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Zusammenfassung xi

In dieser Arbeit wird das Clustering von Materie auf groÿen Skalen (& 64 h−1Mpc) mit
Hilfe der Zweipunkt- und Dreipunktstatistik untersucht. Dabei wird im ersten Teil der
Arbeit ein Hauptaugenmerk auf die Zweipunktstatistik gelegt und im zweiten Teil auf die
Dreipunktstatistik, um den Zustandsgleichungsparameter der dunklen Energie sowie die
Biasparameter bestimmen zu können.
Die anisotrope Zweipunkt-Korrelationsfunktion ξ(rp, π), bei der der Abstand zwischen zwei
Objekten in eine Komponente senkrecht (rp) sowie parallel (π) zur Sichtline aufgespalten
wird, wird dabei verwendet um den Zustandsgleichungsparameter der dunklen Energie wDE

und den linearen Bias b zu bestimmen. Zum ersten Mal werden nichlineares Strukturwachs-
tum als auch nichtlinearer kohärenter Einfall für ξ(rp, π) modelliert, um Skalen gröÿer als
r & 64 h−1Mpc möglichst realistisch beschreiben zu können. Zusätzlich ermöglicht dieses
neue Modell die Rotverschiebungsfehler zu berücksichtigen, welche zu einer Verzerrung der
Zweipunktstatistik führen: Mit der Einführung sehr groÿer, weitwinkliger photometrischer
Galaxiendurchmusterungen wie Pan-STARRS, DES oder PAU ist es äuÿerst wichtig gewor-
den, den Ein�uss von Ungenauigkeiten bei der Messung der Rotverschiebung zu verstehen.
Die Gültigkeit des Modells wird mit Hilfe von 50 groÿ-volumigen numerischen N -Körper-
Simulationenskuben mit mittlerer Au�ösung getestet. Dabei wird eine Analyse nicht nur
im realen und Rotverschiebungs-Raum durchgeführt, sondern auch im Rotverschiebungs-
fehlerraum, unter der Annahme von gauÿverteilten Rotverschiebungsfehlern. Das Modell
wird bezüglich vier verschiedener absoluter rms-Werte, nämlich σz = 0.015, 0.03, 0.06 sowie
0.12, untersucht. Bei dem gegebenen Volumen (Vbox = 2.4 h−3Gpc3) und der gegebenen
Anzahldichte (n̄ ≈ 1.25× 10−4 (h/Mpc)3) der Objekte kann geschlussfolgert werden, dass
die Form von ξ(rp, π) gut genug bestimmt werden kann, um unverfälschte Werte für wDE

sowie b zu erhalten, selbst bei Rotverschiebungsfehlern von σz = 0.06.
Der zweite Teil der Arbeit befasst sich mit der Dreipunktstatistik im Fourierraum, dem Bi-
spektrum B(k1, k2, k3). Für die Bestimmung kosmologischer Parameter wie wDE benötigt
man die Kenntnis des Galaxienclusterings verglichen mit dem des darunterliegenden Ma-
teriedichtefeldes. Diese sogenannten Biasparameter beein�ussen das Bispektrum sehr stark;
es ist jedoch frei von der Entartung zwischen b1 and σ8, welche in der Zweipunktstatistik
vorliegt. Daher ist das Bispektrum bestens geeignet um die Biasparameter zu bestimmen.
Allerdings ist es im Bereich der Kosmologie noch nicht so gründlich untersucht worden
wie die Zweipunktstatistik. Der Zweck dieser Arbeit ist es daher, die Auswirkungen des
Strukturwachstums sowie der Eigengeschwindigkeiten auf das Bispektrum zu verstehen,
im Hinblick auf eine spätere Anwendung auf beobachtete Daten. Daher wurden für eine
bessere Beschreibung des Strukturwachstums die linearen Leistungspektren, die in der ur-
sprünglichen Modellierung gebraucht wurden, durch die Leistungsspektren der Störungs-
theorie dritter Ordnung ersetzt. Diese Modi�zierung wird dann mit Hilfe der selben nu-
merischen N -Körper-Simulationen getestet wie im Falle von ξ(rp, π). Dabei werden die
Rotverschiebungen z = 0.0, 0.5 und 1.0 betrachtet, um mögliche Abhängigkeiten dieser Ef-
fekte von der Rotverschiebung untersuchen zu können. Abschlieÿend kann geschlussfolgert
werden, dass das Bispektrum auf groÿen Skalen (kmax . 0.10 h Mpc−1) sowie bei hohen
Rotverschiebungen (z & 0.5) zuverlässig modelliert werden kann, wohingegen das Modell
für niedrigere Rotverschiebungen und gröÿere Moden verbessert werden muss.
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Abstract xiii

In this thesis, the clustering of matter on large scales (& 64 h−1Mpc) by means of the
two- and three-point statistics will be investigated. The goal is to use these as a means to
extract the equation of state parameter of dark energy and bias parameters.
In the �rst part of this thesis, the anisotropic two-point correlation function ξ(rp, π), where
the distance between two objects is split into a component perpendicular to line-of-sight
(rp) and parallel to the line-of-sight (π), is examined. This analysis is used to extract
the equation of state parameter of dark energy wDE and the linear bias b. Non-linear
structure growth and non-linear coherent infall is for the �rst time incorporated in the
model of ξ(rp, π) with a realistic description at scales larger than r & 64 h−1Mpc. The new
model introduced in this thesis is also able to account for redshift errors which distort the
two-point clustering statistic: The advent of very large, wide-angle photometric redshift
surveys like e.g. Pan-STARRS, DES, or PAU, made it extremely important to understand
the in�uence of redshift inaccuracies. In order to investigate the validity of the model it is
tested against a suite of 50 large-volume, medium resolution numerical N -body simulation
boxes where an analysis can be performed in real and redshift space as well as in redshift
error space. The redshift error distribution can safely be assumed to be Gausian and the
model is tested for four di�erent absolute rms values with σz = 0.015, 0.03, 0.06, and 0.12.
Such an investigation has never before been performed on ξ(rp, π). It is concluded that for
the given volume (Vbox = 2.4 h−3Gpc3) and number density (n̄ ≈ 1.25 × 10−4 (h/Mpc)3)
of objects, the full shape of ξ(rp, π) is modeled accurately enough that is can be used to
derive unbiased constraints on the equation of state parameter of dark energy wDE and
the linear bias b, even in the presence of redshift errors of the order of σz = 0.061.
The second part of this thesis focuses on three-point statistics, mainly the Fourier space
the bispectrum B(k1, k2, k3). The estimation of the cosmological parameters such as wDE

requires knowledge of the clustering of galaxies compared to the underlying matter density
�eld. The bispectrum is sensitive to these bias parameters and does not su�er from the
same the degeneracy between σ8 and the linear bias as the two-point statistics. So it is
perfectly suited to measure bias parameters. However, until now the bispectrum has not
been as thoroughly examined as two-point statistics in the �eld of cosmology. Hence, the
purpose of this part of the thesis is to understand the e�ects of structure growth and pecu-
liar velocities on the bispectrum for dark matter, with regard to a later application to real
data sets. For a better description of structure growth, the linear power spectra from the
original model of the bispectrum are replaced by the corresponding 3rd order perturbation
theory power spectra to account for the e�ects of non-linearities. This modi�ed model is
tested against the same numerical N -body simulation boxes used to test ξ(rp, π) for the
snapshots at z = 0.0, 0.5 and 1.0, in order to understand the evolution with redshift of
these e�ects. It is concluded that the large scale bispectrum (kmax . 0.10 h Mpc−1) can be
modeled reliablely at least at high redshifts (z & 0.5), while at lower redshifts and larger
k-modes the current model has to be improved.

1from Schlagenhaufer et al. (2012)
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Chapter 1

Introduction

Our understanding of the Universe underwent a dramatic change over the last one hundred
years. In the beginning of the 20th century, it was believed that the Universe contains
only normal matter, which means mostly baryonic matter. In several observations, it was
shown that there is not enough baryonic matter to explain e.g. the rotation curves of
nearby galaxies or the Milky Way, where the velocities of the stars do not follow Kepler's
law (Bosma, 1978; Rubin et al., 1980), the spatial extent of clusters of galaxies measured
with X-ray emission from the hot intergalactic gas (White et al., 1993) and the e�ect of
gravitational lensing, where the visible matter is not enough to explain the lensing e�ects
(Clowe et al., 2006). The missing matter which is required to explain these observations
is called dark matter and interacts with its environment only gravitationally.
Another important discovery was made in the late nineties of the last century. For the �rst
time, the late time accelerated expansion of the Universe was inferred from the observed
luminosities of Supernovae Type Ia which were too faint for a non-accelerated Universe
(Riess et al., 1998; Perlmutter et al., 1999). An additional component of the energy density
of the Universe is required for to be responsible for the acceleration. In this thesis, it is
assumed that this additional component is the so-called dark energy. Di�erent forms of
dark energy can be characterized by the equation of the state parameter

wDE ≡ pDE

ρDEc2
(1.1)

where pDE is the pressure and ρDE the energy density of the dark energy. Current mea-
surements of wDE are still consistent with the simplest solution, the cosmological constant
(wDE = -1.0), with around ten percent errors (Sánchez et al., 2006; Komatsu et al., 2009,
2011; Montesano et al., 2011). The cosmological constant was �rst introduced by Einstein
to ensure a steady state universe. However, after the discovery of Edwin Hubble that galax-
ies move away from us (Hubble, 1929) Einstein rejected it. Another possible explanation
for dark energy could be the so-called quintessence models, in which it is assumed that a
scalar �eld is present throughout the whole Universe. Furthermore, it is possible to modify
gravity itself, e.g. with higher dimensional approaches as in string cosmology, instead of
introducing another particle or �eld to the energy momentum tensor. These theoretical



2 1. Introduction

approaches are reviewed in Copeland et al. (2006).
Understanding the physical origin of the late time accelerated expansionary phase of the
Universe is one of the most important challenges in the �eld of cosmology nowadays.
The clustering of galaxies is an important source of information to learn more about the
constituents of the Universe (Albrecht et al., 2006; Sánchez et al., 2006; Montesano et al.,
2011). In this thesis, this clustering is examined by means of the two- and three-point
statistics, where the density �eld is traced using galaxies in two or three di�erent loca-
tions, respectively.
Baryonic Acoustic Oscillations (BAOs), which formed via acoustic waves in the primor-
dial plasma right after the big bang, are a very important feature in the galaxy clustering.
They can be used as a standard ruler, comparable to the Supernovae Type Ia, which are
considered to be standard candles. For the extraction of e.g. wDE a relation between
redshift and distance is used. This is dependent on the cosmological parameters which
therefore can be inferred from a known redshift-distance relation (Blake & Bridle, 2005).
The physical origin of BAOs is well understood and described by plasma physics (Hu et al.,
1995; Hu & White, 1996). In the very early Universe (t ∼ 10−32s after the big bang), when
dark energy was negligible, small perturbations in the density �eld were present. From
each of these perturbations sound waves propagated away. Due to the tight coupling be-
tween the photons and electrons via Thomson scattering at that time, the baryonic matter
was dragged by the photons. At the time of recombination, when neutral hydrogen was
formed (no free electrons were available anymore), these acoustic waves were imprinted in
the matter density distribution due to the rapid decrease of the sound speed towards zero.
The maximum distance these acoustic waves were able to propagate is called the sound
horizon and can be used as a standard ruler. These frozen acoustic waves can be observed
in the Cosmic Microwave Background (CMB) (Lange et al., 1995; Hinshaw et al., 2003).
At the scale of the sound horizon, a slight overdensity in the matter distribution can be
found. In general, in overdense regions galaxies are more likely to form than in underdense
ones (Kaiser, 1984). Therefore, a higher galaxy density is expected at separations equal
to the scale of the sound horizon than at slightly smaller or larger scales. This behavior is
assumed to be also re�ected in clustering statistics.
In Figure 1.12, a map of luminous red galaxies from SDSS-III is shown. The red circle
indicates the imprinted scale of the BAOs. This shows that the BAOs are a large scale
feature. Therefore, a large volume with as many galaxies as possible is required to mea-
sure a clear BAO signal, which can then be used to extract cosmological parameters. In
Eisenstein et al. (2005), the BAOs were observed for the �rst time in the galaxy two-point
correlation function as a single broad peak. The two-point statistics are described by the
two-point correlation function or power spectrum, depending on whether they are consid-
ered in con�guration space or Fourier space, respectively. In Fourier space, this BAO peak
is transformed into a series of small wiggles on top of the overall shape of the power spec-
trum. Analogously, the three-point statistics are described by the three-point correlation
function in con�guration space and the bispectrum in Fourier space.

2Press release for SDSS-III: http://www.astronomy.ohio-state.edu/�dhw/SDSS3/sdss3pr.html
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Figure 1.1: A map of the luminous red galaxies from SDSS-III. The red circle indicates
the size of the BAOs in the galaxy survey.

The extraction of features imprinted by BAOs from the galaxy distribution, and derivation
of cosmological parameters is a main objective of many galaxy surveys, such as the two-
degree-�eld galaxy redshift survey (2dFGRS) (Colless et al., 2001) and the Sloan Digitial
Sky Survey SDSS (Eisenstein et al., 2001). These two surveys are examples of spectro-
scopic surveys which are able to deliver high precision galaxy distances. Each galaxy must
be exposed a certain amount of time which can be very time consuming (dependent on the
desired quality of the spectra and the sensitivity of the instrument). From their spectra
the distance to the objects can be obtained from the shift of the measured wavelengths of
known spectral features compared to the laboratory. Due to the expansion of the Universe
these features are shifted towards redder frequencies.
Photometric surveys are a di�erent and much faster method for observing a large number
of galaxies covering large volumes in which photometric redshifts are derived from observed
�uxes in �ve or more broad to medium band �lters (Baum, 1962). This results in a distorted
clustering of the galaxies due to the uncertainties of their distances. ThePanoramic Survey
TelescopeAndRapidResponse System Pan-STARRS (Chambers & Pan-STARRS Team,
2004), the upcoming Dark Energy Survey DES (Tucker et al., 2010), or PAU (Physics of
the Accelerating Universe, see Benítez et al. (2009)) are examples of photometric redshift
surveys.
In order to extract unbiased cosmological parameters from these surveys an accurate mod-
eling of clustering statistics is required, which is also important for the modeling on the
scales of the BAOs. The �rst problem which arises is in the description of the growth of
structure. The coupling of growth on various scales drives non-linear growth which cannot
be solved precisely by theoretical modeling. However, this is required for the formation of
structures which can be observed in the Universe. The second problem is related to the
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peculiar velocities of galaxies which mainly distort clustering in the line-of-sight direction.
This coordinate frame is also called redshift space and the e�ect of the peculiar velocities
is called redshift space distortions. If the peculiar velocities of the galaxies were zero and
their measured positions were not distorted (which is only possible in simulations but not
for real observations), this would be called real space. In the presence of large redshift
errors, as it is the case for photometric surveys, the clustering statistics is further distorted
along the line-of-sight. This situation is called redshift error space. On top of all these is-
sues, galaxies do not trace the underlying matter density �eld perfectly. The ratio between
these two density �elds is called bias (Kaiser, 1984). In the most simple case, it is assumed
to be a scale independent quantity (Fry, 1996). All these problems must be considered in
the modeling of clustering statistics in order to obtain unbiased results for the cosmological
parameters.
In this thesis, the BAO feature will be used to infer the parameter of the equation of state
of dark energy wDE and the linear bias by means of the anisotropic two-point correlation
function ξ(rp, π), where the BAO bump becomes a ring. For ξ(rp, π) the distance between
two galaxies is split into two components, rp and π, which are perpendicular and parallel to
the line-of-sight, respectively. The information content of ξ(rp, π) is larger than that of the
spherically averaged two-point correlation function ξ(r) (where r =

√
r2p + π2), because

the whole information obtained from clustering is not only condensed in a few data points.
For the �rst time, the the modelin of ξ(rp, π) presented in this thesis takes into account
non-linear structure growth, non-linear redshift space distortions as well as redshift errors
in order to make use of clustering information which can be extracted from photometric
redshift surveys. Then, wDE can be determined with the help of the distance-redshift re-
lation, making use of the Alcock-Paczynski e�ect (Alcock & Paczynski, 1979).
In this thesis, only wDE is determined in that way, while linear bias is extracted from the
amplitude of ξ(rp, π). If more cosmological parameters are varied, the linear bias will be
degenerate with the amplitude of the dark matter density �eld. This will also introduce
degeneracies with other cosmological parameters. In general, this is a problem for all two-
point statistics. In order to obtain tight constraints on these parameters this degeneracy
must be broken.
The three-point statistics o�er a solution to this problem, because the linear bias and the
amplitude of the matter density �eld a�ect them di�erently. From an analysis of three-
point statistics, not only the linear bias can be measured, but also the quadratic bias,
because these two parameters have di�erent e�ects on the three-point statistics. However,
it has not been as thoroughly examined as two-point statistics. Therefore, an intensive in-
vestigation is required, before a combined analysis of these two- and three-point clustering
statistics can be realized.
In this thesis, the bispectrum B(k1, k2, k3) will be used for this examination. The in-
vestigation will not only be performed for one speci�c triangle con�guration, as it is the
case in other publications, but for all con�gurations up to a prede�ned maximum k-mode.
The focus will lie on an understanding of non-linear structure growth and redshift space
distortions by determining the linear bias as well as the quadratic bias. These e�ects
must be studied �rst before the measurement errors can be incorporated into the model of
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B(k1, k2, k3).
These are the two main topics of this thesis, split into three main chapters and structured
as follows: In Chapter 2, the required de�nitions, derivations and methods are introduced
for the later analysis of ξ(rp, π) and B(k1, k2, k3). In this chapter, the clustering statis-
tics will be derived in real space, see Section 2.6.1. Following this, the e�ect of peculiar
velocities of galaxies induced by gravity is investigated theoretically, see Section 2.6.2. In
all of these cases the biased nature of galaxies will be taken into account. The discussion
in these sections will be focused on Fourier space clustering quantities. In Section 2.7,
con�guration space is examined with a focus on ξ(rp, π), including the incorporation of
redshift errors. This issue will be excluded from the analysis of the three-point clustering
statistics, because the extracted parameters from such statistics are expected to be poorly
determined due to the low signal-to-noise ratio. In any case, before measurement errors
can be taken into account, it is important to understand the real and redshift space bis-
pectrum �rst. To conclude the theoretical part of this thesis, the results obtained from
the clustering analysis is presented in Chapter 3. First, the results of the determination
of the parameter for the equation of state of dark energy and the linear bias, by means
of ξ(rp, π), are given in Section 3.1. This analysis is followed by Section 3.2, including a
detailed investigation of the bispectrum, and the extraction of bias parameters. This thesis
is concluded with Chapter 4. Results obtained from Chapter 3 are summarized in Section
4.1. Possible improvements for modeling of the bispectrum are introduced in Section 4.2,
and future application to real data sets are proposed in Section 4.3.
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Chapter 2

Theoretical framework for the two- and

three-point statistics

In this chapter, the theoretical framework will be prepared for the calculation of the two-
and three-point clustering statistics. For their derivation the distance between the objects
is of interest (e.g. halos or galaxies) as well as their distance to the observer must be
known. Section 2.1 is focused on the evaluation of cosmological distances. As mentioned
in Chapter 1, the BAOs serve as a standard ruler and can be utilized to measure cosmo-
logical parameters e.g. wDE via the distance-redshift relation. The physical origin of the
BAOs will be discussed in Section 2.2. The discussion of the following sections will mainly
be performed in Fourier space because the derivations of the clustering statistics can be
carried out easier in this framework.
In Section 2.3, the numerical N -body simulations used for testing the validity of the model-
ing will be introduced. The required de�nitions for measuring and modeling the clustering
statistics, the power spectrum P (k) and the bispectrum B(k1, k2, k3), will be given in Sec-
tion 2.4. The measurement of P (k) and B(k1, k2, k3) will be discussed in Section 2.5. The
extraction of cosmological parameters or bias parameters can only be achieved if a reliable
model of the clustering statistics is available. Section 2.6 is mainly interested in this topic
for real and redshift space as well as for biased objects like halos or galaxies.
The results derived in the previous sections have a con�guration space counterpart, which
can be evaluated by a back Fourier transformation of P (k) and B(k1, k2, k3). The quan-
tities which will be obtained by this process are called two-point correlation function ξ(r)
and three-point correlation function ζ(r12, r23, r13), respectively. The derivations in Sec-
tion 2.7 are mainly interested in the anisotropic two-point correlation function ξ(rp, π) in
con�guration space.
With the conclusion of this chapter all the needed theoretical frameworks are set up for an
application to N -body simulations or real data sets.
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2.1 Cosmological distances

For mapping the spatial distribution of the galaxies the distance to these galaxies must
be known. This section will be focused on the calculation of cosmological distances. This
requires an understanding of the dynamics of cosmology.
In this thesis, it is assumed that the cosmological expansion is driven by dark energy, as
introduced in Chapter 1. The cosmological dynamics are given by the �eld equations of
General Relativity

Rµν −
1

2
gµνR =

8πG

c4
Tµν + Λgµν (2.1)

where G is Newton's constant, π (≈ 3.14) is the constant ratio between the circumference
and the diameter of a circle, Rµν the Ricci tensor (Einstein, 1915), which calculates the
space-time curvature, R ≡ gµνRµν , gµν the metric tensor in the Einstein choice which
describes the space-time distance. For example gµν is called ηµν for the Minkowski space-
time and is given by

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Λ is the cosmological constant and Tµν the energy momentum tensor. The left hand side
of Equation (2.1) describes the geometry of space-time and the right hand side the energy
and matter content of it. This thesis is only interested in the large scales of the Universe.
From observations it can be assumed, that the matter is distributed homogeneously and
isotropically on scales larger than 100 h−1Mpc. The energy-momentum tensor for such a
case can be written as

Tµν =
1

c2


ρc2 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


where c is the speed of light in vacuum (c = 299 792 458 m/s)3, ρ the energy density and
p the pressure of the matter component, which can be dark, luminous, hot (particles with
a relativistic speed, v ≈ c), cold (particles with non-relativistic speed) or warm matter.
These components can be quanti�ed by their current fraction of the energy density of the
Universe which is de�ned as

Ωi ≡
3H2

0ρi
8πG

(2.2)

where ρi is the energy density of a certain particle species and H0 the Hubble parameter
today. In this thesis, the index i can be replaced by CDM for cold dark matter, b for
baryonic matter (where ΩM = ΩCDM + Ωb) and Λ for dark energy.
The curvature of the Universe is measured to be consistent with a �at geometry (Sánchez et al.,
2006; Spergel et al., 2007; Komatsu et al., 2009, 2011; Montesano et al., 2011). The most

3http://physics.nist.gov/cgi-bin/cuu/Value?c|search_for=speed+of+light
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general metric tensor in this case is given by the Robertson-Walker metric with zero cur-
vature which is the only examined case in this thesis. The metric is given by

ds2 = a2 (τ)
(
dτ 2 − dχ2 − χ2dΩ2

)
(2.3)

where the conformal time is de�ned as dτ ≡ c · dt/a(t) and the comoving distance χ is
given by

χ (z) =

∫ z

0

c · dz
H (z)

=

∫ 1

a

c · da
a2H (a)

(2.4)

where

H (z) = H0

√(
ΩM (1 + z)3 + ΩΛ (1 + z)3(1+wDE)

)
=

ȧ

a
. (2.5)

The quantity z is called the redshift and is de�ned by the fractional shift in wavelength of
a photon emitted at a time temitted and observed today

1 + z =
λobs − λemitted

λemitted

=
a0

a (temitted)
(2.6)

where a is the scale factor which is set to unity for today (a0 = 1). The physical distance of
an object can be evaluated by multiplying the comoving distance, which can be computed
by Equation (2.4), with the scale factor. Equation (2.4) is obtained by inserting ds2 = 0 in
Equation (2.3), because photons travel along a geodesic (Einstein, 1915) like all massless
particles.
The evolution of the scale factor is described by the Friedmann equations (Friedmann ,
1922), which are obtained by inserting the Robertson-Walker metric into Equation (2.1).
The second Friedmann equation was already given in Equation (2.5) and the �rst one
describes the change of the time evolution of the scale factor a (the acceleration)

ä = −4πG

3

(
ρ+

3p

c2

)
a+

Λa

3
. (2.7)

The comoving transverse size of an object or a structure is given by multiplying of Equation
(2.4) with its angular extent on the sky. It is assumed that the object emitted the observed
light at the same time. This means that dτ = 0 and dχ = dφ = 0, which is only a choice
of the coordinate system. From the ratio of the physical transverse size of the object and
the angular extent, the angular diameter distance can be de�ned as

DA (z) ≡ a · rp
θ

=
c

1 + z

∫ z

0

dz

H(z)
(2.8)

where a · rp is the physical transverse size of the object. The comoving distance along the
line-of-sight π and the comoving distance transverse to the line-of-sight rp of an object or
structure is then given by

π =
c ·∆z

H (z)
(2.9)
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and
rp = (1 + z) ·DA (z) ·∆θ (2.10)

where for Equation (2.9) it was assumed that the scale factor did not change along the
line-of-sight extent of the object.
The observed quantities are ∆z and ∆θ and with Equation (2.9) and Equation (2.10) H (z)
and DA (z) can be calculated. After knowing how distances are computed in cosmology,
the physical origin of the peak of the correlation function must be understood in order to
use it as a standard ruler. This discussion will take place in the next section.

2.2 Baryonic Acoustic Oscillations (BAOs)

A brief summary of the baryonic acoustic oscillations will be given here. In this section
the same notation as in Hu et al. (1995) and Hu & White (1996) is used and the speed of
light is set to unity (c = 1). This discussion is focused on the physics in the early Universe
at redshifts z > 1000.
At that time the Universe was in a very hot and dense stage. So far, no neutral atoms
were built. Photons and electrons were able to interact with each other via Thomson
scattering. The positive charged atomic nuclei were coupled via Coulomb scattering to
electrons. Therefore, photons were able to drag baryonic matter. This period is also called
drag epoch. The baryon-photon �uid can be described by plasma physics like a single
�uid and it was optically thick. Due to Thomson scattering photons were not able to
propagate freely. At that time already small �uctuations were present in the density �eld.
These initial perturbations drove acoustic waves in the baryon-photon �uid. The overdense
regions accreted matter and the photon-baryon �uid was heated. The pressure in that
overdense region counteracted gravity and created acoustic waves. Photons moving out of
such a perturbation lose energy and hence look redder than photons from an underdense
region.
In the simplest approach, these acoustic waves can be characterized by a simple harmonic
oscillator equation

Θ̈ + c2sk
2Θ = 0 (2.11)

written in Fourier space for the temperature �uctuations Θ with cs being the sound speed
in the photon gas without any baryons and the dots denote derivatives with respect to the
conformal time. In this description, the oscillations are neither driven nor damped. They
just represent the heating and cooling of the �uid due to compression and rarefaction.
In this zero order approximation the sound speed is given by c2s = 1/3 for the photon-
dominated �uid (as a reminder c = 1).
In con�guration space, Equation (2.11) is solved by standing waves which are oscillat-
ing. This situation remained unchanged until the number density of the free electrons fell
rapidly. This happened at the time of recombination where neutral hydrogen was formed.
The imprint of these �uctuations on the CMB is also called last scattering surface.
After recombination photons and electrons are not tightly coupled anymore. This is also
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the �rst time when the Universe became optically thin and the photons were able to prop-
agate freely. The modes of the oscillations are caught in their extrema given by

kns∗ = n · π , n = 1, 2, 3... (2.12)

where s∗ is de�ned as the comoving sound horizon at recombination

s∗ ≡
∫

csdτ . (2.13)

The comoving sound horizon is the distance the sound waves were able to travel until
recombination and only within the sound horizon the waves were able to oscillate. The
compression of the plasma is represented by the odd extrema and the rarefaction by the
even extrema.

2.2.1 Gravitation driven oscillations

Since the acoustic oscillations are driven by gravity, on the right hand side of Equation
(2.11) the time-time and the space-space �uctuations of the metric Ψ and Φ have to be
added and then result in

F = −k2

3
Ψ− Φ̈ . (2.14)

There is an equilibrium between the pressure gradient kΘ, which is responsible for the
rarefaction, and the gravity gradient kΨ, which is responsible for the compression. If the
gravitational potential is assumed to be constant Φ̇ = 0 and Φ̈ = 0, which is true as long
as the energy density of the Universe is dominated by only one component, the harmonic
oscillator can be rewritten as

Θ̈ + Ψ̈ + c2sk
2 (Θ + Ψ) = 0 (2.15)

and the minima of the solution of this equation are displaced compared with the solution
of Equation (2.11).
The radiation energy density contribution at recombination is small but not negligible
and thus Φ varies slowly with time. The temperature �uctuations which are induced
by the change of the gravitational potential due to radiation are called early integrated
Sachs-Wolfe e�ect. In the matter dominated epoch of the Universe, the gravitational
potential is constant again but when dark energy of whatever form begins to dominate the
energy density of the Universe, the gravitational potential changes again. This temperature
�uctuations which are induced by the change of the gravitational potential due to dark
energy is called late integrated Sachs-Wolfe e�ect.

2.2.2 Baryon loading

The next important impact on the oscillations are the baryons which add extra mass to
the momentum density of the plasma. For the relativistic plasma the momentum density
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has to be changed from

(ργ + pγ) vγ into (ργ + pγ) vγ + (ρb + pb) vb ≡ (1 +R) (ργ + pγ) vγb (2.16)

where

R ≡ (ρb + pb)

(ργ + pγ)
(2.17)

and vγb ≈ vb ≈ vγ in the tight coupling regime where vγ and vb are the �uid velocities
of the photons and baryons and vγb is the bulk velocity of the baryon-photon �uid in the
tight coupling regime. The harmonic oscillator equation becomes[

(1 +R) Θ̇
].
+

1

3
k2Θ = −1

3
k2 (1 +R)Ψ−

[
(1 +R) Φ̇

].
. (2.18)

Equation (2.18) can be interpreted as an oscillator equation with a change of mass given
by R and a decreased sound speed given by

c2s =
ṗγ + ṗb
ρ̇γ + ρ̇b

=
1

3 (1 +R)
. (2.19)

The sound horizon is also decreased because of the change of the sound speed. In the
matter dominated regime and assuming that R changes slowly the baryon loading has
the following e�ects on the oscillations. The amplitude is increased by a factor 1 + 3R
and the zero point of the oscillations is shifted so that even and odd peaks have di�erent
amplitudes. The odd peaks have a higher amplitude than the even peaks because an
additional gravitational compression is induced due to the baryons.
There are many more e�ects which have to be taken into account in order to obtain a
correct description of the BAOs e.g. damping, viscosity, heat conduction etc., but all these
physical ingredients are well understood at this regime.
The sound horizon can be calculated within this framework because dark energy does not
play any role near recombination. This is the reason why the sound horizon can be used
as a standard ruler and �nally at the drag epoch is given by

s =

∫ τdrag

0

csdτ =
2

3keq

√
6

Req

ln

(√
1 +Req +

√
Rd +Req

1 +
√

Req

)
(2.20)

where it is only dependent on the wavenumber of the horizon at matter-radiation equality
keq, the photon-baryon density at the drag epoch Rd and at matter-radiation equality Req.
All of these parameters are only dependent on the baryon density, the matter density and
the temperature of the CMB today.
At recombination the photons were not scattered anymore and di�use in all directions.
However, the matter density perturbations are stalled. The photons from the CMB contain
the information of these �uctuations at that time. Due to the rapid decrease of free
electrons the BAOs were frozen out on the last scattering surface which is at the same
time the oldest possible information astronomers can get from the early Universe (as long
as primordial neutrinos or gravitational waves are not observable).
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2.2.3 In�uence on the clustering statistics

Overdense regions in con�guration space can be found more likely at the scale of the sound
horizon, compared to a power law like decrease of the density �eld. The power law like
behavior of the probability function of the density �eld is originated from in�ation for which
the power spectrum has the form 〈|δ(k)|2〉 ∝ kns , where ns ≈ 1 (Mukhanov, 2005). This
probability function is compared to a Poisson process in order to identify perturbations
induced by gravity. Overdense regions are supposed to be the seeds of galaxies. The spatial
distribution of the galaxies can be investigated by counting galaxies at a given separation.
As mentioned in Chapter 1, the BAOs are present as a single broad peak in the two-point
correlation function ans as small wiggles in the power spectrum. In this thesis, the BAOs
in the galaxies density �eld will be used to constrain the parameter of the equation of state
of dark energy wDE. In the discussion above, it was pointed out that the physical origin
of the BAOs is well understood and that they are not in�uenced by dark energy. This is
the reason why the BAOs can be used as a standard ruler.
In Figure 2.1, the WMAP 5-year temperature power spectrum is shown from Nolta et al.
(2009). The red solid line is the best-�t theory for a ΛCDM cosmology on the WMAP alone.
The extrema of the oscillations are now peaks because maxima and minima contribute to
the power spectrum. The compression of the plasma is represented by the odd peaks and
the rarefaction by the even peaks. The minima, which can be identi�ed in Figure 2.1, are
the velocity maxima of the plasma.

Figure 2.1: The WMAP 5-year temperate power spectrum for the best-�t parameters for
a ΛCDM cosmology (red solid line) for WMAP (the measurement: black dots with error
bars) alone (Nolta et al., 2009).

In the following sections, the two- and three-point clustering statistics in Fourier space
will be de�ned and derived. In order to visualize some properties of these quantities and
to perform already some smaller investigations on them, numerical N -body simulations
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are required. For the calculation of the theoretical quantities also cosmological parameters
are needed which will be chosen to be ones of the N -body simulations. Therefore, the
simulations which will be used in the following will be introduced in the next section.

2.3 L-BASICC simulations

Numerical N -body simulations are commonly used to test the validity of models. Through-
out this chapter, some of these tests will be carried out and this requires a set of �ducial
cosmological parameters which will be introduced here as well.
The Low resolution Baryonic Acoustic oscillation Simulation at the Institute for
Computational Cosmology II (L-BASICC II or just L-BASICC) is a numerical N -body
simulation and is used to validate the theoretical predictions. Each of the 50 realizations of
the L-BASICC II simulation done by Angulo et al. (2008) contains 4483 dark matter parti-
cles with a mass ofMdm = 1.75 1012h−1M�. Halos are de�ned by at least 10 gravitationally
bound dark matter particles which were found by a Friends-of-Friends (Davis et al., 1985)
algorithm with a linking parameter of blink = 0.2 times the mean separation. A �at ΛCDM
cosmology was chosen for the simulations to be consistent with the cosmological param-
eters derived from the CMB and large scale clustering of galaxies (Sánchez et al., 2006;
Spergel et al., 2007). The initial density �eld, the seeds for the later structure growth,
was set to be Gaussian distributed for each realization. The cosmology of this simulations
will be used as �ducial cosmology for the following calculations if not stated otherwise.
Snapshots at z = 0.0, 0.5 and 1.0 were made to investigate the evolution of the density
�eld. In Table 2.1, the parameters of the simulation can be found.

explanation symbol value
matter density ΩM 0.237
baryonic density Ωb 0.041
equation of state parameter for dark energy wDE -1
scalar spectral index ns 0.954
Hubble parameter H0 73.5 km

s Mpc

amplitude of the density perturbations σ8 0.773
box length Lbox 1340 h−1 Mpc

Table 2.1: Table with the cosmological parameters and the speci�cations of the L-BASICC
simulations.
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2.4 Power spectrum and Bispectrum: De�nition

In this section, the two- and three-point statistics will be evaluated in Fourier space, the so-
called power spectrum and bispectrum, respectively. For the estimation of these clustering
statistics not the real density �eld in con�guration space is used but the overdensities δ(~r)
which are de�ned as

δ(~r) ≡ ρ(~r)− ρ̄

ρ̄
(2.21)

where ρ(r) is the local density �eld and ρ̄ the mean density �eld, if all the matter would
be distributed homogeneously over the whole considered volume. This overdensity �eld is
given in con�guration space and must be Fourier transformed in order to extract the power
spectrum and bispectrum. In this thesis, the following convention will be used

δ(~k) =

∫
d3~rδ(~r)e−i~k·~r (2.22)

and the inverse Fourier transform can be written as

δ(~r) =

∫
d3~k

(2π)3
δ(~k)ei

~k·~r (2.23)

where δ(~k) and δ(~r) are the overdensity �elds in Fourier and con�guration space, respec-
tively. The de�nitions of the statistical clustering quantities needed in this thesis, the
power spectrum P (k1) and the bispectrum B(k1, k2, k3), are given by

〈δ(~k1)δ(~k2)〉 ≡ (2π)3δD(~k12)P (k1) (2.24)

and

〈δ(~k1)δ(~k2)δ(~k3)〉 ≡ (2π)3δD(~k123)B(~k1, ~k2, ~k3) (2.25)

where ~kn = ~k1+ ...+~kn and δD is the delta Dirac function. After the de�nition of the power
spectrum and the bispectrum, they have to be extracted out of data sets. The following
section will be focused on this topic.

2.5 Power spectrum and Bispectrum: Measurement

This thesis follows the description in Sefusatti (2005). First of all, the particles in the
catalog must be distributed into a grid for the following Fast Fourier Transform (FFT)
by means of mass assignment functions (Hockney & Eastwood, 1981; Jing, 2005). The
mass assignment is required for the FFT but not for the direct Fourier transform, as given
in Equation (2.23), where just the actual spatial positions of the particles are needed.
However, this is very time consuming and still not feasible for the huge data sets which
are available by now. The cloud-in-cell (CIC) scheme (Hockney & Eastwood, 1981) is one
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possible mass assignment function and was chosen for this thesis.
The notation for the following discussion of the mass assignment was adopted from Cui et al.
(2008). For the extraction of the correct clustering statistics the Fast Fourier transformed

density �eld δFFT

(
~k
)
must be corrected for the mass assignment function by

δ(~k) =
δFFT

(
~k
)

W
(
~k
) (2.26)

where

W
(
~k
)
=
∏3

i=1
W (ki) =

∏3

i=1

sin
(

πki
2kNy

)
πki
2kNy

2

(2.27)

and ki is the ith component of ~k, kNy =
πNg

LBox
is the Nyquist mode, LBox the side length of

the box and Ng the number of grid cells into which the volume is divided. The informa-
tion contained in modes larger than kNy cannot be reconstructed correctly anymore (an
explanation for this is given by the Nyquist-Shannon sampling theorem, it says that the
sampling frequency must be at least half the Nyquist frequency).
The distribution of the particles are performed in con�guration space within a given vol-
ume, which is de�ned by the size of the grid cells. All power spectra and bispectra, which
are extracted from N -body simulations, were divided into Ng = 5123 cells, e.g. for the
L-BASICC simulations. This means that the side length for one cell can be evaluated as
2.62 h−1Mpc. The particles are distributed according to the CIC in con�guration space:

W (~x) =
∏3

i=1
W (xi) =

∏3

i=1

{
1− |xi|, if |xi|,
0, else,

(2.28)

where xi is the ith component of ~x which is the distance of a particle to the center of the
grid cell in which it is located. Equation (2.27) and Equation (2.28) are related with each
other by the Fourier transformation. After the mass assignment in con�guration space, the
FFT of the density �eld is performed by the public available Fastest Fourier Transfrom
in the West (FFTW)4 routines (Frigo & Johnson , 2005).
The extraction of the power spectrum and the bispectrum from a Fourier density �eld
given by Equation (2.26) can be discussed now. However, the clustering statistics cannot
be estimated just by the de�nition in Equation (2.24), a so-called estimator is required for
this task. One possibility to estimate the power spectrum is the FKP (Feldman-Kaiser-
Peacock) estimator (Feldman et al., 1994) which is de�ned as

Pest(k) =
k3
f

VP

∫ k1+∆k/2

k1−∆k/2

d3q1

∫ k2+∆k/2

k2−∆k/2

d3q2δD(~q12)δ(q1)δ(q2) (2.29)

4http://www.�tw.org/
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where∆k is the size of the bin, Vsurvey is the volume of the survey and kf is the fundamental
mode of the considered volume and is de�ned as

kf =
2π

LBox

, (2.30)

and

VP (k) =

∫ k1+∆k/2

k1−∆k/2

d3q1

∫ k2+∆k/2

k2−∆k/2

d3q2δD(~q12) ≈ 4πk2∆k (2.31)

counts the number of modes. The integrations in Equation (2.29) and Equation (2.31) are
performed over the binsize. This means that the density �eld within the so de�ned k-shells
with a width of ∆k is summed up. The estimator for the bispectrum (Scoccimarro et al.,
1998; Sefusatti et al., 2006) is de�ned in a similar manner as the power spectrum and is
given by

Best(~k1, ~k2, ~k3) =
k3
f

VB

∫ k1+∆k/2

k1−∆k/2

d3q1

∫ k2+∆k/2

k2−∆k/2

d3q2

=

∫ k3+∆k/2

k3−∆k/2

d3q3δD(~q123)δ(q1)δ(q2)δ(q3)

(2.32)

where

VB(k) =

∫ k1+∆k/2

k1−∆k/2

d3q1

∫ k2+∆k/2

k2−∆k/2

d3q2

∫ k3+∆k/2

k3−∆k/2

d3q3δD(~q123) ≈ 8π2k1k2k3∆k3 , (2.33)

which counts the modes for the bispectrum. These estimators count the modes directly
and perform the integration of the density �eld in Fourier space. In this thesis, the delta
Dirac function is rewritten as follows

δD(~k) =

∫ q+∆k/2

q−∆k/2

d3qei~r·~q (2.34)

and is inserted in the equations for the power spectrum (see Equation (2.29)), and the
bispectrum (see Equation (2.32)). After some rearrangements of these equations, they
were transformed into

Pest(k) =
k3
f

VP

∫
d3xI~k1(x)I~k2(x) (2.35)

where ~k1 = ~k2 (because of the delta Dirac function) and

Best(~k1, ~k2, ~k3) =
k3
f

VB

∫
d3xI~k1(x)I~k2(x)I~k3(x) (2.36)

where

I~k(x) =

∫ k+∆k

k−∆k

d3q

(2π)3
ei~x·~qδ(~q) . (2.37)
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For every k-mode of interest a k-shell has to be built and an inverse Fourier transform
has to be carried out. Afterwards, the k-shell is a con�guration space quantity. Then,
all of these k-shells are added up as shown in the equations above and multiplied by the
prefactors in front of the integrals resulting in the statistical measure which was chosen to
be extracted from the catalog.
For a correct estimation of the power spectrum or the bispectrum the shotnoise (Peebles,
1980) has to be subtracted from the results above. The shotnoise of the power spectrum
is just given by

Pshot =
1

N̄p

=
Vsurvey

Np

(2.38)

where Np is the number of particles within the survey volume Vsurvey. The shotnoise for
the bispectrum is a little bit more complicated (Smith et al., 2008) and can be written as

Bshot = (Pest(k1) + Pest(k2) + Pest(k3)− 3Pshot)Pshot + P 2
shot . (2.39)

It is worth noting that the shotnoise for the bispectrum is dependent on the k-modes,
whereas for the power spectrum it is just an overall constant value. At this point it is
also clearer why not only the estimation of bispectrum but also for the power spectrum
was discussed in detail here. It is required for the shotnoise correction of the bispectrum.
The power spectrum can be estimated during the determination of the bispectrum. This
calculation is not very time consuming, as it can easily be recognized by looking at Equation
(2.35) and can be carried out on the �y during the estimation of the bispectrum.

2.5.1 Power spectrum and Bispectrum: Gaussian density �eld

Before the theoretical model will be discussed in detail, a few more interesting and impor-
tant statements about the bispectrum will be given in this section. The δ(~r) contains only
real numbers because the density �eld in con�guration space ρ(~r) is given by the spatial
positions of the objects. However, by the Fourier transformation δ(~k) (see Equation 2.22))
becomes a complex number but with a special symmetry. δ(~k) is hermitian which means

δ(−~k) = δ∗(~k) (2.40)

the conjugate complex operation is expressed by the superscripted "∗". This is a very
important symmetry which is required for a correct extraction of the clustering statistics
in Fourier space. The overdensity �eld δ(~k) can be expressed by its real (Re(δ(~k))) and
imaginary (Im(δ(~k))) part

δ(~k) = Re(δ(~k)) + i Im(δ(~k)) (2.41)

where i (=
√
−1) is the imaginary unit or by

δ(~k) = A ei φ ≡
√

(Re(δ(~k)))2 + (Im(δ(~k)))2 e
i arctan

Im(δ(~k))

Re(δ(~k)) (2.42)

= A (cos(φ) + i sin(φ)) (2.43)
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where the amplitude is given by A and the phase by φ.
By inserting Equation (2.43) into the de�nition of the power spectrum in Equation (2.24)
it can be noticed that the power spectrum is just the amplitude of the overdensity at δ(~k)
(the phase between the k-modes is always given by π due to δD(~k1 + ~k2)). The hermitian
condition (see Equation (2.40)) only requires the calculation of the squared amplitude
of δ(~k). The phase φ is not needed for measuring the power spectrum but contains all
information about higher order clustering statistics. It is possible to conserve the amplitude
A of the overdensity �eld but change the phase φ and of course extract the same power
spectrum out of this new overdensity �eld.
This will be shown in the following discussion. A recipe will be given for populating the
Fourier space with a Gaussian density �eld. Basically, the volume in form of a box is �lled
up in spherical shells, in a way that in each shell the same power can be found statistically.
The random process is chosen to be Gaussian and the most important quantities of a
Gaussian are the mean and the variance, which is given by

σGauss =

√(
2π

kf

)3
P (k)

2
(2.44)

where P (k) is the power spectrum measured from the L-BASICC dark matter N -body
simulations and kf is the fundamental mode of the considered volume.
The mean value of the real and imaginary part of the density �eld which is built up with
this process must be zero separately to ensure that the phases are uncorrelated. Therefore,
the population process in Fourier space has to be performed independently for the real
and imaginary part of the density �eld in order to avoid an accidental introduction of any
higher order correlations. For this discussion �fty boxes with a length of LBox = 1.340 h−1

Mpc divided into 2563 grid cells were chosen and arti�cially populated with a Gaussian
density �eld in Fourier space in order to avoid discreteness problems.
On the left panel in Figure 2.2, the power spectrum of the Gaussian density �eld is shown,
which is non-zero, as expected from the discussion above. The power spectrum, from which
the Gaussian density �eld was built up, is represented by the red solid line. It was extracted
from the dark matter L-BASICC simulations at z = 1.0 where the phase information was
produced by the growth of structure. As expected, the bispectrum �uctuates around zero
for the Gaussian density �eld, as it can be seen on the right panel in Figure 2.2. For this
discussion, the bispectrum was computed with a binsize of 2 × kf for the con�guration
k1 = 0.094 h Mpc−1 and k2 = 0.187 h Mpc−1 and k3 was varied to ensure the closure of the
triangle. The square symbols show the mean of the 50 realizations of the Gaussian density
�eld with their rms. The dotted line at zero is the expectation value for the bispectrum of
a Gaussian density �eld. The blue squares show the bispectrum from the L-BASICC dark
matter simulations. This shows that if any information is contained in the phases, the odd
statistics will not vanish.
It can be concluded, that the information contained in the amplitude is conserved and
estimated correctly by the two-point statistics by the introduced process above. However,
the phases of the density �eld do not contain any information due to the process of creating
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Figure 2.2: On the left panel the mean power spectrum (dots with error bars) from the
50 realizations of a Gaussian density �eld with their rms and the input power spectrum
from the dark matter L-BASICC simulations at z = 1.0 (red solid line) are plotted. The
triangle con�guration for the calculation of the bispectrum was set to be k1 = 0.094 h
Mpc−1, k2 = 0.187 h Mpc−1 and varying k3 and can be seen on the right panel. The
mean bispectrum from the 50 realizations of a Gaussian density with their rms is shown as
the black squares with error bars. This bispectrum �uctuates around the zero line which
is indicated by the black dotted line, as it is expected. The blue squares represent the
bispectrum from the simulations from which the input power spectrum was extracted.

the Gaussian density �eld.
After having de�ned the clustering quantities one has to think about their theoretical
modeling which will be discussed in Section 2.6.

2.6 Power Spectrum and Bispectrum: Model

In this section, the theoretical base for the power spectrum and the bispectrum will be
derived. It will be started with the dark matter real space case in Section 2.6.1. After
that derivation a discussion of biased objects, like halos or galaxies, will be given. This
section will be concluded with adding peculiar velocities to obtain the redshift space power
spectrum and bispectrum (Section 2.6.2).

2.6.1 Real space

In order to understand the meaning of the power spectrum and the bispectrum, these two
clustering quantities will be derived in this section. It will be started with the linear case.
The power spectrum will also be derived for the next leading order the so-called 3rd order
perturbation theory where the density �eld is described in a perturbative series.
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Linear evolution of the density �eld

In order to compute the evolution of the power spectrum and the bispectrum, the evolution
of the density �uctuations has to be known. The derivation of the growth of structure will
start with the most simple case, the linear perturbation theory following Bernardeau et al.
(2002), in which a detailed explanation is given.
After recombination it is assumed that matter is a pressure-less �uid without any vorticity.
The scales, which are of interest for this thesis, are well inside the Hubble radius and the
peculiar velocities ~vpec are non-relativistic so that a Newtonian treatment is valid. In the
most simple case the continuity, Euler and Poisson equation are linearized and can be
solved then. In comoving coordinates ~x and with the conformal time τ these equations are
given by

∂δM
∂τ

+∇ · ~vpec = 0 (2.45)

for the linearized continuity equation

∂~vpec
∂τ

+H (τ)~vpec +∇δφ = 0 (2.46)

for the linearized Euler equation and

∇2δφ = 4πGa2ρ̄δM (2.47)

for the linearized Poisson equation where δM ≡ (ρ− ρ̄) / ρ̄ (as per de�nition in Equation
(2.21)), H (τ) ≡ d ln(a)/dτ = H · a and δφ the gravitational potential induced by δM .
Taking the divergence of Equation (2.46), the conformal time derivative of Equation (2.45)
and use Equation (2.47) to express ∇ · ~vpec and ∇2δφ in terms of δM , then one obtains

∂2δM
∂τ 2

+H (τ)
∂δM
∂τ

= 4πGa2ρ̄δM (2.48)

which describes gravitational instabilities in an expanding universe. In Fourier space, the
partial di�erential equations are transformed to a set of independent ordinary di�erential
equations and one gets for Equation (2.48)

∂2δM

(
~k, τ
)

∂τ 2
+H (τ)

∂δM

(
~k, τ
)

∂τ
= 4πGa2ρ̄δM

(
~k, τ
)

. (2.49)

It can be seen that every mode is evolving independently. If higher order terms are re-
garded in the three basic equations, a coupling between di�erent modes will arise. The
multivariate Gaussian distribution of the density perturbations is destroyed and at later
times, the power spectrum will not contain su�cient information to obtain the probability
distribution function of the density �eld at that time. It can also be said in this way, the
growth of structure, driven by gravity, leads to a mixture of modes. This means that higher
point statistics are needed (e.g. bispectrum, trispectrum which is the four point statistics



22 2. Theoretical framework for the two- and three-point statistics

in Fourier space etc.) to obtain the whole information for measuring the probability dis-
tribution function of the density �eld. The general solution of Equation (2.49) in linear
perturbation theory is given by

δM

(
~k, τ
)
= D+ (a (τ)) Ã

(
~k
)
+D− (a (τ)) B̃

(
~k
)

(2.50)

where the initial density �eld is described by the two arbitrary functions Ã(~k) and B̃(~k).
Here, the matter density perturbations δM are discussed for a background cosmology with
dark matter and a cosmological constant. The growing mode of Equation (2.49) is called
the linear growth factor

D+ (a) =
5ΩM

2

H (a)

H0

∫ a

0

da′

(a′H (a′) /H0)
3 . (2.51)

If the power spectrum is given at a certain redshift it will not be any problem with Equation
(2.51) to compute it for any other redshift.
The evolution of the divergence of the peculiar velocity �eld in the linear regime is also of
interest because this information is required for a correct treatment of the redshift space
distortions on large scales, which will be discussed in Section 2.6.2. The calculation is
straight forward and the main part of the work was already carried out. The solution
is contained in Equation (2.45) and can be derived by solving Equation (2.45) to the
divergence of the peculiar velocity �eld and in con�guration space is given by

∇ · ~vpec = −H (τ)
[
f (ΩM ,ΩΛ)D

+(a)A (~r) + g (ΩM ,ΩΛ)D
−(a)B (~r)

]
, (2.52)

is derived where

f(a) ≡ d ln(D+(a))

d ln(a)
(2.53)

is called the dimensionless growth rate and corresponds to the growing mode whereas g
describes the decaying mode, which is de�ned similar to Equation (2.53) but instead of
D+(a) D−(a) is used.

Dark matter bispectrum derivation

As mentioned in Chapter 1, the second part of this thesis is mainly concentrated on the
bispectrum. The focus of this thesis lies on the three-point clustering statistics generated
only by gravity. It is still under debate whether there are primordial non-Gaussianities,
as claimed by Rossmanith et al. (2009) and Räth et al. (2011) or not. These primordial
non-Gaussianities would be created during the phase of in�ation and would also in�uence
the growth of structure. In this case, primordial higher order statistics has to be taken into
account for the modeling of the bispectrum at later epochs (Sefusatti, 2009; Sefusatti et al.,
2011). However, primordial non-Gaussianities and their e�ects on the clustering are not
any subject in this thesis.
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Therefore, gravity is the only e�ect left which is able to introduce a non-Gaussian sig-
nature to the density �eld. In the last section, only the linear growth of structure was
discussed but in reality structure growth becomes more non-linear the smaller the consid-
ered scales are. If the growth of structure would preserve the Gaussianity of the density
�eld, there would be no need to use any clustering statistics beyond the two-point statistics
due to Wick's theorem (Bernardeau et al., 2002). However, the non-linear behavior of the
growth of structure leads to a more complicated theory, too. Several attempts were made
to describe this situation at least for the two-point statistics (Jain & Bertschinger, 1994;
Crocce & Scoccimarro, 2006; Matsubara, 2008) where only two k-modes have to be taken
into account. For higher order clustering statistics more k-modes have to be considered for
their coupling terms.
This thesis follows the description of the bispectrum in the weakly non-linear regime which
is used in the literature (Bernardeau et al., 2002). It is assumed that in the weakly non-
linear regime the deviations from the linear structure growth can be described by a per-
turbative series of the density �eld δ(~x, τ) which is de�ned by

δ(~x, τ) =
∞∑
n=1

δn(~x) (2.54)

and the divergence of the velocity �eld

∇ · ~vpec(~x, τ) =
∞∑
n=1

(∇ · ~vpec,n(~x)) (2.55)

where δn and ∇·~vpec,n indicate the order in the initial density �eld where n = 1 represents
the linear case. The derivation of the behavior of the velocity �eld will also be examined
in this section because the results are required for the bispectrum in redshift space (see
Section 2.6.2).
This perturbative expansion was performed by Goro� et al. (1986) for the �rst time. Be-
fore any further derivation or calculation will be carried out, the continuity and the Euler
equations will be Fourier transformed (Bernardeau et al., 2002). The subsequent math-
ematical steps will be simpli�ed enormously and after some mathematical exercises the
equations of motion in Fourier space are given by

∂δ(~k, τ)

∂τ
+∇ · ~vpec(~k, τ) =

−
∫

d3~k1 d3~k2δD(~k − ~k12) α(~k1, ~k2)∇ · ~vpec(~k1, τ) δ(~k2, τ)
(2.56)

∂(∇ · ~vpec(~k, τ))
∂τ

+H(τ)∇ · ~vpec(~k, τ) +
3

2
ΩMH2(τ)δ(~k, τ) =

−
∫

d3~k1 d3~k2δD(~k − ~k12) β(~k1, ~k2)∇ · ~vpec(~k1, τ) ∇ · ~vpec(~k2, τ)
(2.57)
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where

α(~k1, ~k2) ≡
~k12 · ~k1

k2
1

(2.58)

β(~k1, ~k2) ≡ k2
12(

~k1 · ~k2)
2k2

1k
2
2

(2.59)

and ~k12 ≡ ~k2 + ~k1. These equations can be solved by inserting them in the perturbative
expansions of Equation (2.54) and (2.55). It is assumed that the time evolution and the
mode-coupling are linear functions. This would result in the following series expansion for
the density �eld

δ(~k, τ) =
∞∑
n=1

D+(τ)δn(~k, τ) (2.60)

and for the divergence of the velocity �eld

∇ · ~vpec(~k, τ) = −H(τ)
∞∑
n=1

D+(τ)(∇ · ~vpec,n(~k, τ)) (2.61)

where only the fastest growing mode is considered. For simplicity it is common to perform
the following steps of the derivation for an Einstein-de-Sitter (EdS) universe (Ω = ΩM

= 1)(Bernardeau et al., 2002). The linear growth factor D+(τ) is then simply given by
the scale factor a(τ). These series expansions (Equation (2.60) and Equation (2.61)) are
inserted in the equations of motion (see Equation (2.57)) and give the following results

δn(~k) =

∫
d3~q1 ...

∫
d3~qn δD(~k − ~q1 + ...+ ~qn)Fn(~q1, ..., ~qn)δ1(~q1)...δ1(~qn) (2.62)

∇ · ~vpec,n(~k) =
∫

d3~q1 ...

∫
d3~qn δD(~k − ~q1 + ...+ ~qn)Gn(~q1, ..., ~qn)δ1(~q1)...δ1(~qn) (2.63)

where Fn(~q1, ..., ~qn) and Gn(~q1, ..., ~qn) are homogeneous functions of the wave vectors and
are built up from combinations of α(~k1, ~k2) and β(~k1, ~k2). The derivation of the mode-
coupling kernels for n ≥ 2 was given the �rst time in Goro� et al. (1986):

Fn(~q1, ..., ~qn) =
n−1∑
m=1

Gm(~q1, ..., ~qm)

(2n+ 3)(n− 1)(
(2n+ 1)α(~k1, ~k2)Fn−m(~qm+1, ..., ~qn) + 2β(~k1, ~k2)Gn−m(~qm+1, ..., ~qn)

)(2.64)
Gn(~q1, ..., ~qn) =

n−1∑
m=1

Gm(~q1, ..., ~qm)

(2n+ 3)(n− 1)(
3α(~k1, ~k2)Fn−m(~qm+1, ..., ~qn) + 2nβ(~k1, ~k2)Gn−m(~qm+1, ..., ~qn)

)(2.65)
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where ~k1 ≡ ~q1 + ... = ~qm, ~k2 ≡ ~qm+1 + ... + ~qn and F1 = G1 = 1. In this thesis, for both
kernels n = 2 is required for the theoretical predictions in real and redshift space (see
Section 2.6.2) and are given by

F2(q1, q2, θ12) =
5

7
+

cos(θ12)

2

(
q1
q2

+
q2
q1

)
+

2

7
cos2(θ12) (2.66)

G2(q1, q2, θ12) =
3

7
+

cos(θ12)

2

(
q1
q2

+
q2
q1

)
+

4

7
cos2(θ12) (2.67)

where θ12 is the angle between the modes ~q1 and ~q2. The solution for the linear case was
already given in the last section where the linearization of the basic equations (2.45), (2.46)
and (2.47) lead to the linear growth factorD+(a). If the growth of structure was completely
linear and there was not any mode-coupling generated by gravitational forces, the power
spectrum would contain all necessary information about the distribution of matter in the
Universe.
The 2nd order perturbation theory is the simplest and �rst non-vanishing order for the
calculation of the bispectrum, it is also often called the tree-level approach. Then the real
space dark matter bispectrum is given by

Bdm(k1, k2, θ12) = 2F (k1, k2, θ12)PL(k1)PL(k2) + 2F (k2, k3, θ23)PL(k2)PL(k3)

+ 2F (k1, k3, θ13)PL(k1)PL(k3)) (2.68)

= 2(F (k1, k2, θ12)PL(k1)PL(k2) + cyclic permutations .

where k1 and k2 are some certain modes with their corresponding linear power spectra
(PL(k1), PL(k2)) and the angle θ12 between the two modes. The dependence on cosmological
parameters of the bispectrum is provided by the power spectra in Equation (2.69) and not
by the mode-coupling process itself, as long as di�erent cosmologies can be neglected in
the calculation of the kernels. This will be shown in a later discussion but �rst a closer
look at the non-linear structure growth is required.

3rd order perturbation theory: power spectrum

The 3rd order perturbation theory is the next order in the series expansion of Equation
(2.60) and Equation (2.61). The exact solution of the non-linear structure growth cannot
be computed, because an in�nite number of higher order terms would be required. The
non-linear power spectrum is calculated as an ensemble average of the density and velocity
�eld, up to third order here. A general de�nition for the ensemble average can be expressed
as (

D+ (a (τ))
)n 〈Θi

(
~k
)
Θj

(
~k′
)
〉 ≡ (2π)3 · δD

(
~k + ~k′

)
Pij (k, τ) , (2.69)

where theΘi(~k)s can be identi�ed as the density �eld δn(~k) for i = δ and as the divergence of
the velocity �eld∇·vpec(~k) for i = θ. This kind of notation can be found in Nishimichi et al.
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Figure 2.3:
The linear and non-linear power spectra are shown in green and red, respectively, at z =
1.0.

(2007). Up to third order terms the solution for Equation (2.69) can be written as

Pij (k, τ) =
(
D+ (a (τ))

)2
PL (k, τ) +

(
D+ (a (τ))

)4 (
P

(22)
ij (k, τ) + 2P

(13)
ij (k, τ)

)
︸ ︷︷ ︸

one loop corrections

(2.70)

where n and m (n, m = 1, 2 and 3) specify higher order terms, which are used for the
calculations of P nm

ij (~k, τ) and are given by

P
(22)
δδ (k, τ) = 2

(
D+ (a (τ))

)2 ∫ d3q

(2π)3

(
F2(~k − ~q, ~q)

)2
PL(|~k − ~q|)PL(q) (2.71)

P
(22)
θθ (k, τ) = 2

(
D+ (a (τ))

)2 ∫ d3q

(2π)3

(
G2(~k − ~q, ~q)

)2
PL(|~k − ~q|)PL(q) (2.72)

and

P
(13)
δθ (k, τ) = 3

∫
d3q

(2π)3

(
F3(~k, ~q,−~q) +G3(~k, ~q,−~q)

)
PL(k)PL(q) (2.73)

where P (13)
δθ (k, τ) = P

(13)
θδ (k, τ). A detailed discussion of the one loop corrections for Pδδ(k)

can be found in Bernardeau et al. (2002).
In Figure 2.3, the linear and non-linear power spectra are plotted as green and red solid
line, respectively, at z = 1.0. The public available CAMB5 routine (Lewis et al., 2000) is

5http://camb.info/
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used for the computation of the linear power spectrum. For the calculation of the 3rd order
perturbation theory power spectrum the public available routines from Komatsu (2008)6

is used. All following theoretical power spectra are calculated with these routines if not
stated otherwise. At the smallest modes, the large scales in con�guration space, the two
power spectra cannot be distinguished from each other. At k ≈ 0.1 h Mpc−1 after the
second wiggle the power spectra begin to di�er. The non-linear power spectrum shows
more signal at larger modes than the linear one. The boost of the amplitude in the non-
linear power spectrum is originated from the 3rd order mode-coupling. The involved modes
are now correlated with each other and do not evolve independently anymore, as it is the
case in linear perturbation theory. The non-linear power spectrum is a good description at
high redshifts (Jain & Bertschinger, 1994; Jeong & Komatsu, 2006). Therefore, 3rd order
perturbation theory will also be used to model the non-linear growth of structure for the
later investigations if not stated otherwise.

Modifying the tree-level ansatz

In this section, it will be shown how the original tree-level ansatz, given by Equation (2.69),
can be modi�ed, in order to get a better description of the non-linear structure growth for
the bispectrum. The result will be called modi�ed tree-level ansatz.
The modi�cation is related to the usage of the linear power spectra PL(k) in the original
tree-level ansatz given in Equation (2.69) and motivated by Guo & Jing (2009). The 3rd

order perturbation theory power spectra (Jain & Bertschinger, 1994) will be inserted in
Equation (2.69) for a better modeling of the bispectrum. It can surely be assumed that by
this change in Equation (2.69) some of the non-linear features can be better dealt with as
just by the F-kernel.
In Figure 2.4, the dark matter bispectrum in real space is given by the blue squares with
error bars, which are the rms of the 50 realizations of the L-BASICC simulation at z =
1.0. The green solid line represents the original tree-level ansatz and in red the modi�ed
tree-level ansatz, in which the linear power spectra in Equation (2.4) are replaced by the
3rd order perturbation theory power spectra. The triangle con�guration is set to k1 = 0.094
h Mpc−1, k2 = 0.187 h Mpc−1 and a varying k3, which is determined by the angle θ12 be-
tween k1 and k2 to ensure the closure of the triangle. The theoretical bispectrum, given by
the original tree-level ansatz, constantly underestimates the amplitude of the L-BASICC
bispectrum. The replacement of the linear power spectra in Equation (2.69) by the 3rd

order perturbation theory power spectra is able to reproduce the amplitude more correctly.
The statistical quantity χ2 is able to discriminate between di�erent models and combina-
tions of their parameters (Press et al., 1996). χ2 is de�ned as

χ2 =
N∑
i=1

N∑
j=1

(ymodel(xi, a1, ..., aM)− ydata(xi))(Covar(xi, xj))
−1

(ymodel(xj, a1, ..., aM)− ydata(xj))

(2.74)

6http://gyudon.as.utexas.edu/�komatsu/CRL/index.html
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Figure 2.4: The dark matter bispectrum from the L-BASICC simulations is given by the
blue squares with the error bars (the rms of the 50 realizations of the L-BASICC dark
matter simulations at z = 1.0). The original tree-level ansatz is indicated by the green
solid line and modi�ed tree-level ansatz by red. The con�guration for the triangle was set
to be k1 = 0.094 h Mpc−1, k2 = 0.187 h Mpc−1 and varying k3.

where ymodel(xi, a1, ..., aM) is the model which is described by M di�erent parameters al
with lε[1,M ] for the N measurement points xi with iε[1, N ] and ydata(xi) the corresponding
measurement.
For the usage of the linear power spectra in Equation (2.69) a χ2 of 9.05 can be found,
whereas for the non-linear power spectra χ2 = 1.22. The model, which obtains the smaller
χ2, describes the data in a better way than the model with the larger χ2. It can be
concluded from this short discussion that some of the features, introduced by the non-
linear structure growth, are better dealt with by the modi�ed tree-level ansatz.

Cosmology dependence of the F-kernel

As mentioned during the derivation of the real space dark matter bispectrum, the cos-
mology dependence of the kernels was not taken into account for simplicity during the
derivation of the bispectrum. It was shown in Bouchet et al. (1992, 1995) that for Equa-
tion (2.66) the cosmology can be considered by replacing the 5/7 → (1 + κ) /2 and
2/7 → (1− κ) /2 where κ = 3/7 Ω

−1/143
M . A similar scheme for Equation (2.67) can

be found in Bernardeau et al. (2002) where the 3/7 is replaced by κ and 4/7 by (1 − κ).
By looking at κ it can be noticed that the dependence on the cosmology is very weak and
can almost be neglected.
In Figure 2.5, the F2(k1, k2, θ12) kernels for z = 1.0 are shown on the left panel, calculated
for an EdS universe (black line) and for the �ducial ΛCDM cosmology (red line). The
corresponding bispectra for a con�guration with k1 = 0.048 h Mpc−1 and k2 = 2 × k1,
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Figure 2.5: The F2(k1, k2, θ12) kernels calculated for an Einstein de Sitter (EdS) universe
(black line) and for the �ducial ΛCDM cosmology (red line) at z = 1.0 is given in the
left panel. On the right panel the corresponding bispectra are shown with the same color
coding. The con�guration for the bispectra is given by k1 = 0.048 hMpc−1 and k2 = 2×k1.
Below each panel the ratio between the EdS and ΛCDM quantity can be seen.

with the same color coding as on the left panel are given on the right panel. Below each
panel the ratio between the EdS and ΛCDM quantity is given. It can be noticed that for
F2(k1, k2, θ12) the di�erence for small angles and for large angles is negligible. Between
1.25 . θ12 . 2.75 the ratio between the quantities grows up to half of a percent without
considering the zero crossing. Around the zero crossing, the largest deviation is visible.
This behavior is usual around zero crossings where small values are divided through each
other and small deviation results in a huge relative deviation. However, a behavior like
that cannot be identi�ed in the comparison plot of the bispectra because no zero crossing
is present there. The di�erence between the bispectra is even smaller than for the kernels.
It is less than 0.2 percent.
The discussion of the bispectra is required because the kernel must be calculated for every
angle and then the involved k-modes are permuted as it can be seen in Equation (2.69).
The di�erent e�ects are added up and the net e�ect could lead to another dependence.
From this discussion, it can be noticed that the dependence on the cosmological parameters
of the F2(k1, k2, θ12) kernel is even less important.
However, the cosmology dependence should become more important at lower redshifts. In
Figure 2.6, the same plots as in Figure 2.5 are shown but for z = 0.0. As it was expected,
the lower the redshift the more important is the dependence of the kernel on the cosmo-
logical parameters. For this con�guration, the kernel di�ers up to two percent and the
bispectra di�er up to 0.5 percent. Around the zero crossing the same situation is present
as in Figure 2.5. This is still a very small e�ect and it is impossible to distinguish the
two bispectra from each other. The deviation between the two bispectra can be up to 0.5
percent.
In this thesis, all kernels will be calculated for an EdS universe because of consistency rea-
sons. The main reason is the calculation of the 3rd order perturbation theory power spectra,
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Figure 2.6: Description as in Figure 2.5, but for z = 0.0.

using the routines of Komatsu (2008), where the EdS kernels are implemented. Neglecting
the cosmology dependence on the kernels is still common even for more sophisticated cal-
culations of the non-linear clustering statistics (Nishimichi et al., 2007; Montesano et al.,
2011; Sánchez et al., 2012).
So far, the derivations were carried out for dark matter particles only. In surveys, galaxies
are observed and their clustering is not identical to the dark matter clustering. The e�ect
of this, so-called bias, will be discussed in the following section.

Biased Objects

Tracers like galaxies, and not dark matter particles, can be observed in galaxy surveys and
are assumed to follow the underlying dark matter density �eld (Kaiser, 1984). In Chapter
1, the well known 2dFGRS (Cole et al., 2005) and the SDSS (Eisenstein et al., 2001) were
introduced as examples for galaxy surveys. The linear bias, which is commonly assumed to
be su�cient to describe the clustering for the two-point statistics on large scales, is de�ned
as

b(r, z)2 ≡ Pgalaxy(k, z)

PM(k, z)
≡

〈δ2galaxy〉
〈δ2M〉

(2.75)

where Pgalaxy(k, z) is the power spectrum and δgalaxy the overdensity of galaxies at a certain
redshift and k-mode and PM(k, z) for the matter power spectrum and δM the overdensity
of matter. The clustering of the galaxies is in�uenced by gas physics, star formation and
feedback processes, which are still not understood completely, whereas dark matter is only
in�uenced by gravity. This will lead to a di�erent clustering of galaxies compared to dark
matter and cannot be fully described from �rst principles.
However, the di�erences can be accounted for in three increasingly more complicated dif-
ferent ways:

• linear bias,

• linear stochastic bias,
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• and non-linear stochastic bias.

The linear bias only takes into account the linear �uctuations of the continuity and Eu-
ler equations (see Equation (2.45) and (2.46)). This means following Hui & Parfrey (2007)
(originally done in Fry (1996)) that the comoving number density of dark matter and galax-
ies is conserved, which is expressed by the continuity equation. In other words, galaxies
are not allowed to undergo mergers in the linear bias model.
Assuming that matter and galaxies are a�ected by gravity in the same way, then the Eu-
ler equation leads to the result that any initial velocity will decay with time and that
the galaxies move with the underlying dark matter. This means no velocity bias will be
present. If this statement was not true, it would not be a linear bias anymore.
In Wake et al. (2006) and Padmanabhan et al. (2008), it was shown that for Luminous
Red Galaxies (LRGs) these statements are a good description for the bias between z =
0.55 and z = 0.70, but Wake et al. (2008) shows that a merger rate of 7.5±2.3% is required
to explain the clustering evolution of LRGs between z = 0.55 and z = 0.19.
For the linear stochastic bias, also explored in Hui & Parfrey (2007), an additional param-
eter is introduced. By measuring the ensemble average of the product between the matter
and galaxy density �uctuations in Fourier space or in con�guration space this parameter
is given by

b · cc ≡ 〈δgalaxyδM〉
〈δ2M〉

(2.76)

where the cross-correlation between the mass and the galaxy distribution is given by a
scale independent cc. With time, both cc and b tend towards unity but cc converges to
unity much faster, see Hui & Parfrey (2007). In Swanson et al. (2008), it was shown that
the cross-correlation on large scales is of order unity and thus in this thesis cc is set to
unity for later considerations. In the non-linear case, a series expansion of δgalaxy in orders
of δM is carried out. Going to second order in the expansion it can be shown that a trend
towards the linear case is present.
A similar analysis for 3rd order perturbation theory was carried out by McDonald (2006)
and Jeong & Komatsu (2009) for the galaxy power spectrum. The assumption of a local
function between the tracers and the underlying density �eld, which will also be used in
this thesis for the three-point statistics, is the main ingredient of these works. The density
�uctuations of the tracers δgalaxy can be expanded in terms of the dark matter density
�uctuations δM as shown in (Fry & Gaztañaga, 1993; McDonald, 2006) and is given by

δgalaxy(k) = ε+
∞∑
n=1

bnδM(k)n

n!
(2.77)

where ε is a stochastic parameter of the galaxy bias and the bns are called the galaxy bias
parameters. One of the main tasks of this work is to determine the bias parameters b1 and
b2, also called linear and quadratic bias, respectively, by means of the bispectrum. If it
was possible to observe the dark matter density �eld, the bias parameters would be b1 =
1.0 and b2 = 0.0 in this case.
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Due to the e�ects introduced above the visible tracers have a di�erent clustering. Therefore,
Equation (2.69) must take this into account for the determination of the bias parameters. In
Scoccimarro et al. (1998) and Bernardeau et al. (2002), the bispectrum for biased objects
is given by

Bhalo/galaxy(k1, k2, θ12) = b31Bdm(k1, k2, θ12) + b2b
2
1(Pdm(k1)Pdm(k2) + 2 perm.) (2.78)

where Pdm(ki) is the corresponding dark matter power spectrum for the mode ki. In
Fry & Gaztañaga (1993), McDonald (2006) and (Jeong & Komatsu, 2009) the power spec-
trum is utilized for the determination of the bias parameters, instead of the bispectrum.
The extracted bias parameters from the two-point statistics are very degenerated with each
other and reliable estimation of quadratic bias is not possible. In this thesis, it is still not
clear so far, why the bispectrum is better suited for this task. In the following section, this
will be discussed in detail.

Power spectrum vs. bispectrum

In this section, it will be shown why the bispectrum is better suited to determine the
bias parameters. It is already known that the cosmological parameters can be determined
by the two-point statistics (Sánchez et al., 2006; Montesano et al., 2011) with a high pre-
cision. However, the two-point statistics su�ers from the degeneracy between σ8 and the
linear bias b1. The three-point statistic is able to break this degeneracy. This is illustrated
in Figure 2.7, where the two- and three-point statistics at z = 0.0 are shown on the left
and right panel, respectively.
The calculation was performed in real space, where for this discussion the growth of struc-
ture was assumed to follow linear perturbation theory for the power spectrum and 2nd order
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Figure 2.7: The power spectrum (left panel) given by di�erent values for b1 and σ8 in such a
way that the amplitude remains unchanged. The combinations of (b1, σ8) are set to (1.00,
0.773) and (1.41, 0.546) and are plotted in blue and red, respectively. The bispectrum
(right panel) with k1 = 0.048 h Mpc−1 and k2 = 2 × k1 which is calculated for the same
set of parameters is able to distinguish between the two the cases.
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for the bispectrum with (b1,σ8) = (1.000, 0.773) (solid blue line) and (b1, σ8) = (1.41, 0.546)
(red dots for the power spectrum and red solid line for the bispectrum). The parameters
(b1, σ8) were chosen in such a way that the amplitude of their power spectra are the same.
However, the amplitude of the bispectrum, right panel of Figure 2.7, is dependent on the
given (b1, σ8) parameter combination. Therefore, the two cases can be distinguished. The
triangle con�guration for the computation of the bispectrum is chosen to be k1 = 0.048 h
Mpc−1 and k2 = 2× k1.
However, one important point must be noted here, the quadratic bias b2, see de�nition in
Equation (2.77), was set to zero. If it is allowed to vary b2 in a way that the amplitude
of the two bispectra almost coincide, then even higher order statistics have to be taken
into account. However, an exact overlap will not be possible because b2 introduces a dif-
ferent shape dependence than the F-kernel term in Equation (2.78). In a later discussion
in this section, this will be investigated in detail. But as seen in McDonald (2006) and
Jeong & Komatsu (2009) the power spectrum is also in�uenced by the quadratic bias. This
requires are very detailed knowledge of the non-linear structure growth. More �ne tuning
would be required in order to match both amplitudes for the power spectra and the bis-
pectra at the same time.

Discussion of the bias parameters b1 and b2

The e�ect of the linear bias b1 and the quadratic bias b2 will be discussed in this section.
As described in Equation (2.77), b1 is de�ned as a constant multiplicative factor between
the dark matter density �eld δM(k) and the galaxy density �eld δgalaxy(k). But that simple
linear relation is not enough to describe the clustering of galaxies. The quadratic bias b2 is
the next step in the series expansion of Equation (2.77) and relates δ2M(k) with δ2galaxy(k).
As mentioned in the previous section, the bispectrum is a suitable quantity to determine
b1 and b2.
In massive structures b1 is assumed to be higher than in less massive halos due to the high
galaxy density. This is also true for b2 (Mo et al., 1997). The more time gravity is able
to act on the baryonic as well as on the dark matter, the better they trace each other but
never perfectly. Because on small scales, gas physics become the non-vanishing driving
force, in addition to gravity, see discussion for biased objects. Therefore, it is very likely
that bias parameters will always be needed to describe the di�erence between the galaxy
clustering and the underlying matter density �eld.
In Figure 2.8, the e�ect of b2 is shown where the bias parameters were set to be (b1, b2)
= (1.0, 1.0). This set of parameters was chosen, because the dark matter bispectrum
Brs,dm(k1, k2, k3) (red line in Figure 2.8) which is given by the �rst term of Equation (2.78)
and the b2b21-term (green line) are of comparable size. The only di�erence between the two
terms is located in the kernel, see Equation (2.66), which is present in the �rst term but
not in the second.
As shown in the Figures 2.5 and 2.6, where only the dark matter bispectrum was exam-
ined, the U-shape is produced by the F-kernel. In Figure 2.8, two di�erent methods for
presenting the bispectrum are given.
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Figure 2.8: This �gure shows the e�ect of the b2b21-term in the bispectrum. Brs(k1, k2, k3) is
given in blue for b1 = 1.0 and b2 = 1.0, the dark matter Brs,dm(k1, k2, k3) in green (b1 = 1.0)
and the b2b21-term in red.

On the left panel the bispectrum is calculated for every con�guration and sorted by the
size of the side length of the triangle starting with largest k-mode, k1 ≤ k2 ≤ k3. The
lower x-axis is denoted con�guration id, which de�nes a certain con�guration, where the
�rst con�guration represents the largest scale. In Figure 2.8, the �rst con�guration (con-
�guration id one) is given by an equilateral triangle with a side length of kmin = 0.009 h
Mpc−1 = 2kf , the side length of the following con�gurations are multiples of 2kf . The
boxsize is set to be 1340 h−1 Mpc. The upper x-axis shows the multiples of kf in rela-
tion to the con�guration id, the tics mark the equilateral case. Below each tic, which also
de�nes the maximum side length of the triangle up to that con�guration id, all possible
triangle con�gurations are considered. The larger the con�guration id, the smaller are the
considered scales (larger k-modes) of the triangle.
The right panel shows the commonly used U-shape representation. At the x-axis, k3 can
be found. In the beginning of the calculation, two sides of the triangle are pre-de�ned (for
Figure 2.8, k1 = 0.094 h Mpc−1, k2 = 0.187 h Mpc−1) and the third side length is varied for
all possible closed triangle con�gurations. This can also be translated in an angle between
the two pre-de�ned side lengths θ12, which then ranges from zero to π.
In both panels of Figure 2.8, the di�erent shape dependencies of the two terms can be
identi�ed easily. The b2b21-term is a declining function, starting from small angles (θ ≈ 0),
which corresponds to small k-modes and therefore large values for the power spectrum.
The triangle in this situation is often called collapsed, where k3 ≈ k1 − k2. As θ12 gets
larger, the corresponding k3 gets larger and the values for the power spectrum become
smaller. It can be stated, that the b2b21-term is a declining function, when going from small
to large angles. This can be noticed in the right panel of Figure 2.8. In the left panel it
can also be noticed that for the two terms of Equations (2.78) two di�erent shape depen-
dencies are present. The estimation of b1 and b2 by means of the bispectrum is based on
this di�erence, otherwise the estimation of b1 and b2 would be highly degenerated.
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2.6.2 Redshift space

So far, the discussion was carried out under the assumption that the exact spatial positions
of the particles or galaxies/halos are known. The only information an astronomer on earth
can observe is the light from such an object from which the redshift of that object can be
derived. The real redshift of the object zHubble is given by the Hubble �ow. However, the
gravitational potential around an object results in a net force, if matter is not distributed
homogeneously. The object falls along a trajectory, which is given by the Einstein �eld
equation (see Equation (2.1)), with the so-called peculiar velocity. Therefore, the redshift
of an object is distorted by these peculiar velocities. This e�ect is also called redshift space
distortions. The observed redshift is then given by

zobs = zHubble +
~vpec · ~̂x‖

c
. (2.79)

where only the line-of-sight component of these peculiar velocities (~vpec · ~̂x‖) is required for
measuring redshifts. From an observational point of view, it is impossible to distinguish
between these two components. Via the redshift-distance relation (see Equation (2.4))
the observed redshift can be transferred into a distance and the two components can
theoretically (but never in real life) be calculated as

~s(~x) = ~x+
~vpec · ~̂x‖

H(z)
(2.80)

where ~x is the real spatial position of the object and the last term of Equation (2.80) is
the distance, introduced by the line-of-sight component of the peculiar velocity. The exact
positions of the objects are not known and cannot be recovered anymore. Therefore, a
translation back to real space is not possible. For a correct data analysis, it is required
to work with these redshift space distortions and derive their impact on the clustering
statistics (e.g. power spectrum and bispectrum). There are two categories of redshift
space distortions:

• coherent infall, motion of objects from underdense towards overdense regions −→
Kaiser e�ect (Kaiser, 1987)

• random motion within a cluster −→ Fingers of God (FoG) (Jackson, 1972)

The Kaiser e�ect (Kaiser, 1987) is a signature of the ongoing clustering within the Uni-
verse. Large structures are merging and have a motion towards each other. Depending
on their position, before or behind the center of mass with respect to the observer's point
of view, these objects appear red- or blue- shifted, respectively, if just compared to their
Hubble �ow. The observed structure looks more clustered than it really is. The signal of
any clustering statistics is enhanced by this e�ect. In redshift space, the structure looks
squashed compared to real space.
The second contribution is dominant on small scales, e.g. within a cluster. The FoGs
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are originated by the random motions of objects within the cluster potential. They can
have very high peculiar velocities which have a strong e�ect on small scales. The observed
structure looks elongated or cigar-like (Jackson, 1972) and the clustering signal appears to
be reduced by the FoG.
After the de�nition of the redshift space, it is important to evaluate its e�ects on the clus-
tering statistics. For simplicity the power spectrum and the bispectrum in redshift space
will be derived already for biased objects. The dark matter quantities can be recovered by
simply setting b1 = 1.0 and b2 = 0.0. First, the concept of the derivation will be given for
the power spectrum and secondly, will be extended to obtain the redshift space bispectrum.

Power spectrum in redshift space including bias

In this section, the redshift space power spectrum will be derived. A few main assumptions
are required for this derivation as given in Kaiser (1987) and are listed in the following:

• the main part of the distortions is caused by large scale �uctuations,

• the large scale �uctuations are well described by linear perturbation theory (see
Section 2.6.1),

• the large scale �uctuations are fully enclosed by the survey volume,

• the plane parallel approximation is valid (the displacements produced by the coherent
infall are e�ectively parallel) and

• stationary reference frame to the CMB.

These assumptions are the main ingredients for the later derivation of the redshift space
distortions. It can also be noticed from these assumptions, that the redshift space distor-
tions mainly a�ect the line-of-sight direction. The more distant the object of interest is the
less important is the e�ect transverse to the line-of-sight. This e�ect is shown in Hamilton
(1993) where the structure looks like a banana if the distant observer approximation is not
valid anymore.
In this thesis, this is not a problem because the examined simulations are boxes where
the directions parallel and transverse to the line-of-sight are de�ned by the axes of the
L-BASICC simulations. For example, the z-axis de�nes the direction parallel to the line-
of-sight and the plane spanned by the x- and y-axis represents the direction transverse to
the line-of-sight.
In this section, mainly the clustering on large scales is of interest and therefore the following
derivation, which is fully given in Kaiser (1987), is focused on the so-called linear Kaiser
e�ect. The extension to the non-linear Kaiser e�ect (Scoccimarro, 2004) is mathematically
more complicated but the basic concept is the same. The result for the non-linear Kaiser
e�ect will be given at the end of this section but not its derivation. The discussion here
follows Dodelson (2003).
For the derivation, of the linear redshift space distortions it is assumed that the number
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of galaxies within a given volume found in real space is the same as in redshift space.
Of course, this assumption can be violated in reality for example magnitude limited data
samples. If the change of the coordinate system does not alter the number of galaxies,
then

ns (~s) d
3s = n (~x) d3x (2.81)

where n (~x) = n̄(1 + δ) and ns (~s) = n̄(1 + δs) are the galaxy number densities in real and
redshift space, respectively, which can be calculated from the average number density n̄.
The change of the coordinate system is described by the Jacobian J

J ≡ |d
3x

d3~s
| = dx

ds

x2

s2
. (2.82)

The Jacobian can be evaluated by inserting Equation (2.80) in Equation (2.82) and after
some mathematical exercises this results in

J =

(
1 +

∂

∂x

(
~vpec · ~̂x‖

H(z)

))−1(
1 +

~vpec · ~̂x‖

H(z)x

)−2

. (2.83)

For the computation of the galaxy clustering statistics only modes which ful�ll the condition
kxSurvey � 1 are of interest. These modes are the best determined ones. Therefore,
observers are mostly interested in these modes. Then, the �rst term of Equation (2.83)
is the dominant part. A more detailed discussion on this topic can be found in Dodelson
(2003). An expansion about vpec = 0 reduces Equation (2.83) to

J w
(
1− ∂

∂x

(
~vpec · ~̂x‖

H(z)

))
. (2.84)

This result can be inserted in Equation (2.81) and can be rewritten as follows

1 + δs = (1 + δ)

(
1− ∂

∂x

(
~vpec · ~̂x‖

H(z)

))
. (2.85)

Afterwards, Equation (2.85) is expanded to �rst order and results in

δs = δ − ∂

∂x

(
~vpec · ~̂x‖

H(z)

)
. (2.86)

Equation (2.86) shows, that the redshift space density �eld δs is given by the real space
density �eld δ but corrected by a multiplicative factor, originated from the peculiar veloc-
ities of the galaxies.
In the remaining derivation, the distant observer approximation will be made in which it is
assumed that the direction between two galaxies varies only negligibly. Therefore, ~vpec · ~̂x‖
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in Equation (2.86) can be replaced by ~vpec · ~̂z and ~̂z de�nes the radial direction to the center
of the galaxy of interest.
The clustering quantities, in which this thesis is mainly interested in, are extracted in
Fourier space. The result in Equation (2.86) needs to be Fourier transformed and after
some mathematical exercises is given by

δs(~k) = δ(~k) +

∫
d3k′

(2π)3
δ(~k)

(
f(k′ · ~̂z)2

)∫
d3xei(

~k′−~k)~x . (2.87)

The last integral of Equation (2.87) can be identi�ed as the Dirac delta function and
simpli�es the �rst integral to just the functional value of ~k. Introducing µ~k ≡ k′ · ~̂z and
considering the above results one gets

δs(~k) = δ(~k)
(
1 + f(z)µ2

~k

)
(2.88)

where the function f(z) (see also Equation 2.53) can be written as

f(z) =

(
ΩM · (1 + z)3

ΩM (1 + z)3 + ΩΛ (1 + z)3·(1+wDE)

)γ

. (2.89)

To allow for the dark energy to be di�erent from a cosmological constant (in which case
γ = 0.55), γ = 0.55+0.05 · (1+wDE(z)) for wDE(z) > −1 and γ = 0.55+0.02 · (1+wDE(z))
for wDE(z) < −1 (Linder, 2007) was used in all calculations in this thesis. The derivation
of the redshift space power spectrum is the aim of this section. From the discussion in
Section 2.4 it is known, that the power spectrum is a spherically averaged quantity, in
redshift space it is simply given by

Pzs(k) = P (k)

(
1 +

2

3
β(z) +

1

5
β2(z)

)
(2.90)

where β(z) is

β(z) =
f(z)

b
. (2.91)

The dark matter case can be recovered by setting b to unity. In Scoccimarro (2004) also
the non-linear Kaiser e�ect is derived in detail. This will not be fully discussed here, the
concept is similar to the derivation above. The main di�erence is an expansion of the
velocity dispersion σ2

12 of real space about redshift space, as it is called in Scoccimarro
(2004). On large scales, the linear limit was used for the pairwise velocity, and the non-
Gaussian terms, which are a result of the exact derivation, can be neglected. The spherically
averaged power spectrum in redshift space can then be written as

Pzs(k) = b2
(
Pδδ(k) +

2

3
β(z)Pδθ(k) +

1

5
β2(z)Pθθ(k)

)
. (2.92)
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So far, the small scale redshift space distortions, the FoG, were still not considered in this
discussion. They can easily be included in the derived framework above. In this thesis, the
description of Smith et al. (2008) will be used for modeling the FoG. Then, the redshift
space power spectrum is given by

Ps(k, µ) = e−(f(z)σvkµ)
2︸ ︷︷ ︸

FoG

(
b2Pδδ(k) + 2b1f(z)µ

2Pδθ(k) + f 2(z)µ4(z)Pθθ(k)
)︸ ︷︷ ︸

non-linear Kaiser e�ect

(2.93)

where σv is the velocity dispersion of an object. The spherically averaged redshift space
power spectrum Ps(k) is given by

Pzs(k) =
1

4π

∫ 1

−1

µ dµ

∫ 2π

0

dφPzs(k, µ) . (2.94)

In the presence of the FoGs, this equation cannot be solved analytically anymore as in the
cases above. The calculation has to be performed numerically.

Bispectrum in redshift space

In this section, the redshift space bispectrum will be derived and follows the work of
Heavens et al. (1998). The linear Kaiser e�ect was expanded to describe the three-point
statistic in Fourier space. The redshift space bispectrum is then given by

Bzs(k1, k2, θ12, µ1, µ2, µ3) = Fzs(k1, k2, θ12, µ1, µ2, µ3)P (k1)P (k2) + 2 perm. (2.95)

where Fzs(k1, k2, θ12, µ1, µ2, µ3) is the mode-coupling term in redshift space and has the
following form

Fzs(k1, k2, θ12, µ1, µ2, µ3) = b31(1 + β(z)µ2
1)(1 + β(z)µ2

2)(F2(k1, k2, θ12) + β(z)µ2
3G2(k1, k2, θ12)

+ b1β(z)
2(µ2

1µ
2
2 +

µ1µ2

2
(µ2

1

k1
k2

+ µ2
2

k2
k1

))

+
b1β(z)

2
(µ2

1 + µ2
2 + µ1µ2(

k1
k2

+
k2
k1

)) +
b2
2b21

) .

(2.96)

The µi-variables are de�ned as the cosine between ki and the line-of-sight direction which
is assumed to be parallel to the z-axis. The �rst and second expressions are the already
derived mode-coupling terms of the density (see Equation (2.66)) and the divergence of
the velocity �elds (see Equation (2.67)).
So far, only the large scale redshift space distortions for the bispectrum were considered.
The second contribution to the redshift space distortions originates from the small scale
random motions of objects within a gravitationally bound system, the FoG e�ect (Jackson,
1972). Then, the bispectrum is given by

Bzs(k1, k2, θ12, µ1, µ2, µ3) =
Fzs(k1, k2, θ12, µ1, µ2, µ3)P (k1)P (k2) + 2 perm.

exp
(
1
2
(f(z)σv)2 [(µ1k1)2 + (µ2k2)2 + (µ3k3)2]

) . (2.97)
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In Equation (2.97), the orientation of the triangles has to be taken into account. In Equa-
tion (2.78), the integration over all possible orientations of a given triangle con�guration
was performed analytically. The same integration will be carried out in redshift space as
well. Under the assumptions of homogeneity and isotropy (which are not strictly given in
redshift space) an integration over all possible orientations result in the spherical averaged
bispectrum in redshift space.
The redshift space bispectrum is dependent on six variables as it can be seen in
Bzs(k1, k2, θ12, µ1, µ2, µ3). But it has to be pointed out that the µi-variables are not in-
dependent of each other, because the triangle must be closed for the calculation of the
bispectrum. Therefore, Bzs(k1, k2, θ12, µ1, µ2, µ3) is only dependent on �ve variables, where
the orientation of Bzs(k1, k2, θ12, µ1, µ2, µ3) is described by the µi-variables which will be
expressed in spherical coordinates as suggested in Smith et al. (2008). The spherical aver-
aged bispectrum will then be given by

Bzs(k1, k2, θ12) =
1

4π

∫ π

0

sin(γ2) dγ2

∫ 2π

0

dγ1Bzs(k1, k2, θ12, µ1, µ2, µ3) (2.98)

where the µi-expressions can be calculated in following way

µ1 = cos(γ2) (2.99)

µ2 =
√

1− cos2(γ2)sin(γ1)sin(θ12) + cos(γ2)cos(θ12) (2.100)

µ3 = −µ1k1
k3

− µ2k2
k3

. (2.101)

Again Equation (2.98) is the result for biased objects as it was assumed throughout the
whole section. If the bispectrum should be evaluated for dark matter, the bias parameters
should be set to b1 = 1.0, like for the two-point statistics, and b2 = 0.0.
Due to the inclusion of the FoG an analytical expression for Equation (2.98) cannot be
found, the integration has to be performed numerically. This will be very time consuming.
The whole procedure can be sped up if the FoG are neglected and only the the coherent
infall is taken into account. Then, the angle averaging integrals can be carried out analyt-
ically. Due to the complexity of this solution it was moved to the Appendix A.1.
In the following section, a similar discussion as for real space will be given on the cosmology
dependence of the F-kernels, this time in redshift space.

Cosmology dependence of the F-kernels in redshift space

The cosmology dependence of the F-kernel will be examined again but this time in red-
shift space. On the left panel in Figure 2.9 the angle averaged redshift space kernels
Fzs(k1, k2, θ12) for dark matter at z = 1.0 are plotted and on the right panel the corre-
sponding bispectra. The EdS case is indicated by the black solid line and the ΛCDM case
by the red solid line. Below each panel the ratios between the quantities were evaluated
like in real space.
It can be noticed that the real and redshift space ratios for both, the kernels and the
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Figure 2.9: The angle averaged Fzs(k1, k2, θ12) kernels calculated for an EdS universe (black
line) and for the �ducial ΛCDM cosmology (red line) at z = 1.0 are plotted on the left panel.
On the right panel the corresponding bispectra are shown with the same color coding. The
con�guration for the bispectra is chosen to be k1 = 0.048 h Mpc−1 and k2 = 2× k1. Below
each panel the ratio between the EdS and ΛCDM quantity is shown.

bispectra, have a very similar behavior. The redshift space bispectrum is less a�ected by
the cosmological dependence of the kernels as in real space. The di�erence between the
bispectra is around 0.1 percent in the worst case and the kernels di�er up to 0.5 percent
without considering the zero-crossing. Due to the similarity of the ratios in real and red-
shift space, the z = 0.0 case was not examined. But it can be concluded that at z = 0.0
the dependence on cosmological parameters is also negligible in redshift space.

2.6.3 Reduced bispectrum

In the literature also another quantity, the so-called reduced B(k1, k2, θ) or Q(k1, k2, θ), is
used to determine the bias parameters b1 and b2. Q(k1, k2, θ) is de�ned as

Q(k1, k2, θ) ≡
B(k1, k2, θ)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
(2.102)

and cannot be measured only for biased objects but also for dark matter. If the dark
matter reduced bispectrum, Qdm(k1, k2, θ), is known, the reduced bispectrum for biased
objects, Qhalo/galaxy(k1, k2, θ), can be written as

Qhalo/galaxy(k1, k2, θ) ≡
1

b1

(
Qdm(k1, k2, θ) +

b2
b1

)
. (2.103)

Due to its de�nition, the reduced bispectrum is almost independent on cosmological param-
eters, time evolution and redshift space distortions at lowest order, the tree-level ansatz.
Because of the division by the corresponding power spectra only the shape dependence of
the considered triangle con�guration remains. This is the reason why this representation
of the three-point statistic in Fourier space is preferred in the literature.
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However, the predictive power of Qhalo/galaxy(k1, k2, θ) is reduced by the division with a
large the b1 parameter. Usually objects with a large b1-value are also rare and as a con-
sequence the signal-to-noise ratio is smaller compared to objects with a smaller b1-value.
This can be explained by the �rst term which reduces the e�ect of a possible shape depen-
dence of a certain triangle con�guration. The last term of Equation (2.103) is not able to
change the shape of the reduced bispectrum. It just adds a constant signal at all modes
to the reduced bispectrum. It is expected that Qhalo/galaxy(k1, k2, θ) is more comparable to
a �at straight line the larger b1 is because possible features are �attened out. In Section
3.2.3, an analysis to estimate b1 and b2 will be performed on Qhalo/galaxy(k1, k2, θ) and the
results will be compared to the analysis carried out on B(k1, k2, k3).
In Section 2.5, also the power spectrum was discussed. One reason was the shotnoise
correction of the bispectrum. The evaluation of the reduced bispectrum delivers another
reason for measuring the power spectrum during the extraction of the bispectrum.

2.6.4 Extracting the bias parameters

In this section, it was shown that the bispectrum is a powerful tool to extract the linear bias
b1 and the quadratic bias b2 due to their di�erent e�ects on the shape of the bispectrum.
This fact will be used to extract these bias parameters in real and redshift space. Therefore,
the range of validity of the model must be found out. By extracting b1 and b2 from a
data set where they are already exactly known this can be done. The dark matter L-
BASICC simulations are such a well-known "data set" where b1 = 1.0 and b2 = 0.0. The
extraction of the bias can be performed by varing b1 and b2 until the best match with the
measurement is achieved. The Monte Carlo Markov Chain (MCMC) Metropolis Hastings
ansatz (Metropolis et al., 1953; Spergel et al., 2003) will be used for the extraction of b1
and b2. After the results of the dark matter bias parameters estimation are understood
and the range of validity of the model is known and biased objects such as halos or galaxies
can be examined. These proposed investigations will be carried out in Section 3.2.
This section can be concluded by now because the theoretical framework for the two- and
three-point statistics in Fourier space were derived. In the following discussion, the two-
and three-point correlation functions which are con�guration space counterparts of the
power and bi-spectra will be examined in detail.

2.7 Correlation functions

The two- and three-point statistics in con�guration space, the two-point correlation func-
tion ξ(r) and the three-point correlation function ζ(r12, r23, θ), respectively, will be dis-
cussed in this section with a focus on the two-point statistic. First, ξ(r) and ζ(r12, r23, θ)
will be de�ned (Section 2.7.1). Secondly, a theoretical description for two-point statistic
will be given in Section 2.7.2. ζ(r12, r23, θ) will not be discussed in detail in this work
because the later analysis for extracting the bias parameters b1 and b2 will be performed in
Fourier space. If ζ(r12, r23, θ) needs to be modeled, the bispectrum can be Fourier trans-
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formed back to con�guration space. However, for this Fourier transform a wide range of
bispectra have to be computed in order to receive a smooth and aliasing free bispectrum.

2.7.1 De�nition of the correlation functions

Before the two- and three-point correlation function can be used, the de�nition of these
two quantities will be given, starting with the lower order. It is worth noting that also in
con�guration space the two-point statistic is the main ingredient for the computation of
the higher point statistics.
The two-point correlation function ξ(r) is de�ned as the excess probability compared to a
Poisson process of �nding two particles at a certain spatial separation r (Bernardeau et al.,
2002)

dP12(r) = n̄2 (1 + ξ(r)) dV1 · dV2 (2.104)

where n̄ is the mean density. These particles can be galaxies or really just particles, which
represent dark matter or dark matter halos. Clustered objects are indicated by ξ(r) > 0
whereas objects are anticorrelated when ξ(r) < 0. Equation (2.104) can also be expressed
as the conditional probability of having a particle at dV1 with a probability of n̄1 · dV1 and
of �nding another particle at distance r in dV2. Similarly, the de�nition of the three-point
correlation function ζ(r12, r23, θ) (Bernardeau et al., 2002) is given by

dP123(r12, r23, θ) = n̄3 (1 + ξ(r12) + ξ(r23) + ξ(r13(θ)) + ζ(r12, r23, θ)) dV1 ·dV2 ·dV3 (2.105)

and describes the excess probability compared to a Poisson process of �nding three particles
separated by r12, r23 and r13(θ), where θ is de�ned to be the angle between r12 and r23. By
this choice, the corners of the triangles are given by the spatial positions of the particles. It
is worth noting, that the triangle must be closed for the extraction of ζ(r12, r23, θ), which is
sometimes called connected ζ(r12, r23, θ) (Bernardeau et al., 2002). The de�nition of dP123

clearly visualizes the statement from the beginning of this section, that the two-point
correlation ξ(r) is required for the determination of the three-point correlation function
ζ(r12, r23, θ).
A Gaussian density �eld would have the result ζ(r12, r23, θ) = 0 which means that the whole
statistical information of the probability distribution, or for this thesis of the density �eld,
is contained in ξ(r). This was shown in Fourier space (see Section 2.5).
The above de�nitions can be rewritten as follows

ξ(r) = 〈δ(~x)δ(~x+ ~r)〉 (2.106)

where the two-point correlation function is only dependent on |~r| or just r because of
spherical symmetry. This is the manifestation of homogeneity and isotropy of the density
�eld on large scales. Equation (2.106) can also be understood as a convolution of the
density �eld with itself. The three-point statistics is de�ned very similarly by

ζ(r12, r13, θ) = 〈δ(~x)δ(~x+ ~r12)δ(~x+ ~r23)〉 (2.107)
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where again homogeneity and isotropy reduce the originally nine required variables in order
to de�ne the triangle uniquely to three, namely r12, r23 and θ.
So far, the de�nitions of the clustering statistics for con�gurations space, which will be
used in this thesis, are de�ned and were discussed. In the following paragraph, it will be
discussed how to extract the two-point correlation function from a data set (ζ(r12, r23, θ)
will not be considered in later investigation in this thesis anymore). In Peebles (1980), an
estimator was introduced to measure ξ(r) like it is the case in Fourier space, see Section
2.5.
The two-point correlation functions needed in this work are estimated from N -body sim-
ulations by the today commonly used Landy&Szalay estimator (Landy & Szalay, 1993)

ξest(r) =
〈DD(r)〉 − 2〈DR(r)〉+ 〈RR(r)〉

〈RR(r)〉
(2.108)

where 〈DD(r)〉, 〈DR(r)〉 and 〈RR(r)〉 are the normalized number of all possible pairs in
the data, data-arti�cial random and within the arti�cial random set, respectively. The
random set is required to include the e�ects of the survey geometry and the selection
function of the survey e.g. selection criteria. The normalization factors are given by

NDD =
ND(ND − 1)

2
(2.109)

NDR = NDNR (2.110)

NRR =
NR(NR − 1)

2
(2.111)

where ND and NR are the number of particles in the data and random set, respectively.
There are also other estimators in the literature (Peebles, 1980; Hamilton, 1993) but as
it was shown in Kayo et al. (2004) and Kerscher et al. (2000) that the Landy&Szalay es-
timator converges to the direct estimate the fastest. This means that the Landy&Szalay
estimator predicts the two-point correlation function correctly on smaller scales compared
to the other proposed estimators (for the same the data set, this scale is strongly dependent
on the number of random points contained in the arti�cial catalog, see Kayo et al. (2004)).

2.7.2 Theory of the correlation functions

The estimation of clustering quantities is a very important step for extracting the informa-
tion they contain about the Universe. However, it must be compared to some theoretical
model to obtain e.g. cosmological or bias parameters from the data set. Here, the the-
oretical discussion will result in a model for extracting the equation of state parameter
of dark energy wDE and the linear bias b (see Equation (2.75)), even in the presence of
redshift errors. Therefore, the anisotropic two-point correlation function ξ(rp, π) will be
introduced, where the distance between the particles is separately binned parallel (π) and
perpendicular to the line-of-sight (rp), where r =

√
π2 + r2p. After the detailed discussion
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of ξ(rp, π) it will also be explained how to extract wDE and b from a data set or in this
thesis from numerical N -body simulations. The following discussion can also be found in
Schlagenhaufer et al. (2012).

Two-point correlation function

In this section, the two-point correlation function will not only be derived in redshift space
but also the measurement uncertainties of redshifts in a photometric redshift survey, such as
Pan-STARRS (Chambers & Pan-STARRS Team, 2004), the upcoming DES (Tucker et al.,
2010), or PAU (Benítez et al., 2009) will be incorporated. In the later discussion to this
situation will be referred to as redshift error space. A detailed investigation of the corre-
lation function and how it is a�ected by redshift space distortions and redshift errors was
already performed. Therefore, such an investigation will not be performed again in this
thesis.

ξ(rp, π) in real space

The theoretical means for the two-point correlation function which are required for the
analysis in Section 3.1 will be given here. The discussion will be started in real space. The
peak of ξ(r) at around 110 h−1 Mpc, which is originated from the BAOs, is an important
feature for the later extraction of wDE and b.
By measuring the apparent extent of the BAO peak parallel and perpendicular to the
line-of-sight, the redshift evolution of H(z), see Equation (2.5), and DA(z), see Equation
(2.8), can be measured via a simple geometrical relation (Blake & Glazebrook, 2003). The
distances between the galaxies are split in a component parallel and perpendicular to the
line-of-sight π and rp, respectively. This is the so-called anisotropic two-point correla-
tion function ξ(rp, π). In this thesis, small angles or high redshifts are assumed so that
r2 = r2p + π2. The single broad peak of ξ(r) translates into a ring with a radius of around
110 h−1 Mpc for ξrs(rp, π), where the subscripted rs should indicate real space. In Figure
2.10, the BAO ring can easily be identi�ed but for a full understanding some comments
are needed.
The derivation of the three-point statistics was mainly performed by means of 2nd order
perturbation theory, whereas for the two-point statistics the 3rd order perturbation theory
is used as shown in Section 2.6.1. These results in Fourier space can be inserted in

ξij(r) =

∫
d3k

(2π)3
Pij(k) exp

(
−i~k~r

)
=

1

2π2

∫
Pij(k)

sin kr

kr
k2dk (2.112)

where i and j can be δ and θ in order to specify which quantity is meant7.
For Figure 2.10 only the (i, j) = (δ, δ) is required and also the biased case is shown. A

7As a side note the same would be true for the three-point correlation function ζ(r12, r23, θ) and the

bispectrum B(k1, k2,^(~k1,~k2)). They are related with each other by

ζ(r12, r23, θ) =

∫
d3k1
(2π)3

∫
d3k2
(2π)3

B(k1, k2,^(~k1,~k2)) exp
(
−i~k1~r12 − i~k2~r23

)
. (2.113)
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Figure 2.10: The model of this thesis of the two-point correlation function of dark matter
halos in real space, ξrs(rp, π), evaluated at z = 0.5 for b = 2.65. The BAO peak is now a
ring at about r =

√
r2p + π2 ∼ 110 h−1Mpc, here corresponding to the dark green feature.

The black lines indicate the range in which the �t to the model is performed: Distances
smaller than |r| ≤ 64 h−1Mpc and larger than |r| ≥ 165 h−1Mpc will not be taken into
account in the analysis. Only one quadrant is used in the �t, since the information in
the other three quadrants is redundant. The color bar on the right shows the values of
ξrs(rp, π).

detailed discussion of the bias can be found in Section 2.6.1. This thesis is only interested
in large scales, on which the linear bias is just de�ned as a constant multiplicative factor,
as in Equation (2.75). A constant multiplicative factor of the power spectrum is also just
a constant multiplicative factor for the correlation function. By inserting Equation (2.75)
in Equation (2.112) the biased correlation function is given by

ξhalo/galaxy(rp, π) = b2 ξdm(rp, π) , (2.114)

where ξdm(rp, π) and ξhalo/galaxy(rp, π) are the dark matter and halo/galaxy ξrs(rp, π), re-
spectively. The discussion for ξ(rp, π) is focused on the L-BASICC halo catalog at z = 0.5.
Therefore, for simplicity ξrs(rp, π) = ξhalo/galaxy(rp, π). As a next step the redshift space
for ξ(rp, π) will be derived.

ξ(rp, π) in redshift space

The derivation of the redshift space distortions was explained in Section 2.6.2 and will
not be repeated here. Only the application to ξ(rp, π) will be given in this section. In
the later discussion, the redshift space anisotropic two-point correlation function is called
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ξzs(rp, π).
On large scales coherent infall of objects onto large structures dominates the redshift-space
distortions, the Kaiser e�ect (Kaiser, 1987). The formulation is based on the distant ob-
server approximation, meaning that the structure is distorted in a plane-parallel fashion,
and therefore only the line-of-sight component is a�ected. The Kaiser e�ect in its origi-
nal linear form includes the linear power spectrum; for more details it is also referred to
Hamilton (1992). In order to obtain unbiased and more accurate constraints on the cos-
mological parameters, a more sophisticated description is required for the redshift space
distortions (Cole, Fisher & Weinberg , 1994) e.g. the non-linear Kaiser e�ect (Scoccimarro,
2004). The detailed derivation for ξzs(rp, π) is given in Appendix A.2. Following the theo-
retical derivation of the linear Kaiser e�ect for ξzs(rp, π) in Hamilton (1992) and Hamilton
(1993) the anisotropic redshift space two-point correlation function can be expressed as

ξzs(rp, π) = ξ0(r)P0(µ) + ξ2(r)P2(µ) + ξ4(r)P4(µ), (2.115)

where Pi(µ) are the Legendre polynomials (see Appendix A.3) and the multipoles ξi(r) are
given by

ξ0(r) = b2ξδδ(r) +
2

3
fbξδθ(r) +

1

5
f2ξθθ(r), (2.116)

ξ2(r) =
4

3
fb[ξδθ(r)− ξ̄δθ(r)] +

4

7
f 2[ξθθ(r)− ξ̄θθ(r)], (2.117)

ξ4(r) =
8

35
f 2 · [ξθθ(r) +

5

2
ξ̄θθ(r)−

7

2
¯̄ξθθ(r)] , (2.118)

where ξδδ(r), ξδθ(r) and ξθθ(r) are the dark matter density-density, density-velocity and
velocity-velocity two-point correlation functions, respectively, Fourier transformed from
the corresponding power spectra, and f is given by Equation (2.89). The barred two-point
correlation functions in Equations (2.116)�(2.118) are given by

ξ̄δθ(r) ≡ 3r−3

∫ r

0

ξδθ(r
′)r′2dr′ (2.119)

ξ̄θθ(r) ≡ 3r−3

∫ r

0

ξθθ(r
′)r′2dr′ (2.120)

¯̄ξθθ(r) ≡ 5r−5

∫ r

0

ξθθ(r
′)r′4dr′ . (2.121)

If the linear power spectrum was used instead of the 3rd order perturbation theory power
spectra, the derived formulas above would result in the linear Kaiser e�ect.
In Figure 2.11, the contours of ξzs(rp, π) modeled including the non-linear Kaiser e�ect
are shown. Redshift space distortions destroy spherical symmetry and change the shape
and location of the BAO ring. The structure, a�ected by the coherent infall of objects,
looks squashed along the line-of-sight, which also increases the clustering signal compared
to ξrs(rp, π). In addition to the change in the amplitude, redshift space distortions also
contain information about the cosmological parameters and the bias, as both growth rate
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Figure 2.11: ξzs(rp, π) of dark matter halos with non-linear Kaiser e�ect at redshift z =
0.5 for b = 2.65. As in Figure 2.10 the black lines indicate the range in which the model is
�tted.

and linear bias enter into the multipoles which describe them (Equations 2.116�2.118). So
far, the model is able to describe redshift space clustering as long as the redshifts (which
translate into distances between the observer and the objects) are determined without large
redshift errors, as in spectroscopic surveys, where they are negligible. However, collecting
a large number of spectroscopic redshifts is time consuming, especially if the aim is to ob-
serve a large volume at high redshift. A faster alternative is to estimate redshifts from deep
photometric data, which makes it necessary to include the e�ect of large redshift errors on
ξzs(rp, π) in the model. How this can be done will be explained in following section.

ξ(rp, π) in redshift error space

Traditionally photometric redshifts are derived from observed �uxes in �ve or more broad
to medium band �lters (Baum, 1962). The probability distribution of the �tted redshifts
depends on the spectral type, magnitude and redshift of the observed objects, the �l-
ter set and the �tting scheme (e.g. a neural network or a comparison with a library of
template spectra, which are used to perform synthetic photometry). However, several
authors have found the redshift error distribution in realistic surveys to be very close to
Gaussian. For example, Cunha et al. (2009) calculated the full probability distribution
function for ∼ 78 million SDSS DR7 galaxies using photometric observables and weighted
sampling from a spectroscopic subsample of the data, and Saglia et al. (2012) estimated
photometric redshifts for objects found in the Medium-Deep Fields of Pan-STARRS1 us-
ing available spectroscopic surveys (including SDSS spectra) as training and/or veri�cation
sets. From a direct comparison between spectroscopic and photometric redshifts obtained
for the same objects, they �nd the width of the distribution of all galaxies in the sample
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to be σz . 5%, with ∼ 1% extreme outliers (de�ned as the fraction of objects for which
|zphot − zspec| > 0.15× (1 + zspec) ), and σz/(1 + z) = 0.024 and an insigni�cant fraction of
only 0.4% outliers for the object types which will eventually be used to measure BAOs in
Pan-STARRS, namely LRGs at z . 0.5.
Hence, as a �rst order approximation a single Gaussian peak is adopted here to simulate
the in�uence of photometric redshift errors on the measurement of ξ(rp, π). Since the un-
certainty of the redshift estimation mainly results in a distortion of the distance along the
line-of-sight, redshift errors have a similar e�ect as peculiar velocities dominant on small
scales, and to �rst order they do not depend on the local density �eld.
The main e�ect of photometric redshift errors is that the line-of-sight component of the
distance to a galaxy is smeared out by an amount δx||. This description in Blake & Bridle
(2005) and Phleps et al. (2007) will be followed here for modeling the redshift errors where
the redshift errors are assumed to be Gaussian distributed such that the spatial displace-
ment δx is given by

f(δx||) ∝ exp

[
−0.5

(
δx||

σx

)2
]
, (2.122)

where σx is the comoving distance corresponding to the rms σz of the redshift error prob-
ability distribution function at the considered redshift. Equation (2.122) describes the
probability distribution function for one single galaxy, but the two-point correlation func-
tion is a pairwise statistic, hence in order to simulate the impact on the model ξzerr(rp, π)
the pairwise error distribution function has to be computed. For two galaxies with errors
δx||,i and δx||,j the rms of their pairwise error would be

δx||,ij =
√

δx2
||,i + δx2

||,j . (2.123)

If Ng galaxies are contained in the survey then there are Np = Ng(Ng−1)

2
pairs. Every

galaxy is contained in Ng − 1 pairs, and the overall convolving function fp(π) is a sum of
the Gaussians corresponding to all pairs ij:

fp(δπ) =
1

Np

Np∑
n=1

exp

[
−0.5

(
π

δx||,ij,n

)2
]
. (2.124)

This smearing function is estimated by randomly drawing Ng values δx||,n from Equation
(2.122), from which all possible pairwise errors δx||,ij,n are calculated. Equation (2.124)
is the probability distribution of the smearing of the correlation signal along the line-of-
sight due to the redshift errors. By convolving ξzs(rp, π) with this function, the e�ect of
photometric redshifts on the anisotropic two-point correlation function is modeled. The
resulting ξzerr(rp, π) for redshift errors with an rms of σz = 0.03 is shown in Figure 2.12.
The redshift errors have the same e�ect on large scales as the FoG have on small scales,
only the order of magnitude is much larger. The clustering signal is smeared out and the
structure looks extremely elongated, the BAO ring is almost completely washed out and
can barely be identi�ed; with increasing size of the redshift errors the signal-to-noise of
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Figure 2.12: The model of ξzerr(rp, π) at z = 0.5 for b = 2.65 convolved with a pairwise
redshift error distribution, which assumes Gaussian redshift errors with an rms of 0.03.
Because the clustering signal is now smeared out along the line-of-sight, in order to capture
(to zeroth order) the same information as in the �t of the two-point correlation function in
real and redshift space, the spherical shell in which the model is �tted (see Figures (2.10)
and (2.11)) is replaced by a cylinder (as indicated by the black rectangular box).

the BAO ring decreases rapidly, until the signal completely vanishes and cannot be used
anymore to constrain any cosmological parameters.

Cosmological test

The peak of ξ(r) or the ring of ξ(rp, π) is a standard ruler as explained in Section 2.2. In
this section, all distortions of the BAOs in con�guration space were discussed. By their
inclusion the BAOs can still be used as a standard ruler and will help to distinguish between
di�erent cosmological models.
If a wrong cosmology was assumed, incorrect cosmological distances would be calculated,
see Section 2.1. This also means that the standard ruler will be wrongly evaluated. In order
to �nd the true cosmology the cosmological parameters have to be varied until the true
value of the standard ruler is found. This will be performed in the following way: from the
angular extent of the standard ruler on the sky its physical or comoving size is computed
for the �ducial cosmological parameters. If the true cosmology was assumed than the size
of standard ruler is calculated correctly. If this is not the case the true cosmology has to
be found with the help of scaling relations where the cosmological parameters are changed
until the true size or position of the standard ruler is found. The scaling relations are given
by

rtp =
Dt

A (z)

Da
A (z)

· rap (2.125)
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and

πt =
Ha (z)

H t (z)
· πa , (2.126)

where the quantities for the assumed cosmology are superscripted with a and the true cos-
mology with t. For ξrs(rp, π) this means that by assuming a wrong cosmology the size of
the BAO ring along and perpendicular to the line-of-sight is not the same. The correct cos-
mology is found when these two sizes coincide (Alcock & Paczynski, 1979). In redshift or
redshift error space, isotropy is destroyed and this statement is not fully correct anymore.
However, with the theoretical concepts derived in this chapter it is possible to account for
their e�ects on the two-point clustering and the scaling relations can be utilized to extracte
the correct cosmological parameters.
If only one cosmological parameter shall be varied it is obvious that the remaining param-
eter should be known very well. In Section 3.1, wDE will be extracted from the L-BASICC
simulations by means of this cosmological test.

2.7.3 Redshift errors for the three-point statistic?

Before this chapter will be concluded, a qualitative discussion will be given, why the ex-
amination of redshift errors on the three-point statistics is excluded from this thesis. In
Figure 2.13, a cuboid with a side length of 200 h−1 Mpc for the x- and z- direction and 500
h−1 Mpc for the y-direction at z = 0.5 of the L-BASICC simulation number 48, in which
ξ48(r) behaves mostly like the mean ξ(r), is projected along the z-axis. On the top panel,
the blue dots represent the position of the halos in real space and the red ones the halos in
redshift space. Their positions are distorted along the y-axis of the simulation box, which
was de�ned to be the line-of-sight direction. The shift can easily be identi�ed.
In redshift space, the structures look squashed, as it is expected. These structures are still
visible and it is possible to extract a clear clustering signal from this simulation. On the
bottom panel, Gaussian redshift errors with a rms of σz = 0.03 were applied to the same
L-BASICC simulation in redshift space with periodic boundary conditions (of course along
the y-axis). Almost no structures can be detected anymore. As shown for the BAO peak
in ξ(rp, π), prominent features are washed out.
The signal of the three-point clustering statistics will also be reduced by redshift errors.
The signal-to-noise is anyway lower the higher the clustering statistics is and with redshift
errors the situation gets worse. The triangles which are counted by the three-point corre-
lation function will look elongated in redshift error space. The spherical average for the
calculation of the three-point statistics would not make any sense because homogeneity
and isotropy are destroyed by the redshift errors anyway. Therefore, such an analysis is
excluded from this thesis.
As mentioned earlier, the three-point statistics is not as thoroughly investigated as the
two-point statistics. The basic e�ects of non-linear structure growth, biasing and pecu-
liar velocities must be examined �rst, before further complication are incorporated in the
model.
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Figure 2.13: A cuboid projected along the z-axis with a side lengths (lx, ly, lz) = (200
h−1 Mpc, 500 h−1 Mpc, 200 h−1 Mpc) was taken from the dark matter halo L-BASICC
simulation box number 48 at z = 0.5. Real and redshift space are combined in the upper
panel and are represented by the blue and the red dots, respectively. The lower panel
shows the e�ect of Gaussian distributed redshift errors with a rms of σz = 0.03.



Chapter 3

Investigation of ξ(rp, π) and B(k1, k2, k3):
Extracting the parameter of the

equation of state of dark energy and the

bias parameters

This chapter is divided into two smaller main sections. The �rst section will be focused
on the two-point statistics whereas the second is mainly interested in the bispectrum.
Section 3.1 will describe how to extract the equation of state parameter of dark energy
and the linear bias from ξ(rp, π) as well as from w(rp). A huge part of this section is from
Schlagenhaufer et al. (2012). In Section 3.2, the extraction of the linear and the quadratic
bias from the bispectrum will be investigated in detail.

3.1 Two-point statistics: Determination of wDE and b

This �rst big section will present the results of the estimation of the equation of state
parameter of dark energy wDE and the linear bias b by means of ξ(rp, π) and w(rp). In the
discussion of the two-point statistics, the linear bias is called b and is de�ned by Equation
(2.75), while for the three-point statistics the linear bias b1 is associated with the �rst term
of the series expansion of Equation (2.77).
It is clear from this de�nitions that the b-variable is an e�ective quantity which contains
contributions from all bn-parameters of the series expansion. The anisotropic two-point
correlation function ξ(rp, π), see Section 3.1.2, and the projected correlation function w(rp),
see Section 3.1.3, will be utilized for the determination of wDE and b. These two quantities
were selected for this task because they have special properties.
ξ(rp, π) is a two-dimensional function and its information content is not combined into a
few bins like it is the case for ξ(r). More information can be used to constrain cosmological
parameters, in this thesis wDE and b. This underlines the importance of a careful modeling
of this quantity, see Section 2.7.2.
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w(rp) is the projected correlation function and the result when ξ(rp, π) is integrated along
the line-of-sight component (the π-direction). Ideally, this integration should be performed
to in�nity in order to recover the three-dimensional real space correlation function ξ(r).
Then, w(rp) would be better suited for extracting wDE and b. Therefore, w(rp) will also
be examined.
The exact procedure for performing the analysis will be discussed in Section 3.1.1. The
investigation is carried out at z = 0.5 only. This is the expected mean redshift of Pan-
STARRS (Cai et al., 2009), on which the model will be applied to in a future analysis. In
the Sections 3.1.2 and 3.1.3, wDE and b are extracted from the L-BASICC dark matter halo
catalogs by means of ξ(rp, π) and w(rp), respectively. This whole section will be concluded
with Section 3.1.4 in which the introduced model of ξ(rp, π) will be qualitatively compared
to similar approaches.

3.1.1 Constraining wDE and b

The capability of the model of ξ(rp, π) will be demonstrated, which was described in the
previous section, to constrain wDE and b, by �tting the correlation function computed
from the L-BASICC simulations. The anisotropic two-point correlation function is calcu-
lated using the estimator of Landy & Szalay (1993) in each single box up to a distance
of ±300.0 h−1Mpc, and in bins of 3.0 h−1Mpc in both rp and π, for real, redshift and
redshift error space, respectively. In the latter case �redshift errors�, that is, small o�sets,
are added to the coordinate which has been designated the line-of-sight. These o�sets have
been randomly drawn from a Gaussian error distribution function with a given rms. From
the 50 estimates of ξ(rp, π) the mean is calculated.
The model ξ(rp, π) is also evaluated from (−300 h−1Mpc,−300 h−1Mpc) to (300 h−1Mpc,
300 h−1 Mpc), in steps of (0.5 h−1 Mpc,0.5 h−1Mpc). In order to facilitate an accurate
comparison with the simulation, which has been calculated with a six times larger bin size,
one averages over the model bins when �tting wDE and b.
While keeping H0, Ωm and ΩΛ �xed at the values determined by the L-BASICC simula-
tion, wDE and b are varied, which both change the amplitude of the two-point correlation
function and the shape of the redshift space distortions (see Section 2.6.2 and 2.7.2). When
the correlation function of the simulation boxes is calculated, a �ducial cosmology has to
be assumed � for simplicity the input parameters of the L-BASICC were chosen, i.e. the
correct cosmology (and thus the correct correlation function with the acoustic peak at the
position predicted by theory). For any other choice of cosmological parameters the mea-
sured redshifts and positions on the sky translate di�erently into distances perpendicular
and parallel to the line-of-sight, which leads to a distortion (Alcock & Paczynski, 1979).
Therefore when the model is �tted to the data, the distances have to be rescaled according
to the Equations (2.126) and (2.125) for the parallel and perpendicular to the line-of-sight
component, respectively.
The model and the halo catalog correlation functions are compared within a spherical
shell of 64 h−1Mpc ≤

√
r2p + π2 ≤ 165 h−1Mpc in both real and redshift space. In red-

shift error space the shape of that shell is distorted due to the smearing of the redshift
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errors, so in order to sample similar scales the spherical shell was replaced by a cylin-
der, as indicated by a rectangle in Figure 2.12. The corners of the rectangle are de�ned
by [64 h−1 Mpc, 0 h−1 Mpc] (left lower corner), [64 h−1 Mpc, 165 h−1 Mpc] (left upper cor-
ner), [165 h−1 Mpc, 0 h−1 Mpc] (right lower corner) and [165 h−1 Mpc, 165 h−1 Mpc] (right
upper corner).
The model was tested for two di�erent cases, in one case the information contained in the
amplitude was taken into account, and in the other case it was analytically marginalized
over the amplitude using the scheme described in Lewis & Bridle (2002). In the latter case
only the shape of the model is examined.
The �t is performed by means of a Monte Carlo Markov Chain (MCMC) after averag-
ing and rescaling in order to �nd the best-�tting values for wDE and b, and to estimate
their errors. Due to the limited number of realizations it is unfortunately not possible to
calculate correct (invertible) covariance matrices (the full covariance matrix would take
100× 100 pixels into account, hence at least 100× 100 + 1 independent simulation boxes
are required). If only the variance of the correlation function is used when �tting the mean

ξ(rp, π), the resulting errors of wDE and b (in real and redshift space of the order of ∼ 2%)
are clearly underestimated.
Instead it is assumed that the scatter of 50 �ts to the single realizations can at least partly
account for cosmic variance and the otherwise ignored contribution of the o�-diagonal ele-
ments in the covariance matrix. Therefore, the variance of the best-�tting values inferred
in this way can be thought to represent a more realistic estimate of the errors of the �t
parameters, while leaving the actual best-�tting values unchanged.
Indeed, although the resulting values of wDE and b reassuringly do not depend on the way
of �tting, the size of the errors does. Throughout this thesis with errors is meant that they
have been calculated from the variance of the 50 values of wDE and b, which are about an
order of magnitude larger than those inferred from the �t to the mean.
The range in which the parameters are �tted are restricted to −1.6 ≤ wDE ≤ −0.4 and
1 ≤ b ≤ 20. 40 000 steps are su�cient for the chain to converge towards the best-�tting
values and to explore the likelihood. Since the calculation of the 3rd order perturbation
theory power spectrum is time consuming, to speed up the analysis the MCMC is ran on a
grid, for which a library of correlation functions ξ(r) is constructed for −1.6 ≤ wDE ≤ −0.4
in steps of −0.001. Once the random sampling process of the MCMC has chosen a new
value for wDE, the appropriate ξ(r) for the nearest value of wlib

DE is selected from the library
and used as starting point for the calculation of the model ξ(rp, π) (and wDE set to wlib

DE).

3.1.2 Anisotropic two-point correlation function

In this section, the results of the �ts of ξrs(rp, π) (real space), ξzs(rp, π) (redshift space)
and ξzerr(rp, π) (redshift error space) will be discussed in detail. The analytic model will
be tested by �tting wDE and b against ξ(rp, π) of the halo catalog from the L-BASICC
simulations at z = 0.5 by following the description of Section 3.1.1.
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Real Space

In order to investigate the validity of the 3rd order perturbation theory, �rst the model
is tested against the dark matter anisotropic two-point correlation function of the L-
BASICC simulations, where b = 1.0. The best-�tting parameters are found to be wDE =
−0.992 ± 0.091, b = 0.998 ± 0.073, from which it can be concluded that the non-linear
structure growth is modeled accurately enough to obtain unbiased estimates of these pa-
rameters. If the description of the clustering of collapsed objects like galaxies � or dark
matter halos � which are biased tracers of the dark matter density �eld, is wanted, the
bias has to be included (see Section 2.6.1) in this calculation.
Since in real space the linear bias is only a multiplicative factor (for the two-point statis-
tics) which boosts the amplitude of the dark matter correlation function, but does not alter
its shape, any information about the bias is contained in the amplitude at a given radius
r =

√
r2p + π2. Including the amplitude in the �t of ξrs(rp, π) of the dark matter halos in

the 50 L-BASICC boxes one obtains wDE = −1.010 ± 0.117 and b = 2.641± 0.183, if the
amplitude is not taken into account, the bias cannot be �tted, but the same value for wDE

is obtained when the amplitude information is disregarded. The measured value of wDE

is in good agreement with the �ducial value of the simulation. Since the simulation has
only medium-resolution, it does not contain very small halos (the lowest mass halo has ten
particles, which corresponds to a minimum mass of Mmin = 1.76 × 1013 h−1M�), hence a
relatively large mean bias measured for all dark matter halos is expected.
In Figure 3.2, the contours of the best-�tting model (black solid line) are plotted over the
ξrs(rp, π) of the L-BASICC dark matter halos the values of ξrs(rp, π) are color coded in
a logarithmic fashion; only the scales taken into account in the �t are shown. Figure 3.1
shows cuts through the ξrs(rp, π) plane along constant rp for both data and best-�tting
model (including the 1σ uncertainty limits calculated from the variance of the correlation
functions in the single L-BASICC boxes). The deviations between the model and the L-
BASICC simulations are small compared to the errors. The obtained value of wDE is in
good agreement with the �ducial value of the simulation.
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Figure 3.1: Cuts through the real space anisotropic two-point correlation function ξrs(rp, π)
of the L-BASICC dark matter halos along �xed rp, black solid lines: mean, dotted lines:
1σ-deviation calculated from the variance of the 50 boxes, red solid line: best-�tting wCDM
model, blue dot-dot-dashed line: ΛCDM case.

Redshift Space

In redshift space, the exact positions of the galaxies (and therefore the correlation func-
tion) are distorted due to the additional Doppler shift induced by their peculiar velocities,
and thus mainly a�ects the line-of-sight components of ξ(rp, π). On large (BAO) scales co-
herent infall dominates, which in previous models of the anisotropic two-point correlation
function was assumed to be linear and modeled following the description in Kaiser (1987).
In this thesis, the non-linear Kaiser e�ect (Scoccimarro, 2004) is applied to the model
of ξzs(rp, π). The validity of the approach of Scoccimarro (2004) has been tested by
Jennings et al. (2011), who found a good match to simulations. Since the size and angular
dependence of the e�ect depends on the bias of the objects (the bias is also contained in
the quadrupole and hexadecapole needed to evaluate the model ξzs(rp, π), see Section 2.6),
in redshift space, it is possible to infer the value of b from the shape of ξzs(rp, π) alone, in
contrast to real space.
The results of the MCMC analysis (again �tted in the range 64.0 ≤

√
r2p + π2 ≤ 165.0 h−1
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Figure 3.2: Contours from the best-�t model plotted over the anisotropic two-point corre-
lation function calculated from the L-BASICC dark matter halo catalogs in real (left) and
redshift space (right), respectively.

Mpc) are summarized in Table 3.1. The comparison of the best-�tting model (black solid
line) with the logarithmically color coded L-BASICC ξzs(rp, π) is shown in Figure 3.2.

wDE b

shape only −1.012± 0.139 2.518± 0.646
shape and amplitude −1.020± 0.147 2.633± 0.222

Table 3.1: wDE and b from the model ξzs(rp, π): Mean and variance of the 50 L-BASICC
boxes, �t in the range 64.0 ≤

√
r2p + π2 ≤ 165.0 h−1Mpc. The �t has been carried out for

two cases, one where only the shape was input to the �t and the amplitude was marginalized
over, and one where both shape and amplitude have been taken into account.

The two-point correlation function of the L-BASICC halo catalogs can be well described
by the model. The model contours match the L-BASICC ξzs(rp, π) almost perfectly (see
Figure 3.3), and the resulting values of wDE and b are in good agreement with the real
space estimates, too. As expected, the errors in redshift space are larger than in real space.
Also the error on b is larger if the information contained in the amplitude is ignored, the
determined values of wDE and b are however consistent and do not depend on whether the
amplitude is taken into account or not.
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Figure 3.3: Cuts through the redshift space anisotropic two-point correlation function
ξzs(rp, π) of the L-BASICC dark matter halos along �xed rp, black solid lines: mean,
dotted lines: 1σ-deviation calculated from the variance of the 50 boxes, red solid line:
best-�tting wCDM model, blue dot-dot-dashed line: ΛCDM case.

Redshift Error Space

One of the advantages of using the anisotropic two-point correlation function ξ(rp, π) to
infer cosmological parameters is that in the presence of redshift space distortions the clus-
tering measurement perpendicular to the line-of-sight remains almost una�ected, while
distortions along the line-of-sight can be modeled and thus properly taken into account.
Due to this fact, it is a perfect tool to use in the case of photometric redshifts, the large
errors of which lead to a rather dramatic distortion, as explained in Section 2.6.
In order to investigate the e�ect of photometric redshift errors on the estimate of wDE and
b, the in�uence of a Gaussian redshift error distribution with a rms of σz = 0.015, 0.03,
0.06, and 0.12, respectively, was simulated on the measurement. As described in Section
3.1.1 the spherical shell in which the �t was carried out has now been replaced by a cylinder
(indicated by the rectangular box in the rp, π-plane in Figure (2.12)) in order to compare
(to zeroth order) the same information. It was found out that in the last case a large
part of the clustering signal is smeared out to distances much larger than the 300 h−1Mpc
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where the model is calculated for, the BAO ring disappears, and the noise increases such
that an accurate estimate of wDE and b becomes impossible.
While still �tting ξ(rp, π) only up to 165h−1Mpc, extending the model to distances π =
2000h−1Mpc before convolving it with the pairwise redshift error distribution allows one
to recover some of the clustering signal for redshift errors (at least for σz ≤ 0.06), but its in-
formation content is limited due to the low signal-to-noise of the data on these scales. The
values of wDE and b which are found for σz = 0.015, 0.03, 0.06, and 0.12 are summarized
in Table 3.2; contours of the corresponding models of ξzs(rp, π) are shown in comparison
to the logarithmically color coded measurement from the data in Figure 3.4.

σz wDE b

0.015
only shape −0.965± 0.298 3.660± 2.694

shape and amplitude −0.980± 0.296 2.704± 0.333

0.030
only shape −0.883± 0.313 6.309± 3.603

shape and amplitude −0.966± 0.363 2.622± 0.415

0.060
only shape −1.081± 0.344 5.336± 3.931

shape and amplitude −1.036± 0.402 2.609± 0.512

0.120
only shape −1.316± 0.348 4.904± 4.537

shape and amplitude −1.199± 0.424 2.295± 0.554

Table 3.2: wDE and b from the �t of the model ξzerr(rp, π) to the 50 L-BASICC boxes
for σz = 0.015, 0.03, 0.06, and 0.12 (from top to bottom). Again the �t has been carried
out for two cases, one where only the shape was input to the �t and the amplitude was
marginalized over, and one where both shape and amplitude have been taken into account.

In Figure 3.5, Figure 3.6, Figure 3.7, and Figure 3.8 again cuts along constant values of rp
through ξzerr(rp, π) are shown for σz = 0.015, 0.03, 0.06, and 0.12, respectively. The model
�ts the data well, although slightly worse as expected than in real and redshift space (see
Figures 3.1 and 3.3).
Figure 3.9 shows the values of wDE and b and their corresponding errors for the �t of the
model to the 50 L-BASICC boxes including increasing widths of the redshift errors. As
long as the errors are smaller than σz ≈ 0.06, the measurement is unbiased. The increase
of the errors in redshift error space can be expected: Due to the convolution with the
pairwise redshift error distribution not only the clustering signal is smeared out along the
line-of-sight, but so is the noise and thus the errors on the cosmological parameters inferred
from the measurement increase. Therefore, within a given bin in the ξzerr(rp, π) plane the
variance is increased compared to redshift space, and the larger the redshift errors, the
larger the increase. The loss of information contained in the multipoles due to the distor-
tion by the convolution with the pairwise redshift error distribution function also means
that the linear bias b cannot be determined accurately by using the shape of ξzerr(rp, π)
only.
Large redshift errors also increase the probability for the MCMC not to converge within
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Figure 3.4: L-BASICC ξzerr(rp, π) and contours from the model ξzerr(rp, π) for σz = 0.015
(top left), σz = 0.03 (top right) σz = 0.06 (bottom left) and σz = 0.12 (bottom right).

the allowed parameter space � cosmic variance is still large even in boxes of the size of the
L-BASICC simulations, and in some of them the BAO ring is almost invisible even in real
space. In such cases, redshift errors �nally destroy all of the information that might have
been there before, and the �t fails. The larger the redshift errors the more catastrophic
failures are produced. Even if the information contained in the amplitude is used, the
fraction of boxes where the correlation function can not be �t can be as high as ∼ 40% for
σz = 0.06. For σz = 0.12 the model tends to yield biased results, as can be seen from the
�best-�tting� values.
The exact size of the redshift error at which the values of wDE and b can not be measured
accurately anymore and their errors become unacceptably large certainly depends on the
exact shape of the redshift error distribution function (a more Lorentz-like distribution
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Figure 3.5: Cuts through the redshift error space anisotropic two-point correlation function
ξzerr(rp, π) of the L-BASICC dark matter halos along �xed rp, for redshift errors of σz =
0.015, black solid lines: mean, dotted lines: 1σ-deviation calculated from the variance of
the 50 boxes, red solid line: best-�tting wCDM model, blue dot-dot-dashed line: ΛCDM
case.

with broad wings will have a larger impact on ξ(rp, π) than a Gaussian with a comparable
width of the core), and it most certainly also depends on the volume and/or number den-
sity of the survey: since the reason the �t fails is mainly that the BAO feature vanishes in
the increasing noise, the larger the signal-to-noise on large scales, the larger the redshift
errors may be at which the disappearance of the BAO ring occurs. There may also be
the possibility to improve the signal-to-noise ratio for photometric data by using the full
probability distribution function of the redshifts in combination with a set of spectroscopic
redshifts in the same area and redshift range, a method that has been shown to be able to
improve the clustering signal strength in a manner equivalent to increasing the survey size
by a factor 4-5 by Myers et al. (2009).
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Figure 3.6: As in Figure 3.5, but for σz = 0.03.
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Figure 3.7: As in Figure 3.5, but for σ = 0.06.
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Figure 3.8: As in Figure 3.5, but for σz = 0.12.

Figure 3.9: Fitted values of the dark energy equation of state parameter wDE (left) and
the bias b (right) against the width of the redshift errors applied to the L-BASICC halos
and the model. In black the amplitude and the shape of ξ(rp, π) were taken into accout
for the �t, whereas in red only the shape was considered.
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3.1.3 Projected two-point correlation function

For the analysis of the two-point correlation function on small scales often the projected
correlation function has been calculated, which is in theory independent of any radial
distortions (Peebles, 1980; Davis & Peebles, 1983). For small angles r2 = r2p + π2. Thus
the projected correlation function is de�ned as

w(rp) =

∫ ∞

−∞
ξ (rp, π) dπ . (3.1)

Note that w(rp) has dimensions of length. If it was possible in practice to integrate to
in�nity, it would in principle be possible to recover the three-dimensional real space corre-
lation function ξ(r), and w(rp) would be far better suited to infer cosmological parameters
from the spatial distribution of galaxies than ξ(rp, π), which su�ers from redshift space
distortions. However, since integrating out even to very large distances without signi�-
cantly increasing the noise is not feasible (in particular if the signal is smeared out and
the amplitude diminished by large redshift errors), the integration limits have to be �nite
and even rather small, see also Norberg et al. (2009) for an illustration of this. This means
that a part of the clustering signal, which depends on the pairwise redshift probability dis-
tribution function as well as on the real and the assumed cosmology, can not be recovered.
This is illustrated in Figure 3.10, where w(rp) is shown for di�erent widths of the assumed
redshift errors (σz =0.015, 0.03, 0.06, and 0.12, respectively) and two di�erent choices of
the integration limits, ∆π = 163.5 h−1Mpc and ∆π = 298.5 h−1Mpc.
The resulting shape of w(rp) depends strongly on both the width of redshift errors and
the size of the integration limits: if the integration limits are very large, most of the signal
can be recovered and the di�erence between real and redshift space and the correlation
function a�ected by errors is, although small, still visible. It is not advisable to choose
∆π = 298.5 h−1Mpc, as the measurement will be dominated by noise. On the other hand,

Figure 3.10: The projected correlation function w(rp) for real and redshift space (black
and red lines, repsectively), and for di�erent widths of the assumed redshift errors, left:
for integration limits of ∆π = 298.5 h−1Mpc; right: ∆π = 163.5 h−1Mpc.
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if the BAO ring is supposed to be fully included in the integration, the limits cannot be
much smaller than ∆π ≈ 150 h−1Mpc � in which case the resulting w(rp) is extremely
dependent on the size of the redshift errors (i.e. the fraction of the signal which can be
recovered).
Figures 3.11 and 3.12 show the projected correlation function w(rp) of the L-BASICC dark
matter halos integrated up to πmax = 298.5 h−1Mpc and πmax = 163.5 h−1Mpc, respec-
tively, for redshift errors of σz = 0.015, σz = 0.03, σz = 0.06, and σz = 0.12, as well as the
best-�tting model for each case. The amplitude has to be taken into account, otherwise
the �t fails: there is not enough information in the shape alone. The corresponding �tted
values of the dark energy equation of state parameter wDE and the bias b and their errors
are listed in Table 3.3, and shown in Figure 3.13 as a function of σz.
Although the �t is not biased for σz . 0.06, the errors are, as expected, much larger and
more quickly increasing with increasing redshift errors than for the corresponding �ts of
ξ(rp, π). Hence, it is concluded that for the analysis of the large scale two-point correlation
function as a means to constrain cosmological parameters from photometric data, ξ(rp, π)
is better suited than the projected correlation function w(rp).

σz wDE(πmax = 298.5 h−1Mpc) b(πmax = 298.5 h−1Mpc)
0.0 −1.018± 0.326 2.477± 0.717
0.015 −1.018± 0.419 2.683± 0.551
0.03 −0.980± 0.433 2.741± 0.551
0.06 −1.017± 0.437 2.725± 0.608
0.12 −1.197± 0.463 2.835± 0.862

σz wDE(πmax = 163.5 h−1Mpc) b(πmax = 163.5 h−1Mpc)
0.0 −1.078± 0.386 2.683± 0.470
0.015 −0.962± 0.363 2.702± 0.446
0.03 −0.979± 0.372 2.706± 0.456
0.06 −1.034± 0.420 2.626± 0.550
0.12 −1.143± 0.576 2.764± 0.804

Table 3.3: The best-�tting values of wDE and b, as deduced from the projected correlation
function w(rp), with integration limits of πmax = 298.5 h−1Mpc (top rows) and πmax =
163.5 h−1Mpc (bottom rows), respectively, for Gaussian redshift errors with σz = 0.015,
σz = 0.03, σz = 0.06, and σz = 0.12.
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Figure 3.11: The projected correlation function w(rp) of the L-BASICC dark matter halos
integrated up to πmax = 298.5 h−1Mpc for redshift errors of σz = 0.015 (top right),
σz = 0.03 (top left), σz = 0.06 (bottom right) and σz = 0.12 (bottom left), black solid
lines: mean, error bars: 1σ-deviation calculated from the variance of the 50 boxes, red
solid line: best-�tting wCDM model, blue dot-dot-dashed line: ΛCDM case, green dotted
line: redshift space (σz = 0.00).
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Figure 3.12: The projected correlation function w(rp) of the L-BASICC dark matter halos
integrated up to πmax = 163.5 h−1Mpc for redshift errors of σz = 0.015 (top right),
σz = 0.03 (top left), σz = 0.06 (bottom right) and σz = 0.12 (bottom left), black solid
lines: mean, error bars: 1σ-deviation calculated from the variance of the 50 boxes, red
solid line: best-�tting wCDM model, blue dot-dot-dashed line: ΛCDM case, green dotted
line: redshift space (σz = 0.00).

Figure 3.13: Fitted values of the dark energy equation of state parameter wDE (left) and
the bias b (right) against the width of the redshift errors applied to the L-BASICC halos
and the model. In black w(rp) was integrated up to πmax = 298.5 h−1Mpc for the �t,
whereas in red πmax = 163.5 h−1Mpc.
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3.1.4 Other work in the literature

In the last decade, substantial e�ort has been invested into the accurate modeling of the
power spectrum or two-point correlation function of galaxies, in order to derive tight con-
straints on cosmological parameters. While the available and anticipated data sets have
become larger, it has become clear that non-linear structure growth, peculiar velocities and
galaxy biasing have to be described as precisely as possible. A variety of di�erent methods
has been developed and employed to tackle these problems, and the properties of di�erent
statistics have been investigated. Since the examination of this thesis (which is extracted
from (Schlagenhaufer et al., 2012)) is the �rst systematic investigation of the in�uence of
redshift errors on the measurement of the dark energy equation of state parameter wDE

using ξ(rp, π) (in Cai et al. (2009) the impact of photometric redshift errors on the power
spectrum was investigated), a direct comparison with other work in the literature is not
possible. Instead, the di�erences of the introduced ξ(rp, π) here to existing models in which
redshift errors can potentially be included will be highlighted.
In Gaztañaga et al. (2008), ξ(rp, π) was modeled in order to estimate the position of the
radial acoustic peak (ξ(rp = 0 h−1Mpc, π)) and infer the bias b and ΩM from the SDSS
DR6 LRG sample Adelman-McCarthy et al. (2008). For the modeling linear perturbation
theory and linear redshift space distortions on large scales was used in Gaztañaga et al.
(2008), whereas the model in this work is non-linear in both the description of structure
growth and the Kaiser e�ect. While the FoGs are not included in the model (since they do
not occur in a dark matter halo catalog without substructure, such as used to compare the
model with), the one dimensional velocity dispersion σv is considered by them, in order to
measure β = Ωγ

M/b from it, as discussed in detail in Cabré & Gaztañaga (2009).
A second study of ξ(rp, π) was carried out by Okumura et al. (2008). Also in their approach
both structure growth and Kaiser e�ect were treated linearly, but they take the wide an-
gle e�ect (Szalay et al., 1998) and the high-z distortion e�ect (Matsubara & Suto, 1996)
into account, which are combined in Matsubara (2004). The scales examined were set to
60.0 h−1 Mpc < s < 160.0 h−1Mpc, in spherical shells like done in this thesis for real and
redshift space, similar to the choice in this thesis. Fitting their model to the anisotropic
two-point correlation function of the SDSS DR5 LRG sample (Eisenstein et al., 2005) not
only wDE and b were constrained but also several other cosmological parameters were de-
termined. It remains to be tested if taking the wide angle e�ect into account improves the
accuracy of the model in this work such that when the redshift errors become larger than
the σz & 0.06 at which point the �t becomes extremely inaccurate, it is still possible to
retrieve reliable constraints, but this analysis is beyond the scope of this thesis).
In Chuang et al. (2010), ξ(rp, π) was modeled using halo �t (Smith et al., 2003) to take
into account the non-linear structure growth. The redshift space distortions are included
by the linear Kaiser e�ect on large scales and by the FoG on small scales. In Chuang et al.
(2010), H(z) and DA(z) was constrained instead of wDE.
Instead of �tting an analytic model to observed data it is also possible to �t numerical
N -body simulations (i.e. mocks, where the dark matter halos are populated with galaxies
either using halo occupation modeling or a semi-analytic treatment of galaxy evolution,
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to which the same selection function, mask and survey geometry has been applied). Then
all kinds of clustering statistics can be calculated from the mocks and compared to the
observed data. One example for such an attempt is the work of Kazin et al. (2010a) and
Kazin et al. (2010b), although they did not measure ξ(rp, π), but studied the detectabil-
ity of the BAO peak in ξ(r) as well as of the radial peak in SDSS LRG DR7 sample
(Zehavi et al., 2005). The advantage of using a mock to compare the clustering statistics
with is that non-linear clustering growth and redshift space distortions do not have to
be modeled analytically, but occur naturally in the simulation. Also if many mocks are
generated, the covariance matrix can be calculated. However, the big disadvantage is of
course that a proper �t which takes di�erences in the non-linear clustering growth due to
di�erent values of wDE into account requires to cover the full parameter space with a large
number of mocks, which is extremely time consuming.
In Padmanabhan & White (2008), it was suggested to utilize the multipole moments for
estimating cosmological parameters. Although this requires a smaller number of mock
catalogs to calculate the covariance matrix than would be needed for ξ(rp, π), it can not
be used in the presence of photometric redshift errors.
In Kazin et al. (2011), the analysis of the multipole expansion by Padmanabhan & White
(2008) was transformed from Fourier space to con�guration space. They compared the mul-
tipole expansion including the hexadecapole with so-called "clustering wedges" (ξ(∆µ, s),
where µ = s||/s and s|| is the radial component of separation s) to constrain H and DA,
in order to break the degeneracy between these two parameters usually found when only
using the monopole. The "clustering wedges" are able to provide constraints at least at
the same level of accuracy as the multipole expansion. Their �t is based on N -body simu-
lations, but they also argue that for practical use an analytic modeling based on physical
principles is needed.
Although the model introduced in this thesis includes neither the large angle e�ect, nor
Fingers of God (which are not present in the data on which it was tested against), since
non-linear clustering growth and non-linear velocities are taken into account, and it possi-
ble to �t the linear bias by making use of the information contained in the redshift space
distortions, it seems to be competitive. Also redshift errors can easily be included, which
makes it a valuable tool to apply to photometric data, if the redshift errors are small
enough (σz . 0.06).
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3.2 Bispectrum

After the theoretical derivation of the three-point statistics in real and redshift space, the
model has to be tested against e.g. the L-BASICC simulations. This part of the thesis
will be focused on the Fourier space quantity, the bispectrum. Such an investigation is
required to �nd out the range of validity of the model and its limitations. Throughout this
section, such an examination will be performed in detail, beginning with a special triangle
con�guration, the equilateral one. In Section 3.2.1, the problems the model has will be
described in order to understand the results in the following sections. In Section 3.2.3,
this investigation will be extended to all possible triangle con�gurations up to a prede�ned
k-mode. Finally, Section 3.2 will be concluded with a discussion of other publications (see
Section 3.2.5). The whole analysis of the bispectrum will be carried out with the rms of
the 50 realizations of the simulation and not the variation of the mean. This procedure was
chosen to get a better understanding of the errors which can be assumed in a real survey.
As a reminder, the volume of one box is Vbox = 2.41 h−3Gpc3, whereas the whole available
volume is �fty times larger, namely 120.31 h−3Gpc3, which is completely unrealistic for
the size of a galaxy survey. For example the e�ective volume of the SDSS III DR 9 BOSS
CMASS sample is given by 2.2 Gpc3 (Anderson et al., 2012) which is almost the size of
one L-BASICC box.

3.2.1 Equilateral con�gurations: dark matter

The equilateral triangle con�guration can be described by only one k-mode, because all
sides have the same length. This is a big advantage of equilateral con�gurations. If an
e�ect is scale dependent or the theory breaks down at a certain k-mode, there will not
be any signal from other k-modes. Therefore, a comparison of the dark matter simulation
with the theoretical prediction is much easier and will clearly show at which k-mode the
non-linear structure growth cannot be modeled correctly by the tree-level ansatz anymore.
In Figure 3.14, the dark matter bispectra from the L-BASICC simulations for equilateral
triangles are shown at redshifts of z = 0.5 (left panel) and z = 1.0 (right panel). The
binsize for the extracted bispectra from the L-BASICC simulations is chosen to be 2× kf
which will also be used for all other bispectra measurements. The results for the z = 0.0
case will be given in the following section where all con�gurations are taken into account.
For each redshift the real (blue color) and redshift (red color) space are plotted together
in one panel where the solid lines represent the theory and the squares with the error bars
the estimation of the bispectra from the dark matter L-BASICC simulations.
It can easily be seen, that for both cases in real space the dark matter estimations and the
theoretical modeling start to deviate at around a k ≈ 0.15 h Mpc−1. If the ratio between
the L-BASICC dark matter estimation of the bispectrum for equilateral triangles and the
model (see Figure 3.15) is computed, this discrepancy can be identi�ed more clearly. The
model underestimates the simulation bispectrum for z = 0.5 at k ≈ 0.10 h Mpc−1, whereas
for z = 1.0 the situation remains unchanged and a consistent and unbiased description of
the model can be achieved up to k ≈ 0.15 h Mpc−1.
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Figure 3.14: The equilateral dark matter bispectrum Beq(k) at z = 0.5 and z = 1.0 are
given on the left and right panel, respectively. The real space bispectrum is shown in blue
and redshift space in red, where the theory is given by the solid lines and the L-BASICC
estimation by the squares with the error bars.
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Figure 3.15: Ratio of Beq(k) between the theory and the extracted quantity from the dark
matter L-BASICC simulations, where z = 0.5 can be found on the left panel and z = 1.0
on the right panel. The real space ratio is indicated in blue and redshift space in red.

In redshift space, the theory overpredicts the signal and deviations occur on larger k-modes.
This can be noticed by looking at Figure 3.14. This statement is true for z = 0.5 where
the ratio is around unity up to 0.15 h Mpc−1. After that k-mode the ratio is biased to-
wards values smaller than unity. For z = 1.0 the situation remains unchanged up to 0.15 h
Mpc−1 compared to real space. Afterwards, the ratio is lower than unity. In the following
paragraph, these �ndings will be discussed in detail.
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Explanations of the results of the dark matter Beq(k)

The deviations identi�ed in the previous discussion are caused by the limitations of the
theoretical model. Two possible explanations can be given:

• non-linear structure growth and

• random motions within a halo (also called FoG).

So far, the modeling of the structure growth is valid in the weakly non-linear regime. By
extending the analysis to too high k-modes the non-linearities induced by gravity become
more and more important but are not described su�ciently by the theory anymore.
In real space, it can be assumed that this is the only e�ect which causes deviations. This
statement can be made clearer by Figure 3.15. At a certain k-mode, the real space ratios
are above the unity line which means the model predicts a too low amplitude. There are
no other e�ects present in real space (e.g. biasing or redshift space distortions) for the
direct comparison performed in this section.
However, it could also be argued that the dark matter particles in the simulations are
tracers of the underlying matter density �eld. This could cause deviations from the dark
matter expectation values (b1 = 1.0 and b2 = 0.0). But this cannot be investigated in
more detail because higher resolution N -body simulations would be required which were
not available for this thesis.
Of course, in redshift space also redshift space distortions have to be considered. The
signal of the redshift space bispectrum from the L-BASICC simulations is reduced. From
the above statements one would expect the opposite trend because the non-linearities of
the structure growth are also present in redshift space. However, the random motions
of dark matter particles within a gravitationally bound system (a halo) are not taken
into account. These random motions would act as a smoothing at a certain scale which
depends on the strength of the random motions. This leads to a damping of the signal
as expected from the theory section. The same e�ect can be seen in the power spectrum
(Matsubara, 2008) where only two k-modes are involved. For the bispectrum three k-modes
are required. Therefore, the damping e�ect of the FoG should be noticed at comparably
smaller k-modes. This e�ect can be noticed more directly by comparing the redshift space
boost-factor obtained from the theory with the one of dark matter L-BASICC estimation.
In Figure 3.16, where the ratio of the redshift space and real space equilateral bispectra
is shown, a scale dependence of the redshift space distortions can be identi�ed clearly at
k & 0.10 h Mpc−1 for both cases. This trend is not related to non-linear structure growth.
Due to the calculation of the ratios no modeling is involved, non-linearities are present in
real and redshift space. The vertical line in this �gure shows the theoretical Kaiser boost-
factor whereas the L-BASICC Kaiser boost-factor seems to decrease at larger k-modes or,
in other words, the signal of the redshift space bispectra are damped. This damping is a
clear hint towards the FoG.
In the absence of random motions the independence of the theoretical boost-factor on the
k-mode is exactly what one would expect in the case of equilateral triangles. The angle
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Figure 3.16: Ratio between the redshift (Beq,zs(k)) and real space dark matter bispectra
(Beq,rs(k)) for z = 0.5 and z = 1.0 are plotted on the left and right panel, respectively. The
vertical line indicates the theoretical expectation value, the Kaiser boost-factor whereas
the squares with the error bars are the L-BASICC ratios.

averaging of the redshift space bispectrum in Equation (2.98) a�ects all sides of the triangle
in the same way. If more general con�gurations are taken into account, the boost-factor
will be dependent on the considered con�gurations. The sides of the triangle have di�erent
lengths. Therefore, they are a�ected di�erently by redshift space distortions.
It can be concluded that the non-linearities can be correctly modeled up to k ≈ 0.10 h
Mpc−1 for all considered redshifts. The only e�ect not taken into account so far are the
above mentioned random motions. They would introduce a k-dependence due to their
increasing importance at larger k-modes and results in an additional damping which is
able to explain the di�erence in the ratios. This means that without a proper modeling
of this e�ect, modes larger than 0.10 h Mpc−1 cannot be taken into account for the bias
estimation at low redshifts which is one of the goals of this thesis. Modeling the FoG will
be examined in Section 3.2.3.

Bias parameter extraction: dark matter

The validity of the model cannot only be tested by a direct comparison but it can also be
checked by extracting the bias parameters and compare the results with the expectation
values. By performing a MCMC (Metropolis et al., 1953; Spergel et al., 2003) the linear
bias b1 and the quadratic bias b2 can be extracted from the L-BASICC simulations. In this
case, the expectation values are already known, b1 = 1.0 and b2 = 0.0.
The MCMC was carried out with 0.0 ≤ b1 ≤ 5.0 and −20.0 ≤ b2 ≤ 20.0 as �at priors.
The exploration of the parameter space is performed with a so-called jumping function,
which is assumed to be a Gaussian (Spergel et al., 2003). In this analysis, the rms of this
jumping function was set to σb1 = 0.3 and σb2 = 5.0. In Table 3.4, the results of the �tting
procedure, where the maximal k-mode for the �t is set to be 0.10 h Mpc−1, are given.
Due to the large errors for the extracted bias parameters further conclusive statements
on these results are not possible. In Section 3.2.3, the uncertainties of b1 and b2 become
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smaller because more con�gurations will be used throughout the extraction process.

zobs b1 b2

0.5
rs 1.106+0.643

−0.736 1.017+2.259
−1.887

zs 0.907+0.386
−0.435 1.429+2.048

−1.868

1.0
rs 0.886+0.530

−0.528 1.221+2.085
−1.809

zs 1.069+1.023
−1.011 4.824+7.787

−6.220

Table 3.4: The estimated bias parameters b1 (column 3) and b2 (column 4) from the dark
matter Beq(k) with their corresponding one-sigma con�dence levels for real (rs, in column
2) and redshift space (zs, in column 2) and the investigated redshift in column 1.

Under the assumption that the di�erence in Figure 3.16 for k-modes smaller than 0.10 h
Mpc−1 is generated by random motions it would be possible to account for this e�ect. As
mentioned above, an additional damping is needed. However, such an additional damping
at such large scales would also result in a much stronger damping on smaller k-modes.
Therefore, a smaller amplitude for the L-BASICC bispectrum should be measured. The
deviation between the model and the L-BASICC boost-factor should be present at smaller
k-modes compared to the situation now.
Then, the question arises, why the redshift space equilateral bispectrum is in better agree-
ment with the model than in real space. There must be present an additional e�ect in
redshift space, which is not properly taken into account in the model. Any additional
boost would be damped by the FoG. The non-linear Kaiser e�ect (Scoccimarro, 2004)
could provide such a boost in the amplitude. However, this e�ect would be more pro-
nounced if random motions would not be present. For the dark matter halos, this would
be the case, which will be examined in the next paragraph.
The velocity dispersion σv of the particles, which de�ne the FoG, could be set as an extra
�tting parameter. By this damping, the overshooting of the non-linear Kaiser e�ect com-
pared to the modeling with the linear Kaiser e�ect could be corrected for to some extend.
This kind of analysis will not be performed in this section due to the few data points (lim-
ited number of di�erent triangles) which can be used for the MCMC. Adding more �tting
parameters do not help to extract well determined bias parameters. Therefore, the e�ect
of random motions on the bias parameters estimation will be examined again in Section
3.2.3 where all triangle con�gurations are taken into account.

3.2.2 Equilateral con�gurations: dark matter halos

The e�ect of random motions can also be examined by looking at the equilateral bispectrum
for the L-BASICC halo catalogs. In this case, the small scale random motions are not
present anymore because the FoF-halos are just points in the L-BASICC halo catalogs.
From the discussion in Section 2.6.2 it is clear, that substructure is required for the FoG
e�ect. By the lack of substructure, the FoGs do not a�ect the halo bispectrum in redshift
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space anymore. If this assumption is correct, the same examination as for the dark matter
particles will give more consistent results with the theoretical prediction.
The redshift space boost-factor comparison for the halos requires a �tting procedure �rst,
where the �tting range was set to be k = 0.10 h Mpc−1 for both redshifts. For the
analysis of biased objects the �at priors of the MCMC are set to be 0.0 ≤ b1 ≤ 8.0 and
−20.0 ≤ b2 ≤ 30.0 and also the searching area in the parameter space was extended to
σb1 = 0.5 and σb2 = 3.0. These parameter ranges are used for both redshifts.
The results of this analysis are given in Table 3.5. The b1 parameter is weakly determined
but it can be noticed that larger values for b1 can be extracted at higher redshifts with a
one-sigma signi�cance. The quadratic bias is still undetermined. A detailed discussion of
estimating b1 and b2 will be performed in Section 3.2.3 where all triangle con�gurations
are considered. This will help to obtain tighter constraints for b1 and b2.

zobs b1 b2

0.5
rs 1.892+0.712

−0.686 5.598+5.538
−4.994

zs 1.943+0.736
−0.706 5.425+5.596

−4.878

1.0
rs 3.056+1.011

−0.871 6.288+5.308
−4.951

zs 3.151+1.069
−0.913 6.292+5.421

−5.074

Table 3.5: The estimated bias parameters b1 (column 3) and b2 (column 4) from the dark
matter halo Beq(k) with their corresponding one-sigma con�dence levels for real (rs, in
column 2) and redshift space (zs, in column 2) and the investigated redshift in column 1.

The comparison between the estimation of the equilateral bispectra in real (blue squares)
and redshift (red squares) space as well as the corresponding theoretical counterpart is
shown in Figure 3.17. The divergence between the estimation and the theory starts at
around k ≈ 0.10 h Mpc−1, which is almost the same value as for the dark matter case and
hence has been chosen to be the end of the �tting range. For z = 0.5 the situation seems
to be better than for z = 1.0, even if the real space bispectrum is overestimated by the
theory.
Assuming that the bias parameters are scale independent, the physical e�ects are the same
on all scales. No additional scale dependence is introduced as long as the considered k-
modes represent large scales (at least & 60.0 h−1 Mpc, see Section 3.1). This can be
noticed for real space where the agreement between theory and measurement is extended
up to k ≈ 0.15 h Mpc−1. At smaller scales, di�erences between the L-BASICC and the
theoretical bispectrum can be identi�ed. This deviation is present in real and redshift space.
The theoretical redshift space bispectrum for the halos underestimates the L-BASICC
estimation. This is a contrary trend compared to the dark matter case. All of these
statements can also be derived from Figure 3.18 where the ratios of the L-BASICC and
the theoretical bispectrum are shown for the two considered redshifts.
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Figure 3.17: Bh
eq(k) at z = 0.5 and z = 1.0 are plotted on the left and the right panel,

respectively. The solid lines show the theoretical model and the squares with the error
bars the L-BASICC bispectra. Real space is illustrated in blue and redshift space in red.
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Figure 3.18: Ratio between the theory and the estimation from the L-BASICC halo catalogs
(Beq,L−BASICC(k)/Beq,theory(k)): z = 0.5 (left panel) and z = 1.0 (right panel). Real space
is given by the blue color and redshift space by red.

Explanations of the results of the dark matter halo Beq(k)

First of all, one can have the impression that the low redshift estimation is better described
by the theory than the high redshift case. In order to understand this, it is necessary to
introduce the mass function.
The mass function is a statistics which describes the comoving number density of bound
objects, such as halos, of mass M at redshift z (Sheth & Tormen, 1999). It is a rapidly
declining function when going from low to high mass halos. The probability of �nding a
high mass halo is higher at lower redshifts than at higher redshifts because particles had
more time to organize themselves in bound objects by following the local gravitational
potential.
The mass of a dark matter particle for the L-BASICC simulations is Mdm = 1.75 × 1012

h−1M� and the smallest halos consist of 10 dark matter particles, see Section 2.3. There-
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Figure 3.19: Ratio between the redshift and real space bispectra Beq,zs(k)/Beq,rs(k) (the
Kaiser boost-factor) for z = 0.5 and z = 1.0 are plotted on the left and right panel,
respectively. The vertical line indicates the theoretical expectation value whereas the
squares with the error bars are the L-BASICC ratios.

fore, the mass of the smallest halos is given by Mmin
halo = 1.75 × 1013 h−1M�. This also

sets the mass scale from which the mass function of the L-BASICC simulations can be
examined. At a redshift of z = 1.0, halos with a mass of Mmin

halo are already very massive
with an already very non-linear structure growth history compared to lower redshifts. If
this point is considered in the discussion, then the measured bispectrum will look much
more non-linearly evolved. The underestimation of the theory is a good indication that
the non-linearities are not described su�ciently for k-modes larger than 0.15 h Mpc−1 in
real space and 0.10 h Mpc−1 in redshift space. The same discussion and statements can
be made by looking at Figure 3.18. It can be noticed that the ratio for z = 0.5 is closer to
unity than for the z = 1.0 case. This is not surprising from the discussion above.
A closer look at the redshift space bispectrum is required to explain the deviation between
the L-BASICC and the theoretical bispectrum. The signal of the redshift space halo L-
BASICC bispectrum is not suppressed by the FoG due to the lack of the substructure
of the dark matter halos. Only the e�ect of non-linear structure growth and large scale
redshift space distortions are left.
For a more clearer discussion, the ratio between the redshift and real space bispectrum
Beq,zs(k) and Beq,rs(k), respectively, is plotted in Figure 3.19. The same information is
illustrated as in Figure 3.16 but for the L-BASICC dark matter halos. As for dark matter,
the goal is to understand how well large scale redshift space distortions are described by
the linear Kaiser e�ect (Heavens et al., 1998; Verde et al., 2002).
The damping, which is visible in Figure 3.16 (dark matter case), is not present in Figure
3.19 (dark matter halos) but a clear trend of overestimating the signal can be seen. The
redshift space bispectrum seems to gain signal at larger k-modes. One explanation would
be a more non-linear behavior, which is not taken into account by the linear redshift space
distortions. The non-linear Kaiser e�ect (Scoccimarro, 2004), where the infall of matter is
not considered as linear as it is assumed by the linear Kaiser e�ect (Kaiser, 1987), could
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provide such a boost of the amplitude of the redshift space bispectrum. Another explana-
tion would be a scale dependent bias which would lead to di�erent behaviors in real and
redshift space. So far, scale dependent bias parameters have not been observed because
they should also alter the two-point statistics (Jeong & Komatsu, 2009). A scale depen-
dent bias would have also changed the results of Section 3.1. The non-linear Kaiser e�ect
is the best possible explanation of the ratios in Figure 3.19.

Reduced bispectrum: dark matter

Until now, only the bispectrum Beq(k) was examined throughout the whole discussion
in this section. The reduced bispectrum Q(k1, k2, θ) is also a quantity on which such
a discussion can be performed to determine the maximum possible k-mode which can be
taken into account for the estimation of the bias parameters. As mentioned in Section 2.6.1,
Q(k1, k2, θ) has the big advantage, that it is in lowest order independent on cosmological
parameters and time evolution. For the equilateral triangle con�guration Equation (2.102)
is simpli�ed to

Qred,eq(k) ≡
Beq(k)

3(P (k))2
. (3.2)

The reduced equilateral bispectra Qred,eq(k) for z = 0.5 (left panel) and z = 1.0 (right
panel), which are shown in Figure 3.20 are clearly not very sensitive to the time evolution.
This behavior can be explained by the division of the bispectrum by the power spectra. The
growth factors contained in the bispectra are almost canceled out by the growth factors in
the power spectra. In Figure 3.20, the theoretical Qred,eq(k)s for real and redshift space are
represented by a blue and a red straight line, respectively. These values can be calculated
easily and are given by Qred,eq,rs(k) = 4/7 and

Qred,eq,zs(k) =
2

105
(30 + 20β(z) + 3β(z)) +

b31β (70 + 42β(z) + 3β(z)2)

1470

− β(z)

315

(
−105− 63β(z) + β(z)3

)
+

b31b2
30

(
30 + 20β(z) + 3β(z)3

) (3.3)

for real and redshift space, respectively. The F-kernel which describes the shape of the
bispectrum (this is absolutely true for dark matter particles but not for biased objects, see
the discussion in Section 2.6.1) is dependent on the ratios of the involved k-modes and the
angles between them.
For equilateral triangle con�gurations this ratio is unity and the angle is π/3. Then, the
F-kernel is just a single number independent on the size of the considered triangles. Of
course, this statement is true for any other triangle con�guration as long as the ratios and
the angles are kept constant, just the number of the F-kernel changes. If the bispectrum is
evaluated for two prede�ned side lengths k1 and k2 where θ12 is de�ned as the angle between
these k-modes to ensure the closure of the triangle, di�erent con�gurations will be mixed
in one representation. This will lead to a U-shaped curve as for Beq(k) (Bernardeau et al.,
2002).
The deviations which can be identi�ed in Figure 3.20 start at around 0.10 h Mpc−1 and
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Figure 3.20: Qeq(k) z = 0.5 (left panel) and z = 1.0 (right panel) are shown in blue and
red for real and redshift space, respectively. The straight lines are the theoretical Qeq(k)s
and the squares with the error bars are the Qeq(k)s extracted from the L-BASICC dark
matter halo catalogs.

0.15 h Mpc−1 for z = 0.5 and 1.0, respectively. The same values for the k-modes up to
which the model is able to deliver consistent results with the L-BASICC simulations were
found for Beq(k). So far, this shows that the modeling is consistent and that the statements
made above also hold in this situation.
Non-linearities are responsible for the deviations from the straight line which would be
expected by the tree-level ansatz. This also shows that non-linearities are more pronounced
in the bispectrum than in the power spectrum.

Reduced bispectrum: dark matter halos

For biased objects the reduced equilateral bispectrum

Qh
red,eq(k) =

Qred,eq(k)

b1
+

b2
b21

, (3.4)

which looks similar to Equation (2.103), is also a featureless function at small k-modes (at
least for . 0.10 h Mpc−1, see the dark matter discussion in the previous section). The
trend, which is visible in Figure 3.20, is not that obvious anymore.
Any signal present in the dark matter halo reduced bispectrum will have a lower signi�cance
due to the reduction of the amplitude by the b1 bias parameter and the increase of the
errors due to the low mean density of the halo catalogs. This means that the �tting
procedure for Beq(k) should not be applied to Qred,eq(k) because at small k-modes it would
be �tting a straight horizontal featureless line with two parameters. This will lead to a
huge degeneracy between b1 and b2 and lowers the signi�cance of such a �tting process.
In addition to the already noticed low signi�cance of the estimated bias parameters from
Beq(k). Therefore, extracting the bias parameters from Qeq(k) will be excluded from this
thesis. A �gure with the reduced equilateral bispectra for the dark matter halos for the
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two redshifts would also not make any sense. It would be hardly possible to see at which
k-mode deviations between the estimation and the theory occur.
However, the reduced bispectrum obtained from all con�gurations will be analyzed in detail
in Section 3.2.3. In this case, there will be a shape dependence present due to the mixing of
di�erent triangle con�gurations. At this stage it is known, that the model can be trusted
up to a certain k-mode (. 0.10 h Mpc−1 for z = 0.5 and . 0.15 h Mpc−1 for z = 1.0).

3.2.3 All con�gurations

There are two possible methods of estimating the bispectrum. One results in the so-called
U-shape, where one speci�c triangle con�guration is of interest. This means, two sides
of the triangle, e.g. k1 and k2, are �xed during the estimation process and the third
side k3 is varied with respect to the angle θ12 between k1 and k2. The second one is to
consider all possible con�gurations up to a prede�ned k-mode where the values of the
bispectrum are ordered in the following way, kmax = k1 ≥ k2 ≥ k3 under the restriction of
the binsize, which is set to be 2×kf throughout the following discussion. This would result
in a zick-zack-curve. Taking all possible con�gurations into account gives a much larger
content of information compared to a single U-shape curve, where only one con�guration
is considered, and hence the bias parameters b1 and b2 are more constrained.
Therefore, the zick-zack curve should be chosen for extracting these bias parameters. The
proposed order of the triangles has the advantage that if the range of validity of the
theoretical model is known, all k-modes larger than that particular k-mode will not be
taken into account for the estimation of b1 and b2. Indeed, the same procedure is possible
for the U-shape representation, but this includes more computational e�ort and because
of throwing-away information, the constraints would be even less restricted.
Therefore, in the following discussions all possible con�gurations in the above suggested
order, except for collapsed con�gurations (k1 ≈ k2 � k3), are taken into account if not
stated otherwise. At the beginning of the dark matter discussion, the in�uence of the
collapsed triangles will shortly be discussed. A more detailed investigation is given in the
Appendix A.5, in which the bias parameters b1 and b2 will be estimated by taking also the
collapsed con�gurations into account. It will be shown that these estimates for b1 and b2
are not correct because the model is not able to predict the bispectrum correctly for these
con�gurations.

Bias parameter extraction: dark matter bispectrum

As in Section 3.2.1, the discussion starts with the analysis on the dark matter simulations
in order to show, up to which kmax unbiased estimations of the linear bias b1 and quadratic
bias b2 can be achieved and whether the restrictions made in Section 3.2.1 are still valid.
Therefore, the theoretical and the L-BASICC bispectrum will be compared with each other.
Later in this section the bias parameters b1 and b2 will be extracted as in Section 3.2.1.
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Investigation of the validity of the model

In this section, the validity of the model will be examined, which means how well the
model is able to reproduce the features in the measurement. The measurement and the
model will be compared with each other by calculating the ratio between them, with no
�tting procedure inbetween. This helps to visualize the range of validity of the model
which cannot be achieved by just examining the extracted bias parameters. Of course, this
direct comparison between the model and the measurement is only possible for the dark
matter simulation. For the dark matter halos the MCMC must be performed �rst.
The ratios between the measurement and the theory are given in the Figures 3.21, 3.22
and 3.23 for z = 0.0, 0.5 and 1.0, respectively. The lower x-axis in the �gures shows the
con�guration id, the position of the triangle con�guration, when ordered by the length of
the triangle sides. The upper x-axis shows the multiples of kf in relation with the con�g-
uration id, the tics mark the equilateral case. Each tic shows the maximum side length
of the triangle up to that con�guration id. Below such a tic all triangle con�gurations are
considered where one side of the triangle has the length of the k-mode de�ned by that tic.
The real space ratios can be found on the left panel and the redshift space ratios on the
right panel.
In each real space panel (left side) of the ratio �gures two curves are shown, in black all
triangle con�gurations are taken into account for calculating the ratio and in blue the col-
lapsed con�gurations are excluded. In redshift space (right panel), four curves are plotted.
The blue and black solid lines show the ratios when the FoGs are taken into account, in
red and green they are excluded. The ratios with the collapsed triangles are plotted in
black and red whereas for blue and green they are not taken into account. The velocity
dispersion of the particles required for the FoG can be calculated theoretically by

σ2
v =

1

6π2

∫
Pθθ(k)dk (3.5)

and is 6.071 h−1 Mpc, 5.054 h−1Mpc and 3.820 h−1 Mpc for z = 0.0, 0.5, 1.0, respectively.

Discussion of the ratios

In all �gures at all redshifts spikey deviations up to 40% below the unity line are present
for the ratios of the L-BASICC estimation and the theoretical prediction, if the collapsed
con�gurations are included for the calculation of the ratios. These deviations will be called
negative spikes or peaks in the following discussion. The spikey deviations above the unity
line will be called positive spikes or peaks.
These negative peaks are the ratios of the collapsed triangle con�gurations. Therefore, the
collapsed triangles are responsible for the strongest deviation between the model and the
L-BASICC estimation independent on the considered k-mode. This is a clear hint that
these con�gurations cannot be modeled even on the largest scales. Con�gurations close to
collapsed ones can also be related to these spikes because they are in the same bin as the
collapsed con�gurations (binsize is 2 × kf ). The order of the triangles is also responsible
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Figure 3.21: B(k1, k2, k3)/Btheo(k1, k2, k3) at z = 0.0 is plotted against the con�guration

id of the triangles (lower x-axis). The upper x-axis displays the multiples of kf in relation
with the con�guration id. The ratios in real and redshift space are shown on the left and
the right panel, respectively. Whether the collapsed con�gurations are taken into account
or not is illustrated in black and blue for real space. In redshift space, the black and blue
solid lines indicate that the FoGs are considered. In red and green the redshift space ratios
without the FoGs are shown for the collapsed triangle con�gurations included or excluded
for the calculation of the ratios, respectively.
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Figure 3.22: Same description as for Figure 3.21, but for z = 0.5

for the positions of the negative spikes. At each of such a spike a new con�guration with
two �xed sides is considered, the third one is varied until the closure of the triangle cannot
be assured anymore.
It can also be noticed, that at a certain con�guration id positive peaks with a high ampli-
tude are present. This means that the measured bispectrum is larger than the theoretical
one. At that con�guration id it seems that these positive peaks have a periodic behavior.
The higher the redshift the larger is the k-mode from which this e�ect can be observed in-
dependent on the coordinate frame (which means real or redshift space). In redshift space,
these peaks are also present but at lower con�guration ids compared to real space at the
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Figure 3.23: Same description as for Figure 3.21, but for z = 1.0

same redshift. Obviously, these peaks in�uence the estimation of the bias parameters.
At z = 1.0 in real space, these peaks with periodic behavior start at around the con�gu-

ration id of 450, which corresponds to a kmax = 0.150 h Mpc−1. Around that k-mode the
trend in b2 becomes more prominent, see right panel of Figure 3.26.
For redshift space the situation is similar, the positive peaks are present at lower con�gu-
ration ids. Therefore, the bispectrum can only be modeled up to a lower k-mode compared
to real space. The e�ect of the random motions can also be identi�ed. The theoretical
bispectrum has a too high amplitude at large k-modes compared to the L-BASICC bispec-
trum. The random motions reduce the clustering signal, as discussed in Section 2.6.2. The
theoretical estimation of the velocity dispersion is able to mimic this e�ect and deviations
between the two bispectra are reduced. If the random motions are not taken into account,
the model will di�er earlier from the measurement. The con�guration id at which the devi-
ation starts in redshift space at z = 1.0 is around 150, which corresponds to kmax = 0.094
h Mpc−1. The random motions help to extent the analysis up to a con�guration id of 350,
a k-mode of 0.131 h Mpc−1.
At lower redshifts these peaks are more prominent at lower con�guration ids. In real
space, the con�guration id, where the positive peaks can clearly be identi�ed, is around
350 (kmax = 0.131 h Mpc−1) and 150 (kmax = 0.094 h Mpc−1) for z = 0.5 and 0.0, re-
spectively. For redshift space without considering the random motions this con�guration
id is around 150 (kmax = 0.094 h Mpc−1) and 100 (kmax = 0.084 h Mpc−1) for z = 0.5 and
0.0, respectively. The situation can be mildly improved by the inclusion of the random
motions. The theoretical bispectrum can be trusted up to a con�guration id of around 200
(kmax = 0.104 h Mpc−1) and 150 (kmax = 0.094 h Mpc−1) for z = 0.5 and 0.0, respectively.
This short discussion shows, that the correct estimation of b1 and b2 is only possible up to
a certain k-mode, up to which the bispectrum can be modeled correctly. It was decided for
the later investigation of this section to consider only well modeled k-modes. This means
all sides of the triangle must be modeled correctly by the modi�ed tree-level ansatz in order
to avoid misinterpretations of the found results. It is possible to �nd well described triangle
con�gurations at larger k-modes but this is not subject for this �rst detailed investigation
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of the bispectrum. However, in later studies this should be examined in detail.

Explanations of the ratios

From the discussion above, it can be stated that the theory is not able to account for
collapsed triangles. In any analysis, where these con�gurations are considered, the ampli-
tude of the model is too high. A smaller b1 would be needed to account for this. These
spikes would also introduce a wrong shape dependence, because the amplitude of the cor-
rect modeled con�gurations are then too low and a higher b2 is required to compensate
for this. The discussion in Section 2.6.1 showed, that the b21b2-term in Equation (2.78)
has a di�erent shape dependence than the F-kernel term. Therefore, the whole theoretical
bispectrum would be calculated wrongly if they were taken into account for the estimation
of the bias parameters. The negative spikes are understood by now but there are also
positive spikes present.
The equilateral triangles are responsible for the periodic positive peaks with the highest
amplitude in such a series. These highest amplitude peaks coincide with the tics of the
upper x-axis which mark the equilateral triangle con�gurations. As pointed out in Section
3.2.1, that at larger k-modes (& 0.15 h Mpc−1 in real space and & 0.10 h Mpc−1 in redshift
space for z = 1.0, of course these values vary for di�erent redshifts) the model is not able
to predict the correct amplitude of the bispectrum anymore. These peaks are the mani-
festation of the insu�cient modeling of non-linear structure growth at these scales. The
increasing wing towards such a peak just shows how the remaining sides of the triangle
become larger (in Fourier space) and �nally result in the equilateral con�guration (the
highest peak in such a series).
The smaller peaks in such a series can be explained similarly. Two side lengths of the
triangle are de�ned and the third one is getting larger until the condition k1 ≥ k2 = k3 is
ful�lled. This marks the most non-linear triangle for such a con�guration (because k1 and
k2 are �xed and k3 is varied). The wing only represents the ratio of two U-shape bispectra
in the interval 0.0 ≤ θ12 ≤ π/3. Due to the chosen binning (2 × kf ), the length of such a
period is dependent on the two �xed side lengths.
As mentioned in the discussion of the equilateral triangle con�gurations, the k-mode at
which the tree-level ansatz is failing must be found out to know the range of validity of the
model. From the discussion above, it can be noticed that there are con�gurations that are
better described by the theory even if the tree-level ansatz is already insu�cient for one
of the sides of the triangle. However, for this thesis it was decided to consider only modes
which are well modeled in order to get a better understanding of the non-linearities which
a�ect the bispectrum. For a later possible application to a real data set an investigation
of these better described con�gurations is useful for obtaining tight constraints on the bias
parameters.
This short discussion shows, that the correct estimation of the linear and the quadratic
bias is only possible up to a certain k-mode, up to which the bispectrum can be modeled
correctly, as claimed previously in this section. This statement is true for real and red-
shift space. At larger k-modes (the exact value is dependent on the considered redshift
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and the coordinate frame (real and redshift space)) the analysis is not trustworthy anymore.

Extracting the bias parameters b1 and b2 from the dark matter bispectrum

In this section, the MCMC will be carried out to extract the bias parameters. By per-
forming the analysis at z = 0.0, z = 0.5 and z = 1.0 the redshift dependence on the bias
parameters estimation will also be investigated. Furthermore, it was also decided to ana-
lyze the e�ect of the random motions on the bispectrum and for the extraction of the bias
parameters. Throughout the discussion of the equilateral con�gurations, this analysis was
avoided due to the limited data points (number of di�erent triangles) which were available
for that analysis. By considering all possible triangle con�gurations this limitation does
not hold any longer.

z kmax [h Mpc−1] for b1 kmax [h Mpc−1] for b2

0.0
rs 0.10 0.09
zs 0.08 0.08

zs with FoG 0.09 0.08

0.5
rs 0.12 0.10
zs 0.09 0.09

zs with FoG 0.11 0.10

1.0
rs 0.15 0.14
zs 0.09 0.11

zs with FoG 0.13 0.13

Table 3.6: In this table, the kmax-values, up to which an accordant estimation of the bias
parameters b1 and b2 with the dark matter expectation values is possible, are summarized.
The analysis is performed on the dark matter bispectrum in real space called rs, redshift
space with only coherent infall zs and with the FoG included zs with FoG. In column 1
the considered redshift can be found, in column 2 the analyzed coordinate frame (which
means real or redshift space) and in column 3 and 4 the obtained kmax-values for b1 and
b2, respectively.

In the Figures 3.24 (for z = 0.0), 3.25 (for z = 0.5) and 3.26 (for z = 1.0), the values
for b1 (left panels) and b2 (right panels) are plotted against kmax. The kmax-value de�nes
the largest possible side length of a triangle up to which all con�gurations were taken into
account for the �tting process. The values of kmax up to which the linear and the quadratic
bias can be estimated in agreement with the expectation values are summarized in Table
3.6. Three di�erent results are contained in these �gures depending on the analysis which
was carried out, the results obtained from the real space bispectrum Brs(k1, k2, k3) (see
Equation (2.69)) are given in blue, the redshift space bispectrum without any random mo-
tions or FoG Bzs(k1, k2, k3) (see Appendix A.1) in red and in black Bzs,mFoG(k1, k2, k3) (see
Equation (2.98)) with the random motions or FoG included. In Figure 3.27, the results for
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the �tted velocity dispersions σvs are shown for z = 0.0, z = 0.5 and z = 1.0 in blue, red
and black, respectively.
The MCMC was performed with 0.0 ≤ b1 ≤ 5.0, −20.0 ≤ b2 ≤ 20.0 and 0.0 h−1 Mpc
≤ σv ≤ 40.0 h−1 Mpc, for the velocity dispersion when the random motions are included,
as �at priors. For the exploration of the parameter space the rms of the Gaussian jumping
function was limited by σb1 = 0.05, σb2 = 0.15 and σσv = 2.5 h−1 Mpc.
In all �gures (which means for all redshifts independent of the coordinate frame), two
trends can be identi�ed. The linear bias b1 is underestimated by the model, whereas the
quadratic bias b2 is overestimated. These trends are more pronounced the lower the con-
sidered redshift is.
If only one redshift is examined, the deviation of the extracted bias parameters compared
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Figure 3.24: Estimations of the b1 (left panel) and the b2 (right panel) parameters are plot-
ted against kmax, the maximum k-mode for the side length of a triangle con�guration. The
results in real space are given in blue (Brs(k1, k2, k3)), redshift space in red (Bzs(k1, k2, k3))
and black (Bzs,mFoG(k1, k2, k3)) when the FoG are taken in into account or not, respec-
tively, at z = 0.0. The black dotted lines in each panel show the dark matter expectation
values for the bias parameters (b1 = 1.0 and b2 = 0.0).
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Figure 3.25: Same description as for Figure 3.24, but for z = 0.5
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Figure 3.26: Same description as for Figure 3.24, but for z = 1.0
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Figure 3.27: The estimated σv-values are summarized in this �gure. The results obtained
for the di�erent redshifts z = 0.0, 0.5 and 1.0 are shown in blue, red and black, respectively.
The theoretical estimations are indicated by the dotted lines with the corresponding color
for the considered redshift.

to the dark matter expectation values will become larger by going to larger k-modes. This
is also true for all investigated coordinate frames. A consistent estimation of the linear and
the quadratic bias in real space can be achieved up to larger k-modes compared to redshift
space.
In the previous section, it was claimed that by including the random motions, the extrac-
tion of b1 and b2 in redshift space can be extended to larger k-modes if these results are
compared to the case where only the linear Kaiser e�ect is modeled. This assumption can
be veri�ed by this analysis (see Figures 3.24, 3.25 and 3.26). However, the improvement is
very mild and its signi�cance becomes less important the lower the redshift is.
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Discussion of the results of the extracted bias parameters

The above discussed trends can be explained by

• the non-linear structure growth and

• the redshift space distortions, which are also non-linear (see non-linear Kaiser e�ect
(Scoccimarro, 2004)).

The discussion given here will start in real space. Only the growth of structure is able to
in�uence the clustering signal for the dark matter case. Therefore, the overall explanation
for these trends lies in the description of the non-linear structure growth. It was stated that
the model is able to deliver meaningful results for k-modes smaller than 0.15 h Mpc−1 at
least for the b1-estimation at z = 1.0, see Section 3.2.1. This limit is also con�rmed by the
obtained results in this section. By going to lower redshifts the model is restricted to even
smaller k-modes. This behavior is expected because the structure growth becomes more
non-linear at lower redshifts. The model used for the extraction of b1 and b2 is restricted
to the weakly non-linear regime only. Therefore, the range of validity of the model shrinks
when going from higher to lower redshifts what can be noticed by looking at Table 3.6 as
well.
In redshift space, the situation is more complicated. Not only non-linearities, induced
by gravity, have to be taken into account, but also peculiar velocities and their e�ect on
the volume averaged bispectrum. In the analysis here, it is shown (see the �gures above
and Table 3.6), that at least on the largest scales the redshift space distortions for the
bispectrum can be modeled by the linear Kaiser e�ect. The modeling of the random mo-
tions should mainly consider the small scale e�ect of peculiar velocities of objects within a
massive structure, see Section 2.6.2. A mild improvement is possible when considering the
random motions of dark matter particles, see the discussion on the equilateral triangles
given in Section 3.2.1. The inclusion of the FoG also alters the shape of the redshift space
bispectrum and, therefore, is able to provide an improvement for the estimation of the bias
parameters b1 and b2. This can partly be explained by the random motions itself, which are
able to mimic some of the features in the bispectrum originated by the non-linear structure
growth and correct for the lack of the non-linear Kaiser e�ect in the model, as discussed
in Section 3.2.1. Hence, random motions, which are set as a free �tting parameter, act like
an arti�cial smoothing.
On the largest scales, coherent infall should be dominant, which is modeled by the lin-
ear Kaiser e�ect (Heavens et al., 1998). However, deviations already start at very large
scales (see Table 3.6). If this large scale signal is really originated from large scale random
motions, they will also be present in the dark matter halo catalog, where the small scale
random motions are zero, because there is not any substructure present. A detailed anal-
ysis on the dark matter halo catalog will be given in the following section.
There seems to be a degeneracy present between b1 and b2 due to their opposite trends
at all redshifts independent on the coordinate frame. As shown in Section 2.6.1, the �rst
term of Equation (2.78) is only able to change the amplitude of the bispectrum, despite of
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the shape dependence of the chosen triangle con�guration given by the F-kernel. It was
concluded from Figure 2.8, that an additional shape dependence is introduced by the b21b2-
term. Therefore, the shape of the theoretical bispectrum can be altered by a combination
of b1 and b2, which corresponds to a di�erent weighting of the shape dependencies given
by the two terms of Equation (2.78). This will lead to a degeneracy between b1 and b2.
The fact, that b2 is overestimated at all scales, can only be explained by such an additional
shape dependence, which was not taken into account so far. Then, the underestimation of
b1 is required to compensate for the overestimation of b2. This can explain to some extent
the visible trends in the �gures above.
In real space, this can only be a hint towards the insu�cient modeling of structure growth,
as claimed above. In redshift space, these trends are more pronounced which is an in-
dication that not only the modeling of the growth of structure but also of the redshift
space distortions is insu�cient at large k-modes. An extension to higher order perturba-
tion theory could help to get a better theoretical description for these modes but such an
investigation is beyond the scope of this thesis.

Discussion of the results of the velocity dispersion

Figure 3.27 shows the �ndings for the extracted velocity dispersion σv at di�erent red-
shifts. A trend can be noticed, that the lower the redshift is, the larger are the σv-values.
This is expected because the particles had more time to organize themselves in massive
structures, where their random motions are dependent on the depth of the gravitational
potential well.
This is a direct consequence of the viral theorem (2〈T 〉 = −〈V 〉, for a conservative and
zentral force) which quanti�es the time averaged contribution of the kinetic energy 〈T 〉 and
the potential energy 〈V 〉 to the total energy. It was already concluded that the modeling
of the random motions is able to mimic some features of structure growth and also correct
for the lack of the non-linear Kaiser e�ect in the modeling and hence act as an arti�cial
smoothing. This statement could be made by looking at the smallest k-modes (. 0.10
h Mpc−1), where the measured values for σv appear to be very large. A more conclusive
statement is not possible because of the large errors of the extracted σv-values. Around
that k-modes only a limited number of triangle con�gurations is available for measuring
the bispectrum and cosmic variance has a huge in�uence on the bispectrum. This leads to
large errors for the measured bispectrum and for the later extracted �tting parameters as
it can be seen in Figure 3.27.
Another explanation for the large σv-values could be, that there are really large scale ran-
dom motions present. However, the errors in Figure 3.27 are too large for more conclusive
statements.
By comparing the theoretical results of Equation (3.5) with Figure 3.27, it can be no-
ticed that they are in agreement with each other. Except for z = 0.0 where a σv ≈ 7.100
h−1 Mpc was extracted from the dark matter simulations (as a reminder, the theoretical
σv = 6.071 h−1 Mpc). The integral in Equation (3.5) covers all k-modes, even the ones,
on which 3rd order perturbation theory Pθθ(k) cannot be predicted correctly anymore.
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The made assumptions (e.g. no vorticity, Newtonian treatment scales of interest smaller
than the Hubble distance) for the derivation of the 3rd order perturbation theory are not
valid anymore and the theoretical power spectrum overestimates the power spectrum from
e.g. the L-BASICC simulations (of course the situation becomes worse at lower redshifts).
Therefore, the low redshift σv cannot be computed correctly.
In Section 2.6, it was already concluded to use the modi�ed tree-level ansatz. However, at
this stage of the thesis it should be shown in a more extended discussion that this modi�-
cation really improves the model.

Investigation of the tree-level ansatz

In the previous sections, it was claimed, that the usage of the 3rd order perturbation theory
power spectra in Equation (2.69) provides a better description of the bispectrum than the
linear power spectra. This means that by modifying the original tree-level ansatz in the
suggested manner helps to extend the range of validity of the model. In Section 2.6.1, it
was attempted to prove this statement by a short qualitative and quantitative discussion.
In this section, this statement will be corroborated by the estimation of the linear and the
quadratic bias by means of the original tree-level approach given by Equation (2.78). The
results of the modi�ed tree-level ansatz are illustrated in blue and red for real and redshift
space, respectively. The results of the original tree-level ansatz are plotted in green and
purple for real and redshift space, respectively.
The results of this analysis on b1 and b2 will be compared with the previous results of this
section. In the Figures 3.28, 3.29 and 3.30, the results for b1 and b2 are plotted against
kmax for z = 0.0, 0.5 and 1.0, respectively. However, this analysis is restricted to real and
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Figure 3.28: Estimations of the b1 (left panel) and the b2 (right panel) parameter are plotted
against kmax at z = 0.0. The results in real space for the modi�ed and the original tree-level
ansatz are given in blue (Brs(k1, k2, k3)) and green (Brs,lin(k1, k2, k3)), respectively. The
redshift space estimations are shown in red (Bzs(k1, k2, k3)) and purple (Bzs,lin(k1, k2, k3),
original tree-level ansatz). The FoGs were not considered in this analysis.
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Figure 3.29: Same description as for Figure 3.28, but for z = 0.5
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Figure 3.30: Same description as for Figure 3.28, but for z = 1.0

redshift space where only the linear Kaiser e�ect is taken into account because considering
the FoG only leads to a mild improvement of the extracted bias parameters.
It can clearly be concluded that b1 and b2 can be estimated in agreement with the dark
matter expectation values for all considered redshifts for both models on the smallest k-
modes. The deviations between the two prescriptions of the bispectrum already start at
small k-modes independent on the redshift. All trends reported in the discussions above
are also present for the analysis of the original tree-level ansatz but are more pronounced
than in the modi�ed case. From the direct comparison of the two bispectrum modeling
recipes, it can be concluded that the modi�ed tree-level ansatz is able to obtain consistent
results with the dark matter expectation values for b1 and b2 at k-modes where the original
one already fails.
In real space, a reliable estimation of b1 is possible up to a kmax ≈ 0.09 h Mpc−1, 0.11
h Mpc−1 and 0.13 h Mpc−1 for z = 0.0, 0.5 and 1.0, respectively. Approximately the
same results for kmax can be found for the b2 parameter. It can also be noticed from the
�gures, that the situation for Bzs,lin(k1, k2, k3) is worse. A consistent estimation of b1 for
Bzs,lin(k1, k2, k3) compared the dark matter expectation value for b1 is only possible up
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to a kmax ≈ 0.07 h Mpc−1, 0.08 h Mpc−1 and 0.09 h Mpc−1 for z = 0.0, 0.5 and 1.0,
respectively. The same values are upper limits for the b2 estimation. Except for z = 1.0
where b2 is in agreement with the expectation value up to a kmax ≈ 0.10 h Mpc−1, mainly
due to the large errors. The trend to overestimate b2 is already present at smaller modes
as for the results of Brs(k1, k2, k3) and Bzs(k1, k2, k3).

Discussion of the results of the original tree-level ansatz

It is concluded that the modi�ed tree-level ansatz improves the estimation of the bias
parameters compared to original tree-level ansatz. From this analysis, it can also be con-
cluded that non-linear structure growth can be handled in a better way by the modi�ed
tree-level approach. These statements are valid for real and redshift space. It can be
noticed by looking at the �gures above, that the reported trends are more pronounced in
redshift space than in real space.
The inclusion of the random motions in redshift space is excluded from this analysis be-
cause it was already found out that only a mild improvement will be gained, if they are
taken into account (see the discussion on the dark matter bispectrum). It is expected
that the overall trends, which were measured here, would remain unchanged. Therefore,
redshift space was just modeled by considering the linear Kaiser e�ect.
It can be concluded that the modi�ed tree-level ansatz is better suited for estimating b1 and
b2 than the original one. In the next paragraph, the reduced bispectrum will be examined.

Bias parameter extraction: reduced dark matter bispectrum

The following discussion will be focused on the reduced bispectrum Q(k1, k2, k3) extracted
from the L-BASICC dark matter N -body simulations. It will be started with the compar-
ison between the L-BASICC and the theoretical reduced bispectrum for which the ratios
are calculated. These ratios are plotted in the Figures 3.31, 3.32 and 3.33 with the same
color coding as in Figure 3.21 for z = 0.0, 0.5 and 1.0, respectively. The red solid line
at unity indicates the level of perfect match between the L-BASICC and the theoretical
bispectrum. The random motions are not taken into account due to their small impact on
the bispectrum.
It can clearly be noticed that the reduced bispectrum cannot be modeled correctly indepen-
dent on the redshift and the considered k-modes. Only a very limited range of agreement
between measurement and theory can be identi�ed well below a con�guration id of 100
(kmax ≈ 0.084 h−1 Mpc). After that con�guration id the model predicts a too high signal
for the reduced bispectrum compared to the measurement. The only exceptions are the
collapsed triangle con�gurations which are still present as negative peaks in the �gures
above. Extracting bias parameters by means of the reduced bispectrum does not make any
sense and is excluded from this thesis.
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Discussion of the results of the reduced dark matter bispectrum

The insu�cient modeling of the non-linear mode-coupling and the non-linear Kaiser e�ect
are responsible for these trends. For understanding the above found trends it is necessary
to remind oneself how the reduced bispectrum is de�ned. The reduced bispectrum is the
ratio between a sum of squared power spectra, where the enumerator is weighted by the
considered triangle con�guration via the F-kernel, see Equation (2.66). To zeroth order
the amplitude of Q(k1, k2, k3) is given by the bias parameters and its shape by the chosen
triangle con�guration.
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Figure 3.31: Q(k1, k2, k3)/Qtheo(k1, k2, k3) at z = 0.0 is plotted against the con�guration

id of the triangles (lower x-axis). The upper x-axis displays the multiples of kf in relation
with the con�guration id. The ratios in real and redshift space are shown on the left and
the right panel, respectively. Whether the collapsed con�gurations are taken into account
or not is illustrated in black and blue. The redshift space reduced bispectrum is only
modeled by the linear Kaiser e�ect. The red vertical line represents the level of perfect
match between measurement and theory.
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Figure 3.32: Same description as for Figure 3.31 but for z = 0.5
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Figure 3.33: Same description as for Figure 3.31 but for z = 1.0

The deviations from the unity line for the reduced bispectrum are more pronounced than
for the bispectrum itself. For the reduced bispectrum the deviations range from 0.6 to
1.7 whereas for the bispectrum a range from 0.6 to 1.4 is covered. This is not surprising
because the uncertainties in the modeling of the bispectrum and the power spectrum add
up according to the error propagation law. The smaller the considered redshift is, the
larger is the di�erence pronounced between the estimation and the expectation.
In real space, this is a hint towards the insu�ciently modeled non-linear structure growth
and with the lack of the non-linear Kaiser e�ect also in the modeling of the redshift space
bispectrum. It can be concluded that as long as these e�ects are not modeled correctly,
the reduced bispectrum cannot be utilized for the extraction of b1 and b2.
The range of validity of the theoretical model was discussed in detail throughout this
section by means of the dark matter bispectrum. As a next step the dark matter halo
bispectrum catalogs will be examined in order to estimate the linear and the quadratic
bias.

Bias parameter extraction: dark matter halo bispectrum

As for the dark matter investigation, before discussing the results of the extracted bias
parameters from the dark matter halo L-BASICC measurement is compared to the the-
oretical prediction. The best-�t bias parameters extracted from the MCMC by means of
the bispectrum were used for this investigation.
The Figures 3.34, 3.35 and 3.36 show the ratios of the measurement and the prediction for
z = 0.0, 0.5 and 1.0, respectively. The ratios from the real space bispectra and the redshift
space bispectra are plotted on the left and the right panel, respectively. The black color
indicates that the collapsed triangle con�gurations are considered for the evaluation of the
ratios and in blue that they are disregarded. The perfect match between measurement
and model is shown by the red solid line. Because dark matter halos are biased objects,
bias parameters are required for the calculation of the theoretical predictions. The best-�t
parameters were chosen for the k-range where a consistent extraction of the linear and the
quadratic bias in real and redshift space can be obtained. The FoGs are not considered



3.2 Bispectrum 97

in this discussion because in the previous investigation it was already concluded that they
improve only mildly the estimation of these bias parameters (and therefore the bispec-
trum). It can be noticed that for each redshift there is a range of k-modes in which
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Figure 3.34: Same description as for Figure 3.21, but for the dark matter halo bispectrum
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Figure 3.35: Same description as for Figure 3.34, but for z = 0.5

the measurement and the theoretical prediction are in agreement with each other. This
range shrinks when going from higher to lower redshifts. This can be expected from the
discussion in the previous section.
At z = 1.0 (independent on the coordinate frame), it looks as if the theory is not able to
predict the measurement correctly. This can be explained by the low signal which can be
extracted from the halo catalogs at that redshift. Only a few triangle con�gurations can
be found due to the low number density for such a large volume (for comparison: z =
1.0: n̄ ≈ 5.82 × 10−5 (h/Mpc)3; z = 0.5: n̄ ≈ 1.25× 10−4(h/Mpc)3; z = 0.0: n̄ ≈ 5.82×
10−5(h/Mpc)3). For simplicity it was avoided to plot the errors.
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Figure 3.36: Same description as for Figure 3.34, but for z = 1.0

Extraction of the bias parameters b1 and b2 from the dark matter halo bispectrum

In this section, the bias parameters b1 and b2 will be extracted from the dark matter
halo L-BASICC catalogs by means of the bispectrum. The results of the MCMC are plot-
ted in the Figures 3.37, 3.38 and 3.39 for z = 0.0, z = 0.5 and z = 1.0, respectively, and
are summarized in Table 3.7. The �gures of this section follow the notation of the previous
section but without the inclusion of the FoG; on the left panel the results for b1 against
kmax and on the right panel the results for b2 against kmax are shown.
As it was noticed for the dark matter case, on the smallest k-modes (on large scales, see
Table 3.7) consistent results between real and redshift space can be achieved. At all red-
shifts, the extracted values for the linear bias b1 in real space are larger than in redshift
space. For the quadratic bias b2 an opposite trend can be identi�ed. These two behaviors
were present in the dark matter case, too.
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Figure 3.37: Estimations of the b1 (left panel) and the b2 (right panel) parameters are
plotted against kmax, the maximum k-mode for the side length of a triangle con�guration.
The results in real space are given in blue (Brs(k1, k2, k3)) and redshift space modeled with
the linear Kaiser e�ect in red (Bzs(k1, k2, k3)), respectively, for z = 0.0.
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Figure 3.38: Same description as for Figure 3.37, but for z = 0.5
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Figure 3.39: Same description as for Figure 3.37, but for z = 1.0

zobs (b1, kmax [h Mpc−1]) (b2, kmax [h Mpc−1])
0.0 (1.83± 0.08, 0.10) (0.18± 0.24, 0.09)
0.5 (2.50± 0.12, 0.11) (2.54± 0.94, 0.09)
1.0 (3.35± 0.24, 0.15) (11.04± 3.05, 0.11)

Table 3.7: The bias parameters b1 and b2 extracted from the dark matter halo catalogs
with the kmax-values up to which a consistent estimation in real and redshift space can be
achieved are given in column 2 and 3. The investigated redshift can be found in column 1.

The inclusion of the random motions does not change the discussed trends above. The
improvement which can be achieved by their consideration is even less pronounced than
it was already the case for the dark matter particles. At z = 0.5 and 1.0 no improvement
can be identi�ed at all considered k-modes. Except for z = 0.0 where the model slightly
bene�ts from the inclusion of the FoGs at least for the extraction of b1 for k-modes larger
than 0.14 h Mpc−1. The k-modes up to which the real and redshift space results are not
in agreement with each other do not change from the found results here. Such a behavior
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cannot be identi�ed for b2.
Because of these mild e�ects on the bispectrum it was decided to exclude the results of the
extracted bias parameters with the FoGs included for simplicity.

Discussion of the results of the extracted bias parameters

The trends found in the last paragraph can be explained by three possible e�ects

• the non-linear structure growth,

• the non-linear Kaiser e�ect and

• the lack of structure of the dark matter halos.

The �rst two points were discussed previously in detail for the dark matter case and for
equilateral triangles. The last possible e�ect can be explained by comparing the dark mat-
ter results with the dark matter halo results. The dark matter halos do not contain any
structure within the halo. They are just points within the catalogs with their positions and
peculiar velocities. However, the dark matter particles follow the potential of the halos to
which they are bound.
At a certain k-mode (depending on the depth of the potential of the halo), the chance of
�nding a triangle where two dark matter particles are located in one halo increases com-
pared to the largest con�gurations where each dark matter particle is located in a di�erent
halo. At the same time, non-linear structure growth becomes more important because
more non-linear con�gurations are considered. These con�gurations have already an e�ect
on large scales.
The discussion becomes clearer in redshift space. By comparing the boost-factors for dark
matter particles and dark matter halos, see Figures 3.16 and 3.19, respectively, di�erent
behaviors can be identi�ed for k-modes larger than 0.10 h Mpc−1. In the dark matter
case a damping is present after that k-mode but for the halos the opposite is true. These
two di�erent behaviors show how the bispectrum is a�ected by the internal structure of
halos which is resolved by dark matter particles because they follow the halo potential. As
long as a chosen triangle con�guration is large enough, the tree-level ansatz is su�cient for
modeling the mode-coupling of the involved k-modes. When going to larger k-modes with
one side length the non-linear structure growth becomes more important and the tree-level
ansatz is a too simpli�ed description for the mode-coupling.
In the halo catalogs, all considered corners for building triangles are located in a di�erent
halo. Therefore, the modeling can be su�ciently described by the tree-level ansatz which
represents exactly this case. The non-linear structure growth is just given by the clustering
of the halos.
This explains why the estimations of b1 and b2 can consistently be estimated in real and
redshift space up to k-modes around 0.11 h Mpc−1. This is almost the same limit as for the
dark matter estimation at z = 1.0 for redshift space. From the discussion in Section 3.2.1,
this would not be expected for the dark matter halos at high redshifts. The reason is that
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they are more non-linearly evolved structures compared to lower redshifts. The non-linear
growth of structure and the lack of the structure within the halos are two counter-playing
e�ects and can explain the results in this section.
The linear and the quadratic bias were also extracted for two di�erent mass bins (mass
of separation: M = 2.64 × 1013 h−1 M�). The results con�rmed the above conclusions.
The high mass bin contains the most non-linearly evolved structures of the L-BASICC
simulations. A consistent estimation between real and redshift space is only possible for
smaller k-modes compared to the results of this paragraph. The contrary is true for the
low mass bin because only the most linear structures of the simulations were considered.

Investigation of the non-linear Kaiser e�ect

In Figure 3.40, the ratios between the real and redshift space, or the (Kaiser) boost-factors,
are shown at z = 0.0 (top-left panel), 0.5 (top-right panel) and 1.0 (bottom-middle panel)
in the upper sub-panel. All triangles con�gurations were considered for the following dis-
cussion. The boost-factors from the L-BASICC simulations and the model are plotted in
black and red, respectively. In the lower sub-panel the ratio between the boost-factors are
shown where the dotted black indicates when the two ratios would match perfectly. The
L-BASICC boost-factors (black color) were directly extracted from the simulations without
any theoretical assumptions for their evaluation. Therefore, for this case the non-linearities
are treated correctly. Of course, this statement cannot be hold for the theoretical predic-
tion (red color).
It can be noticed that the L-BASICC boost-factors increase when larger k-modes are re-
garded compared to the theoretical predictions. This behavior is strongly pronounced at
z = 0.0 and z = 1.0 but not that strong at z = 0.5. This boost must have its origin in
redshift space.

Discussion of the results of the non-linear Kaiser e�ect

In the discussion of the equilateral triangles, this increase of the signal was already noticed
and identi�ed as the non-linear Kaiser e�ect. The results from Section 3.2.2 (discussion of
the equilateral triangles for dark matter halos) can be con�rmed by the investigation of this
paragraph. In the previous section, the breakdown of the redshift space bias parameters
estimation at smaller kmax-values compared to real space was explained by the non-linear
Kaiser e�ect. The non-linear Kaiser e�ect would not be present on the smallest k-modes
(largest scales), but would become more dominant when going to larger k-modes. This
statement can also be identi�ed in Figure 3.40 because at small k-modes the ratio of the
two boost-factors �uctuates around unity.
The identi�cation of the smallest halos is not dependent on the redshift. The mass scale
for the smallest halo is �xed, see Section 2.3, from which the mass function is built up.
At higher redshifts, this corresponds to a more non-linear structure compared to lower
redshifts. Peculiar velocities are not as linear as they were modeled by the linear Kaiser
e�ect. The additional signal is responsible for the boost which can be seen in Figure 3.40
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Figure 3.40: The ratio between redshift and real space bispectrum (boost-factor) are plot-
ted against the con�guration id (lower x-axis) for z = 0.0, 0.5 and 1.0 in the top-left,
top-right and bottom-middle panel, respectively. The upper x-axis displays the multiples
of kf in relation with the con�guration id. Each panel is divided into two sub-panels. The
upper sub-panel shows the boost-factor obtained from the L-BASICC simulations in black
and the theory in red. In the lower sub-panel the ratio between these two boost-factors
from the upper sub-panel is plotted in red.

for the L-BASICC boost-factor and not in the theoretical prediction. The enhanced signal
from the non-linear Kaiser e�ect cannot be suppressed by the FoG because dark matter
halos do not have any substructure. Therefore, the situation is contrary to the dark matter
case.

3.2.4 Application to galaxy mocks: Lyman Alpha Emitters

In this section, the extraction of the linear and the quadratic bias of galaxies will be tested
at high redshifts. For this task a not yet published N -body simulation populated with
Lyman Alpha Emitters (LAEs), which are galaxies in the early Universe, will be used. In
the �rst part of this section, the LAEs will be introduced. The second part is focused on
the simulation and in the third part the results of b1 and b2 estimation will be presented.
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De�nitions and explanations of the LAEs

LAEs are galaxies in the early Universe, mostly found at optical to near IR wavelengths
at z > 2.0 and up to z ≈ 7.0 with a strong Lyman-α-emission line (λ = 121.6 nm). The
Lyman-α-line is the transition of the electron within a neutral hydrogen atom from the
second lowest energy level to the lowest energy level (ground state) and indicates ongo-
ing star formation. The LAEs serve as a tool to understand the high redshift Universe
(Nilsson & Meisenheimer, 2009). Galaxies with such a spectral feature are mostly young
with a young stellar population and a large gas fraction.
The Hobby-Eberly Telescope Dark Energy eXperiment (HETDEX) is mainly focused on
the understanding of the nature of dark energy (Hill et al., 2008). The LAEs were selected
to be tracers of the high redshift matter density �eld because at such high redshifts they
are the best choice to perform spectroscopy (Ciardullo et al., 2012). Deviations from the
ΛCDM cosmology will be visible, if dark energy is not close to the cosmological constant
at such high redshifts. Combining these results with low redshift surveys like the SDSS
(York et al., 2000) will hopefully constraining the cosmological parameters tighter, espe-
cially the parameter of the equation of state of dark energy.
At the time the project will be �nished, which will be around 2017, it is expected to have
detected 0.8 million LAEs within 1.9 < z < 3.0 and additionally more than one million
OII emitting galaxies at z < 0.5, which are not of interest in this section. In the following
section, b1 and b2 will be extracted from two mock catalogs, which were designed for the
HETDEX project, by means of the bispectrum.

The GIPCC simulation

The LAEs were selected to be the tracers of the matter density �eld for HETDEX. For a
better understanding of the clustering signal and galaxy evolution, two N-body simulations
with a box size of LBox = 1.0 h−1Gpc were constructed at z = 2.2 and 3.0. They are called
GPICC, which stands for GigaParsec simulation run at the Institute for Computational
Cosmology (Baugh et al., 2012, in preparation). A �at ΛCDM cosmology with ΩM = 0.26,
H0 = 71.5 km

s Mpc
and a σ8 = 0.8 was chosen for the simulation. By adopting GALFORM,

a semi-analytic galaxy formation code, developed by Cole et al. (2000) 2 871 540 and 1
584 333 LAEs at z = 2.2 and 3.0, respectively, were arti�cially formed in the GIPCC
simulation.
Because only one realization for each redshift is available, the calculation of the errors is
not feasible and must be performed theoretically. For the bispectrum estimator given in
Section 2.5, this is possible and an estimate of the variance (and therefore for the errors) can
be evaluated under the assumption that the Fourier components are Gaussian distributed
(Scoccimarro et al., 1998; Sefusatti et al., 2006; Sefusatti & Komatsu, 2007). Then, the
variance of the bispectrum var(Bzs(~k1, ~k2, ~k3)) is estimated by

var(Bzs(~k1, ~k2, ~k3)) = sB
k3
f

VB

Pest(k1)Pest(k2)Pest(k3) (3.6)
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Figure 3.41: The variance calculated from the Gaussian random �eld (black line) is com-
pared to the theoretical estimation (red line) given by Equation (3.6).

with sB = 1, 2, 6 for general, isosceles and equilateral triangles, respectively, and VB from
Equation (2.33) is de�ned as

VB w 8π2k1k2k3δk
3 . (3.7)

The quantity sB indicates the contribution of di�erent triangle con�gurations to the vari-
ance of the bispectrum (Sefusatti et al., 2006).
In Figure 3.6, Equation (3.6) is plotted in red and is compared to the estimation of the
variance from the Gaussian density �eld (black solid line) which was used in Section 2.4. It
can be noticed, that the two curves reproduce the same trends and it can also be assumed,
that the variance of the bispectrum can be estimated correctly by Equation (3.6) and will
be used for the following analysis.
The spike at around 0.18 h Mpc−1 is originated from the isosceles con�guration (the sB-
factor changes from unity for general con�gurations to two for isosceles con�gurations).
Another isosceles con�guration is present at k ≈ 0.09 h Mpc−1 but only the falling wing
can be seen.

Results of the LAEs

Before discussing the results, the best-�t bias parameters of b1 and b2 will be used to com-
pare the theoretical bispectrum to the GIPCC bispectrum. As for the dark matter case,
the ratio of them will be evaluated and are shown in the Figures 3.42 and 3.44 for z = 2.2
and z = 3.0, respectively. Similar to previous discussions here, the black solid line shows
the ratio with the included collapsed triangles and for the blue solid line they are excluded.
The real and redshift space ratios are plotted in the left and the right panel. The random
motions are not shown for the ratios because their mild e�ect on the bispectrum can hardly
be noticed in such a plot.
The results for b1 and b2 are shown in Figure 3.43 and 3.45 for z = 2.2 and 3.0, respec-
tively, where again the estimation of b1 can be found on the left panel and b2 on the right
panel. Real space results are shown in blue, redshift space results in red or black depend-
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ing on the exclusion or inclusion of the random motions. In Figure 3.46, the extracted
values of the velocity dispersions σv are plotted, where z = 2.2 is given in black and z =
3.0 in red. In Table 3.8, the results of this discussion will be summarized for both redshifts.

Discussion of the LAEs bispectrum at z = 2.2

The comparison between the GIPCC bispectrum and the theoretical bispectrum is shown
in Figure 3.42. It can be noticed that over all considered k-modes the ratios �uctuate
around unity with deviations up to �fty percent. The distinction of the equilateral and
the collapsed triangle con�gurations cannot be made by just looking at the peaks of the
ratios (positive and negative peaks, respectively). The �uctuations are such large that this
distinction requires the x-axis information. The reason for this behavior is the dominant
e�ect of cosmic variance on the considered scales (because only one realization per redshift
is available).
For z = 2.2, the linear bias can be estimated to be b1 ≈ 2.10 up to kmax ≈ 0.19 h Mpc−1,
which is the largest side length of the triangle considered in this analysis. Only small de-
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Figure 3.42: Same description as for Figure 3.34, but for the LAEs bispectrum at z = 2.2
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viations can be noticed between real and redshift space. Including random motions let the
results unchanged. Independent on the coordinate frame it seems that smaller b1-values
are extracted on largest scales, but the errors on these estimations are so huge, that a clear
conclusion is not feasible.
The situation for b2 is more complicated than for b1. A conservative estimation of the b2
parameter is only possible up to kmax ≈ 0.12 h Mpc−1. It looks as if larger b2-values are
estimated at large and small scales whereas smaller b2-values can be extracted from the
scales between, see Figure 3.43. A similar trend seems to be present on large scales for
extracting b1 but cannot be quanti�ed due to large errors. On smaller scales, this is a hint
towards non-linear structure growth. However, real space seems to be less a�ected than
redshift space, but this behavior was already discussed in the sections above.

Discussion of the LAEs bispectrum at z = 3.0

The situation for z = 3.0 is comparable to the situation at z = 2.2. The GIPCC and
the theoretical bispectrum are in agreement with each other as it can be seen by the ratio
of these two quantities which is plotted in Figure 3.44. The description of this �gure follows
Figure 3.42 but for z = 3.0. In real and redshift space, an increase of the ratio ( > 1) can
be noticed when going to larger k-modes.
In Figure 3.45, a small bump can be identi�ed for the b1 estimation which is not present
at z = 2.2. From around kmax ≈ 0.14 h Mpc−1 to 0.17 h Mpc−1 this bump seems to be a
local maximum. If this bump was not be present, the linear bias could be estimated to be
b1 ≈ 2.80, as shown in Table 3.8.
The reasons for this e�ect are not known but the bump is present in real and redshift
space. This bump could be explained by the presence of a large structure within the cat-
alog. However, it is very unlikely that the same feature is not visible in the examination
of b1 at z = 2.2 because gravity has only a limited amount of time to act between the two
considered redshifts, only 890 million years, and it is expected that such a structure would
accrete more mass. Therefore, this bump would be more pronounced in the low redshift
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Figure 3.44: Same description as for Figure 3.42, but for z = 3.0
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Figure 3.45: Same description as for Figure 3.43, but for z = 3.0

realization.
Around that k-modes the estimates of b2 seems to be constant around 4.30 and at kmax ≈
0.16 h Mpc−1 an increase of the extracted b2-values can be noticed. However, a consistent
estimation in real and redshift space is only possible up to kmax ≈ 0.12 h Mpc−1.

zobs (b1, kmax [h Mpc−1]) (b2, kmax [h Mpc−1])
2.2 (2.10± 0.03, 0.19) (1.37± 0.36, 0.12)
3.0 (2.80± 0.12, 0.13) (4.30± 0.88, 0.12)

Table 3.8: Same description as for Table 3.7, but for the LAEs and at z = 2.2 and 3.0

Bispectrum vs. power spectrum: Comparison of the extracted bias parameters

In Section 2.6.1, the work of Jeong & Komatsu (2009) was introduced in which the bias pa-
rameters b1 and b2 were extracted from the galaxy power spectrum. The proposed method
was also performed on the GIPCC catalogs (priv. comm. Jeong, 2011). The results of this
analysis are given in Table 3.9. Unfortunately no errors were calculated for these estimates
but it is known from Jeong & Komatsu (2009) that b2 is weakly constrained by this method
(Jeong & Komatsu, 2009).

zobs b1 b2

2.2 2.20 1.54
3.0 2.90 2.90

Table 3.9: The extracted bias parameters b1 and b2 from LAEs power spectrum PLAEs(k)
are given in column 2 and 3, respectively, for the two considered redshifts which are listed
in column 1.
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The bias parameters extracted from the LAEs bispectrum BLAEs(k1, k2, k3) are in agree-
ment with the results from PLAEs(k). The estimates for b1 at z = 2.2 and b2 at z = 3.0 are
exceptions because they seem not to be consistent with the bispectrum results. However,
without an estimate on the errors of these quantities a conclusive statement is not possible.

Discussion of the results of the extracted velocity dispersion

As expected from the previous discussions, the random motions do not have a notice-
able e�ect. The estimation of σv in Figure 3.46 shows only a very slight di�erence between
z = 2.2 and z = 3.0. From the �ndings of this section it can be stated, that σv is only
weakly dependent on the redshift. On the smallest k-modes, no di�erence between the two
redshifts can be noticed. At kmax ≈ 0.08 h Mpc−1 to 0.12 h Mpc−1 σv is estimated to be
1.8 for both redshifts. On smaller scales σv seems to be slightly larger at z = 2.2 than at
z = 3.0, as expected. However, the extracted velocity dispersions are very small, almost
in agreement with zero, which explains their insigni�cant e�ect on the bias parameters
estimates in redshift space.
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Figure 3.46: The estimated σv-values are summarized in this �gure. The results obtained
for the redshift z = 2.2 and z = 3.0 are represented in black and red, respectively.

Discussion of the non-linear Kaiser e�ect

In Figure 3.47, the ratios between the redshift space bispectrum Bzs(k1, k2, k3) and the
real space bispectrum Brs(k1, k2, k3), also called (Kaiser) boost-factor, for the GIPCC sim-
ulations and the theory are plotted. The boost-factors for z = 2.2 and z = 3.0 are plotted
on the left and the right panel, respectively. Each of these panels is divided into two
sub-panels. In the upper sub-panel the GIPCC boost-factor is illustrated in black and the
theoretical prediction in red. In the lower sub-panel the ratio between the GIPCC and the
theoretical boost-factor is shown. It can be noticed that there are not any trends present
as it was for the L-BASICC dark matter halo ratios. The expected increase of the signal
when going from small to large k-modes is not present as for the L-BASICC dark matter
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halos. It seems that the linear Kaiser e�ect is able to model the redshift space distortions
at these redshifts on the considered k-modes. Therefore, the non-linear Kaiser e�ect is
not required anymore on the examined k-modes. This would also explain the agreement
between real and redshift space for the estimates of b1 and b2.
It can be concluded that the estimation of these bias parameters can be performed at high
redshifts and for LAEs as tracers for the underlying matter density �eld. Therefore, in a
future analysis extracting b1 and b2 from such a data set can be carried out.
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Figure 3.47: Ratio between the redshift space bispectrum Bzs(k1, k2, k3) and the real space
bispectrum Brs(k1, k2, k3) (also called boost-factor) for the LAEs at z = 2.2 and 3.0 are
plotted on the left and right panel, respectively . Each panel contains two sub-panels. The
upper sub-panel shows the GIPCC ratio in black and the theoretical prediction in red.
In the lower sub-panel the ratio between the two boost-factors is shown where the dotted
black line indicates perfect match between the two quantities.

3.2.5 Other work in the literature

As mentioned previously, the three-point statistics is not as thoroughly explored as the
two-point clustering. Nevertheless, over the last ten years some approaches were proposed
for modeling the bispectrum. In this section, only the most recent publications will be
named. In most cases a direct comparison is not possible in redshift space because the
bispectrum was only investigated in real space.
In Scoccimarro et al. (1998) and Sefusatti et al. (2011), it was shown that at least in real
space and at high redshifts the 1-loop corrections, corresponding to 6th order perturbation
theory, could provide a better description of non-linear structure growth. However, these
publications probed their models only on large scales (k < 0.15 h Mpc−1 for z = 1.0),
on which the tree-level approach can still be used reliably and redshift space was not in-
vestigated. For a consistent treatment of the redshift space bispectrum the full 6th order
perturbation theory should be considered in the derivation. Until now, such an approach
was not examined.
In Pan et al. (2007), scale transformations were applied to the matter tree-level bispectrum.



110 3. Investigation of ξ(rp, π) and B(k1, k2, k3)

They extended this method from the power spectrum to the bispectrum and concluded that
even at low redshifts the bispectrum can be well modeled. Redshift space was not exam-
ined in their work. Therefore, it is not clear if the linear Kaiser e�ect can be as easily
incorporated as proposed in this thesis. They also claim that their ansatz is comparable
to 1-loop corrections at least at high redshifts and refer to the similarity of the reduced
bispectrum. However, it was concluded in this thesis, that the reduced bispectrum cannot
be modeled correctly.
In Smith et al. (2008), the bispectrum was derived for the halo model (Cooray & Sheth,
2002) in real and redshift space. Their investigation was mainly focused on the modeling
for the U-shape representation itself. No parameters were �tted. They found that on con-
siderably large scales (k & 0.10 h Mpc−1) the 2-halo term starts to contribute already a
non-vanishing signal to the reduced bispectrum. For the con�guration k1 = 0.10 h Mpc−1

and k2 = 0.20 h Mpc−1 this can be up to 10%. It can be assumed that the same is true
for B(k1, k2, θ12) because of the calculation of the reduced bispectrum. The reduced signal
from the 2-halo term due to the division by the power spectra is not present for the calcu-
lation of the bispectrum and therefore this signal is not reduced. The model of Smith et al.
(2008) is in agreement with the simulation at least on the large scales in real space but in
redshift space the same problems occur as discussed in this work. Their redshift modeling
includes linear Kaiser e�ect and FoG as in this thesis but no explanation for the mismatch
was given there.
Improving the theory of mode-coupling is one possibility to extend the valid range of a
model. In Simpson et al. (2011), another approach was chosen. The most non-linear part,
the highest density peaks, of the data will be clipped away and these high density peaks
are set to a prede�ned maximum value. The resulting bispectrum is not dominated by
these extreme structures anymore and can reliably be used up to 0.7 h Mpc−1 at z = 0.0
for the Millenium simulation (Springel et al., 2005) but only in real space. Their approach
is comparable to the situation when only low mass halos of the L-BASICC catalogs were
utilized for estimating b1 and b2. In this case, no information of the massive halos would
be used. If the density �eld is clipped, there will be still some information of the unclipped
density �eld present. As for the previous investigations, redshift space was not examined in
Simpson et al. (2011). They know that their method extracts not the real bias parameters
because of the clipping. They claim that this change of the bias is not necessarily impor-
tant because the extracted matter power spectrum is close to the linear one. Therefore, an
application to a real data set, where one is interested in the real bias parameters, is still
not possible.
Similar results of the reduced bispectrum which were discussed in this section were also
found in Pollack et al. (2012) where they claimed that the locality assumption of
Fry & Gaztañaga (1993) is violated. Of course, this would lead to a di�erent biasing in the
two- and three-point statistics. They smoothed the density �eld and extracted the linear
and the quadratic bias from the bispectrum and directly from the density �eld. They stated
that consistent results of these bias parameters with the original tree-level ansatz can be
achieved with a smoothing scale of R ≈ 20 h−1 Mpc. This smoothing scale is not known
a priori and set as a free �t parameter. So far, their investigation was only performed in
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real space. They also found that higher order corrections are required for recovering the
bias parameters.
In Sefusatti et al. (2006), an attempt to extract cosmological parameters from the bispec-
trum was examined. They modeled deviations between the mock catalogs generated by
PTHALOS (Scoccimarro & Sheth, 2002) and the 2nd order Lagrangian perturbation theory
(Scoccimarro, 2000) simulations with the original tree-level approach. With this method
they are able to use the bispectrum up to 0.3 h Mpc−1 in real and redshift space. However,
this is it not a full modeling because it requires the presence of N -body simulations to
which the measurement can be compared. It was concluded that the Likelihood-functions
are almost the same as for the power spectrum. Only a combined analysis on the two
clustering analyses will be able to give tighter constraints on cosmological parameters.
In this thesis, the modeling of the dark matter bispectrum from �rst principles was not
only examined in real space but also in redshift space. In contrast to the above discussed
publications this is mostly not the case. An additional contribution of the analysis in this
thesis is not only the extended investigation of the bispectrum in redshift space but also
the wide range of examined triangle con�gurations (all con�gurations up kmax . 0.19 h
Mpc−1).
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Chapter 4

Summary and Conclusions

This chapter is divided into three parts. In Section 4.1, the results obtained from two- and
three-point statistics will be summarized. Possible improvements on the modeling of the
anisotropic two-point correlation function ξ(rp, π) and the bispectrum B(k1, k2, k3) will be
discussed in Section 4.2 in order to extend the range of validity of the model. This thesis
will be concluded with Section 4.3 where possible future projects for real data sets will be
proposed.

4.1 Summary

In this section, the results from Chapter 3 will be summarized. In Section 4.1.1, the results
on the constraints of the equation of state parameter of dark energy wDE and the linear
bias b, from the anisotropic two-point correlation function ξ(rp, π) will be presented. This
review is from Schlagenhaufer et al. (2012). In Section 4.1.2, the estimates of linear bias b1
and quadratic bias b2 from the bispectrum B(k1, k2, k3) will be recapitulated. In order to
distinguish between the two estimations of the linear bias, they will be named di�erently.
The linear bias b for ξ(rp, π) is de�ned by Equation (2.75) whereas the linear bias b1 for
the bispectrum is given by the �rst parameter of the series expansion given in Equation
(2.77). From these two de�nitions it is clear that the b-variable is an e�ective quantity
which contains contributions from all bn-parameters of the series expansion.

4.1.1 Anisotropic two-point correlation function: Estimation of

wDE and b

In this thesis, a model of ξ(rp, π) was developed and tested, and was used to investigate
the in�uence of photometric redshift errors on the measurement of wDE. ξ(rp, π) was mod-
eled using 3rd order perturbation theory (Jain & Bertschinger, 1994) to account for the
non-linear nature of the growth of structure and the non-linear Kaiser e�ect (Scoccimarro,
2004). Redshift errors can be included in the model by convolving it with the pairwise
redshift error distribution, which can easily be computed from the (known) photometric
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redshift errors.
In order to test the validity of the model for ξ(rp, π), it was �t to the mean measured correla-
tion function of dark matter halos in a suite of 50 large-volume, medium-resolution N -body
simulations (the L-BASICCS II later just L-BASICC, (Angulo et al., 2008; Sánchez et al.,
2008)). Both in real and redshift space the �t yields unbiased values of the dark energy
equation of state parameter wDE and the linear bias b. With approximately 300 000 halos
per box, in real space wDE and b can be determined with an accuracy of about 12% and
7%, respectively. In redshift space, these constraints become slightly weaker, wDE can
be measured with an accuracy of approximately 15%, and the relative error of b becomes
∼ 8%.
If only the shape of ξ(rp, π) is used to infer wDE and b, the errors on both will increase as
there is signi�cant information contained in the amplitude. The relative error of the bias
increases more than the relative error of wDE, since the value of the bias is mainly encoded
in the amplitude (and less in the quadrupole and hexadecapole contribution to the redshift
space distortions), whereas the equation of state parameter of dark energy in�uences both
shape and amplitude likewise.
In order to investigate the e�ect of redshift errors on the measurement, a small o�set was
added to one of the coordinates of the dark matter halos, which was drawn randomly
from a Gaussian error distribution. The model was convolved with the corresponding
pairwise redshift error distribution in the direction along the line-of-sight (π). Redshift
errors smear out the clustering signal and diminish its amplitude; at the same time the
convolution leads to a mixing and increase of the noise of the measurement in single pixels,
because intrinsic errors are also distributed along the line-of-sight. On the constraints on
cosmological parameters, the impact of this is two-fold: Since the signal of the Baryonic
Acoustic Oscillations (BAOs) (as the main feature of the otherwise smooth correlation
function) becomes weaker in the observed range of scales, its predictive power decreases
� in the case of very large redshift errors (σz > 0.06) the signal is smeared out over such
a large range of scales that it completely disappears in the noise. However, since much
higher accuracies can be achieved in realistic ongoing or near-future photometric surveys
such as e.g. Pan-STARRS (see Saglia et al. (2012)), this is not a cause for concern.
Integrating ξ(rp, π) to obtain w(rp), as originally proposed by Peebles (1980) as a means
to overcome redshift space distortions, does not help to improve the constraints, as in real
space the BAO is a ring in the ξ(rp, π) plane, and, when integrated, is distributed over
0 ≤ rp . 120 h−1Mpc. Since it is impossible to integrate ξ(rp, π) to π = ∞, the result-
ing amplitude and shape of w(rp) depends on the choice of integration limits as well as
the underlying cosmology, which adds a further complication. Secondly, the noise itself
increases in the presence of redshift errors, which creates an additional di�culty. Due
to the decreased signal-to-noise of the two-point correlation function, the accuracy of the
constraints on wDE and b decreases.
In order to beat down systematics coming from cosmic variance (which is still large, even
on BAO scales), it is desirable (and important) to observe the largest volumes possible
at one particular redshift. Also, in order to measure a possible variation in the equation
of state with look-back time, observations have to be carried out at higher redshifts as
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well. At this moment in time both are still only feasible with photometric redshifts. The
anisotropic two-point correlation function ξ(rp, π), which can be used to infer cosmological
parameters like wDE, is well suited to incorporate photometric redshifts. The model of
ξ(rp, π) which was developed in this thesis will be able to provide unbiased constraints on
wDE and b for photometric redshift surveys. The maximum redshift error for which this
model will work certainly depends on the exact shape of the redshift error distribution, the
volume, and number density of the survey to which it is applied.

4.1.2 Bispectrum: Bias parameter estimation

In this thesis, a model for the three-point clustering in Fourier space, the so-called bispec-
trum, was developed and tested. The bispectrum was modeled including a modi�cation of
the tree-level ansatz in which the usually used linear power spectra, as in Bernardeau et al.
(2002), were replaced by the corresponding 3rd order perturbation theory power spectra
in order to account for the non-linear growth of structure. In the later discussion, this
model will be called modi�ed tree-level ansatz. This modi�cation was also applied to red-
shift space which was modeled including the linear Kaiser e�ect for three-point statistics
(Heavens et al., 1998). The incorporation of redshift errors as for ξ(rp, π) was not con-
sidered due to the loss of information by the smearing of the clustering signal along the
line-of-sight (see Section 2.7.3).
The validity of the bispectrum modeling was tested by extracting the linear bias b1 and the
quadratic bias b2 from the dark matter L-BASICC simulations by �tting the model to the
mean of this suite of 50 large-volume, medium-resolution numerical N -body simulations.
Throughout this investigation it was concluded that the modi�ed tree-level ansatz is in-
deed better suited to describe the non-linear growth of structure compared to the original
tree-level ansatz.
In a �rst analysis, only the equilateral triangle con�gurations were examined from the dark
matter simulations in real and redshift space. The big advantage of this con�guration is
that all sides of the triangles have the same size. The breakdown of the model can be
related directly to one speci�c k-mode by investigating the deviations between the model
and the measurement. For more general con�gurations, where all sides of the triangle have
di�erent sizes, such a clear relation is no longer possible. It was concluded that for z =
0.5 and z = 1.0 a correct modeling of the bispectrum from the modi�ed tree-level ansatz
can be achieved up to 0.10 h Mpc−1 and 0.15 h Mpc−1, respectively. The z = 0.0 case
was excluded from this analysis because of the low gain of information for that speci�c
con�guration.
As a next step the bias parameters b1 and b2 were extracted from the dark matter halo
L-BASICC catalogs by means of the bispectrum for equilateral con�gurations. It was con-
cluded that the content of information available from this analysis was too little in order
to obtain well determined bias parameters.
Therefore, the extraction of b1 and b2 was performed for all triangle con�gurations at z =
0.0, 0.5 and 1.0, except for collapsed con�gurations. For this analysis it was decided to
consider only con�gurations for which each side (k-mode) of the triangle can be modeled
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correctly. The analysis was carried out on the dark matter as well as on the halo catalogs of
the L-BASICC simulations. The limitations of the model, that is up to which k-modes the
bispectrum can be correctly modeled, as obtained from the equilateral con�gurations, were
con�rmed by the investigation of all triangle con�gurations. It was found that within the
weakly non-linear regime the estimated bias parameters are in agreement with the expected
value for the dark matter case. The bias parameters can also be extracted consistently in
real and redshift space for the dark matter halos within the weakly non-linear regime.
Beyond the weakly non-linear regime at larger k-modes the theoretical bispectrum cannot
be modeled correctly anymore. The observed deviations between the model and the mea-
surement have two di�erent origins.
First, the growth of structure cannot be described correctly by the modi�ed tree-level
ansatz anymore. This leads to an underestimation of the theoretical bispectrum compared
to the measurement. If the ratio between these two bispectra is computed, the deviations
of the ratios will vary within a range from 0.6 to 1.4. The largest deviations below and
above unity can be identi�ed as collapsed and equilateral con�gurations, respectively.
Second, the redshift space distortions are not as linear as is assumed by the linear Kaiser
e�ect. For the dark matter case, this additional increase of the bispectrum is damped by
the peculiar velocities of particles in bound structures which leads in fact to a reduction of
the bispectrum. For the extraction of the bias parameters b1 and b2 the velocity dispersion
of the particles σv was introduced as an additional free �t parameter to account for this
e�ect. It was concluded that only a mild improvement can be achieved by taking them
into account.
The dark matter halos do not contain any substructure because they are just point-like
objects in the catalogs. Therefore, no FoG e�ect is present there and a damping as de-
scribed for the dark matter case cannot be identi�ed. In fact, a contrary trend can be
noticed. By examining the ratios between the real and redshift space bispectra from the
L-BASICC simulations and the theoretical predictions, a larger signal than expected can
be observed. It was concluded that this is a manifestation of the non-linear Kaiser e�ect.
On top of this, the modeling of the redshift space bispectrum bene�ted even less from the
inclusion of the large scale random motions than for the dark matter case.
It was also noticed that the bias parameters b1 and b2 are degenerate. They try to minimize
the di�erences between the model and the measurement which leads to an under- as well as
an overestimation of b1 and b2, respectively. This happens because these bias parameters
contribute to di�erent terms of tree-level ansatz which a�ect the shape of the bispectrum
di�erently. These di�erent shape dependencies are responsible for the extraction of b1 and
b2 by means of the bispectrum as well as for the introduction of the above mentioned de-
generacy in order to account for the e�ect of the insu�ciently modeled non-linear structure
growth and peculiar velocities beyond the weakly non-linear regime.
The last investigation of the bispectrum was an application to the Lyman-α emitting galax-
ies in the high redshift universe. The model was tested against the GPICC simulations
(Baugh et al., 2012, in preparation) in which Lyman-α emitting galaxies were arti�cially
created by GALFORM (Cole et al., 2000) for z = 2.2 and z = 3.0. It was concluded that
for such a data set the proposed model in this thesis is able to extract consistent bias
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parameters in real and redshift space up to 0.12 h Mpc−1. For z = 2.2 the extracted bias
parameters are b1 = 2.10 and b2 = 1.37 and for z = 3.0 the results are b1 = 2.80 and
b2 = 4.30.

4.2 Improvements of the model for the bispectrum

During the discussions in Chapter 3, it was stated that a more accurate description of the
non-linear structure growth and the redshift space distortions would be required to extend
the model to larger k-modes. On the largest scales the model introduced in this thesis is
able to extract the bias parameters b1 and b2 correctly. However, including smaller scales
could place tighter constraints on these estimates. The main ingredient of the theoretical
model is 2nd order perturbation theory for the bispectrum. It was concluded that for high
redshifts and on large scales the modi�ed tree-level ansatz is su�cient to extract b1 and b2.
The next logical step to extend the range of validity of the model is a more accurate
theoretical description of the non-linearities. Some promising approaches are available but
still not tested in detail. Moreover, their calculation is very time consuming due to the
computation of the mode-coupling integrals (Scoccimarro et al., 1998). Also mentioned
previously, for the calculation of the analytic model some assumptions were required, e.g.
neglecting the pressure and vorticity. It is also clear that for z < 1.0 some of these
assumptions are not valid and more realistic descriptions are needed. There are two obvious
improvements for the analytic model which should be investigated:

• complete 6th order perturbation theory should be used for the bispectrum instead
of 2nd order perturbation theory with the replacement of the linear by the 3rd order
perturbation theory power spectrum in Equation (2.78)

• the non-linear Kaiser e�ect should be derived for the bispectrum instead of using the
linear Kaiser e�ect for the redshift bispectrum (Heavens et al., 1998)

The suggested improvement for the calculation of redshift space distortions was already
implemented for ξ(rp, π). In order to avoid dealing with a perturbative series, the clustering
statistics can be derived using renormalized perturbation theory. The results of the power
spectrum are given in Crocce & Scoccimarro (2006) and the 1-loop corrections were already
adopted to extract the cosmological parameters (Sánchez et al., 2006; Montesano et al.,
2011; Sánchez et al., 2012).
First attempts to test the renormalized perturbation theory for the bispectrum were de-
scribed in Bernardeau et al. (2008). Unfortunately, they only tested the model against
dark matter simulations in real space for one speci�c triangle con�guration at large scales,
k1 = 0.068 h Mpc−1, k2 = 2 × k1 and varying k3 at z = 0.0 for the reduced bispectrum.
It must be stated that the match between the N -body simulation, which they used, and
the proposed model is promising. An improvement compared to the tree-level approach is
obvious. It can be expected that models at higher redshifts bene�t even more from this
approach, at least in real space. However, the model is tested only for one speci�c triangle
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con�guration. In this thesis, it was noticed that even for k-modes where the modi�ed
tree-level ansatz is not able to describe the coupling between di�erent modes properly, it is
possible to �nd well described triangle con�gurations. On top of that, redshift space was
not investigated, which is known from this thesis must also be treated very carefully. Even
if it is very time consuming to obtain a better modeling for the bispectrum, the power
spectrum will bene�t from this e�ort.

4.3 Application to data sets

The main parts of this thesis were feasibility studies: First, on the estimation of the equa-
tion of state parameter of dark energy wDE and the linear bias b by means of ξ(rp, π) and,
second, on the bias parameters b1 and b2 by means of the bispectrum. The next step should
be to improve these models and then to carry out all the analyses introduced and discussed
in this thesis using real data sets. Both models, for the two- and three-point statistics,
are applicable to the large scale structures traced by dark matter halos, as concluded in
Chapter 3.
In Section 4.3.1 possible applications to real data sets for the anisotropic two-point corre-
lation function will be proposed. Similar projects will be suggested for the bispectrum in
Section 4.3.2.

4.3.1 Anisotropic two-point correlation function

Spectroscopic surveys like the Baryonic Oscillations Spectroscopic Survey (BOSS)
(Eisenstein et al., 2011; Dawson et al., 2012) are required for an application of the three-
point statistics. BOSS is one of the four surveys of the SDSS III project, which targets
luminous red galaxies to measure the BAOs mainly using two-point statistics in order
to infer cosmological parameters. Expertise has been gained with two-point statistics,
e.g. properly taking the survey geometry and selection function into account. A study
of ξ(rp, π) would bene�t directly from this expertise and it is expected that cosmological
parameters should be better constrained due to the large content of information. Measure-
ments of three-point statistics su�er from the same problems for which a careful handling
is required.
In this work, the anisotropic two-point correlation function ξ(rp, π) was analyzed with re-
spect to the extraction of wDE and b from photometric redshift surveys. DES (Tucker et al.,
2010) and PAU (Benítez et al., 2009) are still under construction and their data are not
yet available. An investigation for the photometric redshifts of Pan-STARRS was already
performed (Saglia et al., 2012). It was concluded that the redshift error distribution can
be assumed to be Gaussian with a rms of σ ≈ 0.05. Therefore, it should be possible to
apply ξzerr(rp, π) analysis to Pan-STARRS data in order to determine unbiased results on
wDE and b, given that σz . 0.06 (the limiting accuracy requirement, see Section 3.1.2).
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4.3.2 Bispectrum

Using a mock catalog, it was shown in Section 3.2.4 that the model introduced in this thesis
will be able to extract the linear bias b1 and the quadratic bias b2 consistently in real and
redshift space at high redshifts using Lyman-α emitting galaxies as tracers of the underlying
matter density �eld. These galaxies can be found at optical to near IR wavelengths at
z > 2.0 up to z ≈ 7.0 with a strong Lyman-α-emission line (Nilsson & Meisenheimer,
2009). The Hobby-Eberly Telescope Dark Energy eXperiment (HETDEX) uses these
galaxies as tracers of the high redshift matter density �eld to understand the nature of
dark energy (Hill et al., 2008). The bias parameters of these galaxies should be known
in order to obtain the true wDE by means of the power spectrum for comparably large
k-modes. This will also help to extract tight constraints on other cosmological parameters.
In this thesis, it was concluded that the bispectrum can be reliably modeled up to 0.12 h
Mpc−1 for high redshift Lyman-α emitting galaxies. Therefore, the bispectrum is perfectly
suited for the extraction of b1 and b2 for a galaxy survey like HETDEX which in the end
will hopefully help to distinguish between di�erent models which try to explain the late
time accelerated expansionary phase of the Universe.



120 4. Summary and Conclusions



Appendix A

Appendix

A.1 Analytic solution for the bispectrum in redshift space

The averaging over the angles γ1 and γ2 in Equation (2.98) in order to obtain the spherically
averaged bispectrum in redshift space was performed analytically by Mathematica 8.0. The
solution is split in three di�erent parts, depending on the mode coupling, and is given by

Bzs(k1, k2, θ12) = H(k1, k2, θ12) +H(k1, k2, θ13) +H(k2, k3, θ23) (A.1)

where the θij are the angles between the corresponding k-modes. The H(ki, kj, θij) func-
tions describe the e�ects of the redshift space distortions of the mode coupling for two
k-modes. Their functional form is very messy and can be expressed as follows
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and
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A.2 Derivation of the non-linear redshift space distor-

tions for ξ(rp, π)

The derivation of the non-linear Kaiser for the anisotropic two-point correlation function
ξ(rp, π) will be shown here, because until now this cannot be found in any other publication.
An important ingredient for the later calculation are the relations between the two-point
statistics in con�guration and Fourier space, which is given by

Pl(k) = il4π

∫ ∞

0

r2drjl(kr)ξl(r) (A.5)

ξl(r) =
4π

il

∫ ∞

0

k2dk

(2π)3
Pl(k)jl(kr) (A.6)

where i is the imaginary unit, jl(kr) are the spherical Bessel functions, which will be given
in Section A.4, and by the index l the multipole is indicated. The multipoles are required



124 A. Appendix

to write the two-dimensional clustering quantities as

Pl(~k) =
∑
l

Pl(µ)Pl(k) (A.7)

ξl(~r) =
∑
l

Pl(µ)ξl(r) . (A.8)

So far, in the discussion no discrimination between real and redshift space was made. In
real space, only the l = 0 term, also called monopole, does not vanish after the integration
of Equation (A.6). The computation in Fourier space can be easier carried out for the
multipole terms. The following integration must be performed
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where Pl are the Legendre polynomials, see Section A.3. In Scoccimarro (2004), the non-
linear Kaiser e�ect on large scales for the power spectrum was derived as
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After some simple mathematical exercises, the monopole (l = 0) can then be written as
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the quadrupole (l = 2) as

P2(k) =
1

4π

∫ 2π

0

dφ

∫ π

0

sin(θ)dθP2(µ)P (k, µ) = b2
(
4

3
βPδθ(k) +

4

7
β2Pθθ

)
(A.12)

and the hexadecapole (l = 4) as

P4(k) =
1

4π

∫ 2π

0

dφ

∫ π

0

sin(θ)dθP4(µ)P (k, µ) = b2
(

8

35
β2Pθθ(k)

)
. (A.13)

All multipoles with l > 4 and the odd ones vanish. The results from above can be inserted
in Equation (A.6) to get the con�guration space quantities and the multipoles are given
by

ξ0,zs(r) =
b2

2π

∫ ∞

0

j0(kr)P0(k)k
2dk = b2

(
ξδδ(r) +

2

3
βξδθ(r) +

1

5
β2ξθθ(r)

)
(A.14)

ξ2,zs(r) =
b2

2π

∫ ∞

0

j2(kr)P2(k)k
2dk =

= b2
(
4

3
β
(
ξδθ(r)− ξ̄δθ(r)

)
+

4

7
β
(
ξθθ − ξ̄θθ(r)

)) (A.15)

ξ4,zs(r) =
b2

2π

∫ ∞

0

j4(kr)P4(k)k
2dk = b2

(
8

35
β2

(
ξθθ(r) +

5

2
ξ̄θθ(r)−

7

2
¯̄ξθθ(r)

))
(A.16)
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where

ξ̄δθ(r) ≡ 3

r3

∫ s

0

ds s2ξδθ(s) (A.17)

¯̄ξδθ(r) ≡ 5

r5

∫ s

0

ds s4ξδθ(s) (A.18)

¯̄ξθθ(r) ≡ 5

r5

∫ s

0

ds s4ξθθ(s) . (A.19)

According to Equation (A.8) ξzs(rp, π) for the non-linear Kaiser e�ect can be written as

ξzs(rp, π) = (P0ξ0,zs)(rp, π) + (P2ξ2,zs)(rp, π) + (P4ξ4,zs)(rp, π). (A.20)

A.3 Legendre polynomials

The ordinary di�erential equation for x ∈ [−1, 1]

d

dx
[
(
1− x2

) Pl(x)

dx
] + l (l + 1)Pl(x) = 0 (A.21)

where l ∈ N0 and can be solved by the Legendre polynomials. The general solution can
be written as

Pl(x) =
1

2ll!

dl

dxl

(
x2 − 1

)l
(A.22)

and the �rst �ve Legendre polynomials are given by

P0(x) = 1 (A.23)

P1(x) = x (A.24)

P2(x) =
(3x2 − 1)

2
(A.25)

P3(x) =
(5x3 − 3x)

2
(A.26)

P4(x) =
(35x4 − 30x2 + 3)

8
(A.27)

but only the even ones (up to l = 4) are of interest for the derivation of the non-linear
Kaiser e�ect for ξ(rp, π) in Section A.2.

A.4 Spherical Bessel functions

The ordinary di�erential equation, named after Friedrich Wilhelm Bessel, which is given
by (

x2 d2

dx2
+ 2x

d

dx
+
(
x2 − l (l + 1)

))
jl(x) = 0 (A.28)
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can be solved by the spherical Bessel functions

jl(x) = xl

(
−1

x

d

dx

)l
sin(x)

x
. (A.29)

The �rst �ve functions can be computed as

j0(x) =
sin(x)

x
(A.30)

j1(x) =
sin(x)

x2
− cos(x)

x
(A.31)

j2(x) =
3sin(x)

x3
− sin(x)

x
− 3cos(x)

x2
(A.32)

j3(x) =
cos(x)

x

(
1− 15

x2

)
− sin(x)

x2

(
10− 105

x2

)
(A.33)

j4(x) =
sin(x)

x

(
1−

(
45− 105

x2

)
x2

)
+

cos(x)

x2

(
10− 105

x2

)
(A.34)

where only the odd l-values up to l = 4 are required for the derivation of the non-linear
Kaiser e�ect for ξ(rp, π).

A.5 Bias parameter estimation with collapsed triangles

In this short section, the results will be investigated if the collapsed triangle con�gurations
are taken into account for the bias parameters estimation of b1 and b2. In the Figures A.1,
A.2 and A.3, the results of b1 and b2 derived from the dark matter bispectrum are shown
for z = 0.0, 0.5 and 1.0, respectively. As in Section 3, the extracted linear bias b1 and
quadratic bias b2 are plotted on the left and right panel, respectively.
It can be noticed that for all redshifts b1 and b2 cannot be extracted consistently with
the dark matter expectation value which is indicated by the black dotted vertical line in
all �gures. The linear bias b1 is always underestimated with a signi�cance of at least 1.5
σ-con�dence level. The estimated b2-values are always overestimated but with at least the
same signi�cance which was found for b1. For these results it does not matter whether
the analysis is performed in real or redshift space and it was decided to exclude the case
with included random motions from this discussion because only a mild improvement can
be achieved, see Section 3.2.3. It should be clear by now, that the collapsed triangle
con�gurations must be excluded for a correct bias parameter estimation, as it was stated
in the beginning of Section 3.2.
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Figure A.1: Estimation of b1 (left panel) and b2 (right panel) against kmax, the maximum
k-mode for the side length of a triangle con�guration. The real space estimation is given
in blue and redshift space in red.
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Figure A.2: Same description as for Figure A.1
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Figure A.3: Same description as for Figure A.1
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