1 = 1.3× 1014M⊙ [1.0, 4.0] [1.0, 4.0]
lnN2 ≡ lnNgal|M2 Richness at M2 = 1.3× 1015M⊙ [1.0, 4.0] [1.0, 4.0]

σlnM |Nobs
gal

Scatter 0.45± 0.1 0.45± 0.1

Nuisance β WL mass measurements bias 1.0± 0.06 1.0± 0.06
B Scatter on bias 1.0± 0.15 1.0± 0.15
qNL Non-linear P(k) correction [0.0, 50.0] [0.0, 50.0]
σz Photo-z errors [0, 120] [0, 120]
Asz Amplitude of CMB SZ template 1 [0, 2]

Derived Ωm Total matter energy density — —
σ8 Power spectrum normalization — —
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Table 4.2: Marginalised mean values and 1σ errors on the cosmological parameters, for the runs counts only, counts with
fNL, counts+P (k), counts+P (k) with fNL, CMB+clusters and CMB+clusters with fNL. Note that Ωm and σ8 are
derived parameters in our analysis.

Params counts only counts+P (k) clusters+CMB

no fNL +fNL no fNL +fNL no fNL +fNL

Ωm 0.25± 0.06 0.25± 0.06 0.215± 0.022 0.209± 0.022 0.255± 0.014 0.248± 0.013
σ8 0.80± 0.06 0.77± 0.07 0.84± 0.04 0.85± 0.05 0.790± 0.016 0.780± 0.016

lnN1 2.44± 0.11 2.44± 0.11 2.49± 0.09 2.49± 0.08 2.44± 0.08 2.43± 0.08
lnN2 4.16± 0.15 4.15± 0.15 4.13± 0.13 4.11± 0.12 4.19± 0.11 4.15± 0.11
σlnM 0.38± 0.06 0.38± 0.06 0.36± 0.06 0.37± 0.06 0.378± 0.059 0.38± 0.06
β 1.00± 0.06 1.01± 0.06 1.01± 0.06 1.01± 0.06 1.01± 0.06 1.00± 0.06
qNL - - 26± 10 27± 10 14± 6 16± 7
σz - - 46± 12 42± 8 43± 10 31± 5
B - - 1.07± 0.13 1.01± 0.15 1.19± 0.11 1.00± 0.14
fNL - 282± 317 - 12± 157 - 194± 128



Chapter 5

Clusters-galaxies cross correlation

The correlation function is one of the best statistical tools to measure quantitatively
the clustering of objects in a sample. Correlation statistic methods are an impor-
tant tool for relating galaxies and clusters to the underlying mass distribution, being
clusters more strongly correlated in space than galaxies. Therefore, the two-point an-
gular correlation function of galaxies and clusters efficiently quantifies the large-scale
structure of the Universe. In this Chapter, we describe the measuring of the clus-
tering properties of clusters and galaxies by using the two-point angular correlation
function w(θ). As we have been focusing on optical data so far, the measurement
of the 2D angular projected correlation function is to prefer to the 3D correlation
function, because of the uncertainty on the photometric redshift estimates and the
smoothing due to the relatively large radial distance errors. This part of the project
is still in a preliminary, incomplete status. Here we introduce the measurement by
pixelization, the theoretical expectation and the error estimates, in the case of cluster
auto-correlation function only. The goal is to fully complete the estimations for the
galaxies auto-correlation and for the clusters-galaxies cross-correlation, in order to
investigate their constraining power on cosmological models.

5.1 Measurement by pixelization

Estimating the angular correlation function with pixelated analysis is similar to the
approach used to calculate the CMB temperature anisotropies. The angular resolu-
tion of the particular instruments gives a natural limit for the maximum reasonable
resolution used in the analysis. Here we describe the pixelization technique we em-
ploy, based on the healpix software. We also present the mask calculation and the
catalogues of clusters and galaxies we choose.
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5.1.1 Pixelization method

The healpix (Hierarchical Equal Area isoLatitude Pixelization of a sphere) pix-
elization scheme (Górski et al. 2005) is a software package available in C, C++,
Fortran90, IDL, Java and Python, which is often used for CMB calculations and we
use for the cross-correlation calculation. healpix divides the spherical surface into
pixels of same size. The Nside parameter is a measure of the map angular resolution
and could be any power of 2. The total number of pixels is simply Npix = 12×N2

side.
For example, the lowest resolution corresponds to Nside = 20 = 1, where the sphere
is divided into Npix = 12 equivalent pixels. A single step to higher resolution (to the
following power of 2) would divide each pixel into 4 subpixels, namely if Nside = 2,
then Npix = 12 × 22 = 48. The isolatitude feature means that pixels are located at
rings of constant latitude: this is fundamental to optimize the computational time
of calculations with spherical harmonics. The ordering of pixels in a healpix map
can be ring or nested : we use the latter, because neighbouring pixels have similar
indices, allowing for faster pair finding algorithms. An important issue when using
a pixelization method is the damping of power on small scales (θ < 1 deg): this is
because the true signal is smoothed over the area of each pixel, erasing small scale
features, while on large scales the effect is not significant.

In our pixelated analysis, after comparing the following three different resolutions:� Nside = 64, Npix = 49, 152 (pixel size ∼ 50 arcmin);� Nside = 128, Npix = 196, 608;� Nside = 256 , Npix = 786, 432 (pixel size ∼ 13 arcmin);

we rely on the highest resolution (Nside = 256).

The angular distance θ (in decimal degrees) between two points on a sphere
P1(λ1, φ1) and P2(λ2, φ2), where λ1,2 and φ1,2 are respectively the latitudes and the
longitudes (in radians), in the limit of relatively small pixels can be expressed as

θ =
180◦

π
tan−1





√
cos2 λ2 sin

2(φ2 − φ1) + [cosλ1 sinλ2 − sin λ1 cosλ2 cos(φ2 − φ1)]
2

sinλ1 sin λ2 + cosλ1 cosλ2 cos(φ2 − φ1)



 .

(5.1)
We use a linear binning in θ, with θ ∈ [0.2, 10.5] deg, divided into 20 bins.
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Figure 5.1: Mask used for the calculation of angular correlation function with pixelated
analysis, in equatorial coordinates.

5.1.2 The mask and the catalogues

We adopt a mock catalogue provided by Will Percival (private communication),
consisting of about 5.2 million objects corresponding to the SDSS DR7 spectroscopic
footprint, to create our mask (see Fig. 5.1). We use Nside = 256 to determine which
pixels are covered by the catalogue, downscale to Nside = 64 and remove all pixels in
the lower resolution that are not fully covered. The final mask is binary (mi = 1, 0).
We then applied the mask to the following two catalogues:� GMBCG (Gaussian Mixture Brightest Cluster Galaxy) largest publicly avail-

able cluster catalogue (Hao et al. 2010) from SDSS DR7 optical data, with
zphoto < 0.55, 8 < Ngal < 140 over 8, 200 deg2 of comoving volume, with 55,431
objects;� A volume limited sample of galaxies from the SDSS-II DR7 (Ben Hoyle, pri-
vate communication), with zphoto < 0.55, ∆zphoto < 0.1 and R-band absolute
magnitude smaller than −21.5, with 9,489,664 objects .
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5.2 Angular correlation function estimator

From Giannantonio et al. (2008) we employ the following estimator for the angular
correlation function between clusters (c) and galaxies (g):

w(θ)cgpix =
1

Nθ

∑

i,j

mi

(
ci − c̄

c̄

)
mj

(
gj − ḡ

ḡ

)
, (5.2)

where Nθ =
∑

i,jmimj is the weighted number of pixel pairs separated by θ, ci is
the number of clusters inside pixel i, gj is the galaxies number inside pixel j, mi,j is
the unique mask value for pixels i, j, c̄ and ḡ are respectively the average numbers
of clusters and galaxies per pixel (i.e. the total number of objects divided by the
number of the non-empty pixels). In the case of clusters auto-correlation, we have
then

w(θ)ccpix =
1

Nθ

∑

i,j

mi

(
ci − c̄

c̄

)
mj

(
cj − c̄

c̄

)
, (5.3)

while for the galaxies auto-correlation we have

w(θ)ggpix =
1

Nθ

∑

i,j

mi

(
gi − ḡ

ḡ

)
mj

(
gj − ḡ

ḡ

)
. (5.4)

5.3 Theoretical prediction

The numerical tool we use for calculating the theoretical correlation function is camb
Sources1(Lewis & Challinor 2007) a Fortran 90 code similar to camb, cmbfast

(Seljak & Zaldarriaga 1996), cmbeasy (Doran 2005), class (Lesgourgues 2011;
Blas et al. 2011). It computes the angular power spectrum Cl of the CMB anisotropies
as well as matter perturbations at different redshifts. We will calculate the Cls of
the matter density, given a certain redshift distribution d(z), for both clusters and
galaxies. The relation between the Cls and w(θ) is given by

w(θ)theory =
∑

l≥0

(
2l + 1

4π

)
Pl(cos θ)Cl , (5.5)

where Pl are the Legendre polynomials of degree l. The observed signal is then
expected to be w(θ) = b2eff w(θ)theory, for a bias factor bcleff ∼ 2 for clusters and
bgeff ∼ 1 for galaxies. In Fig. 5.2 we show our preliminary results for the cluster
auto-correlation function, together with theoretical predictions and errors estimates.

1http://camb.info/sources/
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Figure 5.2: Cluster auto-correlation function, with estimated errors and theoretical pre-
diction. The angle θ is given in degrees.

5.4 Error estimates

Having the theoretical Cl, we can use the following analytical prescription (Ross et al.
2011) for the covariance matrix of the correlation function:

Cθθ′ =
2

fsky

∑

l≥0

2l + 1

(4π)2
Pl(cos θ)Pl(cos θ

′)

(
b2effCl +

1

n̄

)2

, (5.6)

where fsky is the number of observed steradians, n̄ is the number of object per
steradian. Note that 1/n̄ is the shot-noise contribution, while beff2Cl is the cosmic
variance term.
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Chapter 6

Conclusions

This dissertation was aimed to examine the contribution of clusters of galaxies in con-
firming the concordance ΛCDM cosmological model. After introducing the current
cosmological framework and the main properties of galaxy clusters, we showed how
these massive gravitationally bound systems in the Universe provide a unique test
of cosmology and structure formation. Their number density and distribution are
highly sensitive to cosmology and provide tight and robust constraints on cosmolog-
ical parameters, complementing those which result from other observational probes.
However, these constraints are critically dependent on our ability to estimate cluster
masses. Our work highlighted in particular the power of optically selected clus-
ter samples to produce precision constraints on cosmological parameters. This was
achieved by adding the clustering information of galaxy clusters to complement the
cluster number counts and observable-mass relation analyses.

The first achievement was to reproduce the cosmological constraints obtained in
the analysis done by Rozo et al. (2010). In this analysis, they used cluster abun-
dances in richness bins together with weak-lensing mass measurements of the SDSS
maxBCG cluster catalogue to constrain cosmology and the richness-mass relation
of the clusters. They assumed a flat Universe and they used the Tinker halo mass
function for the computation. The richness-mass relation they adopted was a power-
law in mass and they constrained the scatter around it by demanding consistency
between X-ray and WL measurements. Their final cosmological results were fur-
ther improved by a joint analysis with the WMAP DR5 data. We followed their
theoretical modelling of cluster counts and cluster total masses, together with their
corresponding covariance matrices. By adopting a Bayesian approach for deriving
cosmological constraints from the sample, we obtained consistent constraints on the
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matter density Ωm, the fluctuation amplitude σ8, the scaling relation parameters
lnN1, lnN2 and the scatter σlnM .

An interesting development of this joint cosmological analysis was to fully in-
clude the redshift space power spectrum of the maxBCG clusters, calculated by
Hütsi (2010). We followed this prescription to model the cluster power spectrum, in-
cluding the effect of weak non-linearities and redshift space distortions and allowing
for an arbitrary photometric redshift smoothing. We found that the inclusion of the
power spectrum typically brings a factor between 1.5 and 3, depending on the pa-
rameter, improvement of the errors on σ8 and Ωm. Constraints on other parameters
are also improved, even if less significantly. In addition to the cluster data, we also
used the CMB power spectra from WMAP7, which further contributed to tighten
the confidence regions by an additional factor of 2, mainly on σ8 and Ωm parameters.

Another peculiar application of this analysis was concerning the study of non-
Gaussian initial conditions to constrain models of the early universe. MaxBCG
galaxy clusters provided constraints on the amount of the local type primordial non-
Gaussianity of the initial density perturbations which are statistically compatible
with zero and consistent with the latest constraints. While these results are not
competitive with those from combined analyses of multiple galaxy surveys of from
the CMB bispectrum, we found such constraints independently and for the first time
with the clustering of optically selected galaxy clusters.

All our MCMC analysis was performed using the Cosmological Monte-Carlo
(cosmomc) publicly available parameter estimation tool by Lewis & Bridle (2002).
All the cosmological analysis implementation and results have been published in
Mana et al. (2013). We are currently updating our results to include the Planck
likelihood.

In the last Chapter of this thesis, we presented some preliminary calculations on
the clustering of clusters and galaxies, by means of the two-point angular correlation
function, estimated by a pixelization technique and theoretical modelling. This sta-
tistical quantity efficiently quantifies the large-scale structure of the Universe, thus
providing additional constraining power on cosmological models. Our work can be
seen as a proof of concept towards a full joint analysis of the LSS, consistently includ-
ing both galaxies and clusters as dark matter tracers, to achieve the full potential
of the upcoming galaxy surveys such as the Dark Energy Survey and the Euclid
mission.
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We conclude by suggesting two possible extensions to this work, which could
result in promising results: the inclusion of massive neutrinos and the application to
modified gravity models.

Modified gravity

The accelerated expansion of the Universe can be explained by introducing modifica-
tions to gravity, instead of a dark energy component. A possible modification is the
addition of a free function f(R) of the Ricci scalar R to the Einstein-Hilbert action.
This leads to modified Einstein equations, containing terms with f(R) and differen-
tials of this function with respect to R (i.e. fR, fRR). Valid f(R) model should closely
match the ΛCDM expansion history and satisfy local gravity constraints. Strong con-
straints on deviation from GR can be inferred from the large-scale structure: in fact,
the increased growth of structure observed in f(R) gravity affects the large scales
of the CMB temperature power spectrum. However, the most stringent constraints
on f(R) models are due to the abundance of low-redshift (z < 0.15) X-ray clusters
(Schmidt et al. 2009). An interesting analysis was performed by Lombriser et al.
(2012). They performed a MCMC study of f(R) gravity models which reproduce
the ΛCDM expansion history using data from CMB (WMAP DR5), SNIa (Supernova
Cosmology Project, SCP), BAO (SDSS DR7), H0 (SH0ES) and cluster abundances
from the likelihood code of Seljak et al. (2013). They parametrize their solutions in
terms of the Compton wavelength parameter, defined as

B =
fRR

1 + fR
R′ H

H ′
, (6.1)

where prime denote derivative with respect to ln a: more precisely, they considered
the value of B at ln a = 0, i.e. B0 ≡ B(ln a = 0). Standard gravity corresponds
to B0 = 0. The constraint on the Compton wavelength parameter B0 is essentially
driven by the cluster abundances alone: they obtained 100B0 < 0.333 (95% c.l.)
from the cluster data alone and 100B0 < 0.11 (95% c.l.) from the combined datasets.

These interesting results involving low redshift galaxy clusters suggest us a possi-
ble development direction of our research. It would be intriguing to test these f(R)
gravity models with the maxBCG optical cluster sample.
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Massive neutrinos

Neutrino oscillation experiments have provided evidence that neutrinos have non-
zero masses. In the standard picture, there are three neutrino species with a lower
bound on the summed mass

∑
mν at 0.06 eV coming from solar and atmospheric

oscillations observations. On the other hand, combined cosmological data, such as
CMB, BAO, galaxy clustering and cluster mass function, provide an upper limit on
the summed mass in the range

∑
mν < 0.3 − 0.8 eV (95% c.l.). Neutrinos, in fact,

produce visible effects on the background evolution and structure formation. More
specifically, neutrinos decouple from the primordial plasma when they are still ultra-
relativistic, becoming non-relativistic only after recombination, due to their small
mass. During this period, their energy density contributes as radiation and changes
both the expansion rate and the time of matter-radiation equality: a larger value of∑
mν implies a larger value of the radiation density and therefore a postponed time

of equality. These modifications appear in the matter power spectrum as a shift of
the peak to larger scales. Moreover, since density fluctuations grow more efficiently
on small scales after equality (i.e. in the matter-dominated era), the matter power
spectrum is suppressed on small scales with respect to large scales. As a consequence,
a suppression effect is also visible in the halo mass function. Analogous features are
caused by non-relativistic neutrinos, which suppress density fluctuations on scales
smaller than their free-streaming length.

Costanzi Alunno Cerbolini et al. (2013) performed a forecast analysis for a large
photometric galaxy cluster survey (like Euclid survey) on neutrino properties con-
straints: in particular, the total neutrino mass and effective number of neutrino
species. They combined cluster number counts and cluster power spectrum and used
a MCMC method. They found that combining cluster data with CMB from Planck
improves by more than an order of magnitude the constraint on neutrino masses,
if compared to each probe used independently. On the other hand, galaxy clusters
together with CMB and BAO can provide precise constraints on the sum of neutrino
masses but these constraints depend on the calibration of the mass-observable rela-
tion (Rozo et al. 2013).

These studies motivate us to include the effect of massive neutrinos in our analy-
sis, through the modifications on the cluster mass function and power spectrum. We
will thus investigate the constraints on neutrinos properties in the near future.
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Reiprich T. H., Böhringer H., 2002, ApJ, 567, 716

Riess A. G., Filippenko A. V., Challis P., et al., 1998a, AJ, 116, 1009

Riess A. G., Macri L., Casertano S., et al., 2011, ApJ, 730, 119

Riess A. G., Nugent P., Filippenko A. V., Kirshner R. P., Perlmutter S., 1998b, ApJ,
504, 935

Rood H. J., 1974a, ApJ, 194, 27

Rood II H. J., 1974b, ApJ, 188, 451

Rosati P., della Ceca R., Norman C., Giacconi R., 1998, ApJ, 492, L21

Ross A. J., et al., 2013, MNRAS, 428, 1116

Ross A. J., Percival W. J., Crocce M., Cabré A., Gaztañaga E., 2011, MNRAS, 415,
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Schuecker P., Böhringer H., Collins C. A., Guzzo L., 2003, A&A, 398, 867

Sefusatti E., Crocce M., Desjacques V., 2012, MNRAS, 425, 2903

Seljak U., Slosar A., Mandelbaum R., 2013, In preparation

Seljak U., Zaldarriaga M., 1996, Astrophys. J., 469, 437

Shandera S., Mantz A., Rapetti D., Allen S. W., 2013, J. Cosmology Astropart.
Phys., 8, 4
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