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Contents

Zusammenfassung xiii

Summary xv

1 Our Milky Way Galaxy and its Nuclear Star Cluster. 1
1.1 The Galactic Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Central black hole Sgr* A . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 The young stars and the Paradox of Youth . . . . . . . . . . . . . . 4
1.1.3 The Minispiral and the CND . . . . . . . . . . . . . . . . . . . . . 4

1.2 The old Nuclear Star Cluster of the Milky Way. . . . . . . . . . . . . . . . 6
1.2.1 The stellar cusp problem . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Dynamical structure & kinematics of the NSC . . . . . . . . . . . . 7

1.3 The Milky Way as a disk galaxy . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 The Galactic Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 The Galactic Bulge . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 The Stellar Halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Nuclear star clusters in external disk galaxies . . . . . . . . . . . . . . . . 13
1.5 Dynamical modeling of collisionless systems . . . . . . . . . . . . . . . . . 16

1.5.1 The collisionless Boltzmann equation . . . . . . . . . . . . . . . . . 16
1.5.2 Orbit-based and Particle-based methods . . . . . . . . . . . . . . . 18
1.5.3 Analytic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The old nuclear star cluster in the Milky Way: dynamics, M0, R0, MBH 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Spherical models of the NSC . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Mass model for the NSC . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Spherical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Adding self-consistent rotation to the spherical model . . . . . . . . 32

2.4 Axisymmetric modeling of the NSC . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Axisymmetric Jeans modeling . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Distance to the Galactic Center, mass of the star cluster, and mass

of the black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



vi Table of Contents

2.4.3 Two-integral distribution function for the NSC . . . . . . . . . . . . 44
2.4.4 Adding rotation to the axisymmetric model: is the NSC an isotropic

rotator? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 The dynamical structure of the NSC . . . . . . . . . . . . . . . . . 50
2.5.2 Mass of the NSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.3 Evolution of the NSC . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.4 Distance to the Galactic center . . . . . . . . . . . . . . . . . . . . 56
2.5.5 Mass of the Galactic supermassive black hole . . . . . . . . . . . . . 57

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Two-integral distributions functions . . . . . . . . . . . . . . . . . . . . . . 59
2.8 Velocity histograms for the 2-I model . . . . . . . . . . . . . . . . . . . . . 63

3 Dust within the old nuclear star cluster 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Effects of dust on the apparent dynamics of the NSC . . . . . . . . . . . . 72

3.2.1 Axisymmetric dynamical model of the NSC . . . . . . . . . . . . . 72
3.2.2 Asymmetry of the υl proper motion histograms . . . . . . . . . . . 72

3.3 Differential extinction in the NSC . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.1 Total extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Extinction in the NSC region . . . . . . . . . . . . . . . . . . . . . 77

3.4 Dust modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Predictions of the Dust model . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6 Does the addition of dust affect the measured M•, M∗ and R0? . . . . . . . 87
3.7 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Summary and Outlook 95
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Modeling the NSC . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1.2 Distance to the Galactic Center . . . . . . . . . . . . . . . . . . . . 96
4.1.3 Mass of the NSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.4 Mass of the Supermassive Black Hole . . . . . . . . . . . . . . . . . 97
4.1.5 Dust within the NSC . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A Multi-mass N-body realizations 103
A.0.1 Criticism on the ZM multi-mass scheme . . . . . . . . . . . . . . . 104
A.0.2 Multi-mass and Made to Measure methods . . . . . . . . . . . . . . 105



List of Figures

1.1 Stellar Orbits close to Sgr A* . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The minispiral structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Typical velocity profiles of the NSC . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The Milky Way bar’s geometry and its rotation . . . . . . . . . . . . . . . 12
1.5 Mean projected mass density against the total mass for various stellar systems 14
1.6 The prevalence of the central BH is increasing over the NSCs . . . . . . . . 15

2.1 Binning of the proper motion velocities . . . . . . . . . . . . . . . . . . . . 26
2.2 Binning of the line-of-sight velocities . . . . . . . . . . . . . . . . . . . . . 27
2.3 Combination of two γ-models and number density . . . . . . . . . . . . . . 28
2.4 Isotropic DF for the two-component spherical model of the NSC including

a central black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Modeled line-of-sight velocity dispersion and observed line-of-sight disper-

sions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Mean line-of-sight velocity data compared to the prediction of the two-

component spherical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Axisymmetric two-component model for the surface density of the nuclear

cluster and number density . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Velocity dispersions σl and σb compared to axisymmetric, semi-isotropic

Jeans models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 Root mean square line-of-sight velocities compared with the best model . . 40
2.10 All three projected velocity disperions compared . . . . . . . . . . . . . . . 41
2.11 Contour plots for the marginalized χ2 in the three parameter planes (R0,M•),

(M•,M∗), (R0,M∗) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.12 Contours from stellar orbits, this work and combination of those . . . . . . 45
2.13 2I-DF for our best Jeans model . . . . . . . . . . . . . . . . . . . . . . . . 46
2.14 Typical velocity distributions for l and b-velocities within the area of interest

(r < 100′′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.15 Predicted distributions of υl velocity compared to the observed histograms. 49
2.16 Best fitting model from the 2I DF compared to the isotropic rotator model. 51
2.17 Average differential extinction of nuclear cluster stars plotted as a function

of vl proper motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.18 The mass, density and the potential of the NSC . . . . . . . . . . . . . . . 54



viii LIST OF FIGURES

2.19 The contour used for the numerical evaluation of f(E,Lz) for the case where
Ψ∞ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.20 Our best DF for η = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.21 VHs and VPs in the l and b directions predicted by the 2I model in angular
bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.22 VHs and VPs in the l and b directions predicted by the 2I model in radial
bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.23 VHs for the symmetrized los data compared with the corresponding even
VPs of the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.24 Line-of-sight VHs compared with the corresponding VPs of the model in-
cluding rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 Effects of dust, rotation and triaxiality on the apparent dynamics of the NSC 71

3.2 VH data and VPs in the l direction predicted by the axisymetric model and
dust model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Map of AK for the NSC derived from H −K colors. . . . . . . . . . . . . . 75

3.4 Histogram of the extinction AK based on H −K colors for all the stars. . . 76

3.5 Average differential extinction of nuclear cluster stars plotted as a function
of υl and υb proper motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Extinction derived from the observed ratio of Paα to H92α radio recombination-
line emission (Roberts & Goss, 1993). . . . . . . . . . . . . . . . . . . . . . 79

3.7 Modeled K luminosity with completeness function before and after a dust
effect with AK = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 Percentage reduction in observable stars after a dust effect with AK = 0.4. 82

3.9 VPs in l direction for different models. . . . . . . . . . . . . . . . . . . . . 83

3.10 Shape of δAK versus υl curve for several dust models. . . . . . . . . . . . . 86

3.11 Predictions of the model with the VH and δAK data for each cell. The
numbers in the brackets show where the screen of dust is placed relative
to the center. Reduced χ2 are also provided for the histograms and the
photometry. For the cells A1, A2, B, C2, E, the screen dust distance is
based on the orbit models of the mini-spiral (Zhao et al., 2009). . . . . . . 88

3.12 Predictions of the model with the VH and δAK data for the outer cells shown
in Fig.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.13 Even part of the renormalized VPs for υl, υb and υlos for a NSC dynamical
model with no dust and the same dynamical model including the dust screen
prediction based on cell B. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Typical velocity distribution for vl with the corresponding velocity his-
tograms (left) along with the odd part of the model and the data (right) . 101

A.1 Formal relative errors in mass included in logarithmically placed spherical
cells of a Hernquist model . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



listoffigures ix

A.2 A Hernqist multi-mass realization with N = 106 particles with and without
black hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 Two snapshots (Model 1 and Model 2) of slit kinematics of the fitted multi-
mass Hernquist particle realization . . . . . . . . . . . . . . . . . . . . . . 107



x List of Figures



List of Tables

3.1 Inferred line-of-sight distance of the dust screen from Sgr A* for each one
of the eight cells of Fig. 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Extinction values per cell based on Fig. 3.3. . . . . . . . . . . . . . . . . . 87



xii List of Tables



Zusammenfassung

Das Hauptanliegen dieser Arbeit ist es, den alten Nuclear Star Cluster (NSC) im Zentrum
der Milchstraße zu studieren. Es werden neue Wertebereiche für die Masse, die Rotation,
die Bahnstruktur und die statistische Parallaxe des galaktischen NSC, und für die Masse des
supermassiven Schwarzen Loches abgeleitet. Diesen zugrunde liegen die Eigenbewegungen
von ∼ 10000 Sternen , ∼ 2500 line-of-sight Geschwindigkeiten sowie Sternenzählungen
von Fritz et al. (2014), erhalten durch VLT-Beobachtungen. Außerdem wird erstmals
eine Messung der Extinktion des Staubes innerhalb des galaktischen Nuclear Star Clusters
durchgeführt.

Zunächst wird die Oberflächendichte der Sterne in den zentralen 1000′′ durch eine Su-
perposition eines sphäroidischen Haufens mit einem Skalenradius von ∼ 100′′ und einer viel
größeren nuklearen Scheibe angepasst. Die Benutzung von zwei separaten abgeflachten
Modellen ist vom Vorteil, da so ein nicht konstantes axiales Verhältnis berücksichtigt
werden kann. Aus der Massendichte lässt sich das totale Potential aus der Summe der
Potentiale der zwei Modelle plus dem des Schwarzen Lochs berechnen.

Letztendlich ist es das Ziel, die Verteilungsfunktion (DF) des NSC zu erhalten, welche
die Verteilung der stellaren Masse im Phasenraum beschreibt. Es gibt zwei Methoden,
um die DF eines Systems zu erhalten, einmal durch Verwendung eines Teilchensystems
oder der Sternbahnen, oder aber durch analytische Methoden, die auf der stellardynamis-
chen Theorie basieren. Für diese Arbeit wird eine analytische Methode benutzt, da sie an
sich genauer ist (das Problem des Teilchen-Rauschens ist abwesend). Spezifisch wird die
selbstkonsistente Zweiintegral-Verteilungsfunktion f(E,Lz) für die oben genannten Dichte-
modelle bestimmt, und die Rotation selbstkonsistent hinzugefügt.

Damit wird gezeigt, dass der Unterschied zwischen den Dispersionen der Eigenbewe-
gungen σl und σb nicht durch Rotation erklärt werden kann, sondern eine Konsequenz
der Abflachung des NSC ist. Die Bahnstruktur der f(E,Lz) steht in exzellenter Übere-
instimmung mit den beobachteten Geschwindigkeitsdispersionsprofilen, wie auch mit den
Eigenbewegungs- und line-of-sight-Geschwindigkeitshistogrammen, einschließlich des Dop-
pelpeaks im vl-Histogramm. Durch das Anwenden axisymmetrischer Jeans Modellierung
erhält man dann aus den Eigenbewegungs- und line of sight- Geschwindigkeitsdispersio-
nen neue Abschätzungen der NSC Masse, der Schwarzen Loch Masse, und der Distanz
zum Galaktischen Zentrum von M∗(r < 100′′) = (8.94 ± 0.31|stat ± 0.9|syst) × 106M�,
M• = (3.86 ± 0.14|stat ± 0.4|syst) × 106M�, und R0 = 8.27 ± 0.09|stat ± 0.1|syst kpc. Eine
gemeinsame statistische Analyse mit den Ergebnissen aus Gillessen et al. (2009) basierend
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auf den Sternbahnen um Sgr A* ergibt M• = (4.23± 0.14)× 106M� und R0 = 8.33± 0.11
kpc. Die Bestimmung der Distanz ist besonders wichtig, da R0 als Skalenfaktor der galak-
tischen Struktur wirkt und die Abschätzung von Massen und anderen Parametern galak-
tischer und extragalaktischer Objekte beeinflusst.

Wegen hoher interstellarer Extinktion durch Staub ist es unmöglich, den NSC mit einem
optischen Teleskop zu beobachten. Deshalb sind wir auf Beobachtungen im infraroten Bere-
ich angewiesen, da der Staub für größere Wellenlängen transparenter wird. Die mittlere
absolute Extinktion in Richtung des zentralen parsec der Milchstraße ist AK ' 3 mag,
einschließlich des Staubs im Vordergrund und im galaktischen Zentrum.

In dieser Arbeit wird eine Messung der Staubextinktion innerhalb des galaktischen Nu-
clear Star Clusters abgeleitet, die auf den differentiellen Extinktionen der NSC Sterne sowie
der Korrelation mit ihren υl Eigenbewehgungen entlang der galaktischen Länge beruht.
Das Interesse an diesem Problem wurde von Beobachtungen geweckt, die zeigten, dass der
positive Geschwindigkeitspeak des Geschwindigkeits-Histogramms in Richtung der galak-
tischen Länge konsequent leicht höher ist als der negative Geschwindigkeitspeak.

Eine Erklärung für diese Asymmetrie ergibt sich durch das Vorhandensein des Staubes
innerhalb des NSC. Wegen des Staubes ist die sichtbare Anzahl der Sterne hinter dem
NSC geringer, als die der vor dem Cluster liegenden. Dieses beobachtete Merkmal kann
in Verbindung mit der Rotation erklärt werden. Durch den Vergleich der vorhergesagten
Asymmetrie mit Daten von ∼ 7100 Sternen in verschieden Gebieten des NSC ergibt sich,
dass Staub assoziiert mit der Mini-Spirale im galaktischen Zentrums mit Extinktionen
AK ' 0.15− 0.8 mag den Großteil der Daten erklärt. Schließlich wird berechnet, dass für
eine typische Extinktion von AK ' 0.4 die statistische Parallaxe des NSC sich um ∼ 0.4%
ändert, so dass systematische Effekte in der gemessenen Distanz durch Staubextinktion
gering sind.



Summary

The main subject of this work is the study of the old nuclear star cluster (NSC) in the Milky
Way. New constraints are derived on the mass, rotation, orbit structure and statistical
parallax of the Galactic old nuclear star cluster and the mass of the super-massive black
hole. For this ∼ 10000 proper motions, ∼ 2500 line-of-sight velocities, and star counts
from Fritz et al. (2014) obtained with VLT instruments are used. In addition, for the
first time a measurement of dust extinction within the Galactic old nuclear star cluster is
presented.

As a first step, the surface density distribution of stars in the central 1000′′ is fitted
by a superposition of a spheroidal cluster with scale ∼ 100′′ and a much larger nuclear
disk component. The use of two flattened models is advantageous because it allows for a
non-constant axial ratio. Having the density allows us to calculate the total potential as a
sum of the two model potentials plus the black hole potential.

Eventually the goal is the distribution function (DF) of the NSC, that is the distribution
of stellar mass over the phase space. There are two methods of acquiring the DF of a
system, using particle systems or orbits, or through analytical methods based on stellar
dynamics theory. In this thesis an analytical method is used since it is intrinsically more
accurate (the problem of particle noise is absent). Specifically, the self-consistent two-
integral distribution function f(E,Lz) is computed for the above mentioned density model,
and rotation is added self-consistently.

It is shown that the difference between the proper motion dispersions σl and σb cannot
be explained by rotation, but is a consequence of the flattening of the NSC. The orbit
structure of the f(E,Lz) gives an excellent match to the observed velocity dispersion
profiles as well as the proper motion and line-of-sight velocity histograms, including the
double-peak in the vl-histograms. By applying axisymmetric Jeans modeling to the proper
motions and line-of-sight velocity dispersions, best estimates are obtained for the NSC
mass, black hole mass, and distance M∗(r < 100′′) = (8.94 ± 0.31|stat ± 0.9|syst) × 106M�,
M• = (3.86± 0.14|stat ± 0.4|syst)× 106M�, and R0 = 8.27± 0.09|stat ± 0.1|syst kpc. A joint
statistical analysis with the results of Gillessen et al. (2009) based on orbits around Sgr
A* gives M• = (4.23 ± 0.14) × 106M� and R0 = 8.33 ± 0.11 kpc. The constraint of the
distance is particularly important since R0 acts as a scale factor for the Galactic structure
and impacts mass estimations and other parameters of Galactic and extra-galactic objects.

Because of high interstellar extinction caused by dust, it is impossible to observe the
NSC with an optical telescope. Therefore we rely on observations taken in the infrared
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because the dust is more transparent for larger wavelengths. The mean absolute extinction
towards the central parsec of the Milky Way is AK ' 3 mag, including both foreground
and Galactic center dust.

In this work, a measurement is presented for the dust extinction within the Galactic
old nuclear star cluster, based on combining differential extinctions of NSC stars with their
υl proper motions along Galactic longitude. Interest in this problem was triggered by the
observation that the positive velocity peak of the velocity histograms in Galactic longitude
is consistently slightly higher than the negative velocity peak.

An explanation is given for this asymmetry based on the existence of dust within the
NSC. Because of the dust, the apparent number of stars behind the NSC is smaller than
that in front of the cluster. This in conjunction with the rotation can explain the observed
characteristic. Comparing the predicted asymmetry to data for∼ 7100 stars in several NSC
fields, it is found that dust associated with the Galactic center mini-spiral with extinction
AK ' 0.15− 0.8 mag explains most of the data. Finally, it is estimated that for a typical
extinction of AK ' 0.4 the statistical parallax of the NSC changes by ∼ 0.4%, so that
systematic effects on the measured distance due to dust extinction are small.



Chapter 1

Our Milky Way Galaxy and its
Nuclear Star Cluster.

This chapter consists of five sections. In the first of these, I describe aspects of the Galactic
Centre (GC) which are related to the Nuclear star Cluster (NSC), the main subject of this
thesis. The second section is dedicated to the NSC itself and its dynamics. In the third
section follows an introduction to the larger-scale components of the Milky Way (MW). In
the fourth section I describe NSCs beyond the MW including available formation models.
Finally in the fifth section I present the available dynamical tools and theory that can be
used to model a NSC.

1.1 The Galactic Center

1.1.1 The Central black hole Sgr* A

It is now well known (e.g. Ferrarese & Ford., 2005) that the center of most galaxies contain
a supermassive black hole. In the 1930s a bright non-thermal radio source was discovered
by Jansky (1933) at the center of the Milky Way. The radio source was named Sagittarius
A* (Sgr A*) because it was projected near the Sagittarius constellation. Now it is believed
that Sgr A* is the location of a supermassive black hole (Genzel et al., 2010).

The first indications of a massive black hole in the Galactic center emerged in the late
1970s with the work of Wollman et all. (1977). They discovered that the radial velocities of
ionized gas over a region 40′′ from the center ranged from +250 km/s to about −350 km/s.
From this they estimated that the total mass within a radius of 1 pc about the galactic
center is ∼ 4 × 106M�. However no infrared or X-Ray source was detected near Sgr A*
(Allen & Sanders, 1986) so it was not certain whether Sgr A* harbored a suppermassive
black hole (SMBH). The argument was settled later with the observation of stellar orbits
(more on this matter later).

The earliest stellar dispersion measurements (therefore non-individual stellar orbits)
derived from the 2µm CO absorption bands of late-type giants (Rieke et al., 1988; McGinn
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et al., 1989). However these measurements were far away from the center and failed
to constrain accurately the central non stellar mass. Genzel et al. (1996) used radial
velocities of 223 early and late-type stars from 0.1 to 5 pc acquired from K-band imaging
spectroscopy and applying projected mass estimators they constrained the central dark
mass to 2.5− 3.2× 106M� at 6-8σ significance.

The Sgr A* is special because at a distance of ∼ 8 kpc it is the closest SMBH we
can observe. This gives us the ability to observe the stars and gas near the black hole in
much grater detail than any other SMBH (e.g. the next closest SMBH is at the center of
Andromeda galaxy ∼ 100 further than Sgr A*). However even at this distance observations
in the Optical-UV wavelength are impossible because of the high extinction close to AV ∼
30mag (this means that only 10−12 photons in the optical reach Earth) by interstellar dust.
Instead observations are made in the IR where the extinction in K-band is only AK ∼ 3mag
(Rieke et al., 1989).

The next major step came with the detection of proper motions (motions in the plane
of the sky) within the central few arcseconds. This allowed us for the first time to get
hints of the 3D stellar velocity structure close to the center. Eckart & Genzel (1996)
reported the proper motions of 39 stars located between 0.04 and 0.4 pc from the Galactic
Center. They found that the velocity dispersion estimated from the proper motions is in
excellent agreement with that obtained from the radial velocities and placed a lower limit
of 6.5 × 109M�pc−3 on the density of the central region. The number of detected proper
motion increased very fast. Schödel et al. (2010) used 6000 proper motions within 1 pc
from Sgr A* obtained with NACO/CONICA at the ESO VLT. By applying Jeans modeling
they found a best-fit black hole mass of 3.6+0.6

−0.4×106M� consistent with the canonical value
of 4× 106M�.

We saw in the previous paragraph that the mass of the central black hole can be
calculated by applying Jeans modeling to a set of stellar motions. The problem with this
procedure is that most of the times the modeling does not guaranty the uniqueness of
the solution. For example in spherical Jeans modeling there is a degeneracy between the
radial velocity dispersion and the anisotropy (e.g. Binney & Tremaine, 2008). In Chapter
2 (Chatzopoulos et al., 2015) we combined star counts and kinematic data from Fritz et al.
(2014) including 2500 line-of-sight velocities and 10000 proper motions obtained with VLT
instruments. By applying axisymetric Jeans modeling supported also from the very good
match of the Velocity Profiles (VPs) to the corresponding f(E,Lz), we found a mass of
(3.86±0.14|stat ± 0.4|syst)× 106M�. In addition a comparison of the distribution function
f(E,Lz) to the histograms gave us a good description of the NSC. In this way, much of
anisotropy-mass degeneracy was removed. A joint statistical analysis with the S-orbits (see
next paragraph, Gillessen et al., 2009) gives (4.23 ± 0.14) × 106M� and R0 = 8.33 ± 0.11
kpc.

Probably the best indicator of the existence of the Sgr A* SMBH is the individual stellar
orbits near it. Stars orbiting sufficiently close to a several million solar masses object would
behave as test particles under the Keplerian laws or the general relativity approximation.

The first success towards the individual orbit goal came with the determination of the
orbit of the star S2 (Schödel et al., 2002; Ghez et al., 2003). Having a high ellipticity of
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e = 0.88 the pericenter of the S2 star is merely 17 light hours from the Sgr A*. The first
orbital analysis gave 4.1 × 106M� (Schödel et al., 2002) and 4.6 × 106M� (Ghez et al.,
2003) for a rescaled distance of R0 = 8.3 kpc (most recent estimation) in agreement with
each others statistical analysis. Recently Gillessen et al. (2009) presented the results of
16 years of monitoring stellar orbits around Sgr A* using near infrared techniques. They
obtained orbits for 28 late-type including the S2 star and they determined the orbital
parameters for six of those stars. Their best value for the mass of the SMBH is (4.31 ±
0.06|stat ± 0.36|syst) × 106M� for R0 = 8.33 ± 0.35 pc. Fig 1.1 shows 20 out of 30 stellar
orbits close to Sgr A* (Gillessen et al., 2009). The S2 orbit was the first full orbit recorded
from observations.

Figure 1.1: At the time of writing at least 30 S-star orbits have been isolated around Sgr
A*. This plot shows 20 of them delineated from recent orbital analysis. The S2 orbit was
the first full orbit recorded from observations. Fig. from Gillessen et al. (2009).

Observations of nearby galaxies show a strong correlation of their central SMBH and
the velocity dispersion σ of the host galaxy (Tremaine et al., 2002; Alexander, 2005).

M� ' 1.3× 108

(
σ

200kms−1

)βm/σ
, βm/σ ∼ 4− 5 (1.1)

This relation indicates a connection between the SMBH and its host galaxy. The Sgr
A* SMBH follows the m/σ relation (Valluri et al., 2005). With a mass of ∼ 4×106M�(see
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later discussion about mass determination) the Sgr A* black hole is one of the lightest
known SMBHs in accordance with the small bulge of the Milky way (Alexander, 2005).
With this mass its radius of influence is rh = 90′′ and its event horizon is at much smaller
radius rh = 9µarcsec.

1.1.2 The young stars and the Paradox of Youth

The central parsec around Sgr A* contains thousands of stars. About 96% of those stars
are old late-type giant stars (> 5 Gyr) the rest are early-type massive young stars with
ages ∼ 6 Myr (Genzel et al., 1996; Paumard et al., 2006). These include Wolf-Rayet stars,
O and B main sequence stars and supergiant stars (e.g. Bartko et al., 2010). Most of these
Wolf-Rayet, O and B stars reside in two strongly warped disks between 0.8′′ and 12′′ as
well as a central compact concentration (the S-Star cluster) of B-stars centered on Sgr A*.
Their half number radius is r ∼ 7′′ and only very few of them are outside of r > 15′′ (Fritz,
2013). The later type B-stars in the radial interval between 0.8′′ and 12′′ seem to be in a
more isotropic distribution outside the disks (Bartko et al., 2010).

The existence of so many young stars close to the center is unexpected because of
the strong tidal forces the central black hole would disrupt any initial gas cloud before
collapsing. Therefore how did the young stars get into the central parsec? Were they
formed in situ or drifted from outside? The first scenario (in situ formation) is problematic
because star formation within the central parsec requires substantial compression of the
gas (Morris, 1993) while the second is also implausible since in the central parsec the two
body relaxation time is much larger that the age of those stars. This problem has been
termed the paradox of youth (Ghez et al., 2003).

Several possible solutions have been proposed for this problem (Ghez et al., 2003). The
most promising one supports the in situ formation of those stars (Levin & Beloborodov,
2003; Bonnell & Rice, 2008). According to this scenario a recent burst of star formation
has occurred in a dense gaseous disk around Sgr A*. Such a disk is no longer present
therefore it is guessed that the remaining gas is accreted or expelled by the central black
hole.

1.1.3 The Minispiral and the Circumnuclear disk

The area inside ∼ 1−1.5 pc radius consists of several streamers of dust, ionized and atomic
gas with temperatures between 100K−104K and it is called “ionized central cavity” (Ekers
et al., 1983). An important feature of the ionized cavity is the so called “minispiral”, named
after its distinctive shape that resembles a spiral. Outside of the minispiral (and the ionized
cavity) at radius ∼ 1.5−4 pc lies the circumnuclear disk (CND) which is a set of streamers
of dense molecular gas and warm dust (Becklin et al., 1982; Guesten et al., 1987). The gas
density of the CND is higher than that of the minispiral and there is a sharp transition at
∼ 1.5 pc. The total mass of the ionized gas in the central cavity is quite small ∼ 30M�.
Additionally there is about 300M� of dense neutral hydrogen gas, a few M� of warm dust
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(Davidson et al., 1992) and an inferred inflow rate into the central parsec of 3×10−2M�yr−1

(Jackson et al., 1993).
The minispiral is fed by several streamers of infalling gas and dust from the inner part of

the CND (Kunneriath et al., 2012) and it consists of four main components: the northern
arm, the eastern arm, the western arm and the bar (Zhao et al., 2009) surrounded by
the circumnuclear disk of inner radius ∼ 1.6 pc (Christopher et al., 2005; Jackson et al.,
1993). These three streams (northern, eastern, western) were modeled by Zhao et al. (2009)
using three bundles of Keplerian orbits around Sgr A* with some significant deviations.
Assuming that each of the observed streams of ionized gas follows a single orbit, they
determined the five orbital parameters (a, e,Ω, ω, i) of them using least-square fitting to
the geometry of the ionized streams. According to their findings, both the Northern and
Eastern Arm streams have high eccentricities (e ∼ 0.8), while the Western Arc stream is
nearly circular (e ∼ 0.2) (Fig. 1.2). The three streams rotate counterclockwise as seen
from the Earth and have orbital periods in the range 4−8×104yr (Zhao et al., 2009). The
typical electron density and temperature in the arms are 3−21×104cm−3 and 5000-13000K
respectively Zhao et all. (2010). In Chapter 3 (Chatzopoulos et al., 2015b) we modeled the
dust within the nuclear star cluster using the observed proper motions. We found some
correlation between the dust inferred from local extinction variation and the western arc
of the minispiral.

Figure 1.2: The three streams of the minispiral as they were modeled by Zhao et al. (2009).
The Earth is towards negative z. The streams rotate counterclockwise as seen from the
Earth and have orbital periods in the rage 4 − 8 × 104yr (Zhao et al., 2009). The black
hole lies at the origin.
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1.2 The old Nuclear Star Cluster of the Milky Way.

The dominant structure of the inner Kpc in the MW is the Nuclear Bulge with stellar mass
and luminosity of (1.4± 0.6)× 109M� and (2.5± 1.0)× 109L� respectively (Launhardt et
al., 2002). The Nuclear Bulge appears as a distinct, massive disk-like complex of stars and
molecular clouds which is, on a large scale, symmetric with respect to the Galactic Center
(Launhardt et al., 2002). The Nuclear Bulge consists of the Nuclear Star Cluster (NSC)
at the center and a large Nuclear Stellar Disk (NSD) with radius 230 ± 20 pc and scale
height 45± 5 pc, as well as a Nuclear Molecular Disk (Launhardt et al., 2002).

The NSC was discovered as a source of infrared radiation at wavelengths of 1.65, 2.2
and 3.4µ by Becklin & Neugebauer (1968) using aperture with angular resolutions from
0.08′ to 1.8′. It was found to be a structure with a full width at half-maximum of 3′ − 5′

and elongated along the Galactic Plane. As in the Galactic center the NSC is invisible
in optical wavelengths with an extinction of AV = 30mag. This is not the case for the
infrared the extinction is AKs ∼ 3.0 (e.g. Fritz et al., 2014). The NSC formation started
about 10 Gyr ago when its average nuclear star formation rate was maximum. Afterwards
the star formation rate dropped to a minimum 1− 2 Gyr ago and increased again the last
few hundred Myrs (Pfuhl et al., 2011). About 80% of its stellar mass formed about 5 Gyr
ago (Blum & Ramrez, 2003; Pfuhl et al., 2011).

The formation mechanism of the NSC is still an open problem. The available scenarios
can be split in two main categories (for details see section 1.4): (i) Several dense clusters
migrated towards the center via dynamical friction and formed the NSC (ii) The NSC was
build in situ from gas infall and subsequent star formation near the center (e.g. Böker,
2009)

1.2.1 The stellar cusp problem

One interesting theoretical problem is the shape of the stellar density distribution close to
the center of a relaxed system that contains a black hole. Since the density distribution
near the center can be approximated with a power-law of the form ρ ∝ r−γ we seek for
the value of γ. First steps towards the solution were done by Bahcall & Wolf (1976)
when they found that γ = 7/4 for a spherical symmetric cluster close to equilibrium
with approximately isotropic distribution in velocity space, assuming that all of its stars
have the same mass. The value γ = 7/4 was confirmed later numerically by Preto et
al. (2004). This is called the weak-segregation solution and it is considered suitable for
globular clusters. For the NSC the strong-segregation solution is more suitable in which
γ = 11/4 for the rare massive stellar objects and γ = 3/2 for the light ones (Preto & Amaro
Seoane, 2010). Initial estimates on star counts from 8m telescopes (Genzel et al., 2003)
showed that γ = 1.4±0.1 which is consistent with the later value. However, this estimation
includes the massive young stars within a few ∼ 0.1 pc. These stars cannot be dynamically
relaxed since they are so young and therefore cannot be part of the equilibrium cusp. When
these stars are excluded the stellar density is too flat to be consistent with a classical cusp.
Recent estimates of the density slope based on the late-type stars give values as low as
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γ = 0.05+0.29
−0.60 (Do et al., 2013), however values smaller than γ = 0.5 are inconsistent with

the presence of the central black hole at least for spherical models (Tremaine et al., 1994)
and axisymmetric models to the form f(E,Lz) (Hunter & Qian, 1993). This describes the
cusp or core problem which is still open.

Possible solutions of the problem are (Alexander, 2005; Schödel et al., 2014): (i) The
cusp exists but it is invisible because of the existence of dark objects like black holes or faint
giant stars near the center. (ii) The cusp around Sgr A* has not yet been formed which
means that the relaxation time near the center is larger than expected. (iii) The cusp has
been destroyed by the infall of an intermediate-mass black hole and has not yet had the
time to regrow. According to the last scenario, the cusp could regrow at the center of a
galaxy after being destroyed in a merger event of two central black holes (Merritt & Szell,
2006). The growth of the cusp for the GC has been studied with numerical simulations
from Antonini et al. (2012) with massive globular clusters spiraling into the center of a
galaxy and merging to form the nucleus. After the final inspiral was complete, the core
was observed to shrink as the stellar density evolved toward a Bahcall Wolf cusp.

1.2.2 Dynamical structure & kinematics of the NSC

Extensive dynamical modeling of the NSC and the surrounding NSD has become possible
with the observation of several thousand proper motions and radial velocities (e.g. Trippe
et al., 2008; Schödel et al., 2009). The ultimate goal of the dynamical modeling of a
stellar system (in this case the NSC) is the successful prediction of the observed surface
density distribution and the observed 3d VPs and thereby also of unobservable parameters
such as the mass distribution or the intrinsic anisotropies. This is because the VPs contain
information of all the moments of a distribution function (see also section 1.5). Additionally
the recovery of the distribution function ensures the self consistency of the system (in simple
words, that the model is a manifestation of a real system).

Initially the NSC was modeled as an isotropic spherical system aligned with the galactic
plane and with the same sense of rotation. We note here that it is possible to add rotation
to a spherical system self consistently by reversing the sense of rotation of some or all
of its stars (Lynden Bell, 1960). Trippe et al. (2008) obtained the proper motions for
5445 stars using NAOS/CONICA and SINFONI instruments at the VLT. Using those
data they derived a statistical parallax for the GC of R0 = 8.07± 0.32|stat ± 0.13|syst kpc.
Additionally by applying spherical Jeans equation to the data they estimated a black hole
mass MBH ' 1.2× 106M� contrary to the canonical MBH ' 4.0× 106M� estimated from
the orbits (Schödel et al., 2002, 2003; Eisenhauer et al., 2005; Gillessen et al., 2009). Schödel
et al. (2014) measured the proper motions of more than 6000 stars within ∼ 1.0 pc of Sgr
A*. They modeled the NSC non-parametrically as an isotropic and anisotropic spherical
system, solving Jeans equations. Their best-fit black hole mass was MBH ' 3.6+0.2

−0.4×106M�
much closer to the expected value. Their modeling gave a stellar mass within the innermost
pc of 1.1× 106M� < M(< 1pc) < 1.5× 106M�.

An interesting problem that emerged from the observed proper motions was the bell-
like shape of the VPs in b direction and the characteristic 2-peak shape of the VP in the l
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direction (e.g. Trippe et al., 2008; Schödel et al., 2010; Fritz et al., 2011). This is shown is
Fig.1.3. Trippe et al. (2008) considered the 2-peak shape as a sign of rotation. Schödel et
al. (2010) tried to fit the VP in b direction to a Gaussian but the fit was not good.

One related unresolved question at that time was whether the NSC is flattened or
not. Schödel et al. (2014) by combining imaging data from the IRAC/Spitzer GC survey
(Stolovy et al., 2006) showed that the NSC is flattened with a ratio between minor and
major axis of q = 0.71 ± 0.02, and estimated a stellar mass of M∗ = 2.5 ± 0.4 × 107M�.
In Chapter 2 (Chatzopoulos et al., 2015) we calculate for the first time a self-consistent
distribution function for the NSC of the form f(E,Lz) providing also predictions for the
VPs, using star counts and kinematic data from Fritz et al. (2014), including 2500 line-
of-sight velocities and 10000 proper motions obtained with VLT instruments. First we
approximated the NSC as a two component γ model (Tremaine et al., 1994). The first
component represents the NSC and has a flattening of q = 0.73 ± 0.04 inferred from star
counts and also consistent with the observed kinematics. The second much more flattened
component with q = 0.28 represents the NSD. Then we calculated the DF of the form
f(E,Lz) using the algorithm from (Qian et al., 1995). The DF provided a prediction of
the VPs in every direction and showed that the characteristic 2-peak shape of the VPs in
l direction is a result of a flattened NSC.

Recently it was suggested that there is a misalignment (Feldmeier et al., 2014; Fritz et
al., 2014) of the radial velocity data about ∼ 10◦ to the galactic plane. However this cannot
be confirmed for the proper motions (Fritz et al., 2014). In addition there are indications
for a rotating substructure perpendicular to the Galactic plane at distance ∼ 20′′. If these
findings are confirmed then they would support the merger scenario of the NSC.

In Chapter 2 we find that the NSC can be well approximated as an axisymmetric
system of the form f(E,Lz). An axisymmetric system with a DF of the form f(E,Lz) is
an isotropic rotator when all three eigenvalues of the dispersion tensor are equal (Binney &
Tremaine, 2008). The new data and modeling suggest (Fritz et al., 2014; Chatzopoulos et
al., 2015) that the NSC is very close to an isotropic rotator up to ∼ 30′′ and close enough
up to ∼ 200′′ with some tangential anisotropy outwards of 30′′.

In Chapter 3 (Chatzopoulos et al., 2015b) we continue the modeling of the NSC by
giving a 2nd order description of the VP in l direction. When inspecting the VPs in l
direction it is noticeable that the right peak is slightly higher than the left (e.g. Trippe et
al., 2008; Schödel et al., 2010; Fritz et al., 2011). This means that seemingly there are more
stars in the front of the cluster (positive velocities) than in the back. In addition we give
evidence based on photometry and on proper motion data that the observed asymmetry
could be a result of dust within the NSC. The measured extinction variation along line-
of-sight based on modeling of the dust in conjunction with the f(E,Lz) model is about
AK = 0.4. Additionally the photometry data show a weak correlation between the mini-
spiral and the dust within the NSC especially with the Western Arc.
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Figure 1.3: This is a sample from chapter 2 that shows the typical shape of the VPs in l and
b direction of the NSC. The histograms show the data and the lines show the corresponding
modeling from Chapter 2. The characteristic 2-peak shape of the VPs in l direction comes
from the flattening of the NSC.

1.3 The Milky Way as a disk galaxy

The key properties of disk galaxies, also commonly called spiral galaxies, are that they are
thin, rotate rapidly, and often show spiral structure. A disk galaxy consists of three basic
components of visible matter: The disk, the bulge and the stellar halo. We dedicate the
rest of this Section to a brief introduction of each one of these components.

1.3.1 The Galactic Disk

The Milky Way’s dominant stellar component is the disk since it contains about three
quarters of all Galactic Stars (Rix & Bovy, 2013). The Milky Way’s disk is usually con-
sidered to have two major baryonic components: a thin disk and a thick disk (Gilmore &
Reid, 1983). The total density of the disk can be approximated with (Binney & Tremaine,
2008):

ρd(R, z) = Σde
−R/Rd

(
α0

2z0

e−|z|/z0 +
α1

2z1

e−|z|/z1
)

(1.2)

where the first and second terms in the parenthesis represent the thin and thick disk
respectively and α0 + α1 = 1, z0, z1 are the scale heights, Rd the scale length and Σd

central surface density. Its total mass is given by Md = 2πΣd,0R
2
d. The stellar mass of

the disk’s thin component is mD ' 5 × 1010M� while the mass of the thick component
is 10 − 20% of that of the thin disk (McMillan, 2011). Recent papers (e.g. Bovy et al.,
2012) suggest larger fraction because the disk is more centrally concentrated which also
challenges eq. 1.2. Its mass to light ratio M/L in B, V, I bands is (M/L)B = 1.4 ± 0.2,
(M/L)V = 1.5 ± 0.2, (M/L)I = 1.2 ± 0.2 respectively (Flynn et al., 2006). The disk is
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a highly flattened structure with an exponential radial scale length of 2.3-3 pc and scale
height of z0 = 0.3 kpc for the thin component and z1 = 0.9 kpc for the thick component
(Juŕıc et al., 2008; McMillan, 2011). All disk stars orbit in the same direction of rotation,
with a small amount of vertical motion. The Galactic disk can be characterized as cold
because the stellar velocity dispersions near the sun are σz ' σφ ' σR/1.5 ' 25kms−1

(Dehnen & Binney, 1998), much smaller that the circular velocity υ ' 220kms−1. Younger
and/or more metal-rich stars tend to be on more nearly circular orbits with lower velocity
dispersions. The Sun is only 25 pc above the mid-plane (Juŕıc et al., 2008).

The formation of the disk depends strongly on the amount of angular momentum
present in the collapsing gas. The initial angular momentum is believed to have cosmo-
logical origin. This is because in the early phase of proto-galactic collapse the gas and the
dark matter were mixed and therefore had a similar angular momentum distribution (Fall
& Efstathiou, 1980). As the gas cools, it loses energy and sinks deeper into the potential
well of the halo. However gas cannot easily loose its angular momentum. The gas with low
angular momentum falls into the inner region and supports the formation of the galactic
nucleus, the central black hole and perhaps a classical bulge, and additionally forming stars
at small radii. In contrast the gas with high angular momentum forms the disk. Whether
the angular momentum is truly conserved during the in-fall can be seen from the relation
between the resulting disk size and the specific angular momentum λ′ of the surrounding
dark halo. where:

λ′ =
J√

2MvirVvirRvir

(1.3)

Where Rvir, V
2 = GMvir/Rvir, Mvir are the virial radius, virial velocity and virial mass

of the dark halo (Bullock et al., 2001). This relation when plotted against the data confirms
the cosmological origin of the angular momentum however it seems that some amount of
angular momentum is lost during the process (Burkert, 2009). After the disk forms, secular
disk evolution becomes important on timescales longer than the infall timescale (Mo et al.,
1998).

1.3.2 The Galactic Bulge

In addition to the disk, the Milky Way contains a tightly packed group of stars that is
thicker than the disk and comprises ∼ 15% of the total luminosity (Binney & Tremaine,
2008), called a bulge.

The Galactic bulge in contrast to the Galactic center can be observed in the optical.
The bulge extends to 10◦ from the plane where the extinction even in the optical is not
so high. The Galactic bulge is dominated by a globular cluster-age, metal-rich stellar
population (Rich, 2013). The majority of those metal-rich stars are old with an age of
t = 10 ± 2.5 Gyr (Zoccali et all., 2003) a value that has been obtained by comparison of
bulge fields with metal-rich globular clusters.
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Until recently there was some dispute about whether the Galactic bulge is a classical
bulge or a box/peanut (pseudo) bulge. A classical bulge has properties similar to elliptical
galaxies and forms through merging of smaller structures while a pseudo-bulge refers to the
slow dynamical evolution due to internal processes and interactions with other components
like the disk, spiral arms etc. Recent studies suggest that the Galactic bulge resembles
mostly a box/peanut bulge with a small classical bulge component of less than 20% by
mass (Martinez-Valpuesta & Gerhard, 2011; Wegg & Gerhard, 2013).

The inner MW can be separated (not certain though) into three components that are
common to many barred spiral galaxies (Kormendy, 2013). The main component is a
box/peanut bulge shape structure with ∼ 300 pc vertical scale and |l| < 10◦, that also
contains most of the bulge mass ∼ 1.84± 0.07× 1010M� (Portail et al., 2015). The second
structure with |l| > 10◦ is a thin structure with mass ∼ 2× 109M� and is called the long
bar with ∼ 180 pc scale height (Wegg et al., 2015). The length of the bar is about ∼ 5
kpc although still far from certain ( Lòpez-Corredoira et al., 2007; Wegg et al., 2015) with
axes ratios 1:0.35:0.26 (Rattenbury et al., 2007). The near side of the bar is at positive
Galactic longitude with angle ∼ 28− 33◦ (Wegg et al., 2015). Fig. 1.4 shows the geometry
of this structure. Whether the long bar is separable from the box/peanut component is
still debatable. The third structure is a nuclear bar or disk of extent ∼ 100 pc with mass
similar to the long bar (Launhardt et al., 2002).

The bulge kinematics are intermediate between a purely rotating system such as the
Milky Way disk and a hot, non-rotating system like the Milky Way halo, that is supported
by velocity dispersion (Minniti & Zoccali, 2007). The corotation of the bar is about halfway
between the Galactic center and the Sun. The rotation of the bar component has been
calculated from the relative velocity of OH/IR stars. The resulting value of the pattern
speed after adding the circular velocity at the local standard of rest is 59±10±5(sys)kms−1

kpc−1 for R0 = 8 kpc and V0 = 220 kms−1 (circular velocity of the Sun) (Gerhard, 2010).
According to the previous value the galactic bar is a fast rotator, however recent estimates
(Portail et al., 2015) using dynamical modeling imply a much lower 25− 30 kms−1 kpc−1

pattern speed.

1.3.3 The Stellar Halo

The third luminous and probably the oldest component of the Milky Way is the stellar
halo. It is comprised of metal-poor globular clusters and field stars. Approximately 150
globular clusters and about 20 satellite galaxies are located in the Stellar halo (Helmi,
2008). With mass ∼ 109M� (Morrison, 1993) the stellar halo contains about 1% of the
total mass of the Galaxy. The age of the halo can be estimated from the very metal-poor
stars near the solar-neighborhood which have ages of 14 ± 3 Gyr (Hill et al., 2002) and
13.2 Gyr (Frebel et al., 2007).

The density of the stellar halo can be approximated with:
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Figure 1.4: The bar geometry and its rotation. The near side of the bar is at positive
Galactic longitude with angle θbar ∼ 28−33◦. The distance is based on the recent estimate
from Chapter 2. (adapted from Rich, 2013).

ρ(x, y, z) = ρ0
(m2 + a2)

n

rn0
(1.4)

where m2 = x2 + y2/p2 + z2/q2, is the triaxial radius (p = 1 for axisymmetric), q and p
are the minor and intermediate-to-major axis ratios, n is the power-law exponent and has
value about n ∼ −2.7 while q ∼ 0.7 (e.g., Siegel et al., 2002). The normalization factor ρ0

is the stellar halo density at distance R0 which is usually the Sun’s galactocentric distance
(∼ 8 kpc) and is close to ρ0 ∼ 10−4 (Fuchs & Jahreiß, 1998; Gould & Flynn, 1998).

The stellar halo shows little sign of rotation and its angular momentum is close to
zero in contrast to the disk and the bulge (e.g., Freeman et al., 1987). Specifically solar-
neighborhood halo stars show a small prograde rotation Vφ ∼ 30 − 50kms−1 (Chiba &
Beers, 2000) while there is no strong correlation of rotation with metallicity. Thus the halo
is supported almost entirely by its velocity dispersion having a radially elongated velocity
ellipsoid (σR, σΦ, σz) = (141± 11, 106± 9, 94± 8) kms−1 (Chiba & Beers, 2000). However
some of its stars are very energetic, reaching out to at least 100 kpc from the galactic
center (e.g. Carney et al., 1990).
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The metal-poor halo of the Galaxy is very interesting for galaxy formation studies be-
cause it is so old: Most of its stars are probably older than 12 Gyr and were probably among
the first galactic objects to form (Freeman et al., 2002). There are two available scenarios
for the formation of the Galactic halo introduced in the 1960s and 1970s. According to the
first one (Eggen & Lynden-Bell., 1962) about 10 Gyr ago the protogalaxy consisting of gas
started to fall radially into the center. As the gas fell, condensations formed which were
later to become globular clusters. The collapse was very rapid and only ∼ 108 years were
required for the gas to attain circular orbits in equilibrium. The second scenario Searle &
Zinn (1978) which is now considered the most probable on is based on the fact that there
is a lack of radial abundance gradient in the clusters of the halo and these formed in a
number of small protogalaxies that subsequently merged to form the present Galactic halo.

1.4 Nuclear star clusters in external disk galaxies

Nuclear star clusters (NSC) exist in the centers of the majority of spiral galaxies of all
Hubble types. NSCs are very interesting since several of the most extreme physical phe-
nomena take place within them such us super-massive black holes, active galactic nuclei,
star-bursts and extreme stellar densities. Their detection is difficult because it requires high
spatial resolution observations that currently are only possible with Hubble Space Tele-
scope (HST) or with very large ground telescopes. Several surveys have been conducted
for their detection. Carollo et al. (1998) conducted an analysis of HST/WFC images of 40
early type spiral galaxies (Sa-Sc). They detected central compact sources in about 50%
of these galaxies. Böker et al. (2002) acquired new HST I-band images of a sample of
77 nearby late-type spiral galaxies (Scd-Sm) with low inclination. They detected compact
central sources in 77% of the sample. Later Côtè et al. (2006) revised upward the frequency
of NSCs in early type galaxies. By using the ACS Virgo cluster survey program of the
HST they obtained high resolution imaging of 100 early-type galaxies (E & S0) of Virgo
cluster. They resolved NSCs in about 66%−82% of the sample but they had no detections
in the most luminous giant ellipticals. We note that early type galaxies have much steeper
surface densities which makes the detection of NSCs exceedingly difficult.

NSCs share some similarities with globular clusters but also have important differences.
Their effective radii typically range from 2 to 10 pc. About 50% of them have effective
radius about 2.4 − 5 pc (Rossa et al., 2006) and this makes them as compact as MW
globular clusters. Their luminosities typically range from 105 to 108L� which is on average
4 mag brighter than the old globular clusters with total I-band magnitudes in the range
of −8 to −12 mag for the NSCs Böker et al. (2004). The high luminosities are partly
because of their young star populations. In general the abundance ratios [α/Fe] of NSCs
is lower than globular clusters (Evstigneeva et al., 2007) and therefore they are more metal
enriched. With typical dynamical masses of 106− 107M� (Walcher et al., 2005), NSCs are
much more massive than typical globular clusters and they are the densest stellar systems
in the Universe. This is clear in Fig. 1.5 where is plotted the mean projected mass density
inside the effective radius against the total mass for various stellar systems where it is
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apparent that NSC follow the same scaling relationship with globular clusters and they
scale totally differently than bulges.

In general, several NSCs seem to be flattened. Seth et al. (2006) found that three out
of nine NSCs that belong to late-type galaxies observed with the HST/ACS were flattened
and could fit well with a combination of a spheroid and a disk or ring. Their median axis
ratio is 0.81, with q ∼ 0.4 for NGC 4206 and NGC 4244. This is consistent with the NSC
of the MW which is found to be flattened with q ∼ 0.73 (Schödel et al., 2014; Chatzopoulos
et al., 2015) consistent also with the kinematic data as shown in Chapter 2.

The available formation scenarios of NSCs can be split into two main categories: a) The
merger scenario where several dense globular clusters migrate close to the center from the
outskirts via dynamical friction (Tremaine & Ostriker, 1975) and merge to form a compact
stellar system. b) The ’in situ’ episodic buildup scenario where stars form locally from
in-falling gas towards the center (Schinnerer et al., 2008; Bonnell & Rice, 2008). Next we
give more details for each one.

Figure 1.5: Mean projected mass density inside the effective radius against the total mass
for various stellar systems. The NCS follow the same scaling as the MW globular clusters
although they are much more massive. The scaling of the NSC differs significantly from
the spheroids. From Walcher et al. (2005)

The first evidence that a NSC can be formed from in-falling globular clusters came from
observations of the nucleus of M31 galaxy in 1975 using a stratosphere balloon. Tremaine
& Ostriker (1975) were the first to propose that the nucleus of M31 was grown from the
nearby globular clusters spiraling towards the center where they were tidally disrupted by
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Figure 1.6: The prevalence of the central BH is increasing over the NSCs and is traced by
the mass ratio MBH/(MBH +MNSC) which appears to depend on the bulge mass Msph of
the host galaxy. The spheroids with the highest mass do not contain an NSC. The points
with circles have only an upper limit to their BH mass. From Graham & Spitler (2009)

interactions from the growing nucleus. Dynamical friction (Chandrasekhar, 1943) which
is the loss of momentum and kinetic energy of a massive body (e.g. globular cluster)
moving within a gravitational field generated from several lighter stars, plays an important
role in this scenario. By this process the nucleus of M31 with mass of ∼ 5 × 107M�
can be formed within 1010 years. Lotz et al. (2001) examined high resolution images
from HST of dE elliptical galaxies seeking for evidence of dynamical friction. By doing
Monte Carlo simulations, taking into account also the radial orbital decay from dynamical
friction they found that the brighter nuclei may have been formed from the orbital decay of
massive clusters. Antonini et al. (2012) investigate the merger scenario by doing N-body
simulations for the Galactic NSC. Their simulation starts with several globular clusters in
circular orbits at a distance of 20 pc from the center. The clusters decay orbitally in the
central region and finally are being disrupted by the SMBH at a distance about ∼1 pc. At
the end of their simulation they find that the formed system has properties similar to the
Milky Way NSC, with the exception of the core size, which in the Milky Way is somewhat
smaller. By continuing the evolution further they find that the system evolves towards
the expected Bahcall - Wolf cusp. Feldmeier et al. (2014) find indications for a rotating
substructure within the Milky Way NSC perpendicular to the Galactic plane at a radius
0.8 pc that could support the merger scenario.

The process of NSC formation through infalling gas in the nearby galaxies has been
studied recently based on some qualitative millimeter interferometric observations (Schin-
nerer et al., 2006, 2007) of the CO(1 − 0) and CO(2 − 1) line emission in the central 300
pc of the late-type spiral galaxy NGC 6946. According to this scenario a prolonged in-
flux of molecular gas into the central few pc might take place originating from bar-shaped
asymmetries in the disk potential leading to an intense star-burst. However supernova ex-
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plosions can expel the remaining gas and even temporarily change the gas inflow resulting
in a self-regulating starbust mechanism (Schinnerer et al., 2008).

There is a well known correlation between the black hole mass and bulge luminosity
known as MBH−σ relation (Ferrarese & Merritt, 2000) which implies a strong link between
black hole formation and the properties of the stellar bulge. NSCs seem to obey similar
scaling-relations (Ferrarese et al., 2006; Wehner & Harris, 2006) with host galaxy prop-
erties as do central supermasive black holes. This is possibly an indication of a common
formation mechanism between NSCs and SMBHs. Graham & Spitler (2009) have iden-
tified all galaxies with reliable measurements of both NSC mass and SMBH mass. They
conclude that the ratio MBH/(MBH +MNSC) is a function of bulge mass. This relations is
shown in Fig. 1.6. For very large bulges the mass of the black hole is also large but there
is a lack of NSC. On the contrary for very small bulges the mass of the SMBH is negligible
with respect to the NSC mass.

1.5 Dynamical modeling of Collision-less systems

In Section 1.2 we summarized the main characteristics of the old nuclear star cluster in the
Milky Way and in the Section 1.4 we focused on external nuclear clusters and the available
formation models. In this Section we examine the methods that can be used to model a
nuclear star cluster assumed to be a collisionless system in equilibrium.

1.5.1 The collisionless Boltzmann equation

When we model an astrophysical system like a nuclear star cluster or a galaxy we have to
deal with several thousands up to billions of stars. Therefore as in statistical mechanics we
need a way to describe the system’s macroscopic behavior without focusing on the orbits of
individual stars (or molecules of a gas or particles). When we work with a stellar system in
equilibrium that possess an adequate number of stars, the system’s mass can be considered
smoothly distributed in space rather concentrated into point-like stars and close encounters
between stars are unimportant. In such a system the potential is approximately smooth.
A quantitative way to describe this is the relaxation time (e.g. Binney & Tremaine, 2008).
The relaxation time trelax, is the time taken for a star’s velocity υ to be changed significantly
by two-body interactions. When the trelax is much larger that the dynamical time tdyn (i.e.
typical orbital period) then we say that the system is collisionless and interactions between
stars (or particles) are not important. On the contrary we say that the system is collisional.
In this section we focus on collisionless systems in equilibrium.

In order to describe the macroscopic state of a collisionless system we define the dis-
tribution function (DF) f(~x,~v, t) that depends on phase space coordinates and time. The
DF is the probability that at time t a randomly chosen star, has space space coordinates
in the given range (Binney & Tremaine, 2008). From the definition it follows that a valid
DF should always be positive. Since the DF is a probability function the following nor-
malization relation holds.
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∫
f(~x,~v, t)d3~x d3~v = 1 (1.5)

For a system in equilibrium, the phase-space density f of the fluid around a given star
always remains the same therefore the total time derivate of the DF should be zero.

df

dt
= 0 (1.6)

This equation is called the collisionless Boltzmann equation. Assuming cartesian coordi-
nates and expanding the total derivative we get the following form:

∂f

∂t
+ ~v · ∂f

∂~x
− ∂Φ

∂~x
· ∂f
∂~v

= 0 (1.7)

A generalization of the collisionless Boltzmann equation is the following:

df

dt
= B −D (1.8)

where B(~x,~v, t) and D(~x,~v, t) are the rates per unity phase space volume at which stars
are born and die. In the collisionless Boltzmann equation, B −D is set to zero.

One important concept of mechanics is the integral (or constant) of motion which is
a quantity that is conserved throughout the motion of a particle or star. It can be easily
shown (e.g. Binney & Tremaine, 2008) that an integral of motion is a steady-state solution
of the collisionless Boltzmann equation. This leads to the Jeans theorem:

Jeans theorem: Any steady-state solution of the collisionless Boltzmann equation depends
on the phase-space coordinates only through integrals of motion in the given potential, and
any function of the integrals yields a steady-state solution of the collisionless Boltzmann
equation.

The Jeans theorem is an important theorem of stellar dynamics because in several cases
it allows us to express the DF of a stellar system as a function of its integrals of motions
instead of phase-space coordinates. In addition it can lead to intuitive solutions of the
Boltzmann equation.

All the available methods used to solve the collisionless Boltzmann equation fall into
two categories, numerical methods and analytic (or semi-analytic) ones. The numerical
methods are split in orbit and particle methods. The advantages of a numerical method
over an analytic one is that it can be more general (e.g. it can even be used to model triaxial
system) and it is relatively simpler to implement. One disadvantage is that often it suffers
from large errors due to particle noise. For example the modeling of the core of a system
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with a particle method is always problematic since only a very small percentage of particles
reside close to the center and this results in large errors in the modeled quantities. Another
important disadvantage is that the results of a particle based algorithm often depend on
implementation details containing underlying assumptions that are difficult to be tested.
In other words, unfortunately it is not unlikely two independent codes based on the same
method would give different solutions of a problem. In the contrary analytic methods
are always smoother, more elegant and they can be tested easier. In my opinion, particle
methods should only be used when an analytic method is unavailable for a specific problem.
Next follows a very brief introduction to both categories.

1.5.2 Orbit-based and Particle-based methods

One powerful orbit-based technique for constructing the DF of a system in equilibrium
was introduced by Schwarzschild (1979). Specifically Schwarzchild devised a simple and
yet very useful algorithm to construct a model of a galaxy in equilibrium with a given
three-dimensional density distribution ρ(~x) using linear programing technique (Kantorow-
itsch, 1948). The general steps to apply this method are: (i) We start from an observed
surface brightness distribution (SB) which we have to deproject to obtain the 3d density
distribution. The deprojected 3d density can be acquired algorithmically (e.g. Magorrian,
1999) or by fitting the data to the projected function of a known parametric model e.g. the
family of γ-models (Tremaine et al., 1994). (ii) We integrate the 3d density to calculate
the potential. (iii) Once we have the potential we integrate many orbits and generate an
orbit library that samples all the phase space that is likely to be occupied by the galaxy.
(iv) Finally we construct a model of the observed system using a suitable superposition of
the orbits in the orbit library according to the observed quantities (e.g. kinematics and
SB).

Now I describe steps (iii) and (iv) in more detail (based on Binney & Tremaine, 2008).
We start with a galaxy that has known 3d density ρ(~x). We then partition the space that
is occupied by the galaxy into K cells, such that the mass in the jth cell of volume Vj
is mj = ρ(~x)Vj. Then we create a library of usually several thousand of orbits choosing
carefully the initial conditions so that they sample all the phase space occupied by the
galaxy. This set of orbits is called the orbit library. Then we integrate the N orbits of the
orbit library in the potential for a period much larger that the crossing time of the galaxy
and for each orbit we store the fraction pij of the time t that the ith orbit spends in the jth
cell. The total mass of the galaxy is M and each one of the N orbits contributes wiM to the
total mass where wi where wi is an unknown weight. The goal of Schwarzchild’s technique
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is to constrain the N weights wi by solving the following set of K linear equations.

0 = mj −M
N∑
i=1

wipij∑
i

wi = 1

wi ≥ 0
ϕ(~w) =

∑
i

ϕiwi

(1.9)

The first of eq. 1.9 is the linear system to be solved. The second and third are additional
constraints that come from the normalization of mass

∑
i

mj = 1 and to ensure positive

solutions for the weights. The fourth equation is an additional constraint that we put in
order to limit the infinite set of possible solutions which we do by choosing the solution
that maximizes some objective function ϕ(~w). After we solve the system 1.9 through linear
programing we can construct the DF that is a solution to the Boltzmann equation for this
system as a sum of delta functions with weights wi. For example for a spherical anisotropic
function the DF takes the form (Binney & Tremaine, 2008):

f(E,L) =
N∑
i=1

wifi , fi(E,L) = δ(E − Ei)δ(L− Li) (1.10)

where E and L are the energy and the angular momentum integrals of motion respec-
tively.

A particle-based or Made-to-measure (M2M) algorithm is similar to an orbit-based method
except that instead of orbits we work with individual particles. Probably the most char-
acteristic particle-based method is the algorithm introduced by Syer & Tremaine (1996)
(ST96). Here we outline this method since all other particle-based methods in the literature
are variations based on it.

An observable of a stellar system is a quantity defined as:

Yj =

∫
Kj(~z)f(~z)d6~z (1.11)

where ~z = (~x, ~υ) are the phase space coordinates, f(~z) is the DF that satisfies the
collisionless Boltzmann equation and Kj is a known kernel. The observables can be any
moment of the DF, e.g. the 3d or surface density the mean line-of-sight velocity, dispersions
etc. Now suppose that we have a system of N particles each of them having a weight wi
and phase-space positions zi(t). For this discrete system the observables are:

yj(t) =
N∑
i=1

wiKj[zi(t)] (1.12)
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where the kernels Kj[zi(t)] are the same functions as before. The goal of the algorithm
is to match the observables of the observed system with those of the particle system. To do
this we integrate the particles along their fixed orbits in the potential Φ(~x) that matches
that of the stellar system. As in Schwarzchild’s method the potential can be calculated
from the surface density of the observed system or come from the particles directly. The
weights wi of the particles are updated along their fixed orbits according to the value
∆j(t) = yj(t)/Yj − 1. Specifically if ∆j(t) < 0 the weights are increased otherwise they are
decreased according to:

dwi(t)

dt
= −εwi(t)

J∑
j=1

Kj[zi(t)]

Zj
∆j(t) (1.13)

where ε is a small quantity and Zj is arbitrary for now. This is in principle a linear system
of differential equations. The factor wi on the right side ensures that dwi/dt → 0 as
wi → 0, so that wi is always positive. After the convergence of the weights we are left with
a particle system that is similar to the observed one and which is also a discrete solution of
the Boltzmann equation of the observed system. As in Schwarzchild’s method the system
1.13 is ill-conditioned since the number of particles exceeds the number of observables.
To remove the ill-conditioning ST96 maximized some form of profit function that favors
smoothness, such as the entropy S = −

∑
i

wi log(wi/mi) where mi is a predetermined set

of weights. Thus we maximize the function

F = µS − 1

2
χ2 (1.14)

where

χ2 =
1

J

J∑
j=1

∆2
j (1.15)

Finally eq. 1.13 is replaced with:

dwi(t)

dt
= −εwi(t)

[
µ
∂S

∂wi
−

J∑
j=1

Kj[zi(t)]

Zj
∆j(t)

]
(1.16)

where now Zj = Yj by the requirement of eq. 1.14. The constant µ defines the contribution
of the entropy term.

1.5.3 Analytic methods

Analytic methods are more robust and more accurate than numerical methods but their
main disadvantage is that they are not as general. Again the goal here is to find the partial
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(e.g. a number of moments) or the total solution to the collisionless Boltzmann equation
that corresponds to the observed system. Analytic methods can be split in two categories.
First is Jeans modeling where we try to retrieve some moments of the DF (therefore partial
solution) and second is the recovery of the DF (total solution).

We start with Jeans modeling. The simplest case is when the DF depends only on
energy E integral and the system is called isotropic. In that case the 0th moment of the
f(E) is the density of the system. We assume as before that the potential of the system is
known from the surface density. The first moments of f(E) can be easily shown to be zero
(e.g. Binney & Tremaine, 2008). The second moments are the dispersions which are equal
in all directions since the velocity-dispersion tensor is isotropic: σ2

ij = υiυj = σδij where:

σ2(~x) =
4π

3ρ(~x)

∞∫
0

dυυ4f(
1

2
υ2 + Φ) (1.17)

Expressions for higher moments can be retrieved similarly by integrating the DF.
The next simplest case is when the DF depends on the energy E and the angular

momentum integral L = |~L| = rυt, where r is the spherical distance and υt is the tangential
velocity, so υ2

t = υ2
θ + υ2

ϕ in spherical coordinates. In this case again the first moments
are zero and the system is called spherical anisotropic. For the second moments we have
σ2
ϕ = σ2

θ 6= σ2
r(r) and suitable expressions can be found. In this case the Jeans equation

takes the form:

d(ρυ2
r)

dr
+ 2

β

r
ρυ2

r = −ρdΦ

dr
(1.18)

where β is the anisotropy parameter. We note that in this case eq. 1.18 are not closed in
the sense that υ2

r and β cannot both be determined from ρ and Φ. For β = 0 we get the
Jeans equation for the spherical isotropic case.

If we relax more the restrictions even more we get the next most complicated DF which
depends on E and Lz which is the angular momentum component in the z direction. This
system is a flattened one. In this case we can find expressions for the moments of the
system by integrating a cylindrical form of the Jeans equation (Binney & Tremaine, 2008).
In the second chapter of this work (Chatzopoulos et al., 2015) we use the corresponding
Jeans equations to fit the proper motion and line-of-sight velocity dispersions for the mass,
the black hole mass and the distance of the nuclear star cluster. For systems of the form
f(E,Lz) it is possible to find recursive expressions for any moment of the distribution
function Magorrian & Binney (1994).

Even though systems of the form f(E,Lz) are flattened, they are still called semi-

anisotropic because the anisotropy parameter defined as βz = 1−υ2
z/υ

2
R is zero. Cappellari

(2008) (C08) presented a simple and efficient anisotropic generalization of the semi-isotropic
axissymetric Jeans modeling assuming that the βz parameter is constant. The formalism
presented in C08 provides the most general Jeans modeling in the literature up to now.
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Jeans modeling is a useful method to recover information from an observed system,however
it is always better to have the total DF for at least the following reasons (i) Jeans modeling
does not ensure self-consistency, in other words it is possible to calculate moments that
do not correspond to a positive DF. (ii) we cannot calculate velocity profiles since we do
not have all the information (iii) we cannot make a particle model that could be the initial
state for ever more general modeling (e.g. M2M). All these problems are solved when we
have the DF of the system at our disposal. For a spherical isotropic system the DF can be
easily be found from the density and corresponding potential through:

f(E) =
1√
8π

d

dE

∫ E

0

dΨ√
E −Ψ

dρ

δΨ
(1.19)

The result is due to Eddington (1916) and it is called Eddington’s formula. There is
no general Eddington’s formula for spherical anisotropic systems but one can get similar
expressions by assuming a specific form from anisotropy β (Osipkov, 1979; Merritt, 1985).
More general expressions can be obtained e.g. by using the methodology of Gerhard (1991).

For axisymmetric systems that depend on E and Lz, the DF can be split in an even
part with respect to Lz and a corresponding odd part f(E,Lz) = f+(E,Lz) + f−(E,Lz) =
(1 + g(Lz))f+(E,Lz) where g(Lz) is an odd function with max |g(Lz)| < 1. The 3d density
ρ(r) is independent of f−, while the azimuthal flux ρυφ is independent of f+. Hunter &
Qian (1993) generalized Eddington’s formula to an integral on the complex plane that gives
the expression for f+(E,Lz). In Chapter 2 we used this method with suitable g(Lz) in order
to calculate the f(E,Lz) of the nuclear star cluster. Unfortunately analytic expressions
for distribution functions similar to Eddington’s formula more general than f(E,Lz) are
not available and in these cases we have to rely on potentials of specific form e.g. Stäckel
potential family or on numerical methods such as those described in 1.5.2, or on action
integrals.



Chapter 2

The old nuclear star cluster in the
Milky Way: dynamics, mass,
statistical parallax, and black hole
mass

Original publication: S. Chatzopoulos, T.K. Fritz, O. Gerhard, C. Wegg, S. Gillessen, R. Gen-
zel, O. Pfuhl

Abstract: We derive new constraints on the mass, rotation, orbit structure and statistical
parallax of the Galactic old nuclear star cluster and the mass of the supermassive black hole.
We combine star counts and kinematic data from Fritz et al. (2014), including 2’500 line-of-sight
velocities and 10’000 proper motions obtained with VLT instruments. We show that the differ-
ence between the proper motion dispersions σl and σb cannot be explained by rotation, but is
a consequence of the flattening of the nuclear cluster. We fit the surface density distribution of
stars in the central 1000′′ by a superposition of a spheroidal cluster with scale ∼ 100′′ and a much
larger nuclear disk component. We compute the self-consistent two-integral distribution function
f(E,Lz) for this density model, and add rotation self-consistently. We find that: (i) The orbit
structure of the f(E,Lz) gives an excellent match to the observed velocity dispersion profiles as
well as the proper motion and line-of-sight velocity histograms, including the double-peak in the
vl-histograms. (ii) This requires an axial ratio near q1 = 0.7 consistent with our determination
from star counts, q1 = 0.73 ± 0.04 for r < 70′′. (iii) The nuclear star cluster is approximately
described by an isotropic rotator model. (iv) Using the corresponding Jeans equations to fit the
proper motion and line-of-sight velocity dispersions, we obtain best estimates for the nuclear star
cluster mass, black hole mass, and distance M∗(r < 100′′) = (8.94±0.31|stat±0.9|syst)×106M�,
M• = (3.86±0.14|stat±0.4|syst)×106M�, and R0 = 8.27±0.09|stat±0.1|syst kpc, where the esti-
mated systematic errors account for additional uncertainties in the dynamical modeling. (v) The
combination of the cluster dynamics with the S-star orbits around Sgr A∗ strongly reduces the de-
generacy between black hole mass and Galactic centre distance present in previous S-star studies.
A joint statistical analysis with the results of Gillessen et al. (2009) gives M•=(4.23±0.14)×106M�
and R0 =8.33±0.11 kpc.
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2.1 Introduction

Nuclear star clusters (NSC) are located at the centers of most spiral galaxies (Carollo et al., 1997;
Böker et al., 2002). They are more luminous than globular clusters (Böker et al., 2004), have
masses of order ∼ 106 − 107M� (Walcher et al., 2005), have complex star formation histories
(Rossa et al., 2006; Seth et al., 2006), and obey scaling-relations with host galaxy properties as
do central supermassive black holes (SMBH; Ferrarese et al., 2006; Wehner & Harris, 2006); see
Böker (2010) for a review. Many host an AGN, i.e., a SMBH (Seth et al., 2008), and the ratio of
NSC to SMBH mass varies widely (Graham & Spitler, 2009; Kormendy, 2013).

The NSC of the Milky Way is of exceptional interest because of its proximity, about 8 kpc
from Earth. It extends up to several hundred arcsecs from the center of the Milky Way (Sgr A*)
and its mass within 1 pc is ∼ 106M� with ∼ 50% uncertainty (Schödel et al., 2009; Genzel et al.,
2010). There is strong evidence that the center of the NSC hosts a SMBH of several million solar
masses. Estimates from stellar orbits show that the SMBH mass is M• = (4.31± 0.36)× 106M�
(Schödel et al., 2002; Ghez et al., 2008; Gillessen et al., 2009). Due to its proximity, individual
stars can be resolved and number counts can be derived; however, due to the strong interstellar
extinction the stars can only be observed in the infrared. A large number of proper motions and
line-of-sight velocities have been measured, and analyzed with spherical models to attempt to
constrain the NSC dynamics and mass (Haller et al., 1996; Genzel et al., 1996, 2000; Trippe et
al., 2008; Schödel et al., 2009; Fritz et al., 2014).

The relaxation time of the NSC within 1 pc is tr ∼ 1010 yr (Alexander, 2005; Merritt, 2013),
indicating that the NSC is not fully relaxed and is likely to be evolving. One would expect from
theoretical models that, if relaxed, the stellar density near the SMBH should be steeply-rising and
form a Bahcall & Wolf (1976) cusp. In contrast, observations by Do et al. (2009); Buchholz et al.
(2009); Bartko et al. (2010) show that the distribution of old stars near the SMBH appears to have
a core. Understanding the nuclear star cluster dynamics may therefore give useful constraints on
the mechanisms by which it formed and evolved (Merritt, 2010).

In this work we construct axisymmetric Jeans and two-integral distribution function models
based on stellar number counts, proper motions, and line-of-sight velocities. We describe the data
briefly in Section 2.2; for more detail the reader is referred to the companion paper of Fritz et
al. (2014). In Section 2.3 we carry out a preliminary study of the NSC dynamics using isotropic
spherical models, in view of understanding the effect of rotation on the data. In Section 2.4
we describe our axisymmetric models and show that they describe the kinematic properties of
the NSC exceptionally well. By applying a χ2 minimization algorithm, we estimate the mass of
the cluster, the SMBH mass, and the NSC distance. We discuss our results and summarize our
conclusions in Section 2.5. The Appendix contains some details on our use of the Qian et al.
(1995) algorithm to calculate the two-integral distribution function for the fitted density model.

2.2 Dataset

We first give a brief description of the data set used for our dynamical analysis. These data
are taken from Fritz et al. (2014) and are thoroughly examined in that paper, which should be
consulted for more details. The coordinate system used is a shifted Galactic coordinate system
(l∗, b∗) where Sgr A* is at the center and (l∗, b∗) are parallel to Galactic coordinates (l, b). In the
following we always refer to the shifted coordinates but will omit the asterisks for simplicity. The
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dataset consists of stellar number densities, proper motions and line-of-sight velocities. We use
the stellar number density map rather than the surface brightness map because it is less sensitive
to individual bright stars and non-uniform extinction.

The stellar number density distribution is constructed from NACO high-resolution images
for Rbox < 20′′, in a similar way as in Schödel et al. (2010), from HST WFC3/IR data for
20′′ < Rbox < 66′′, and from VISTA-VVV data for 66′′ < Rbox < 1000′′.

The kinematic data include proper motions for ∼10’000 stars obtained from AO assisted
images. The proper motion stars are binned into 58 cells (Figure 2.1; Fritz et al., 2014) according
to distance from Sgr A* and the Galactic plane. This binning assumes that the NSC is symmetric
with respect to the Galactic plane and with respect to the b-axis on the sky, consistent with
axisymmetric dynamical modeling. The sizes of the bins are chosen such that all bins contain
comparable numbers of stars, and the velocity dispersion gradients are resolved, i.e., vary by less
than the error bars between adjacent bins.

Relative to the large velocity dispersions at the Galactic center (100 km/s), measurement
errors for individual stars are typically ∼ 10%, much smaller than in typical globular cluster
proper motion data where they can be ∼ 50% (e.g., in Omega Cen; van de Ven et al. (2006)).
Therefore corrections for these measurement errors are very small.

We also use ∼2’500 radial velocities obtained from SINFONI integral field spectroscopy. The
binning of the radial velocities is shown in Fig. 2.2. There are 46 rectangular outer bins as shown
in Fig. 2.2 plus 6 small rectangular rings around the center (not shown; see App. E of Fritz et
al., 2014). Again the outer bins are chosen such that they contain similar numbers of stars and
the velocity dispersion gradients are resolved. The distribution of radial velocity stars on the sky
is different from the distribution of proper motion stars, and it is not symmetric with respect to
l = 0. Because of this and the observed rotation, the binning is different, and extends to both
positive and negative longitudes. Both the proper motion and radial velocity binning are also
used in Fritz et al. (2014) and some tests are described in that paper.

Finally, we compare our models with (but do not fit to) the kinematics derived from about
200 maser velocities at r > 100′′ (from Lindquist et al., 1992; Deguchi et al., 2004). As for the
proper motion and radial velocity bins, we use the mean velocities and velocity dispersions as
derived in Fritz et al. (2014).

The assumption that the NSC is symmetric with respect to the Galactic plane and the b = 0
axis is supported by the recent Spitzer/IRAC photometry (Schödel et al., 2014) and by the
distribution of proper motions (Fritz et al., 2014). The radial velocity data at intermediate
radii instead show an apparent misalignment with respect to the Galactic plane, by ∼ 10◦; see
Feldmeier et al. (2014) and Fritz et al. (2014). We show in Section 2.4.2 that, even if confirmed,
such a misaligned structure would have minimal impact on the results obtained here with the
symmetrised analysis.

2.3 Spherical models of the NSC

In this section we study the NSC using the preliminary assumption that the NSC can be described
by an isotropic distribution function (DF) depending only on energy. We use the DF to predict
the kinematical data of the cluster. Later we add rotation self-consistently to the model. The
advantages of using a distribution function instead of common Jeans modeling are that (i) we can
always check if a DF is positive and therefore if the model is physical, and (ii) the DF provides
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Figure 2.1: Binning of the proper motion velocities. The stars are binned into cells accord-
ing to their distance from Sgr A* and their smallest angle to the Galactic plane (Fritz et
al., 2014).
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Figure 2.2: Binning of the line-of-sight velocities. The stars are binned into 46 rectangular
outer cells plus 6 rectangular rings at the center. The latter are located within the white
area around l= b= 0 and are not shown in the plot; see App. E of Fritz et al. (2014).

us with all the moments of the system. For the rest of the paper we use (r, θ, ϕ) for spherical
and (R,ϕ, z) for cylindrical coordinates, with θ = 0 corresponding to the z-axis normal to the
equatorial plane of the NSC.

2.3.1 Mass model for the NSC

The first step is to model the surface density. We use the well-known one-parameter family of
spherical γ-models (Dehnen, 1993):

ργ(r) =
3− γ

4π

M a

rγ(r + a)4−γ , 0 ≤ γ < 3 (2.1)

where a is the scaling radius and M the total mass.The model behaves as ρ ∼ r−γ for r → 0 and
ρ ∼ r−4 for r → ∞. Dehnen γ models are equivalent to the η-models of Tremaine et al. (1994)
under the transformation γ = 3 − η. Special cases are the Jaffe (1983) and Hernquist (1990)
models for γ = 2 and γ = 1 respectively. For γ = 3/2 the model approximates de Vaucouleurs
R1/4 law. In order to improve the fitting of the surface density we use a combination of two
γ-models, i.e.

ρ(r) =

2∑
i=1

3− γi
4π

Mi ai

rγi(r + ai)
4−γi . (2.2)

The use of a two-component model will prove convenient later when we move to the axisymmetric
case. The projected density is

Σ(Rs) = 2

∫ ∞
Rs

ρ(r)r/(r2 −R2
s)

1/2dr (2.3)
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Figure 2.3: A combination of two γ-models gives an accurate approximation to the spher-
ically averaged number density of late-type stars versus radius on the sky (points with
error bars). Blue line: inner component, purple line: outer component, brown line: both
components.



2.3 Spherical models of the NSC 29

0.1 0.2 0.5 1. 2.

1.´10-9

1.´10-7

0.00001

0.001

0.1

E Hkm2�s2L´105

f

Figure 2.4: Isotropic DF for the two-component spherical model of the NSC in the joint
gravitational potential including also a central black hole. Parameters for the NSC are as
given in (2.4), and M•/(M1 +M2) = 1.4× 10−3.

and can be expressed in terms of elementary functions for integer γ, or in terms of elliptic integrals
for half-integer γ. For arbitrary γ1 and γ2 the surface density can only be calculated numerically
using equation (2.3). The surface density diverges for γ > 1 but is finite for γ < 1.

The projected number density profile of the NSC obtained from the data of Fritz et al. (2014)
(see Section 2.2) is shown in Figure 2.3. The inflection point at Rs ∼ 100′′ indicates that the
NSC is embedded in a more extended, lower-density component. The surface density distribution
can be approximated by a two-component model of the form of equation (2.2), where the six
parameters (γ1,M1, a1, γ2,M2, a2) are fitted to the data subject to the following constraints:
The slope of the inner component should be γ1 > 0.5 because isotropic models with a black hole
and γ1 < 0.5 are unphysical (Tremaine et al., 1994), but it should be close to the limiting value
of 0.5 to better approximate the observed core near the center (Buchholz et al., 2009). For the
outer component γ2 � 0.5 so that it is negligible in the inner part of the density profile. In
addition M1 < M2 and a1 < a2. With these constraints we start with some initial values for the
parameters and then iteratively minimize χ2. The reduced χ2 resulting from this procedure is
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χ2/ν = 0.93 for ν = 55 d.o.f. and the corresponding best-fit parameter values are:

γ1 = 0.51 a1 = 99′′

γ2 = 0.07 a2 = 2376′′
M2

M1
= 105.45. (2.4)

Here we provide only the ratio of masses instead of absolute values in model units since the shape
of the model depends only on the ratio. The surface density of the final model is overplotted on
the data in Figure 2.3.

2.3.2 Spherical model

With the assumption of constant mass-to-light ratio and the addition of the black hole the po-
tential (Φ = −Ψ) will be (Dehnen, 1993)

Ψ(r) =
2∑
i=1

GMi
ai

1
(2−γi)

(
1−

(
r

r+a

)2−γi
)

+ GM•
r (2.5)

where M• is the mass of the black hole. Since we now know the potential and the density we can
calculate the distribution function (DF) numerically using Eddington’s formula, as a function of
positive energy E = Ψ− 1

2υ
2,

f(E) =
1√
8π2

[∫ E

0

dΨ√
E −Ψ

d2ρ

dΨ2
+

1√
E

(
dρ

dΨ

)
Ψ=0

]
. (2.6)

The 2nd term of the equation vanishes for reasonable behavior of the potential and the double
derivative inside the integral can be calculated easily by using the transformation

d2ρ

dΨ2
=

[
−
(
dΨ

dr

)−3d2Ψ

dr2

]
dρ

dr
+

(
dΨ

dr

)−2d2ρ

dr2
. (2.7)

Figure 2.4 shows the DF of the two components in their joint potential plus that of a black hole
with mass ratio M•/(M1 + M2) = 1.4 × 10−3. The DF is positive for all energies. We can test
the accuracy of the DF by retrieving the density using

ρ(r) = 4π

Ψ∫
0

dEf(E)
√

Ψ− E (2.8)

and comparing it with equation (2.2). Both agree to within 0.1%. The DF has the typical
shape of models with a shallow cusp of γ < 3

2 . It decreases as a function of energy both in the
neighborhood of the black hole and also for large energies. It has a maximum near the binding
energy of the stellar potential well (Baes et al., 2005).

For a spherical isotropic model the velocity ellipsoid (Binney & Tremaine, 2008) is a sphere
of radius σ. The intrinsic dispersion σ can be calculated directly using

σ2(r) =
4π

3ρ(r)

∫ ∞
0

dυυ4f(1
2υ

2 −Ψ). (2.9)
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Figure 2.5: Line-of-sight velocity dispersion σlos of the two-component spherical model
with black hole, compared to the observed line-of-sight dispersions (black) and the proper
motion dispersions in l (red) and b (blue). The line-of-sight data includes the outer maser
data, and for the proper motions a canonical distance of R0 = 8 kpc is assumed.

The projected dispersion is then given by:

Σ(Rs)σ
2
P (Rs) = 2

∫ ∞
Rs

σ2(r)
ρ(r)r√
r2 −R2

s

dr. (2.10)

In Figure 2.5 we see how our two-component model compares with the kinematical data using
the values R0 = 8 kpc for the distance to the Galactic centre, M• = 4 × 106M� for the black
hole mass, and M∗(r < 100′′) = 5× 106M� for the cluster mass inside 100”. The good match of
the data up to 80′′ suggests that the assumption of constant mass-to-light ratio for the cluster is
reasonable. Later-on we will see that a flattened model gives a much better match also for the
maser data.
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2.3.3 Adding self-consistent rotation to the spherical model

We describe here the effects of adding self-consistent rotation to the spherical model, but much
of this also applies to the axisymmetric case which will be discussed in Section 2.4. We assume
that the rotation axis of the NSC is aligned with the rotation axis of the Milky Way disk. We
also use a cartesian coordinate system (x, y, z) where z is parallel to the axis of rotation as before,
y is along the line of sight, and x is along the direction of negative longitude, with the center
of the NSC located at the origin. The proper motion data are given in Galactic longitude l and
Galactic latitude b angles, but because of the large distance to the center, we can assume that
x ‖ l and z ‖ b.

Whether a spherical system can rotate has been answered in Lynden Bell (1960). Here we
give a brief review. Rotation in a spherical or axisymmetric system can be added self-consistently
by reversing the sense of rotation of some of its stars. Doing so, the system will remain in
equilibrium. This is equivalent with adding to the DF a part that is odd with respect to Lz.
The addition of an odd part does not affect the density (or the mass) because the integral of
the odd part over velocity space is zero. The most effective way to add rotation to a spherical
system is by reversing the sense of rotation of all of its counterrotating stars. This corresponds to
adding f−(E,L2, Lz) = sign(Lz)f(E,L2) (Maxwell’s daemon, Lynden Bell, 1960) to the initially
non-rotating DF, and generates a system with the maximum allowable rotation. The general
case of adding rotation to a spherical system can be written f ′(E,L2, Lz) = (1 + g(Lz))f(E,L2)
where g(Lz) is an odd function with max |g(Lz)| < 1 to ensure positivity of the DF. We notice
that the new distribution function is a three-integral DF. In this case the density of the system
is still rotationally invariant but f− is not.

In Figure 2.5 we notice that the projected velocity dispersion in the l direction is larger than
the dispersion in the b direction which was first found by Trippe et al. (2008). This is particularly
apparent for distances larger than 10′′. A heuristic attempt to explain this difference was made
in Trippe et al. (2008) where they imposed a rotation of the form υϕ(r, θ) along with their Jeans
modeling, as a proxy for axisymmetric modeling. Here we show that for a self-consistent system
the difference in the projected l and b dispersions cannot be explained by just adding rotation to
the cluster.

Specifically, we show that adding an odd part to the distribution function does not change
the proper motion dispersion σx. The dispersion along the x axis is σ2

x = υ2
x − υx2. Writing υx

in spherical velocity components (see the beginning of this section for the notation),

υx = υR
x

R
− υϕ

y

R
= υr sin θ

x

R
+ υθ cos θ

x

R
− υϕ

y

R
(2.11)

we see that

υ2
x =

∫
dυr

∫
dυθ

∫
dυϕυ

2
x (1 + g(Lz)) f+ =

=
∫
dυr

∫
dυθ

∫
dυϕυ

2
xf+ + 0.

(2.12)

The second term vanishes because f+(E,L2)g(Lz) is even in υr, υθ and odd in υϕ, so that the
integrand for all terms of f+g υ

2
x is odd in at least one velocity variable. We also have

υx =
∫
dυr

∫
dυθ

∫
dυϕυx (1 + g(Lz)) f+ =

= 0−
∫
dυr

∫
dυθ

∫
dυϕυϕ

y
Rf+g.

(2.13)
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Figure 2.6: Mean line-of-sight velocity data compared to the prediction of the two-
component spherical model with added rotation for F = −0.90 and two κ values for
illustration. Each data point corresponds to a cell from Figure 2.2. Velocities at negative
l have been folded over with their signs reversed and are shown in red. The plot also
includes the maser data at Rs > 100′′. The model prediction is computed for b = 20′′.
For comparison, cells with centers between b = 15′′ and b = 25′′ are highlighted with filled
triangles.
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The first part is zero because υxf+ is odd. The second part is different from zero; however when
projecting υϕ along the line-of-sight this term also vanishes because f+g is an even function of
y when the integration is in a direction perpendicular to the Lz angular momentum direction.
Hence the projected mean velocity υx is zero, and the velocity dispersion σ2

x = υ2
x is unchanged.

An alternative way to see this is by making a particle realization of the initial DF (e.g. Aarseth
et al., 1974). Then we can add rotation by reversing the sign of Lz of a percentage of particles
using some probability function which is equivalent to changing the signs of υx and υy of those

particles. υ2
x will not be affected by the sign change and the υ2

x averaged over the line-of-sight
will be zero because for each particle at the front of the system rotating in a specific direction
there will be another particle at the rear of the system rotating in the opposite direction. In this
work we do not use particle models to avoid fluctuations due to the limited number of particles
near the center.

For the odd part of the DF we choose the two-parameter function from Qian et al. (1995).
This is a modified version of Dejonghe (1986) which was based on maximum entropy arguments:

g(Lz) = G(η) = F
tanh(κη/2)

tanh(κ/2)
(2.14)

where η = Lz/Lm(E), Lm(E) is the maximum allowable value of Lz at a given energy, and
−1 < F < 1 and κ > 0 are free parameters. The parameter F works as a global adjustment
of rotation while the parameter κ determines the contributions of stars with different Lz ratios.
Specifically for small κ only stars with high Lz will contribute while large κ implies that all stars
irrespective of their Lz contribute to rotation. For F=1 and κ � 0, g(Lz) = sign(Lz) which
corresponds to maximum rotation.

From the resulting distribution function f(E,Lz) we can calculate υϕ(R, z) in cylindrical
coordinates using the equation

υϕ(R, z) =
4π

ρR2

Ψ∫
0

dE

R
√

2(Ψ−E)∫
0

f−(E,Lz)LzdLz. (2.15)

To find the mean line-of-sight velocity versus Galactic longitude l we have to project equa-
tion (2.15) to the sky plane

υlos(x, z) =
2

Σ

∫ ∞
x

υϕ(R, z)
x

R

ρ(R, z)RdR√
R2 − x2

. (2.16)

Figure 2.6 shows the mean line-of-sight velocity data vs Galactic longitude l for F = −0.9 and two
κ values for the parameters in equation (2.14). Later in the axisymmetric section we constrain
these parameters by fitting. Each data point corresponds to a cell from Figure 2.2. The maser
data (r > 100′′) are also included. The signs of velocities for negative l are reversed because of
the assumed symmetry. The line shows the prediction of the model with parameters determined
with equation (2.16). Figure 2.2 shows that the line-of-sight velocity cells extend from b=0 to up
to b = 50′′, but most of them lie between 0 and b = 20′′. For this reason we compute the model
prediction at an average value of b = 20′′.
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Figure 2.7: Axisymmetric two-component model for the surface density of the nuclear
cluster. The points with error bars show the number density of late-type stars along the l
and b directions (Fritz et al., 2014) in red and blue respectively. The blue lines show the
model that gives the best fit to the surface density data with parameters as in 2.19.
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2.4 Axisymmetric modeling of the NSC

We have seen that spherical models cannot explain the difference between the velocity dispersions
along the l and b directions. The number counts also show that the cluster is flattened; see Figure
2.7 and Fritz et al. (2014). Therefore we now continue with axisymmetric modeling of the nuclear
cluster. The first step is to fit the surface density counts with an axisymmetric density model.
The available surface density data extend up to 1000′′ in the l and b directions. For comparison,
the proper motion data extend to ∼ 70′′ from the centre (Figure 2.1). We generalize our spherical
two-component γ-model from equation (2.2) to a spheroidal model given by

ρ(R, z) =
2∑
i=1

3− γi
4πqi

Mi ai

mγi
i (mi + ai)

4−γi (2.17)

where m2
i = R2 + z2/q2

i is the spheroidal radius and the two new parameters q1,2 are the axial
ratios (prolate > 1, oblate < 1) of the inner and outer component, respectively. Note that
the method can be generalized to N components. The mass of a single component is given by

4πqi
∞∫
0

m2
i ρ(mi)dmi. From Figure 2.7 we expect that the inner component will be more spherical

than the outer component, although when the density profile gets flatter near the center it
becomes more difficult to determine the axial ratio. In Figure 2.7 one also sees that the stellar
surface density along the l direction is larger than along the b direction. Thus we assume that
the NSC is an oblate system. To fit the model we first need to project the density and express it
as a function of l and b. The projected surface density as seen edge on is

Σ(x, z) = 2

∞∫
x

ρ(R, z)R√
R2 − x2

dR. (2.18)

In general, to fit equation (2.18) to the data we would need to determine the eight parameters
γ1,2, M1,2, a1,2, q1,2. However, we decided to fix a value for q2 because the second component is
not very well confined in the 8-dimensional parameter space (i.e. there are several models each
with different q2 and similar χ2). We choose q2 = 0.28, close to the value found in Fritz et al.
(2014). For similar reasons, we also fix the value of γ2 to that used in the spherical case. The
minimum value of γ1 for a semi-isotropic axisymmetric model with a black hole cannot be smaller
than 0.5 (Qian et al., 1995), as in the spherical case. For our current modeling we treat γ1 as a
free parameter. Thus six free parameters remain. To fit these parameters to the data in Fig. 2.7
we apply a Markov chain Monte Carlo algorithm. For comparing the model surface density (2.18)
to the star counts we found it important to average over angle in the inner conical cells to prevent
an underestimation of the q1 parameter. The values obtained with the MCMC algorithm for the
NSC parameters and their errors are:

γ1 = 0.71± 0.12 a1 = 147.6′′ ± 27′′ q1 = 0.73± 0.04
γ2 = 0.07 a2 = 4572′′ ± 360′′ q2 = 0.28

M2/M1 = 101.6± 18
(2.19)

The reduced χ2 that corresponds to these parameter values is χ2/νSD = 0.99 for νSD = 110
d.o.f. Here we note that there is a strong correlation between the parameters a2 and M2. The
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flattening of the inner component is very similar to the recent determination from Spitzer/IRAC
photometry (0.71 ± 0.02, Schödel et al., 2014) but slightly more flattened than the best value
given by Fritz et al. (2014), 0.80± 0.04. The second component is about 100 times more massive
than the first, but also extends more than one order of magnitude further.

Assuming constant mass-to-light ratio for the star cluster, we determine its potential using
the relation from Qian et al. (1995), which is compatible with their contour integral method (i.e.
it can be used for complex R2 and z2). The potential for a single component i is given by:

Ψi(R, z) = Ψ0i − 2πGqi
ei

∞∫
0

ρi (U)

[
R2

(1+u)2 + z2

(q2
i+u)

2

]
×(arcsin ei − arcsin e1√

1+u
)du

(2.20)

with ei =
√

1− q2
i , U = R2

1+u + z2

q2
i+u

, and where Ψ0i is the central potential (for a review of the

potential theory of ellipsoidal bodies consider Chandrasekhar (1969)). The total potential of the
two-component model is

Ψ(R, z) =
2∑
i=1

Ψi(R, z) +
GM•√
R2 + z2

. (2.21)

2.4.1 Axisymmetric Jeans modeling

Here we first continue with axisymmetric Jeans modeling. We will need a large number of
models to determine the best values for the mass and distance of the NSC, and for the mass of
the embedded black hole. We will use DFs for the detailed modeling in Section 4.3, but this is
computationally expensive, and so a large parameter study with the DF approach is not currently
feasible. In Section 4.3 we will show that a two-integral (2I) distribution function of the form
f(E,L2

z) gives a very good representation to the histograms of proper motions and line-of-sight
velocities for the nuclear star cluster in all bins. Therefore we can assume for our Jeans models
that the system is semi-isotropic, i.e., isotropic in the meridional plane, υ2

z = υ2
R. From the

tensor virial theorem (Binney & Tremaine, 2008) we know that for 2I-models υ2
Φ > υ2

R in order
to produce the flattening. In principle, for systems of the form f(E,Lz) it is possible to find
recursive expressions for any moment of the distribution function (Magorrian & Binney, 1994)
if we know the potential and the density of the system. However, here we will confine ourselves
to the second moments, since later we will recover the distribution function. By integrating the
Jeans equations we get relations for the independent dispersions (Nagai & Miyamoto, 1976):

υ2
z(R, z) = υ2

R(R, z) = − 1
ρ(R,z)

∫∞
z dz′ρ(R, z′) ∂Ψ

∂z′

υ2
ϕ(R, z) = υ2

R(R, z) + R
ρ(R,z)

∂(ρυ2
R)

∂R −R∂Ψ
∂R

(2.22)

The potential and density are already known from the previous section. Once υ2
z is found it can

be used to calculate υ2
ϕ. The intrinsic dispersions in l and b direction are given by the equations:

σ2
b = υ2

z

σ2
l = υ2

x = υ2
Rsin2θ + υ2

ϕcos2θ

υ2
los = υ2

y = υ2
Rcos2θ + υ2

ϕsin2θ

(2.23)
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where sin2θ = x2/R2 and cos2θ = 1− x2/R2. Projecting the previous equations along the line of
sight we have:

Σσ2
l (x, z) =

2
∫∞
x

[
υ2
R
x2

R2 + υ2
ϕ

(
1− x2

R2

)]
ρ(R,z)√
R2−x2

dR,

Σσ2
b (x, z) =

2
∫∞
x υ2

z(R, z)
ρ(R,z)√
R2−x2

dR,

Συ2
los(x, z) =

2
∫∞
x

[
υ2
R

(
1− x2

R2

)
+ υ2

ϕ
x2

R2

]
ρ(R,z)√
R2−x2

dR,

(2.24)

where we note that the last quantity in (2.23) and (2.24) is the 2nd moment and not the line-of-
sight velocity dispersion.

In order to define our model completely, we need to determine the distance R0 and mass M∗
of the cluster and the black hole mass M•. To do this we apply a χ2 minimization technique
matching all three velocity dispersions in both sets of cells, using the following procedure. First
we note that the inclusion of self-consistent rotation to the model will not affect its mass. This

means that for the fitting we can use υ2
los

1/2
for each cell of Figure 2.2. Similarly, since our

model is axisymmetric we should match to the υ2
l,b

1/2
for each proper motion cell; the υl,b terms

should be and indeed are negligible. Another way to see this is that since the system is axially
symmetric, the integration of υl,b along the line-of-sight should be zero because the integration
would cancel out for positive and negative y.

With this in mind we proceed as follows, using the cluster’s density parameters1 as given in
(2.19). First we partition the 3d space (R0, M∗, M•) into a grid with resolution 20×20×20. Then
for each point of the grid we calculate the corresponding χ2 using the velocity dispersions from all
cells in Figs. 2.1 and 2.2, excluding the two cells at the largest radii (see Fig. 2.8). We compare
the measured dispersions with the model values obtained from equations (2.24) for the centers
of these cells. Then we interpolate between the χ2 values on the grid and find the minimum of
the interpolated function, i.e., the best values for (R0, M∗, M•). To determine statistical errors
on these quantities, we first calculate the Hessian matrix from the curvature of χ2 surface at the
minimum, ∂χ2/∂pi∂pj . The statistical variances will be the diagonal elements of the inverted
matrix.

With this procedure we obtain a minimum reduced χ2/νJeans = 1.07 with νJeans = 161 degrees
of freedom, for the values

R0 = 8.27 kpc
M∗(m < 100′′) = 7.73× 106M�
M• = 3.86× 106M�,

(2.25)

where

M∗(m) ≡
∫ m

0
4πm2 [q1ρ1(m) + q2ρ2(m)] dm, (2.26)

and the value given for M∗ in (2.25) is not the total cluster mass but the stellar mass within
elliptical radius 100′′. In Section 2.4.2 we will consider in more detail the determination of these

1It is computationally too expensive to simultaneously also minimize χ2 over the density parameters.
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Figure 2.8: Velocity dispersions σl and σb compared to axisymmetric, semi-isotropic Jeans
models. The measured dispersions σl (red points with error bars) and σb (blue points)
for all cells are plotted as a function of their two-dimensional radius on the sky, with the
Galactic centre at the origin. The black lines show the best model; the model velocity
dispersions are averaged over azimuth on the sky. The dashed black lines show the same
quantities for a model which has lower flattening (q1 = 0.85 vs q1 = 0.73) and a smaller
central density slope (0.5 vs 0.7).
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Figure 2.9: Root mean square line-of-sight velocities compared with the best model, as a
function of two-dimensional radius on the sky as in Fig. 2.8. In both plots the stellar mass
of the NSC is 7.73× 106 M� within m < 100′′, the black hole mass is 3.86× 106 M�, and
the distance is 8.3 kpc (equation 2.25). All the maser data are included in the plot.
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Figure 2.10: All three projected velocity disperions compared. Red: σl, Blue: σb, Brown:

σlos = υ2
los

1/2
. Note that σb is slightly lower than σlos. The difference between σb and σl

comes from the flattening of both the inner and outer components of the model.

parameters and their errors. The model with density parameters as in (2.19) and dynamical
parameters as in (2.25) will be our best model. In Section 2.4.3 we will see that it also gives an
excellent prediction to the velocity histograms.

First, we now look at the comparison of this model with the velocity data. Figure 2.8 shows
how the azimuthally averaged dispersions σl and σb compare with the measured proper motion
dispersions. Figure 2.9 shows how this best model, similarly averaged, compares with the line-of-
sight mean square velocity data. The maser data are also included in the plot. It is seen that the
model fits the data very well, in accordance with its χ2/νJeans = 1.07 per cell. Figure 2.10 shows
how all three projected dispersions of the model compare. σb is slightly lower than σlos due to
projection effects. The fact that all three velocity dispersion profiles in Figs. 2.8, 2.9 are fitted
well by the model suggests that the assumed semi-isotropic dynamical structure is a reasonable
approximation.

The model prediction in Fig. 2.8 is similar to Figure 11 of Trippe et al. (2008) but the inter-
pretation is different. As shown in the previous section, the difference in projected dispersions
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cannot be explained by imposing rotation on the model. Here we demonstrated how the obser-
vational finding σl > σb can be quantitatively reproduced by flattened axisymmetric models of
the NSC and the surrounding nuclear disk.

Most of our velocity data are in the range 7”-70”, i.e., where the inner NSC component
dominates the potential. In order to understand the dynamical implications of these data on the
flattening of this component, we have also constructed several density models in which we fixed
q1 to values different from the q1 = 0.73 obtained from star counts. In each case we repeated the
fitting of the dynamical parameters as in (2.25). We found that models with q1 in a range from
∼ 0.69 to ∼ 0.74 gave comparable fits (χ2/ν) to the velocity dispersion data as our nominal best
model but that a model with q1 = 0.77 was noticeably worse. We present an illustrative model
with flattening about half-way between the measured q1 = 0.73 and the spherical case, for which
we set q1 = 0.85. This is also close to the value given by (Fritz et al., 2014), q1 = 0.80 ± 0.04.
We simultaneously explore a slightly different inner slope, γ1 = 0.5. We then repeat the fitting
of the starcount density profile in Fig. 2.7 (model not shown), keeping also γ2 and q2 fixed to the
previous values, and varying the remaining parameters. Our rounder comparison model then has
the following density parameters:

γ1 = 0.51 a1 = 102.6′′ q1 = 0.85
γ2 = 0.07 a2 = 4086′′ q2 = 0.28

M2

M1
= 109.1 (2.27)

The best reduced χ2 that we obtain for the velocity dispersion profiles with these parameters is
χ2/νJeans = 1.16 and corresponds to the values

R0 = 8.20 kpc
M∗(m < 100′′) = 8.31× 106M�
M• = 3.50× 106M�,

(2.28)

Compared to the best and more flattened model, the cluster mass has increased and the black
hole mass has decreased. The sum of both masses has changed only by 2% and the distance only
by 1%. In Figures 2.8, 2.9 we see how the projected velocity dispersions of this model compare
with our best model. The main difference seen in σl comes from the different flattening of the
inner component, and the smaller slope of the dispersions near the center of the new model is
because of its smaller central density slope.

2.4.2 Distance to the Galactic Center, mass of the star cluster,
and mass of the black hole

We now consider the determination of these parameters from the NSC data in more detail. Fig
2.11 shows the marginalized χ2-plot for the NSC model as given in equation (2.19), for pairs
of two parameters (R0,M•), (M•,M∗), (R0,M∗), as obtained from fitting the Jeans dynamical
model to the velocity dispersion profiles. The figure shows contour plots for constant χ2/νJeans

with 1σ, 2σ and 3σ in the three planes for the two-dimensional distribution of the respective
parameters. We notice that the distance R0 has the smallest relative error.

The best-fitting values for (R0,M∗,M•) are given in equation (2.25); these values are our best
estimates based on the NSC data alone. For the dynamical model with these parameters and the
surface density parameters given in (2.19), the flattening of the inner component inferred from



2.4 Axisymmetric modeling of the NSC 43

Figure 2.11: Contour plots for the marginalized χ2 in the three parameter planes (R0,M•),
(M•,M∗), (R0,M∗). Contours are plotted at confidence levels corresponding to 1σ, 2σ
and 3σ of the joint probability distribution. The minimum corresponds to the values
R0 = 8.27kpc, M∗(m < 100′′) = 7.73× 106M�, M• = 3.86× 106M�, with errors discussed
in Section 2.4.2.

the surface density data is consistent with the dynamical flattening, which is largely determined
by the ratio of σl/σb and the tensor virial theorem.

Statistical errors are determined from the Hessian matrix for this model. Systematic errors
can arise from uncertainties in the NSC density structure, from deviations from the assumed
axisymmetric two-integral dynamical structure, from dust extinction within the cluster (see Sec-
tion 2.5), and other sources. We have already illustrated the effect of varying the cluster flattening
on (R0,M•,M∗) with our second, rounder model. We have also tested how variations of the clus-
ter density structure (a2, q2,M2) beyond 500′′ impact the best-fit parameters, and found that
these effects are smaller than those due to flattening variations.

We have additionally estimated the uncertainty introduced by the symmetrisation of the data
if the misalignment found by Feldmeier et al. (2014); Fritz et al. (2014) were intrinsic to the
cluster, as follows. We took all radial velocity stars and rotated each star by 10◦ clockwise on
the sky. Then we resorted the stars into our radial velocity grid (Fig. 2.2). Using the new

values υ2
los

1/2
obtained in the cells we fitted Jeans models as before. The values we found for

R0, M∗, M• with these tilted data differed from those in equation (2.25) by ∆R0 = −0.02 kpc,
∆M∗(m < 100′′) = −0.15 × 106M�, and ∆M• = +0.02 × 106M�, respectively, which are well
within the statistical errors.

Propagating the errors of the surface density parameters from the MCMC fit and taking into
account the correlation of the parameters, we estimate the systematic uncertainties from the
NSC density structure to be ∼ 0.1 kpc in R0, ∼ 6% in M•, and ∼ 8% M∗(m < 100′′). We will
see in Section 2.4.3 below that the DF for our illustrative rounder NSC model gives a clearly
inferior representation of the velocity histograms than our best kinematic model, and also that
the systematic differences between both models appear comparable to the residual differences
between our preferred model and the observed histograms. Therefore we take the differences
between these models, ∼ 10% in M∗, ∼ 10% in M•, and ∼ 0.1kpc in R0, as a more conservative
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estimate of the dynamical modeling uncertainties, so that finally

R0 = 8.27± 0.09|stat ± 0.1|syst kpc
M∗(m < 100′′) = (7.73± 0.31|stat ± 0.8|syst)× 106M�
M• = (3.86± 0.14|stat ± 0.4|syst)× 106M�.

(2.29)

We note several other systematic errors which are not easily quantifiable and so are not
included in these estimates, such as inhomogeneous sampling of proper motions or line-of-sight
velocities, extinction within the NSC, and the presence of an additional component of dark stellar
remnants.

Based on our best model, the mass of the star cluster within 100′′ converted into spherical
coordinates is M∗(r < 100′′) = (8.94 ± 0.32|stat ± 0.9|syst) × 106M�. The model’s mass within
the innermost pc (25′′) is M∗(m < 1pc) = 0.729 × 106M� in spheroidal radius, or M∗(r <
1pc) = 0.89 × 106M� in spherical radius. The total mass of the inner NSC component is M1 =
6.1×107M�. Because most of this mass is located beyond the radius where the inner component
dominates the projected star counts, the precise division of the mass in the model between the
NSC and the adjacent nuclear disk is dependent on the assumed slope of the outer density profile
of NSC, and is therefore uncertain.

The distance and the black hole mass we found differ by 0.7% and 12%, respectively, from the
values R0 = 8.33± 0.17|stat ± 0.31|syst kpc and M• = 4.31± 0.36× 106M� for R0 = 8.33 kpc, as
determined by Gillessen et al. (2009) from stellar orbits around Sgr A∗. Figure 2.12 shows the 1σ
to 3σ contours of marginalized χ2 for (R0,M•) jointly from stellar orbits (Gillessen et al., 2009),
for the NSC model of this paper, and for the combined modeling of both data sets. The figure
shows that both analyses are mutually consistent. When marginalized over M∗ and the respective
other parameter, the combined modeling gives, for each parameter alone, R0 = 8.33 ± 0.11 kpc
and M• = 4.23 ± 0.14 × 106M�. We note that these errors for R0 and M• are both dominated
by the distance error from the NSC modeling. Thus our estimated additional systematic error of
0.1 kpc for R0 in the NSC modeling translates to a similar additional error in the combined R0

measurement and, through the SMBH mass-distance relation given in Gillessen et al (2009), to
an additional uncertainty ' 0.1 × 106M� in M•. We see that the combination of the NSC and
S-star orbit data is a powerful means for decreasing the degeneracy between the SMBH mass and
Galactic center distance in the S-star analysis.

2.4.3 Two-integral distribution function for the NSC.

Now we have seen the success of fitting the semi-isotropic Jeans models to all three velocity
dispersion profiles of the NSC, and determined its mass and distance parameters, we proceed to
calculate two-integral (2I) distribution functions. We use the contour integral method of Hunter
& Qian (1993, HQ) and Qian et al. (1995). A 2I DF is the logical, next-simplest generalization of
isotropic spherical models. Finding a positive DF will ensure that our model is physical. Other
possible methods to determine f(E,Lz) include reconstructing the DF from moments (Magorrian,
1995), using series expansions as in Dehnen & Gerhard (1994), or grid-based quadratic program-
ming as in Kuijken (1995). We find the HQ method the most suitable since it is a straightforward
generalization of Eddington’s formula. The contour integral is given by:

f+(E,Lz) =
1

4π2i
√

2

∮ dξ

(ξ−E)1/2 ρ̃11

(
ξ, L2

z

2(ξ−E)1/2

)
(2.30)
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Figure 2.12: Blue: χ2 contours in the (R0,M•) plane from stellar orbits of S-stars, as in
Figure 15 of Gillessen et al. (2009), at confidence levels corresponding to 1σ, 2σ, 3σ for the
joint probability distribution. Brown: Corresponding χ2 contours from this work. Black:
Combined contours after adding the χ2 values.
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Figure 2.13: We used the HQ algorithm to calculate the 2I-DF for our best Jeans model.
The left plot shows the DF in E and η = Lz/Lzmax(E) space. The DF is an increasing
function of η. The right plot shows the projection of the DF on energy space for several
values of η. The shape resembles that of the spherical case in Figure 2.4.

where ρ̃11(Ψ, R) = ∂2

∂Ψ2 ρ(Ψ, R). Equation (2.30) is remarkably similar to Eddington’s formula.
Like in the spherical case the DF is even in Lz. The integration for each (E,Lz) pair takes
place on the complex plane of the potential ξ following a closed path (i.e. an ellipse) around the
special value Ψenv. For more information on the implementation and for a minor improvement
over the original method see Appendix A. We find that a resolution of (120× 60) logarithmically
placed cells in the (E,Lz) space is adequate to give us relative errors of the order of 10−3 when
comparing with the zeroth moment, i.e., the density, already known analytically, and with the
second moments, i.e., the velocity dispersions from Jeans modeling.

The gravitational potential is already known from equations (2.20) and (2.21). For the pa-
rameters (cluster mass, black hole mass, distance) we use the values given in (2.25). Figure 2.13
shows the DF in (E,Lz) space. The shape resembles that of the spherical case (Fig. 2.4). The
DF is a monotonically increasing function of η = Lz/Lzmax(E) and declines for small and large
energies. The DF contains information about all moments and therefore we can calculate the
projected velocity profiles (i.e., velocity distributions, hereafter abbreviated VPs) in all directions.
The normalized VP in the line-of-sight (los) direction y is

V P (υlos;x, z) =
1

Σ

∫∫∫
E>0

f(E,Lz) dυxdυzdy. (2.31)

Using polar coordinates in the velocity space (υx, υz) → (υ⊥, ϕ) where υx = υ⊥ cosϕ and υz =
υ⊥ sinϕ we find

V P (υlos;x, z) =
1

2Σ

y2∫
y1

dy

2Ψ−υ2
los∫

0

dυ2
⊥

2π∫
0

dϕf(E,Lz) (2.32)
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where

E = Ψ(x, y, z)− 1
2(υ2

los + υ2
⊥),

Lz = xυlos − yυ⊥ cosϕ.
(2.33)

and y1,2 are the solutions of Ψ(x, y, z) − v2
los/2 = 0. Following a similar path we can easily find

the corresponding integrals for the VPs in the l and b directions.
The typical shape of the VPs in the l and b directions within the area of interest (r < 100′′)

is shown in Figure 2.14. We notice the characteristic two-peak shape of the VP along l that
is caused by the near-circular orbits of the flattened system. Because the front and the back
of the axisymmetric cluster contribute equally, the two peaks are mirror-symmetric, and adding
rotation would not change their shapes.

The middle panels of Figure 2.15 and Figures 2.21 and 2.22 in Appendix B show how our best
model (with parameters as given in (2.19) and (2.27)) predicts the observed velocity histograms
for various combinations of cells. The reduced χ2 for each histogram is also provided. The
prediction is very good both for the VPs in υl and υb. Specifically, for the l proper motions our
flattened cluster model predicts the two-peak structure of the data pointed out by several authors
(Trippe et al., 2008; Schödel et al., 2009; Fritz et al., 2014). In order to calculate the VP from
the model for each cell we averaged over the VP functions for the center of each cell weighted by
the number of stars in each cell and normalized by the total number of stars in all the combined
cells.

Figure 2.15 compares two selected υl-VPs for our two main models with the data. The left
column shows how the observed velocity histograms (VHs) for corresponding cells compare to the
model VPs for the less flattened model with parameters given in (2.27) and (2.28), the middle
column compares with the same VPs from our best model with parameters given in (2.19) and
(2.25). Clearly, the more flattened model with q1 = 0.73 fits the shape of the data much better
than the more spherical model with q1 = 0.85, justifying its use in Section 2.4.2.

This model is based on an even DF in Lz and therefore does not yet have rotation. To include
rotation, we will (in Section 4.4) add an odd part to the DF, but this will not change the even
parts of the model’s VPs. Therefore, we can already see whether the model is also a good match
to the observed los velocities by comparing it to the even parts of the observed los VHs. This
greatly simplifies the problem since we can think of rotation as independent, and can therefore
adjust it to the data as a final step. Figure 2.23 shows how the even parts of the VHs from the los
data compare with the VPs of the 2I model. Based on the reduced χ2, the model provides a very
good match. Possible systematic deviations are within the errors. The los VHs are broader than
those in the l direction because the los data contain information about rotation (the broader the
even part of the symmetrized los VHs, the more rotation the system possesses, and in extreme
cases they would show two peaks).

2.4.4 Adding rotation to the axisymmetric model: is the NSC
an isotropic rotator?

As in the spherical case, to model the rotation we add an odd part in Lz to the initial even part of
the distribution function, so that the final DF takes the form f(E,Lz) = (1+g(Lz))f(E,Lz). We
use again equation (2.14); this adds two additional parameters (κ, F) to the DF. Equation (2.16)
gives the mean los velocity vs Galactic longitude. In order to constrain the parameters (κ, F) we



48 2. The old nuclear star cluster in the Milky Way: dynamics, M0, R0, MBH

-300 -200 -100 0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ul,b Hkm�sL

V
P

Figure 2.14: Typical velocity distributions for l and b-velocities within the area of interest
(r < 100′′). The red line shows the VPs in the b direction, the blue line in the l direction.
The VPs along l show the characteristic two-peak-shape pointed out from the data by
several authors (Schödel et al., 2007; Trippe et al., 2008; Fritz et al., 2014).
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Figure 2.15: Predicted distributions of υl velocity compared to the observed histograms.
In each row, model VPs and observed VHs are shown averaged over the cells indicated in
red in the right column, respectively. Left column: predictions for the less flattened model
which we use as an illustration model, i.e., for parameters given in (26) and (27). Middle
column: predicted VPs for our best model with parameters given in (18) and (24). This
more flattened model with q1 = 0.73 fits the data much better than the rounder cluster
model with q1 = 0.85.
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fitted the mean los velocity from equation (2.16) to the los velocity data for all cells in Fig. 2.2.
The best parameter values resulting from this 2D-fitting are κ = 2.8± 1.7, F = 0.85± 0.15 and
χ2
r = 1.25. Figure 2.24 shows that the VPs of this rotating model compare well with the observed

los VHs.
An axisymmetric system with a DF of the form f(E,Lz) is an isotropic rotator when all three

eigenvalues of the dispersion tensor are equal (Binney & Tremaine, 2008) and therefore

υ2
ϕ = υ2

ϕ − υ2
R. (2.34)

In order to calculate υϕ from equation (2.34) it is not necessary for the DF to be known since

υ2
ϕ and υ2

R are already known from the Jeans equations (2.22). Figure 2.16 shows the fitted ulos

velocity from the DF against the isotropic rotator case calculated from equation (2.34), together
with the mean los velocity data. The two curves agree well within ∼ 30′′, and also out to ∼ 200′′

they differ only by ∼ 10 km/s. Therefore according to our best model the NSC is close to an
isotropic rotator, with slightly lower rotation and some tangential anisotropy outwards of 30”.

2.5 Discussion

In this work we presented a dynamical analysis of the Milky Way’s nuclear star cluster (NSC),
based on ∼10’000 proper motions, ∼2’700 radial velocities, and new star counts from the com-
panion paper of Fritz et al. (2014). We showed that an excellent representation of the kinematic
data can be obtained by assuming a constant mass-to-light ratio for the cluster, and modeling
its dynamics with axisymmetric two-integral distribution functions (2I-DFs), f(E,Lz). The DF
modeling allows us to see whether the model is physical, i.e., whether the DF is positive, and to
model the proper motion (PM) and line-of-sight (los) velocity histograms (VHs). One open ques-
tion until now has been the nature of the double peaked VHs of the vl-velocities along Galactic
longitude, and the bell-shaped VHs of vb along Galactic latitude, which cannot be fitted by Gaus-
sians (Schödel et al., 2009). Our 2I DF approximation of the NSC gives an excellent prediction for
the observed shapes of the vl-, vb, and vlos-VHs. The models show that the double-peaked shape
of the vl-VHs is a result of the flattening of the NSC, and suggest that the cluster’s dynamical
structure is close to an isotropic rotator. Because both PMs and los-velocities enter the dynamical
models, we can use them also to constrain the distance to the GC, the mass of the NSC, and the
mass of the Galactic centre black hole. To do this efficiently, we used the semi-isotropic Jeans
equations corresponding to 2I-DFs. In this section, we discuss these issues in more detail.

2.5.1 The dynamical structure of the NSC

The star count map derived in Fritz et al. (2014) suggests two components in the NSC density
profile, separated by an inflection point at about ∼ 200′′ ∼ 8 pc (see Fig. 2.7 above). To
account for this we constructed a two-component dynamical model for the star counts in which
the two components are described as independent γ-models. The inner, rounder component can
be considered as the proper NSC, as in Fritz et al. (2014), while the outer, much more flattened
component may represent the inner parts of the nuclear stellar disk (NSD) described in Launhardt
et al. (2002).

The scale radius of the inner component is ∼ 100′′, close to the radius of influence of the
SMBH, rh ∼ 90′′ (Alexander, 2005). The profile flattens inside ∼ 20′′ to a possible core (Buchholz
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Figure 2.16: Best fitting model from the 2I DF compared to the isotropic rotator model.
Each data point corresponds to a cell from Figure 2.2. Velocities at negative l have been
folded over with their signs reversed and are shown in red. The plot also includes the
maser data at Rs > 100′′. The predictions of both models are computed for b = 20′′.
For comparison, cells with centers between b = 15′′ and b = 25′′ are highlighted with full
triangles.
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et al., 2009; Fritz et al., 2014) but the slope of the three-dimensional density profile for the inner
component is not well-constrained.

The flattening for the inner NSC component inferred from star counts is q1 = 0.73±0.04, very
close to the value of q = 0.71± 0.02 found recently from Spitzer multi-band photometry (Schödel
et al., 2014). It is important that these determinations agree with the dynamical flattening of our
best Jeans dynamical models: the dynamical flattening is robust because it is largely determined
by the ratio of σb/σl and the tensor virial theorem. Because star counts, photometric, and
dynamical values for the inner NSC flattening agree, this parameter can now be considered
securely determined.

Assuming constant mass-to-light ratio for the NSC, we found that a 2I-DF model gives an
excellent description of the proper motion and los velocity dispersions and VHs, in particular
of the double-peaked distributions in the vl-velocities. This double-peaked structure is a direct
consequence of the flattening of the star cluster; the detailed agreement of the model VPs with the
observed histograms therefore confirms the value q1 = 0.73 for the inner cluster component. For
an axisymmetric model rotation cannot be seen directly in the proper motion VHs when observed
edge-on, as is the case here, but is apparent only in the los velocities. When a suitable odd part
of the DF is added to include rotation, the 2I-DF model also gives a very good representation
of the skewed los VHs. From the amplitude of the required rotation we showed that the NSC
can be approximately described as an isotropic rotator model, rotating slightly slower than that
outside ∼ 30′′.

Individual VHs are generally fitted by this model within the statistical errors, but on closer
examination the combined vl VHs show a slightly lower peak at negative velocities, as already
apparent in the global histograms of Trippe et al. (2008); Schödel et al. (2009). Fig. 2.17 suggests
that differential extinction of order ∼ 0.2 mag within the cluster may be responsible for this small
systematic effect, by causing some stars from the back of the cluster to fall out of the sample. The
dependence of mean extinction on vl independently shows that the NSC must be rotating, which
could otherwise only be inferred from the los velocities. In subsequent work, we will model the
effect of extinction on the inferred dynamics of the NSC. This will then also allow us to estimate
better how important deviations from the 2I-dynamical structure are, i.e., whether three-integral
dynamical modeling (e.g., De Lorenzi et al., 2013) would be worthwhile.

2.5.2 Mass of the NSC

The dynamical model results in an estimate of the mass of the cluster from our dataset. Our
fiducial mass value is M∗(m<100′′) = (7.73±0.31|stat±0.8|syst)×106M� interior to a spheroidal
major axis distance m=100′′. This corresponds to an enclosed mass within 3-dimensional radius
r=100′′ of M∗(r<100′′) = (8.94± 0.31|stat ± 0.9|syst)× 106M�.

The fiducial mass M∗(r<100′′) for the best axisymmetric model is larger than that obtained
with spherical models. The constant M/L spherical model with density parameters as in Section
3, for R0 = 8.3 kpc and the same black hole mass has M∗(r<100′′) = 6.6× 106M�.

There are two reasons for this difference: (i) At ∼ 50′′ where the model is well-fixed by
kinematic data the black hole still contributes more than half of the interior mass. In this region,
flattening the cluster at constant mass leaves σl and σlos approximately constant, but decreases
σb to adjust to the shape. To fit the same observed data, the NSC mass must be increased.
(ii) Because of the increasing flattening with radius, the average density of the axisymmetric
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Figure 2.17: Average differential extinction of nuclear cluster stars plotted as a function of
vl proper motion. The differential extinction is inferred from the difference in the color of
a star to the median color of its 16 nearest neighbours, using the extinction law of Fritz et
al. (2011), and correcting also for the weak color variation with magnitude. For this plot
we use all the proper motion stars in the central and extended fields of Fritz et al. (2014)
and bins of 0.2 mas/yr. The differential extinction is larger for stars with negative l-proper
motions which occur preferentially at the back of the cluster.
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Figure 2.18: Upper panel: Enclosed mass of the NSC, as function of three-dimensional
radius r and spheroidal radius m, and total enclosed mass including the black hole. Middle
panel: Enclosed mass of the inner component of the NSC (inner component M1), the NSD
(outer component M2), and total enclosed stellar mass, as function of three-dimensional
radius r. Lower panel: Axis ratios of the stellar density and total potential as functions of
the cylindrical radius R.
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model decreases faster than that of the spherical density fit; thus for the same observed velocity
dispersion profiles a larger binding mass for the NSC is required.

Figure 2.18 shows the enclosed stellar mass within the spheroidal radius m as in equa-
tion (2.26), as well as the mass within the spherical radius r. E.g., the mass within 1 pc (25′′) is
M∗(r < 1pc ∼ 25′′) = 0.89 × 106M�. This is compatible with the spherical modeling of Schödel
et al. (2009) who gave a range of 0.6− 1.7× 106M�, rescaled to R0 = 8.3 kpc, with the highest
mass obtained for their isotropic, constant M/L model. According to Fig. 2.18, at r ' 30′′ = 1.2
pc the NSC contributes already ' 25% of the interior mass (' 45% at r ' 50′′ = 2 pc), and
beyond r ' 100′′ = 4 pc it clearly dominates.

An important point to note is that the cluster mass does not depend on the net rotation of
the cluster but only on its flattening. This is because to add rotation self-consistently to the
model we need to add an odd part to the DF which does not affect the density or the proper
motion dispersions σl and σb.

Our NSC mass model can be described as a superposition of a moderately flattened nuclear
cluster embedded in a highly flattened nuclear disk. The cumulative mass distributions of the
two components are shown in the middle panel of Figure 2.18. The NSD starts to dominate at
about 800′′ which is in good agreement with the value found by Launhardt et al. (2002).

Approximate local axis ratios for the combined density and for the total potential including
the central black hole are shown in the lower panel of Fig. 2.18. Here we approximate the axial
ratio of the density at radius R by solving the equation ρ(R, 0) = ρ(0, z) for z and writing
qρ = z/R, and similarly for qΨ. The density axis ratio qρ(R) shows a strong decrease between the
regions dominated by the inner and outer model components. The equipotentials are everywhere
less flattened. At the center, qΨ = 1 because of the black hole; the minimum value is not yet
reached at 1000′′. Therefore, we can define the NSC proper as the inner component of this model,
similar to Fritz et al. (2014).

The total mass of the inner component, M1 = 6.1×107M� (Section 2.4.2), is well-determined
within similar relative errors as M∗(m< 100′′). However, identifying M1 with the total mass of
the Galactic NSC at the center of the nuclear disk has considerable uncertainties: because the
outer NSD component dominates the surface density outside 100′′−200′′, the NSC density profile
slope at large radii is uncertain, and therefore the part of the mass outside ∼ 200′′ (∼ 64% of
the total) is also uncertain. A minimal estimate for the mass of the inner NSC component is its
mass within 200′′ up to where it dominates the star counts. This gives MNSC > 2× 107M�.

Finally, we use our inferred dynamical cluster mass to update the K-band mass-to-light ratio
of the NSC. The best-determined mass is within 100′′. Comparing our M∗(r < 100′′) = (8.94 ±
0.31|stat ± 0.9|syst) × 106M� with the K-band luminosity of the old stars derived in Fritz et al.
(2014), L100′′ = (12.12±2.58)×106L�,Ks, we obtain M/LKs = (0.76±0.18)M�/L�,Ks. The error
is dominated by the uncertainty in the luminosity (21%, compared to a total 10% in mass from
adding statistical and systematic errors in quadrature). The inferred range is consistent with
values expected for mostly old, solar metallicity populations with normal IMF (e.g., Courteau et
al., 2013; Fritz et al., 2014).

2.5.3 Evolution of the NSC

After ∼ 10 half mass relaxation times trh a dense nuclear star cluster will eventually evolve to
form a Bahcall-Wolf cusp with slope γ = 7/4 (Merritt, 2013); for rotating dense star clusters
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around black holes this was studied by Fiestas & Spurzem (2010). The minimum allowable inner
slope for a spherical system with a black hole to have a positive DF is γ = 0.5. From the data
it appears that the Galactic NSC instead has a core (Buchholz et al., 2009; Fritz et al., 2014),
with the number density possibly even decreasing very close to the center (r < 0.3 pc). This
is far from the expected Bahcall-Wolf cusp, indicating that the NSC is not fully relaxed. It is
consistent with the relaxation time of the NSC being of order 10 Gyr everywhere in the cluster
(Merritt, 2013).

From Fig. 2.16 we see that the rotational properties of the Milky Way’s NSC are close to
those of an isotropic rotator. Fiestas et al. (2012) found that relaxation in rotating clusters
causes a slow (∼ 3trh) evolution of the rotation profile. Kim et al. (2008) found that it also
drives the velocity dispersions towards isotropy; in their initially already nearly isotropic models
this happens in ∼ 4trh. On a similar time-scale the cluster becomes rounder (Einsel & Spurzem,
1999). Comparing with the NSC relaxation time suggests that these processes are too slow to
greatly modify the dynamical structure of the NSC, and thus that its properties were probably
largely set up at the time of its formation.

The rotation-supported structure of the NSC could be due to the rotation of the gas from
which its stars formed, but it could also be explained if the NSC formed from merging of globular
clusters. In the latter model, if the black hole is already present, the NSC density and rota-
tion after completion of the merging phase reflects the distribution of disrupted material in the
potential of the black-hole (e.g. Antonini et al. , 2012). Subsequently, relaxation would lead
to shrinking of the core by a factor of ∼ 2 in 10 Gyr towards a value similar to that observed
(Merritt, 2010). In the simulations of Antonini et al. (2012), the final relaxed model has an
inner slope of γ = 0.45, not far from our models (note that in flattened semi-isotropic models the
minimum allowed slope for the density is also 0.5 (Qian et al., 1995)). Their cluster also evolved
towards a more spherical shape, however, starting from a configuration with much less rotation
and flattening than we inferred here for the present Milky Way NSC. Similar models with a net
rotation in the initial distribution of globular clusters could lead to a final dynamical structure
more similar to the Milky Way NSC.

2.5.4 Distance to the Galactic center

From our large proper motion and los velocity datasets, we obtained a new estimate for the
statistical parallax distance to the NSC using axisymmetric Jeans modeling based on the cluster’s
inferred dynamical structure. From matching our best dynamical model to the proper motion and
los velocity dispersions within approximately |l|, |b| < 50′′, we found R0 = 8.27±0.09|stat±0.1|syst

kpc. The statistical error is very small, reflecting the large number of fitted dispersion points.
The systematic modeling error was estimated from uncertainties in the density structure of the
NSC, as discussed in Section 2.4.2.

Our new distance determination is much more accurate than that of Do et al. (2013) based
on anisotropic spherical Jeans models of the NSC, R0 = 8.92+0.58

−0.58 kpc, but is consistent within
their large errors. We believe this is mostly due to the much larger radial range we modeled,
which leaves less freedom in the dynamical structure of the model.

The new value for R0 is in the range R0 = 8.33 ± 0.35 kpc found by Gillessen et al. (2009)
from analyzing stellar orbits around Sgr A∗. A joint statistical analysis of the NSC data with
the orbit results of Gillessen et al. (2009) gives a new best value and error R0 = 8.33± 0.11 kpc
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(Fig. 2.12, Section 2.4.2). Our estimated systematic error of 0.1 kpc for R0 in the NSC modeling
translates to a similar additional uncertainty in this combined R0 measurement.

Measurements of R0 prior to 2010 were reviewed by Genzel et al. (2010). Their weighted
average of direct measurements is R0 = 8.23 ± 0.20 ± 0.19 kpc, where the first error is the
variance of the weighted mean and the second the unbiased weighted sample variance. Two recent
measurements give R0 = 8.33±0.05|stat±0.14|syst kpc from RR Lyrae stars (Dekany et al., 2013)
and R0 = 8.34± 0.14 kpc from fitting axially symmetric disk models to trigonometric parallaxes
of star forming regions (Reid et al., 2014). These measurements are consistent with each other
and with our distance value from the statistical parallax of the NSC, with or without including
the results from stellar orbits around Sgr A∗, and the total errors of all three measurements are
similar, ∼ 2%.

2.5.5 Mass of the Galactic supermassive black hole

Given a dynamical model, it is possible to constrain the mass of the central black hole from
3D stellar kinematics of the NSC alone. With axisymmetric Jeans modeling we found M• =
(3.86 ± 0.14|stat ± 0.4|syst) × 106M�, where the systematic modeling error is estimated from the
difference between models with different inner cluster flattening as discussed in Section 2.4.2.
Within errors this result is in agreement with the black hole mass determined from stellar orbits
around Sgr A∗ (Gillessen et al., 2009).

Our dataset for the NSC is the largest analyzed so far, and the axisymmetric dynamical model
is the most accurate to date; it compares well with the various proper motion and line-of-sight
velocity histograms. Nonetheless, future improvements may be possible if the uncertainties in
the star density distribution and kinematics within 20” can be reduced, the effects of dust are
incorporated, and possible deviations from the assumed 2I-axisymmetric dynamical structure are
taken into account.

Several similar analyses have been previously made using spherical isotropic or anisotropic
modeling. Trippe et al. (2008) used isotropic spherical Jeans modeling for proper motions and
radial velocities in 1′′ < R < 100′′; their best estimate is M• ∼ 1.2 × 106M�, much lower than
the value found from stellar orbits. Schödel et al. (2009) constructed isotropic and anisotropic
spherical broken power-law models, resulting in a black hole mass of M• = 3.6+0.2

−0.4 × 106M�.
However, Fritz et al. (2014) find M• ∼ 2.27 ± 0.25 × 106M�, also using a power-law tracer
density. They argue that the main reason for the difference to Schödel et al. (2009) is because
their velocity dispersion data for R > 15′′ are more accurate, and their sample is better cleaned
for young stars in the central R < 2.5′′. Assuming an isotropic spherical model with constant
M/L, Fritz et al. (2014) find M• ∼ 4.35 ± 0.12 × 106M�. Do et al. (2013) used 3D stellar
kinematics within only the central 0.5 pc of the NSC. Applying spherical Jeans modeling, they
obtained M• = 5.76+1.76

−1.26× 106M� which is consistent with that derived from stellar orbits inside
1′′, within the large errors. However, in their modeling they used a very small density slope for
the NSC, of γ = 0.05, which does not correspond to a positive DF for their quasi-isotropic model.

Based on this work and our own models in Section 4, the black hole mass inferred from NSC
dynamics is larger for constant M/L models than for power law models, and it increases with the
flattening of the cluster density distribution.

The conceptually best method to determine the black hole mass is from stellar orbits close to
the black hole (Schödel et al., 2002; Ghez et al., 2008; Gillessen et al., 2009), as it requires only the
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assumption of Keplerian orbits and is therefore least susceptible to systematic errors. Gillessen et
al. (2009) find that the largest uncertainty in the value obtained for M• is due to the uncertainty
in R0, and that M• scales as M• ∝ R2.19

0 . Therefore using our improved statistical parallax for
the NSC also leads to a more accurate determination of the black hole mass. A joint statistical
analysis of the axisymmetric NSC modeling together with the orbit modeling of Gillessen et al.
(2009) gives a new best value and error for the black hole mass, M• = (4.26± 0.14)× 106M� (see
Fig. 2.12, Section 2.4.2). An additional systematic error of 0.1 kpc for R0 in the NSC modeling,
through the BH mass-distance relation given in Gillessen et al (2009), translates to an additional
uncertainty ' 0.1× 106M� in M•.

Combining this result with the mass modeling of the NSC, we can give a revised value for the
black hole influence radius rinfl, using a common definition of rinfl as the radius where the interior
mass M(< r) of the NSC equals twice the black hole mass (Merritt, 2013). Comparing the interior
mass profile in Fig. 2.18 as determined by the dynamical measurement with M• = 4.26× 106M�,
we obtain rinfl ' 94′′ = 3.8 pc.

The Milky Way is one of some 10 galaxies for which both the masses of the black hole and
of the NSC have been estimated (Kormendy, 2013). From these it is known that the ratio of
both masses varies widely. Based on the results above we estimate the Milky Way mass ratio
M•/MNSC = 0.12± 0.04, with the error dominated by the uncertainty in the total NSC mass.

2.6 Conclusions

Our results can be summarized as follows:

• The density distribution of old stars in the central 1000′′ in the Galactic center can be
well-approximated as the superposition of a spheroidal nuclear star cluster (NSC) with a
scale length of ∼ 100′′ and a much larger nuclear disk (NSD) component.

• The difference between the proper motion dispersions σl and σb cannot be explained by
rotation alone, but is a consequence of the flattening of the NSC. The dynamically inferred
axial ratio for the inner component is consistent with the axial ratio inferred from the star
counts which for our two-component model is q1 = 0.73± 0.04.

• The orbit structure of an axisymmetric two-integral DF f(E,Lz) gives an excellent match
to the observed double-peak in the vl-proper motion velocity histograms, as well as to the
shapes of the vertical vb-proper motion histograms. Our model also compares well with the
symmetrized (even) line-of-sight velocity histograms.

• The rotation seen in the line-of-sight velocities can be modelled by adding an odd part of
the DF, and this shows that the dynamical structure of the NSC is close to an isotropic
rotator model.

• Fitting proper motions and line-of-sight dispersions to the model determines the NSC
mass within 100′′, the mass of the SMBH, and the distance to the NSC. From the star
cluster data alone, we find M∗(r<100′′)=(8.94±0.31|stat±0.9|syst)×106M�, M•=(3.86±
0.14|stat±0.4|syst)×106M�, and R0 = 8.27±0.09|stat±0.1|syst kpc, where the estimated
systematic errors account for additional uncertainties in the dynamical modeling. The
fiducial mass of the NSC is larger than in previous spherical models. The total mass of
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the NSC is significantly more uncertain due to the surrounding nuclear disk; we estimate
MNSC = (2 − 6)×107M�. The mass of the black hole determined with this approach is
consistent with results from stellar orbits around Sgr A∗. The Galactic center distance
agrees well with recent accurate determinations from RR Lyrae stars and masers in the
Galactic disk, and has similarly small errors.

• Combining our modeling results with the stellar orbit analysis of Gillessen et al. (2009), we
find M•=(4.23±0.14)×106M� and R0 =8.33±0.11 kpc. Because of the better constrained
distance, the accuracy of the black hole mass is improved as well. Combining with the
parameters of the cluster, the black hole radius of influence is 3.8 pc (= 94′′) and the ratio
of black hole to cluster mass is estimated to be 0.12±0.04.

2.7 Two-integral distributions functions

In this part we give implementation instructions for the 2I-DF algorithm of Hunter & Qian (1993,
HQ). We will try to focus on the important parts of the algorithm and also on the tests that one
has to make to ensure that the implementation works correctly. Our implementation is based
on Qian et al. (1995) and made with Wolfram Mathematica. For the theory the reader should
consider the original HQ paper.

We will focus on the even part of the DF and for the case where the potential at infinity,
Ψ∞, is finite and therefore can be set to zero. First one partitions the (E, η) space where
η ≡ Lz/Lz max(E) takes values in (0, 1). The goal of the HQ algorithm is to calculate the value of
the DF on each of these points on a 2D grid and subsequently end up with a 3D grid where we can
apply an interpolation to obtain the final smooth function f(E,Lz). The energy values on the 2D
grid are placed logarithmically within an interval of interest [Emin, Emax] (higher Emax value is
closer to the center) and the values of η are placed linearly between 0 and 1. Physically allowable
E and Lz correspond to bound orbits in the potential Ψ and therefore E > 0. In addition at each
energy there is a maximum physically allowed Lz corresponding to circular orbits with z = 0.
This is given by the equations:

E = Ψ(R2
c , 0) +R2

c
dΨ(R2

c ,0)
dR2 |R=Rc

L2
z = −2R4

c
dΨ(R2

c ,0)
dR2 |R=Rc

(2.35)

where Rc is the radius of the circular orbit and the value Lz max ≡ Lz(Rc) is the maximum
allowed value of Lz at a specific E. The Lz max(E) function can be found by solving the 1st
equation for Rc and substituting in the second one therefore making a map E → Lz max. The
value of the potential of a circular orbit with energy E is denoted by Ψenv(E) and can be found
from Ψenv(E) = Ψ(R2

c , 0) after solving the 1st of equation (2.35) for Rc. The value Ψenv(E) is
important for evaluation of f(E,Lz) and it is used in the contour of the complex integral.

To calculate the even part f+(E,Lz) of the DF for each point of the grid we have to apply
the following complex contour integral on the complex ξ-plane using a suitable path:

f+(E,Lz) =
1

4π2i
√

2

∮ dξ

(ξ−E)1/2 ρ̃11

(
ξ, L2

z

2(ξ−E)1/2

)
(2.36)
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where the subscripts denotes the second partial derivative with respect to the first argument. A
possible path for the contour is shown in figure 2.35. The loop starts at the point 0 on the lower
side of the real ξ axis, crosses the real ξ axis at the point Ψenv(E) and ends at the upper side of
real ξ axis. The parametrization of the path in general could be that of an ellipse:

ξ =
1

2
Ψenv(E)(1 + cos θ) + ih sin θ, −π ≤ θ ≤ π (2.37)

where h is the highest point of the ellipse. The value of h should not be too high because we
want to avoid other singularities but not too low either to maintain the accuracy. We optimize
our implementation by integrating along the upper part of the loop and multiply the real part of
the result by 2 (this is because of the Schwarz reflection principle).

In order to calculate the integrand of the integral we need the following transformation:

ρ̃11(ξ,R2) =
ρ22(R2, z2)

[Ψ2(R2, z2)]2
− ρ2(R2, z2)Ψ22(R2, z2)

[Ψ2(R2, z2)]3
(2.38)

in which each subscript denotes a partial differentiation with respect to z2. This equation is
analogous to equation (2.7) of the spherical case. In addition ρ̃ is the density considered as a
function of ξ and R2 as opposed to R2 and z2. The integrand of the contour integral 2.36 depends
only on θ angle for a given (E,Lz) pair. Therefore we need the maps R→ ξ and z → ξ in order
to find the value of the integrand for a specific θ. The first map is given by R2 = 1

2L
2
z/(ξ − E).

The second is given by solving the equation ξ = Ψ
[

L2
z

2(ξ−E) , z
2
]

for z. It is very important that

the solution of the previous equation corresponds to the correct branch in which the integrand
attains its physically achieved values. In order to achieve that for each pair (E,Lz max) we start
at the point ξ = Ψenv(E)(θ = 0) which belongs to the physical domain and we look for the unique
real positive solution. For the next point of the contour we use as initial guess the value of z from
the previous step that we already know that belongs to the correct branch. Using this method
we can calculate the integrand in several values of θ then make an interpolation of the integrand
and calculate the value of the DF using numerical integration.

Figure 2.20 shows the shape of the DF for η = 0.5 for the potential we use in the fourth section
of the paper for one value of h, using the aforementioned procedure. We notice that for large
energies fluctuations of the DF appear. In order to solve this we introduce a minor improvement
of the procedure, by generalizing the h value of the contour to an energy-dependent function
h = h(E). The h(E) could be a simple step function that takes four or five different values. For
our model the h(E) function is a decreasing function of E. This means that the minor axis of
the ellipse should decrease as the E increases to avoid such fluctuations. In general we can write
h = h(E,Lz) so that the contour depends both on E and Lz.

Once we implement the algorithm it is necessary to test it. Our first test is to check that
the lower half of the integration path in figure 2.35 is the complex conjugate of the upper half.
Probably the next most straightforward test is against the spherical case. It is possible to use the
HQ algorithm to calculate a DF for spherical system. This DF should be equal to that obtained
from Eddington’s formula for the same parameters. After calculating our 2I-DF we compare its
low-order moments with those of Jeans modeling. The 0th and 2nd moments of the DF (the 1st
is 0 for the even part) are given from the integrals.
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Figure 2.19: The contour used for the numerical evaluation of f(E,Lz) for the case where
Ψ∞ = 0. We optimize our implementation by integrating only along the upper or lower
part and then multiplying the result by 2.
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Comparison with the 0th moment (density) is straight forward since the density is analytically
known from the start. The 1st moments should be 0 within the expected error. In our imple-
mentation the error between Jeans modeling and the DF is of the order of 10−3 within the area
of interest. An additional test would be to integrate the VPs over the velocity space. Since the
VPs integrals are normalized with the surface density the integral of a VP over the whole velocity
space should be 1 within the expected error.
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Figure 2.20: This shows our best DF for η = 0.5 (green line). Fluctuations (red lines)
appear for large energies because we used a constant h for equation (2.37). To resolve this
we used a more general function h = h(E) or h = h(E,Lz) even closer to the center.
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2.8 Velocity histograms for the 2-I model
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Figure 2.21: VHs and VPs in the l and b directions predicted by the 2I model in angular
bins. The reduced χ2 is also provided. The size of the bins is 0.6mas/yr (∼ 23.6 km/s) for
the upper two plots and 0.5mas/yr (∼ 19.6 km/s) for the rest of the diagrams. The right
column shows which cells have been used for the VHs and VPs.
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Figure 2.22: VHs and VPs in the l and b directions predicted by the 2I model in radial
bins. The reduced χ2 is also provided. The size of the bins is 0.5mas/yr (∼ 19.6 km/s) for
the 1st and 4th column and 0.6mas/yr (∼ 23.6 km/s) for the rest of the diagrams. The
right column shows which cells have been used for the VHs and VPs.
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Figure 2.23: VHs for the symmetrized los data compared with the corresponding even VPs
of the model. The reduced χ2 is also provided. The size of the bins is 40km/s. For the
upper left we use stars with 20′′ < |l| < 30′′ and |b| < 20′′, for the upper right stars with
30′′ < |l| < 40′′ and |b| < 20′′, for the bottom left 40′′ < |l| < 50′′ and |b| < 20′′, and for
the bottom right 50′′ < |l| < 70′′ and |b| < 20′′.
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Figure 2.24: Los VHs compared with the corresponding VPs of the model including rota-
tion. The reduced χ2 is also provided. The size of the bins is 40km/s. For the upper left we
use stars with 20′′ < |l| < 30′′ and |b| < 20′′, for the upper right stars with 30′′ < |l| < 40′′

and |b| < 20′′, for the bottom left 40′′ < |l| < 50′′ and |b| < 20′′, and for the bottom right
60′′ < |l| < 80′′ and |b| < 20′′.
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Chapter 3

Dust within the old nuclear star
cluster

Original publication: S. Chatzopoulos, O. Gerhard, T.K. Fritz, C. Wegg, S. Gillessen

Abstract: The mean absolute extinction towards the central parsec of the Milky Way is AK ' 3
mag, including both foreground and Galactic center dust. Here we present a measurement of
dust extinction within the Galactic old nuclear star cluster (NSC), based on combining differen-
tial extinctions of NSC stars with their υl proper motions along Galactic longitude. Extinction
within the NSC preferentially affects stars at its far side, and because the NSC rotates, this causes
higher extinctions for NSC stars with negative υl, as well as an asymmetry in the υl-histograms.
We model these effects using an axisymmetric dynamical model of the NSC in combination with
simple models for the dust distribution. Comparing the predicted asymmetry to data for ∼ 7′100
stars in several NSC fields, we find that dust associated with the Galactic center mini-spiral with
extinction AK ' 0.15−0.8 mag explains most of the data. The largest extinction AK ' 0.8 mag is
found in the region of the Western arm of the mini-spiral. Comparing with total AK determined
from stellar colors, we determine the extinction in front of the NSC. Finally, we estimate that for
a typical extinction of AK ' 0.4 the statistical parallax of the NSC changes by ∼ 0.4%.

3.1 Introduction

Nuclear star clusters (NSC) are located at the centers of most spiral galaxies (Carollo et al., 1998;
Böker et al., 2002). Their study became possible via high spatial resolution observations from
HST in the 1990s. They have properties similar to those of globular clusters although they are
more compact, more massive and on average 4 mag brighter than the old globular clusters of the
Milky Way (Böker et al., 2004; Walcher et al., 2005). Many NSCs host an AGN (Seth et al., 2008)
i.e. a supermassive black hole (SMBH) in their centers, have complex star formation histories
(Rossa et al., 2006; Seth et al., 2006) and obey scaling-relations with host galaxy properties as
do central SMBHs (Ferrarese et al., 2006; Wehner & Harris, 2006).

The formation scenarios of NSCs can be split into two main categories: The merger scenario
where several dense globular clusters migrate close to the center from the outskirts via dynamical
friction and merge to form a compact stellar system (Tremaine & Ostriker, 1975; Arca-Sedda
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& Capuzzo-Dolcetta, 2014); and the ’in situ’ episodic buildup scenario where stars form locally
from infalling gas towards the center (Schinnerer et al., 2008).

The study of NSCs is of great interest because several of the most extreme physical phenomena
occur within them such as SMBHs, active galactic nuclei, star-bursts and extreme stellar densities.
The Galactic NSC is particularly interesting because of its proximity. At a distance of about 8kpc
from Earth it is the only NSC in which individual stars can be resolved.

The center of the galactic NSC harbors a SMBH (Genzel et al., 2010; Ghez et al., 2008).
Joint statistical analysis based on orbits around Sgr A* (Gillessen et al., 2009), star counts and
kinematic data gives M• = (4.23± 0.14)× 106M� and a statistical parallax R0 =8.33±0.11 kpc
(Chatzopoulos et al., 2015). Recent studies (Schödel et al., 2014; Chatzopoulos et al., 2015) have
revealed that the NSC is flattened with an axial ratio q ≈ 0.73, which is consistent with the
kinematic data (Chatzopoulos et al., 2015). One unsolved problem of the NSC is the absence of
a stellar cusp near the center. If the nucleus containing the black hole is sufficiently old, a stellar
cusp will form eventually (Bahcall & Wolf, 1976; Preto & Amaro Seoane, 2010). For the NSC we
instead observe an almost flat core (Burkert, 2009; Bartko et al., 2010).

Observations of the NSC in Optical-UV wavelengths are impossible because of the high ex-
tinction AV ≥ 30 mag due to interstellar dust (Scoville et al., 2003; Fritz et al., 2011). Therefore
we rely on the infrared, with average K-band extinction toward the central parsec close to AK ≈ 3
(Rieke et al., 1988; Schödel et al., 2010; Fritz et al., 2011) which is mostly foreground extinc-
tion. However it is very difficult observationally to measure the extinction variation along the
line-of-sight within the NSC.

The area around Sgr A* contains ionized gas which can be well described by a system of
ionized streamers or filaments orbiting Sgr A* (Ekers et al., 1983; Serabyn & Lacy, 1985) that
is presumably associated with some dust as well. This complex structure of ionized gas is called
the ’mini-spiral’ and consists of four main components: the northern arm, the eastern arm, the
western arm and the bar (Zhao et al., 2009) surrounded by the circumnuclear disk of radius
∼ 1.6pc (Christopher et al., 2005; Jackson et al., 1993).

In our previous dynamical study of the NSC, an asymmetry in the υl-proper motions was
observed in the histograms which was attributed to dust causing stars on the far side of the
NSC to fall out of the sample. The aim of this paper is to present estimates for the extinction
within the NSC based on our dynamical model and see to what extent this is correlated with
the mini-spiral, to try to understand the slight asymmetry in the υl velocity histograms of the
NSC and to check the impact of this on the fundamental parameters derived from the dynamical
model such as the mass and the distance.

In section 2 we discuss briefly our current best dynamical model of the NSC and describe
qualitatively the effects of dust on the dynamics of the NSC. In section 3 we show evidence
based on dynamics for the presence of dust within the NSC. In section 4 we develop a method
for making an analytical model for the dust extinction that can be used on top of an existing
dynamical model. Finally in section 5 we present extinction values for the dust within the NSC
based on the prediction of the model in conjunction with the mini-spiral observations.
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Figure 3.1: Each small square represents a quadrant in the (l, b) coordinate system, a +
signifies an asymmetry in the υl VHs (e.g. right peak higher) a - the opposite asymmetry
and 0 no asymmetry at all. We notice that dust produces the same asymmetry in every
quadrant.
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3.2 Effects of dust on the apparent dynamics of the

NSC

In this section we give a brief description of the current best dynamical model of the NSC based
on Chatzopoulos et al. (2015) and we show initial evidence for dust extinction within the NSC.

3.2.1 Axisymmetric dynamical model of the NSC

For this work we use proper motions from ∼ 7100 stars obtained from AO assisted images and
photometry data based on Fritz et al. (2014). The proper motion data are given in Galactic
longitude l∗ and Galactic latitude b∗ angles centered on Sgr A*. In the following we always refer
to the shifted coordinates but will omit the asterisks for simplicity. We assume that the rotation
axis of the NSC is aligned with the rotation axis of the Milky Way disk. This is in accordance
with the very symmetric Spitzer surface density distribution of Schödel et al. (2014).

In Chatzopoulos et al. (2015) we used a two-component spheroidal γ-model (Dehnen, 1993;
Tremaine et al., 1994) which we fitted to the density data in the l and b directions provided
by Fritz et al. (2014). The inner rounder component can be considered as the NSC and the
outer, more flattened as the inner part of the nuclear stellar disk. Using the density we applied
axisymmetric Jeans modeling in order to constrain the stellar mass M∗, the black hole mass M• ,
and the distance R0 of the NSC which we found to be

M∗(r < 100′′) = (8.94± 0.31|stat ±0.9|syst)× 106M�
M• = (3.86±0.14|stat ± 0.4|syst)× 106M�
R0 = 8.27± 0.09|stat ± 0.1|systkpc

(3.1)

for the NSC only, not including the constraints from stellar orbits around Srg A*.
Having this information we used the Qian et al. (1995) algorithm to calculate the even part

of the 2-Integral distribution function (DF) f(E,Lz). This allowed us to calculate the velocity
profiles (VP) of the model. We found that the even part of the DF can predict very well the
characteristic 2-peak shape (Schödel et al., 2009; Fritz et al., 2014) of the velocity histograms
(VH) for the υl proper motion velocities. The addition of a suitable odd part in Lz to the even
part of the DF represents the rotation of the cluster.

3.2.2 Asymmetry of the υl proper motion histograms

Upon a closer look at the velocity histograms in l direction (VHl) it is noticeable that the right
peak is slightly higher than the left (e.g. Fig.3.2, the smooth blue line is a homogeneous dust
model see Section 5). This means that seemingly there are more stars in the front of the cluster
(positive velocities) than in the back.

At least three effects could produce such an asymmetry. Figure 3.1 illustrates the effect of
dust extinction without rotation, dust extinction with rotation, inclination and triaxiality on
the VHs. Each small square represents a quadrant of the shifted Galactic coordinate system
(l, b) where Sgr A* is at the center. A + signifies an asymmetry (e.g. right peak higher) a −
the opposite asymmetry and 0 no asymmetry at all (both peaks same height). We will see in
the following Sections that dust with rotation produces the same asymmetry in every quadrant.
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Figure 3.2: VH data and VPs in the l direction predicted by the axisymetric model and
dust model. The cells are from Chatzopoulos et al. (2015). Each star is mapped to the
first quadrant using (l, b)→ (|l|, |b|). The blue smooth lines correspond to our best model
of the NSC (based on Chatzopoulos et al. (2015)) plus a homogeneous dust model with
AK = 0.4 that extends from −200′′ to +200′′ along the line-of-sight.
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Because of the dust fewer stars will be visible at the back of the cluster, and because of the
rotation the missing stars will be stars with negative velocities. Inclination of the NSC produces
the opposite result for upper and lower quadrants because when the line-of-sight does not pass
exactly through the center, it passes through areas of unequal density in front of and behind the
NSC. On the other hand, triaxiality produces the opposite result for the right and left quadrants
because of the geometry of the streamlines of the triaxial system. This plot shows that if we
symmetrize the data to one quadrant only, the effect of the dust will remain while the effects of
the inclination and triaxiality will cancel out. This is what we observe on the symmetrized data
of the NSC (Fig. 3.2). Therefore we conclude that the observed asymmetry cannot be a result
of inclination and triaxiality but might be a result of dust. This suggests that dust extinction
in conjunction with rotation may produce the observed asymmetry. We note here that in order
to observe this asymmetry (right peak higher than left) in the velocity profile in the l direction
(VPl), the dust should be inside the cluster (i.e. within a few parsecs of the Galactic center)
where the density is maximum, otherwise only a change in scale of the VPs would take place.

3.3 Differential extinction in the NSC

We use photometry data in the H and K bands for 7101 stars. We split the data into a central
and an extended field. The central field is a square centered on Sgr A* with size of 40′′ and
contains 5847 stars. The rest of the stars belong to the extended fields, as shown in Fig. 3.3.

3.3.1 Total extinction

We obtain the extinction towards each star from the H −K color (stars without H photometry
and late-type stars are excluded). We obtain intrinsic color estimates by assuming that the stars
are at the distance of the Galactic Center and that they are giants, as it is the case for most stars
in the Galactic Center (Pfuhl et al., 2014). The intrinsic color varies between 0.065 and 0.34 but
the majority of stars belong to a small magnitude range around the red clump. Therefore and
also because the extinction is high, the influence of intrinsic color uncertainties on the extinction
is small compared to other effects, like photometric uncertainties. We use the extinction law of
Fritz et al. (2011), implying AK = 1.348E(H −K).

In this work we are mainly interested in the extinction variation AK within the Galactic
center. We obtain an estimate for that by measuring for each star the extinction relative to its
neighbors, more specifically relative to the median extinction of its 15 closest neighbors. Obvious
foreground stars were already excluded in Fritz et al. (2014). By using 15 neighbors we obtain a
robust median extinction estimate that is much less affected by extinction variations in the plane
of the sky. To further reduce the influence of this extinction variation we exclude stars with too
few close neighbors.

Fig. 3.3 shows a map of extinction for the central and extended fields based on H−K colors.
The area within the white frame is the central field which is consistent with Fig. 6 of Schödel
et al. (2010). Most of the extinction of typically AK = 3 mag shown in this plot is foreground
extinction but a fraction ' 0.4 mag or so is intrinsic to the NSC region as we show in the following.
Fig. 3.4 shows a histogram of the extinction for the central field. The mean extinction inferred
from this plot is AK = 2.94 mag with standard deviation 0.24 mag.
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Figure 3.3: Map of AK for the NSC derived from H−K colors. The map is similar to that
of Schödel et al. (2010). The Galactic plane is shown as a black line. The central field is
shown in white and the outer fields O1-O3 in red, blue and brown.



76 3. Dust within the old nuclear star cluster

AKs � 2.94 ± 0.24
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Figure 3.4: Histogram of the extinction AK based on H −K colors for all the stars. Mean
extinction and standard deviation also given. Stars with small AK are excluded because
they are foreground stars (Fritz et al., 2014).
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Figure 3.5: Average differential extinction of nuclear cluster stars plotted as a function
of υl(blue) and υb(red) proper motion. The differential extinction is inferred from the
difference in the color of a star to the median of its 15 nearest neighbors using the extinction
law of Fritz et al. (2011) and correcting also for the weak color variation with magnitude.

3.3.2 Extinction in the NSC region

The average differential extinction of stars as a function of υl and υb velocities is an important
photometric quantity that can also be modeled and gives us information about the dust within the
NSC. Fig. 3.5 shows this for the central field. We notice that the average differential extinction
for the υl is negative for positive velocities (preferentially at the front of the cluster) and positive
for negative velocities (back of the cluster) i.e., stars at the front of the cluster are observed with
less extinction than their neighbors. This finding is consistent with the asymmetry of the VHs in
l direction (Fig. 3.2) and implies AK ' 0.4 within the NSC, see below. In contrast the average
differential extinction for υb is relatively flat and consistent with the symmetric bell shape of
the VH in b direction. However we still notice a scatter of the points which is indicative of the
systematic variations we should expect in AK .

Fig. 3.6 shows the extinction distribution from the observed ratio of Paα to H92α radio
recombination-line emission (Roberts & Goss, 1993) for the central field, from Scoville et al.
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(2003). The coloring signifies total extinction and the contours show the outline of the mini-
spiral. The fact that the outline of the mini-spiral can be seen also in the dust suggests that a
fraction of the extinction is likely to be associated with the mini-spiral and therefore is located
within the NSC. The dust associated with the nuclear spiral is likely to be concentrated in a small
distance interval along the line-of-sight of order a fraction of the radius in the sky.

3.4 Dust modeling

We saw in the previous section that the observed asymmetry of the VHl is likely to be associated
with dust extinction. In this section we describe how one can make an analytical dust extinction
model and use it with an already existing model of the NSC similar to that of section 2.

For the rest of this work, along with l and b we use a Cartesian coordinate system (x, y, z)
where z is parallel to the axis of rotation as before, y is along the line of sight (smaller values
closer to the earth) and x is along the direction of negative longitude, with the center of the NSC
located at the origin.

First we need to model a luminosity function. We can do that by taking the product of two
functions. The first represents a power law function in luminosity, corresponding to an exponential
magnitude distribution, L(m) = 10γ·m. The second is an error function that represents the
completeness function, so that:

dN
dm = L(m)× C(m) =

10γ·m(1− erf[(m−m0)/σ])/2

(3.2)

In the previous function γ is the power law index of the luminosity function and m0 is the value
where the completeness function C(m) has its half height. For the power law we set the index
to γ = 0.27 ± 0.02 as in Schödel et al. (2010). For the completeness function we set m0 = 16.5
and σ = 1 because we found that these values represent well the K luminosity data as shown in
Figure 3.7. The red curve of Figure 3.7 shows equation 3.2 with the chosen values.

Next we need the extinction variation over the line-of-sight which is just the derivative of
the extinction over the line-of-sight i.e. daK/dy. The function daK/dy is general and could for
example be represented as a sum of Gaussians but for simplicity we choose a square function, so
that:

daK
dy

=


0, y < y1

c, y1 ≤ y ≤ y2

0, y > y2

(3.3)

in which y1 and y2 indicate the positions where the dust starts and ends respectively. The integral
of eq.3.3 over all line-of-sight is the maximum extinction AK thus the constant c takes the value
c = AK/∆y where ∆y = y2 − y1. Function 3.3 integrates to:

aK(y) =


0 , y < y1
AK
∆y (y − y1) , y1 ≤ y ≤ y2

AK , y > y2

(3.4)
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Figure 3.6: Extinction derived from the observed ratio of Paα to H92α radio recombination-
line emission (Roberts & Goss, 1993) for the central field from on Scoville et al. (2003).
The field is split into eight cells, according to the outline of the mini-spiral, the shape of
the VH in υl and the δAK curves.
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The percentage reduction in observed stars as a function of line-of-sight distance is:

p(y) =

∫
L(m− aK(y))C(m)dm∫

L(m)C(m)dm
(3.5)

With this we can calculate the percentage reduction in numbers of stars after the extinction with
pmax = p(y2). The percentage of stars hidden by extinction for AK = 0.4 is about 25%. For the
simple case where the luminosity function is a power law, the previous equation (3.5) takes the
form p(y) = L(−aK(y)). The function for AK = 0.4 is shown in figure 3.8.

Having that we calculate the VPl after the effect of dust with:

VPD(υl;x, z) =
1

Σ

∫∫∫
E>0

p(y)ftot(E,Lz) dυlosdυzdy. (3.6)

Where in the previous function ftot(E,Lz) = fe(E,Lz) + fo(E,Lz) is the total DF consisting of
an even part in Lz (contributes to the density) and an odd part (contributes to rotation) as in
Chatzopoulos et al. (2015). Figure 3.9 shows a typical VPl after adding dust with AK = 0.4.
We observe that the right peak of the VPl is now higher than the left peak which is a combined
effect of dust and rotation. The dust does not produce an asymmetry for the VP in b direction.
One useful quantity is the average AK(υl) over the line-of-sight. This can be calculated with:

〈AK(υl)〉 =

∫∫∫
aK(y)p(y)ftot (E,Lz) dυzdυlosdy

Σ×VPD (υl)
(3.7)

Eq. 3.7 connects our model with the photometry. From this we calculate the average differential
extinction variation along the line-of-sight which corresponds to the data of Fig. 3.5.

δAK(υl) = 〈AK(υl)〉 −
∫
〈AK (υl)〉VPD (υl) dυl

Σ
∫

VPD (υl) dυl
(3.8)

In order to understand the effects of dust extinction on δAK(υl), we use two simple models
for the dust distribution. The first is a homogeneous dust model that extends a few parsecs along
the line-of-sight. The second is a thin ∼ 10′′ screen of dust placed in several positions along the
line-of-sight. We have verified that the width of the screen is not a sensitive parameter and the
results are almost unchanged if we set it for example to ∼ 5′′. Figures 3.9 and 3.10 shows these
effects. In Fig. 3.9 we see the effect of three dust screen models and one homogeneous model on
the VPl for AK = 0.4.

One important point to notice is that we can achieve the same effect (e.g. the same amount
of asymmetry in the histograms) with several models by using different combinations of AK and
the distances at which the dust is placed along the line-of-sight , therefore the dust extinction
model is degenerate. In Fig. 3.10 we see plots of several screen and homogeneous models based
on eq. 3.8. The top panels show the δAK(υl) curves of a screen dust model placed at several
distances in front of (left) and at the back (right) of the cluster for AK = 0.4. The first thing to
notice is that the further the screen of dust is placed from the center the smaller is the effect of
dust. This makes sense since far from the center the density of stars is lower. We also note that
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Figure 3.7: Modeled K luminosity with completeness function before (red) and after
(brown) a dust effect with AK = 0.4. The blue line is a power law fit to the stars
11 < K < 14 with power-law index of 0.27 ± 0.02 as in Schödel et al. (2010). The
black line is the K luminosity function for the Galactic center.

if the screen of dust is placed in front of the cluster, the curves are close to constant for the stars
behind the cluster since there is no dust there to affect the δAK(υl). The opposite happens when
the screen of dust is behind the cluster. The bottom left panel shows the shape of δAK(υl) for
different AK . The bottom right panel shows three homogeneous models that extend over different
distance intervals along the line-of-sight. In this case the curves are symmetric relative to zero.
The dust extinction model was implemented with Wolfram Mathematica.

3.5 Predictions of the Dust model

In the last section we described how one can include the effects of dust extinction in the dynamical
modeling of the NSC, and calculate differential reddening signatures for the NSC stars. Here we
proceed to model predictions and compare with both photometric and kinematic evidence. We
will see that the asymmetries seen in the VPs for υl can be explained as due to dust within the
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Figure 3.8: Percentage reduction in observable stars after a dust effect with AK = 0.4. as
a function of line-of-sight for a homogeneous dust model (red) and two dust screen models
(brown, blue). About 75% of stars remain in the observed luminosity function after the
extinction due to dust.
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Figure 3.9: VPs in l direction for different models. The right peak is higher due to the
combined effects of dust extinction and rotation. We can achieve the same effect (e.g. the
same of asymmetry) for several combinations of AKs and the distances where the dust is
placed along the line-of-sight.
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NSC. Our goal is to see whether dust in the Galactic Center mini-spiral can explain our data, and
also to provide a rough extinction map of the central field based on the model and the available
data.

Figure 6 shows the extinction derived from the observed ratio of Paα to H92α radio recombination-
line emission (Roberts & Goss, 1993) from Figure 5 of Scoville et al. (2003). This extinction map
for the central 40′′ × 40′′ around Sgr A* includes both foreground and NSC extinction. It is
limited by the signal-to-noise ratio (S/N) of the H92α recombination line flux, and the regions
in which the extinction has an apparent value of AV = 15 is where the S/N is not sufficient to
derive the extinction. However, these data show a better representation of the mini-spiral than
the extinction map derived from the observed ratio of Paα to 6 cm radio continuum emission
(Scoville et al., 2003).

Fig. 3.6 is split into eight cells and sub-cells. The reasoning behind the choice of these cells
is based on the outline of the mini-spiral, the statistics and shape of the velocity histograms in
υl and the mean differential extinction variation δAK along line-of-sight. The VHls for all cells
and the δAK as a function of υl and υb are shown in Fig. 3.11 for the following cells:

• Cell A1: This cell’s small δAK values are consistent with the lack of features in the extinc-
tion map in comparison with other cells. Also the δAK values are consistent with the VHl

since both peaks look symmetric which is a sign of lack (or small amount) of dust within
the NSC.

• Cell A2: The cell lacks strong mini-spiral features as cell A1. However both the VHl and
δAK values show relatively strong effects of dust therefore this cell is separated from cell
A1.

• Cell B: The δAK values and the VHl are consistent with the strong features of the mini-
spiral in the extinction map since the δAK points are higher and lower for negative and
positive velocities respectively than the other cells and the asymmetry of the VHl is intense.
We also note that the dust effects are similar within the whole area B because after splitting
it into 2 sub-areas (not shown) we observed the same signature.

• Cells C1 & C2: The cells C1 and C2 belong to the Northern Arm of the mini-spiral. The
shape of the δAK data for both cells seems similar for negative velocities but the δAK for
C2 is more symmetric and consistent with the extinction map hence we split the area into
2 halves. We notice also some asymmetry on the VHls of both areas C1 and C2.

• Cells D: Cell D was separated from C1 & C2 because the δAK values look more symmetric
than C1 & C2. We also note that the dust effects are similar within the whole area D
because after splitting it into 2 sub-areas (not shown) we observed the same signature.

• Cells E & F: The δAK values of these two cells look similar but the VHl of the cell F lacks
the asymmetry characteristic in contrast of cell E therefore we keep them separate.

The central field with these eight cells is surrounded by a a more extended area with obser-
vations for about 2000 stars. We split this area into three outer fields O1-O3 placed around the
central field as shown in Fig. 3.3. The VHl for these cells and the δAK as a function of υl are
shown in Fig. 3.12.
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Our goal is to give a model prediction of each of these cells (8+3 in total). For the model we
use a thin screen of dust with width 10′′ because the dust associated with the nuclear spiral is
likely to be concentrated in a small distance interval along the line-of-sight. The precise width
of the dust screen is not important as the dust signatures are insensitive to this parameter. The
two main parameters are the total extinction in the screen and its location along the line-of-
sight. However, as explained in the last section, these two parameters are partially degenerate.
The degeneracy is particularly strong for the VHl histograms. The δAK data in principle are
sensitive to whether the extinction is in front or behind the Galactic center, as shown in Fig.
3.10. However, the AK data have large scatter between adjacent data points such that points
with seemingly small error bars can even have the ‘wrong’ sign of δAK (Fig. 3.11). This large
scatter is also seen in the δAK versus υb plots (also shown in Fig. 3.11) where no dust signature
is present. Therefore we decided to not try to fit the data using χ2.

Rather, we choose to place the dust screens along the line-of-sight according to other available
information, and only deviate from this when this appears inconsistent with the shape of the δAK
distribution. The total dust extinction of the dust screen is then chosen by eye mostly from the
amplitude and shape of the δAK distribution, taking into account also the scatter of the δAK
points, and to a lesser degree from the asymmetry of the VHl peaks.

Specifically for the central field we use the three orbit-model of Zhao et al. (2009) for the three
ionized gas structures in the central 3pc (the Northern Arm, Eastern Arm, and Western Arc).
We then map the center of each of the cells to a point in the relevant orbit plane according to
its R.A and Dec. position. The distance from the center along the line-of-sight is given from the
coordinates of that point on the orbit plane. For each cell, we use one common mean distance.
Table 3.1 shows to which orbital plane each cell is assigned, and the distance of the dust screen
from Sgr A*.

Fig. 3.11 shows the predictions of the screen dust model for the 8 cells of the central field.
The reasoning behind the choice of AK and positions for the dust screen is based on the shape
of data and the several examples of Fig. 3.10:

• Cell A1 & B: We place the dust screen in front of the cluster according to the value of
Table 3.1. These two cells are interesting because they both show a correlation between
the outline of the mini-spiral and the photometry data. They also exhibit the maximum
contrast between the amount of dust. Cell B needs ∼ 5 times more extinction than cell A.

• Cell A2: The dust screen is placed behind the center according to Table 3.1.

• Cell C1 & D: The shape of the data in conjunction with top right panel of Fig. 3.10
indicate that the dust screen should be behind of the cluster (also gives a much better χ2)
in contrast with the value of Table 3.1. The reason for this is probably because the single
orbit description is not accurate for the centers of these cells.

• Cell C2 & E: For both cells the dust screen is placed in front of the cluster according to
values of Table 3.1.

• Cell F: The shape of the data in conjunction with lower right panel of Fig. 3.10 indicate
that the dust screen should be centered.

For the outer cells of the extended field the AK is selected according to the general charac-
teristics of plot 3.10:
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Figure 3.10: Shape of δAK versus υl curve for several dust models. Top left: Dust screen
models placed in front of the cluster for constant AK = 0.4. The numbers in the parenthesis
show where the dust screen starts and ends respectively along the line-of-sight. Top right:
Dust screen models placed behind the cluster for constant AK = 0.4. Bottom left: Dust
screen models placed slightly behind the cluster for several AK values. Bottom right: Ho-
mogeneous dust models that extend in several distances along the line-of-sight for constant
AK . The line-of-sight for all curves has coordinates l = 10′′ and b = 10′′.
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Northern Arm E (-15”)
Eastern Arm A2 (5”) C1 (-9”) C2 (-25”) D (-20”)
Western Arc B (-25”) A1 (-10”) F (-5”)

Table 3.1: Each one of the eight cells of Fig. 3.10 belongs to an orbital plane (Zhao et al.,
2009) representing one of the three ionized gas (Northern Arm, Eastern Arm, and Western
Arc) formations. The inferred line-of-sight distance of the dust screen from Sgr A* is given
in the parentheses (negative points towards the earth).

Cell A1 A2 B C1 C2 D E F
Total extinction 2.73 2.99 3.1 2.82 2.87 2.78 2.84 2.95
Foreground extinction 2.66 2.79 2.7 2.67 2.72 2.61 2.69 2.8

Table 3.2: Extinction values per cell based on Fig. 3.3. The foreground extinction of each
cell is estimated according to AK(total) = AK(foreground) + x ∗ AK(NSC) where we set
x = 0.5.

• Cell O1 & O3: Both the VHs and the photometry have a consistent signature. For both
cells the extinction is close to AK ' 0.35 mag.

• Cell O2: For this cell we note that the photometry is as expected but the peaks of the VH
are almost even.

Having the prediction for the cells we can estimate the foreground extinction for each cell
using the AK values of Fig. 3.3. The second row of table 3.2 shows the total extinction of each
cell of the central field based on Fig. 3.3. The third row shows an estimate of the foreground
extinction based on the AK(total) = AK(foreground) + x ∗AK(NSC) where we set x = 0.5.

3.6 Does the addition of dust affect the measured M•,

M∗ and R0?

In this section we try to answer how much the dust within the NSC will affect the derived
(Chatzopoulos et al., 2015) statistical parallax, supermassive black hole and stellar mass of the
NSC. The foreground dust will affect the VPs only by a scale factor which does not impact the
derived values. In Chatzopoulos et al. (2015) we derived new constraints on the R0, M∗ and

M• by fitting to the corresponding data the
〈
υ2
〉1/2

l,b,los
part of the 2nd order Jeans moments, that

are moments of the even part of the corresponding VPs of the 2-Integral distribution function.
Therefore here the problem is reduced to how much the even part in Lz of the VPs changes after
the addition of dust within the NSC.

Figure 3.13 shows the even parts of the VPs for υl, υb and υlos for a NSC dynamical model with
no dust (best model from Chatzopoulos et al. (2015)) and a dynamical model that includes the
screen dust prediction for a line-of-sight through cell B which has the largest amount of extinction
(AK = 0.8) among the cells of the central and outer fields. We notice that the difference between
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Figure 3.11: Predictions of the model with the VH and δAK data for each cell. The
numbers in the brackets show where the screen of dust is placed relative to the center.
Reduced χ2 are also provided for the histograms and the photometry. For the cells A1, A2,
B, C2, E, the screen dust distance is based on the orbit models of the mini-spiral (Zhao et
al., 2009).
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Figure 3.12: Predictions of the model with the VH and δAK data for the outer cells shown
in Fig.3.3. The numbers in the brackets show where the screen of dust is placed relative
to the center. Reduced χ2 are also provided.
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the VPs for this amount of extinction is very small. Specifically the average difference of the
2nd moments of the VPs between the two models is ∼ 1.5%. If instead we use AK = 0.4, close
to the average extinction within the NSC inferred from this work, the difference is smaller than
0.5%. The relative differences of σlos/σb and σlos/σl between the model with no dust and the
model with AK = 0.4 are similarly small, 0.2% and 0.6%, respectively. Therefore we conclude
that the systematic effects on the statistical parallax due to dust are within the estimated errors
of Chatzopoulos et al. (2015), causing the distance to the NSC to decrease by ∼ 0.4% ' 30pc.

That the changes in the even part are so small can be explained by the following formal
argument for the VPl. We show that for small amounts (1st assumption) of homogenized (2nd

assumption) dust around the center the even part of the renormalized VP in υl is the same as
that for no dust. The odd part is a direct indicator of dust at that point (l, b) and can be used
to estimate AK .

When the luminosity function is a power law and the dust is homogeneously placed i.e.
y1 = −y2 in equations 3.3 and 3.4, p(y) takes the form within the dust area:

p(y) = L(−aK(y)) = 10
−γ

(
AK

2
+
AKy

∆y

)
(3.9)

For small AK � (γ ln(10))−1 ' 1.61 we have:

p(y) ' 1− γ ln(10)AK2 − γ ln(10)AK∆y y

= p(0)− ky
(3.10)

where p(0) = 1− γ ln(10)AK2 and k = γ ln(10)AK∆y .

Therefore1 the function g(y) = p(y)− p(0) is odd everywhere (including the area where there
is no dust). Next for simplicity we use ftot(E,Lz) = f(E, xυlos−yυl)→ f(υly) because y appears
within f only with the form of y2 and υly.

Now we have:

1
2

∫
p(y)

∫∫
(f(υly) + f(−υly)) dυzdυlosdy

−1
2

∫
p(0)

∫∫
(f(υly) + f(−υly)) dυzdυlosdy =

1
2

∫
g(y)

∫∫
(f(υly) + f(−υly)) dυzdυlosdy = 0

(3.11)

The previous is 0 because g(y) is an odd function and
∫∫

(f(υly) + f(−υly)) dυzdυlos is an even
function of y therefore:

1
2

∫
p(y)

∫∫
(f(υly) + f(−υly)) dυzdυlosdy =

1
2p(0)

∫∫∫
(f(υly) + f(−υly)) dυzdυlosdy

(3.12)

1we showed this for the case where the luminosity function is a power law but the same holds in the

general case L(m) where γ · ln(10) is replaced by
∫
L′(m)C(m)dm∫
L(m)C(m)dm

.
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Figure 3.13: Even part of the renormalized VPs for υl, υb and υlos for a NSC dynamical
model with no dust (best model from Chatzopoulos et al. (2015)) and the same dynamical
model including the dust screen prediction based on cell B. The black line in the upper
panel corresponds to the odd part of the VPl. The VPs are calculated at the center of cell
B.
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And thus:

VPDeven(υl) = p(0)VPl(υl) (3.13)

To find the constant p(0) we integrate once more over the velocity this time:∫
VPDeven(υl)dυl = p(0)

∫
VPl(υl)dυl = p(0) (3.14)

Therefore p(0) is the normalization factor of the VPDl. The above means that to first order, dust
does not affect the even part of the VPD in l direction significantly except for a scale factor. Fig
3.13 shows that the effects for VPDb and VPDlos are similarly small. If extinction within a stellar
system is small enough (AK � 1.6 for the NSC) then fitting the even part of a model’s VPs to
the even part of the VHs is sufficient to get accurate estimates of the M•, M∗ and R0 parameters.
In Chatzopoulos et al. (2015) we used the root mean square velocities that are moments of the
even parts of the VHs to fit the M•, M∗ and R0 parameters of the axisymetric model. Therefore
we expect that their values will not be affected from the dust more than 0.4% as we explained
earlier.

In principle the odd part of the VPDl can be fitted to the odd part of the VHs and this part
is scale free since the scaling factor is already known from the even part therefore one can fit the
AK for some combination of cells.

3.7 Discussion & Conclusions

The main goal of this work was to understand the slight asymmetries in the VPls of the NSC
and their influence on the dynamical modeling following the recent work of Chatzopoulos et al.
(2015). Our interest was triggered by the observation that the right peak of the VHl is consistently
slightly higher than the left. A plausible explanation was given based on the existence of dust
within the NSC. Because of the dust, the apparent number of stars behind the NSC is smaller
than that in front of the cluster. This in conjunction with the rotation can explain the observed
characteristic.

In order to quantify the dust effects, we worked with proper motions and photometry for
∼ 7100 stars from Fritz et al. (2014). We applied an analytic dust extinction model together
with our current best NSC dynamical model. The extinction model gave us reasonable results
and was able to predict both the signature in the VPs and the photometry.

Observation of the NSC in the optical is almost impossible because of the 30 mag extinction.
In the infrared the situation is much better since AK ∼ 3 mag. Most of this extinction belongs
to the foreground and does not affect the shape of the VHs (except of a normalization factor).
We find here that a small fraction of the total extinction value (∼ 15%) belongs within the NSC.

The area between ∼ 1− 1.5pc radius consists of several streamers of dust, ionized and atomic
gas with temperatures between 100K − 104K and is called ”ionized central cavity” (Ekers et al.,
1983). The mini-spiral is a feature of the ionized cavity, and is formed from several streamers of
gas and dust infalling from the inner part of the CND (Kunneriath et al., 2012). It consists of
four main components: the Northern arm, the Eastern arm, the Western arm and the Bar (Zhao
et al., 2009) that can be described well by streams of ionized gas or filaments orbiting Sgr A*
(Serabyn & Lacy, 1985).
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We investigated how well the mini-spiral correlates with the extinction effects in the NSC
data within the central field. To assess this we first investigated whether our extinction model
puts the dust on the same side of the NSC as does the mini-spiral interpretation. This is true for
six out of the eight cells (except cells C2 & F). We also found the largest extinction (AK = 0.8)
in cell B where also the largest extinction is inferred from the extinction map of Scoville et al.
(2003), and particularly low extinction in cell A where the extinction map is consistent with only
foreground extinction.

We can estimate the mass that corresponds to a given amount of extinction using

ρd =
AK
∆y

1

1.086κλ
(3.15)

where ρd is the dust density, κλ = 1670cm2/g (Draine, 2003a) is the mass extinction coefficient
2 for the K-Band, AK = 0.4 from the model prediction and ∆y = 10′′ is the width of the dust
screen. We find that ρd ' 1.8 × 10−19kg/m3 and the dust mass within a parallelepiped with
dimensions (10′′, 40′′, 40′′) centered on Sgr A* is Md ∼ 3M�. Since the dust extinction model
presented here is not precise we consider that this estimate is correct only within an order of
magnitude. This value is within the range of 0.25 − 4M� for the mini-spiral found from other
works (Zylka et al., 1995; Kunneriath et al., 2012; Etxaluze, 2011).

Finally we showed that for small values of extinction the even parts of the VPs are not affected
significantly. As a result, the measured M•, M∗ and R0 parameters of Chatzopoulos et al. (2015)
do not change by more than ∼ 0.4% for extinction AK ' 0.4, which is less than the smallest
systematic error (for the statistical parallax) inferred for these parameters in Chatzopoulos et al.
(2015).

Our results can be summarized as follows:

• We showed that extinction due to dust explains kinematic asymmetries and differential pho-
tometry of the NSC, and measured the amount of extinction within the NSC by combining
a dynamical model with a dust extinction model.

• We presented an extinction table for the dust within the NSC in several cells.

• We found that the distribution of the dust is consistent with the extinction being associated
with the mini-spiral for 6 out of 8 cells.

• Systematic effects due to dust with typical extinction AK ' 0.4 affect the M•, M∗ and R0

parameters deduced from previous dynamical modeling only by ' 0.4%, which is smaller
than their estimated systematic errors.

2ftp://ftp.astro.princeton.edu/draine/dust/mix/kext
albedo WD MW 3.1 60 D03.all
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Chapter 4

Summary and Outlook

4.1 Summary

The main subject of this work was the study of the old nuclear star cluster in the Milky Way
mainly from a dynamical point of view. A star cluster in general is a group of stars that is
gravitationally bound. Open star clusters typically contain up to a few hundred of stars and they
tend to be young and irregularly shaped. In contrast globular clusters are old, more compact
(and subsequently more spherical) and contain up to one million stars. Nuclear Star clusters
(NSC) are compact conglomerations of stars like globular clusters, but they are located at the
centers of most spiral galaxies and generally contain multiple populations of stars. Also a NSC is
more luminous and more massive than a globular cluster and hosts at its center a super-massive
black hole (SMBH). The study of NSCs is of great interest because several of the most extreme
physical phenomena occur within them such as SMBHs, active galactic nuclei, star-bursts and
extreme stellar densities.

The NSC of the Milky Way is of exceptional interest because of its proximity, about 8 kpc
from Earth. Because of high interstellar extinction that is caused by dust, it is really impossible
to observe the NSC with an optical telescope. Therefore we rely on observations taken in the
infrared because the dust is more transparent for longer wavelengths. One additional goal of this
work was to see the impact of the dust on the apparent dynamics of the NSC and also present a
measurement of dust extinction within the NSC.

4.1.1 Modeling the NSC

To model the NSC we worked with ∼ 2500 radial velocities (velocities along the line of sight)
and ∼ 10000 proper motions (perpendicular to the line of sight) plus stellar number counts from
Fritz et al. (2014). Before this work the best models in the literature for the NSC were spherical
Jeans models (e.g. Trippe et al., 2008). Therefore we decided for this project to apply 2-Integral
distribution functions (DF) that possess considerable advantages over Jeans modeling but are
also much more complicated to implement. A DF gives the number of stars in phase space as a
function of the position and the velocity. Therefore if one knows the DF of a system one knows
the probability that a star has phase-space coordinates in a given range. The best indicator for
the quality of the modeling was the good prediction of the Velocity Profiles (VP) since those
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are equivalent to all the moments of the system. Even though a 2-I DF is not the most general
case, it gave us overall very good results and makes the model presented here, the best current
description of the NSC dynamics available in the literature.

The inflection point observed at about ∼ 200′′(∼ 8pc) in the star count map derived in
Fritz et al. (2014) suggests two components in the NSC density profile. To account for this we
constructed a two-component dynamical model for the star counts in which the two components
are described as independent γ-models. This disentanglement works well for both the spherically
averaged number density of late-type stars versus projected radius but also for the number density
along l and b directions. The inner, rounder component can be considered as the NSC, as in Fritz
et al. (2014), while the outer, much more flattened component represents the inner parts of the
nuclear stellar disk described in Launhardt et al. (2002).

The radius of influence of the SMBH is rh ∼ 90′′ (Alexander, 2005) is close to the scale radius
∼ 100′′ of the inner component. The surface density profile of the NSC flattens inside ∼ 20′′ to
a possible core (Burkert, 2009; Fritz et al., 2014) but the slope of the three-dimensional density
profile for the inner component is not well-constrained.

The flattening for the inner NSC component inferred from star counts is q1 = 0.73 ± 0.04,
very close to the value of q = 0.71 ± 0.02 found recently from Spitzer multi-band photometry
(Schödel et al., 2014). These determinations agree with the dynamical flattening of our best Jeans
dynamical models: the dynamical flattening is robust because it is largely determined by the ratio
of σb/σl and the tensor virial theorem. Because star counts, photometric, and dynamical values
for the inner NSC flattening agree, this parameter can now be considered securely determined.

4.1.2 Distance to the Galactic Center

One of the goals of this work was the estimation of the distance R0 to the GC. Even though it is
known that the distance to the GC is about 8.5 kpc, the exact value is a subject of research. The
knowledge of the exact value of the distance is very important because several quantities (e.g.
distances and masses) scale according to it. Recent work yields results between 7.2 kpc (Bica et
al., 2006) and 8.92 kpc (Do et al., 2013) depending on the method. Measurements of R0 prior
to 2010 were reviewed by Genzel et al. (2010). Their weighted average of direct measurements is
R0 = 8.23 ± 0.20 ± 0.19 kpc, where the first error is the variance of the weighted mean and the
second the unbiased weighted sample variance.

In this work we use our large proper motion and line-of-sight velocity datasets to obtain a
new estimate for the statistical parallax distance to the NSC using axisymmetric Jeans modeling
based on the cluster’s inferred dynamical structure. The use of semi-isotropic Jeans modeling
is justified since we found that the VPs of the NSC can be well approximated by a 2-Integral
DF f(E,Lz). From matching our best dynamical model to the proper motion and line-of-sight
velocity dispersions within approximately |l|, |b| < 50′′, and varying simultaneously M•, MNSC ,
and R0 we found R0 = 8.27±0.09|stat±0.1|syst kpc. The small statistical error is indicative to the
large number of fitted dispersion points. This value is close to the direct estimate R0 = 8.33±0.35
kpc found by Gillessen et al. (2009) from analyzing stellar orbits close to Sgr A∗. A joint statistical
analysis of the NSC data with the orbit results of Gillessen et al. (2009) gives a new best value
and error R0 = 8.33± 0.11 kpc (Fig. 2.12, Section 2.4.2).

The value of the distance presented here is consistent with recent measurements. Recently
Reid et al. (2014) found R0 = 8.34 ± 0.14 kpc from fitting axially symmetric disk models to
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trigonometric parallaxes of star forming regions. (Dekany et al., 2013) foundR0 = 8.33±0.05|stat±
0.14|syst from RR Lyrae stars. Both values are consistent with each other and with our distance
value from the statistical parallax of the NSC, with or without including the results from stellar
orbits around Sgr A∗, and the total errors of all three measurements are similar, ∼ 2%.

4.1.3 Mass of the NSC

We showed that the NSC model can be described well as a superposition of a moderately flattened
nuclear cluster embedded in a highly flattened nuclear disk. The NSD starts to dominate at about
800′′ which is in good agreement with the value found by Launhardt et al. (2002).

By applying axisymmetric Jeans modeling to the dataset we were able to constrain the mass
of the cluster. The estimated mass of the cluster is M∗(m < 100′′) = (7.73± 0.31|stat± 0.8|syst)×
106M� interior to a spheroidal major axis distance m = 100′′ close to the inflection point observed
in the surface density data. This corresponds to an enclosed mass within 3-dimensional radius
r = 100′′ of M∗(r < 100′′) = (8.94± 0.31|stat± 0.9|syst)× 106M�, where the estimated systematic
errors account for additional uncertainties in the dynamical modeling. The mass within 1 pc
(∼ 25′′) is M∗(r < 1pc) = 0.89 × 106M�. This is compatible with the spherical modeling of
Schödel et al. (2009) who gave a range of 0.6− 1.7× 106M�, rescaled to R0 = 8.3 kpc, with the
highest mass obtained for their isotropic, constant M/L model.

The total mass of the inner spheroidal component, M1 = 6.1 × 107M�, is well-determined
within similar relative errors as M∗(m < 100′′). However, identifying M1 with the total mass of
the Galactic NSC at the center of the nuclear disk has considerable uncertainties: because the
outer NSD component dominates the surface density outside 100′′−200′′, the NSC density profile
slope at large radii is uncertain, and therefore the part of the mass outside ∼ 200′′ (∼ 64% of the
total) is also uncertain. A reasonable estimate for the mass of the inner NSC component is up
to where it dominates the star counts ∼ 200′′, which gives MNSC > 2× 107M�.

An important point to note is that the cluster mass does not depend on the net rotation of
the cluster but only on its flattening. This is because to add rotation self-consistently to the
model we need to add an odd part to the DF in Lz which does not affect the mass, density nor
the proper motion dispersions σl and σb.

Finally, we used our inferred dynamical cluster mass to update the K-band mass-to-light
ratio of the NSC. The best-determined mass is within 100′′. Comparing our M∗(r < 100′′) =
(8.94±0.31|stat±0.9|syst)×106M� with the K-band luminosity of the old stars derived in Fritz et
al. (2014), L100′′ = (12.12± 2.58)× 106L�,Ks, we obtain M/LKs = (0.76± 0.18)M�/L�,Ks. The
error is dominated by the uncertainty in the luminosity (21%, compared to a total 10% in mass
from adding statistical and systematic errors in quadrature). The inferred range is consistent with
values expected for mostly old, solar metallicity populations with normal IMF (e.g. Courteau et
al., 2013; Fritz et al., 2014).

4.1.4 Mass of the Supermassive Black Hole

Given a dynamical model, it is possible to constrain the mass of the central black hole from 3D
stellar kinematics of the NSC alone. With the axisymmetric Jeans modeling we found M• =
(3.86 ± 0.14|stat ± 0.4|syst) × 106M�, where the systematic modeling error is estimated from the
difference between models with different inner cluster flattening as discussed in Section 2.4.2.
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Previous works underestimated the mass of the central black hole (e.g. Trippe et al., 2008). Our
analysis provides a mass for Sgr A* in agreement with the value determined from stellar orbits
around Sgr A∗ (Gillessen et al., 2009).

Our dataset for the NSC is the largest analyzed so far, and the axisymmetric dynamical model
is the most accurate to date; it compares well with the various proper motion and line-of-sight
velocity histograms. Nonetheless, future improvements may be possible if the uncertainties in
the star density distribution and kinematics within 20′′ can be reduced, the effects of dust are
incorporated, and possible deviations from the assumed 2I-axisymmetric dynamical structure are
taken into account.

The conceptually best method to determine the black hole mass is from stellar orbits close to
the black hole (Schödel et al., 2002; Ghez et al., 2008; Gillessen et al., 2009), as it requires only the
assumption of Keplerian orbits and is therefore least susceptible to systematic errors. Gillessen et
al. (2009) find that the largest uncertainty in the value obtained for M• is due to the uncertainty
in R0, and that M• scales as M• ∝ R2.19

0 . Therefore using our improved statistical parallax for
the NSC also leads to a more accurate determination of the black hole mass. A joint statistical
analysis of the axisymmetric NSC modeling together with the orbit modeling of Gillessen et al.
(2009) gives a new best value and error for the black hole mass, M• = (4.26± 0.14)× 106M� (see
Fig. 2.12, Section 2.4.2). An additional systematic error of 0.1 kpc for R0 in the NSC modeling,
through the BH mass-distance relation given in Gillessen et al. (2009), translates to an additional
uncertainty ' 0.1× 106M� in M•.

4.1.5 Dust within the NSC

The area between ∼ 1 − 1.5 pc radius centered at Sgr A* consists of several streamers of dust,
ionized and atomic gas with temperatures between 100K − 104K and it is called “ionized central
cavity” (Ekers et al., 1983). An important feature of the ionized cavity is the so called “mini-
spiral”, named after its distinctive shape that resembles a spiral. Outside of the mini-spiral
(and the ionized cavity) at radius ∼ 1.5 − 4 pc lies the circumnuclear disk (CND) which is a
set of streamers of dense molecular gas and warm dust (Becklin et al., 1982; Guesten et al.,
1987). The gas density of the CND is higher than that of the mini-spiral and there is a sharp
transition at ∼ 1.5 pc. The total mass of the ionized gas in the central cavity is quite small
∼ 30M�. Additionally there is about 300M� of dense neutral hydrogen gas, a few M� of warm
dust (Davidson et al., 1992) and an inferred inflow rate into the central parsec of 3×10−2M�yr−1

(Jackson et al., 1993).

One of the goals of this thesis was to understand the slight asymmetries in the VPls (velocity
profiles in l direction) of the NSC and their influence on the dynamical modeling following the
recent work of Chapter 2 (Chatzopoulos et al., 2015). Our interest was triggered by the obser-
vation that the right peak of the VHl (velocity histogram in l direction) is consistently slightly
higher than the left. A plausible explanation was given based on the existence of dust within the
NSC possibly correlated with the mini-spiral. Because of the dust, the apparent number of stars
behind the NSC is smaller than that in front of the cluster. This in conjunction with the rotation
can explain the observed characteristic.

In order to quantify the dust effects, we worked with proper motions and photometry for
∼ 7100 stars from Fritz et al. (2014). We applied an analytic dust extinction model together
with our current best NSC dynamical model. The extinction model gave us reasonable results
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and was able to predict both the signature in the VPs and the photometry.

To implement the extinction model, first we modeled a luminosity function. This was ex-
pressed as the product of an exponential magnitude distribution with an error function that
represents the completeness function. Next we needed the extinction variation over the line-of-
sight which is just the derivative of the extinction over the line-of-sight. Having those we then
calculated the percentage reduction in observed stars as a function of line-of-sight which allowed
us to finally calculate the VPs including the effect of dust.

Next we split the central area of the mini-spiral map into eight cells according to certain
criteria. To assess how well the mini-spiral correlates with the extinction effects in the NSC data,
we first investigated whether our extinction model puts the dust on the same side of the NSC as
does the mini-spiral interpretation. This is true for six out of the eight cells. We also found the
largest extinction (AK = 0.8) where also the largest extinction is inferred from the extinction map
of Scoville et al. (2003), and particularly low extinction (AK = 0.15) where the extinction map
is consistent with only foreground extinction. Finally we found that the typical values for the
extinction within the NSC and foreground extinction are respectively AK ∼ 0.4 and AK ∼ 2.7.

4.2 Outlook

A semi-analytical dynamical model of the NSC with excellent overall predictions is presented.
The model is a 2-Integral DF f(E,Lz) based on the algorithm of Hunter & Qian (1993) and
Qian et al. (1995) which is a generalization of Eddington’s formula. Unfortunately semi-analytic
expressions for distribution functions similar to Eddington’s formula more general than f(E,Lz),
like 3-Integral DFs systems are not available and in these cases we have to rely on potentials of
specific form (e.g. Stäckel potential family) or on numerical methods. The available potentials
for a 3-Integral DF are very limited in their scope therefore the next logical step is to model the
NSC with a particle or an orbit based method.

Our group possesses a parallelized implementation (NMAGIC De Lorenzi et al., 2007) of a
made-to-measure scheme based on Syer & Tremaine (1996) that could be used to further model
the NSC. Initially we need a particle model of the NSC that is based on our best 2-Integral
f(E,Lz) DF of the NSC from Chapter 2. The DF can be sampled in order to produce the
particle model. For equal mass particles, this is usually done by applying a rejection method to
the even part of the DF to draw the positions and velocities of the particles and then reversing
the velocity of each particle with some probability in order to add rotation. This procedure is
explained well in van der Marel et al. (1997) and its first part (particle model for the even part
of the DF) is already implemented. However, as it is explained in the Appendix A an equal
mass particle model has limitations especially if the goal is to model the center of the NSC where
the small number of particles there will introduce additional uncertainties, for example in the
estimate of the mass of the supper-massive black hole. In addition the new multimass models
with the increased resolution near the center might also shed some light on the core-cusp issue.
One possible solution is to use a multi-mass particle model (e.g. Zhang & Magorrian, 2008; van der
Marel et al., 1997) as in Appendix A. However multi-mass particle models introduce additional
complexities as they are much more difficult to implement especially for flattened systems, and
one has to be careful about the ratio between the maximum and minimum mass of the model in
order to preserve the stability of the system especially for a non-static potential.

Once the problems of the previous paragraph has been addressed we have to check the stability
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of the particle model for the NSC. A particle model that is drawn from a DF is in dynamical
equilibrium, however it may be unstable for several reasons, one of them is excessive flattening.
Our NSC model has two components as described in Chapter 2, the first one represents the
spheroidal part of the NSC with q1 = 0.73 and the second represents the nuclear disk with
q2 = 0.28. As a result the flattening varies monotonically between these two values. At a
distance of 1000′′ the flattening is q ' 0.5. From van der Marel et al. (1997) we know that
f(E,Lz) models are generally stable for q ≥ 0.55 and maybe for flatter systems. However it is
possible to observe small signs of instability for distances larger than 1000′′ that may affect inner
regions, a problem which has to be addressed if it is true.

In Chapter 3 we showed evidence that the observed asymmetry in vl velocity histograms of the
NSC may be caused by dust located within the central parsecs of the Galactic Center. In order to
use the particle model we also have to incorporate those dust effects within the NMAGIC code.
The quantity we need is the percentage reduction in observed stars as a function of line-of-sight
distance, denoted as p(y) in Chapter 3. This quantity depends on the luminosity function of the
NSC and on the extinction value AK within the NSC and is provided in Chapter 3 for several
cells in the central region.

With this prescription we should be ready to explore further the dynamics of the NSC. This
work is mostly focused on explaining the observed dynamics of the NSC and their effect on
the velocity histograms. Although a good deal of progress has been made there are still some
unexplained aspects on the velocity histograms. In Figure 4.1 we see a typical velocity distribution
for vl with the corresponding velocity histograms along with the odd part of the model and the
data. We know from Chapter 3 that the odd part is a direct indicator of the dust for a specific
field. However we notice that the data do not follow the model as expected for medium to large
velocities (∼ ±150 km/s) something that is clearer in the odd part. This additional asymmetry is
observed in several areas on the (l, b) plane. The cause of this signature is unknown and it might
be a manifestation of the third integral, the result of an yet unknown effect or just an artifact of
the data.

In Chapter 3 we worked with surface density data and kinematical data in order to model
the NSC. However the kinematic data were symmetrized. Specifically the radial velocities were
mapped to positive Galactic latitudes and the proper motions were mapped to the first quadrant of
the (l, b) plane. This allowed us to avoid additional possible complexities introduced by inclination
and triaxiality but also this tactic hides any potential substructure of the NSC. Further modeling
of the NSC would require to unfold the kinematical data in order to reveal a hidden substructure
if any (e.g. Feldmeier et al., 2014) and model the NSC as a more general triaxial and possibly
slightly inclined system. In addition, recently it was suggested that there is a misalignment
(Feldmeier et al., 2014; Fritz et al., 2014) about ∼ 10◦ of the radial velocity data to the galactic
plane. However this cannot be confirmed for the proper motions (Fritz et al., 2014). Therefore
there is a possibility that the suggested misalignment is not truly a misalignment but rather a
signature of the internal dynamics of the NSC.
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Figure 4.1: Typical velocity distribution for vl with the corresponding velocity histograms
(left) along with the odd part of the model and the data (right). The odd part is a direct
indicator of dust at that point (l, b) and can be used to estimate AK . We notice the data
do not follow the model as expected for medium to large velocities ∼ ±150 km/s.
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Appendix A

Multi-mass N-body realizations

During the first months of my PhD, I have implemented and tested the multi-mass scheme
described in Zhang & Magorrian (2008). This is a general scheme for constructing high resolution
Monte-Carlo realizations of equilibrium collisionless galaxy models with a known distribution
function (DF). In the remainder of this section, I describe this scheme in more detail.

Over the past few decades the use of N-body simulations has become more and more promi-
nent. The vast majority of these simulations make use of equal mass particle models. The goal
of multi-mass N-body simulations is to increase accuracy in “interesting” regions of phase space.
Suppose for example that we have to create an equal mass N-body realization from the Hernquist
distribution function. The mass as a function of radius for this distribution (normalized) is:

M(r) =

(
r

1 + r

)2

(A.1)

In an equal mass particle realization the number of particles within a given r is N ·M(r).
This means that for 106 particles the number of particles within radius of r = 0.001 is ∼ 1. We
can make a rough estimation of the number of particles needed to resolve the sphere of influence
of a black hole. Let us define the radius of influence of the black hole as the radius where the
sum of the mass of the particles is equal to the mass of the black hole. N0 is the total number of
particles and Nres is the number of particles that we need within the radius of influence rh.

M(rh) = λ→ N0M(rh) = N0λ = Nres → N0 = Nres/λ (A.2)

From observations λ ∼ 10−3 (because the ratio λ = M•/Mtotal ∼ 10−3 and M(r) is normalized
to 1). Now suppose that we want 100 or more particles within 0.1rh, which is Nres = 104 within
rh for a Hernquist model. Therefore we need a minimum number of equal mass particles:

N0 = 107 (A.3)

This makes it very difficult to resolve regions close to the black hole at the center of a galaxy
with a reasonable number of particles. By using multi-mass schemes we can increase the number
of particles in areas of interest like the center of a galaxy. The use of multi-mass schemes is
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Figure A.1: Formal relative errors in mass included in logarithmically placed spherical cells
of a Hernquist model for 106 particles for an equal and multi-mass particle realization. The
errors in the multi mass model are more than two orders of magnitude smaller near the
center than the errors in the equal mass realization.

the literature is relatively limited. Sigurdsson & Hernquist (2008) used a heuristic multi-mass
technique to increase the efficiency of their models of galaxies with central black holes. Zhang
& Magorrian (2008) devised a multi-mass technique that uses importance sampling on a given
distribution to reduce the errors of given quantities (i.e. like the error in mass in a spherical cell
between a Hernquist model and the particle realization). In Fig. A.1 we can see how the Zhang
& Magorrian (2008) (ZM) technique behaves against an equal mass realization by comparing the
relative errors in mass included in logarithmically placed spherical cells. Simply speaking the
algorithm separates the mass distribution function from the number distribution function (both
are the same in the equal mass case). As a result, near the center we have more particles with
smaller masses and as the radius increases the mass of the particles also increases.

A.0.1 Criticism on the ZM multi-mass scheme

In Fig. A.2 we see that the ratio between the maximum and minimum particle mass of the
model is ∼ 108. This is highly unusual because until now the ratio of masses in the literature is
3-4 (Sigurdsson & Hernquist, 2008; Weinberg & Katz, 2007; Sellwood, 2008) and this raises the
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Figure A.2: Left:A Hernqist multi-mass realization with N = 106 particles based on the
Zhang & Magorrian (2008) algorithm. The total mass of the galaxy is scaled to M∗ =
1010M�. The range of 8 decades in mass gives sub-solar mass resolution in “interesting”
regions of phase space. In contrast, in an equal-mass realization all particles would have
mass 104M� (solid line). Right: As in left but also including a black hole with mass ratio
equal to 10−3 of the total mass, similar to the ratio of the mass of the Galactic SMBH and
the mass of the Galactic Bulge.

question of what might happen if a massive particle from the outer region with very small angular
momentum visits the center. Ideally this model is in a statistical equilibrium which means that for
every massive particle that visits the center there is another particle that goes out. We have done
some initial tests by integrating the particles in their own static Hernquist potential. The model
remains in equilibrium with some reasonable fluctuations. However we have not tested how the
system behaves when the potential is calculated directly from the particles. The system probably
will also be prone to unrealistic dynamical friction and may behave more like a collisional system
instead of collisionless system.

A.0.2 Multi-mass and Made to Measure methods

NMAGIC is a recent tool developed mainly by Flavio de Lorenzi that makes use of a similar
particle method as described by Syer & Tremaine (1996). This program is parallelized and can
be used both as an N-body simulator, as a virtual telescope and (its main function) as a tool
to make dynamical models of stellar systems. By using the particle based method we can fit an
initial model to a target using data taken from real telescopes and use the final model to measure
quantities of the system that are not accessible with real telescopes (e.g. observables and internal
moments respectively) and eventually make predictions for a galaxy.

Initial tests show that a combination of multi-mass and made-to-measure methods can work.
We started by fitting a multi-mass particle realization of a Hernquist model to an equal mass
Hernquist model with a different scale factor. Fig. A.3 shows two snapshots of slit kinematics
of the fitted multi-mass Hernquist particle realization. The error bars are the target equal mass
particle model that has a scale factor of a = 1.2. The initial multi-mass particle model had a
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scale factor of a = 1. The results are overall good.
The next step could be to test the multi-mass scheme by modeling a real system like the

Nuclear Star Cluster (NSC). Initially a multi-mass particle model representing the NSC would
be produced based on the spherical 2-component model of the NSC presented in Chapter 2. This
model could later be flattened accordingly within our NMAGIC code. The increased resolution of
the multi-mass particle model close to the center would help us understand better the core-cusp
problem, help resolve with greater detail the area of influence of the SMBH, and in addition
would possibly lead to more accurate estimates of the mass of the SMBH.
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Figure A.3: Two snapshots of slit kinematics of the fitted multi-mass Hernquist particle
realization without a black hole. The error bars are the target equal mass particle model
that has a scale factor of a = 1.2. The initial multi-mass particle model had a scale factor
of a = 1. The results are overall good.
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Patig, M., Nishiyama, S., & Walcher, C. J. 2014, ArXiv e-prints

Fiestas, J., Spurzem, R., 2010, MNRAS, 405, 194

Fiestas J., Porth, O., Berczik, P., Spurzem, R., MNRAS, 419, 57

Flynn C., Holmberg J., Portinari L., Fuchs B., Jahrei H., 2006, MNRAS, 372, 1149

Frebel A., Christlieb N., Norris J. E., Thom C., Beers T. C., Rhee J., 2007, ApJ, 660, L117

Freeman K. C., 1987, ARA&A, 25, 603

Freeman K., Bland-Hawthorn J., 2002, ARA&A, 40, 487

Fritz T., From the Sun to the Galactic Center: Dust, Stars and Black Hole(s), 2013 Thesis

Fritz T. K., et al. 2011, ApJ, 737, 73

Fritz T. K., Chatzpoulos S., Gerhard O., Gillessen S., Dodd-Eden K., Genzel R., Ott T. Pfuhl
O., Eisenhauer F., 2014, submitted

Fuchs B., Jahreiß H., 1998, A&A, 329, 81

Gould A., Flynn C., Bahcall J.N., 1998, ApJ, 503, 798



112 BIBLIOGRAPHY

Graham, A. W., & Spitler, L. R. 2009, MNRAS, 397, 2148

Gerhard, O. 1991. MNRAS, 250, 812

Gerhard O., 2011, Mem. Soc. Astron. Ital. Suppl., 18, 185

Genzel R., Eisenhauer S., Gillessen S. 2010, Reviews of Modern Physics 82, 3121

Genzel R, Schodel R, Ott T, Eisenhauer F, Hofmann R, Lehnert M, Eckart A, Alexander T,
Sternberg A, Lenzen R, Clenet Y, Lacombe F, Rouan D, Renzini A & Tacconi-Garman L E
2003 ApJ 594, 812-832.

Genzel, R., Thatte, N., Krabbe, A., Kroker, H., & Tacconi-Garman, L. E. 1996, ApJ, 472, 153

Genzel R., Pichon C., Eckart A., Gerhard O.E., Ott T., 2000, MRAS, 317, 348

Ghez, A. M., Duchene, G., Matthews, K., et al. 2003, ApJL, 586, L127

Ghez A., et al., 2008, ApJ, 689, 104

Gilmore G., Reid N., 1983, MNRAS, 202, 1025

Graham A. W., Spitler L. R., 2009, MNRAS, 397, 2148

Gillessen S., Eisenhauer S., Trippe S, Alexander T., Genzel R., Martins F., Ott T, 2009, ApJ,
707, L11

Guesten, R., Genzel, R., Wright, M. C. H., et al. 1987, ApJ, 318, 124

Haller, J. W., Rieke, M. J., Rieke, G. H., et al. 1996, ApJ, 456, 194

Helmi A., 2008, A&AR, 15, 145

Hernquist L., 1990, ApJ, 356,359

Hill V. et al., 2002, A&A, 387, 560

Hunter C., Qian E., 1993, MNRAS, 202, 812

Humphreys R. M., Larsen J. A., 1995, AJ, 110, 2183

Ho, L. C., Filippenko, A. V., & Sargent, W. L. 1995, ApJS, 98, 477

Jackson, J. M., Geis, N., Genzel, R., et al. 1993, ApJ, 402, 173

Jaffe W., 1983, MNRAS, 202, 995

Jansky, K. G. 1932, Proceedings of the IRE, 20, 1932
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