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Zusammenfassung

Moderne Rotverschiebungs-Galaxiendurchmusterungen können mittels Mehrfach-Faser-
Spektroskopie große Bereiche des Himmels abdecken. Dank der immer größer werdenden Da-
tensätze hat sich die Analyse der großskaligen Galaxienverteilung im Universum zu einer un-
schätzbaren Wissensquelle für die Kosmologie entwickelt. Zusammen mit den Beobachtungen
des kosmischen Mikrowellenhintergrunds (MWH) und Entfernungsbestimmungen anhand von
großen Typ-Ia-Supernova-Datensätzen (SN) bilden die Galaxiendurchmusterungen ausschlag-
gebende Indikatoren für die Korrektheit der Paradigmen des kosmologischen Weltbilds, des
ΛCDM-Modells. Die Auswertung der Galaxienverteilung erlaubt mit Hilfe des Standardlineals,
das durch die Baryonisch-akustischen Oszillationen gegeben ist, Entfernungsmessungen von
ungesehener Präzision. Dies gewährt Einblick in die zugrundeliegende physikalische Natur der
Dunklen Energie (DE), welche für die Beschleunigung der Ausdehung unseres Universums ver-
antwortlich gemacht wird, indem die zeitliche Entwicklung der DE-Zustandsgleichung einge-
schränkt werden kann. Zudem kann aus dem Signal der Verzerrungen im Rotverschiebungs-
raum die Wachstumsrate von kosmologischer Struktur bestimmt werden. Dies stellt einen Test
der Relativitätstheorie dar, weil mögliche erweiterte Gravitationstheorien abweichende Wachs-
tumsraten vorhersagen können.

Die abgeschlossenen Rotverschiebungsmessungen des ‘Baryon Acoustic Oscillation Sur-
vey’-Programms (kurz BOSS) brachten einen Galaxienkatalog hervor, der ein bisher unerreich-
tes Volumen abdeckt. In dieser Dissertation wird die kosmologische Information, die im räumli-
chen Leistungsdichtespektrum (LDS) der Rotverschiebungsraum-Galaxienverteilung des BOSS-
Katalogs enthalten ist, genutzt, um den Parameterraum des ΛCDM-Modells und der wichtigs-
ten möglichen Erweiterungen einzuschränken. Vorherige Analysen des anisotropen Galaxien-
LDS waren auf die Messung der Multipolzerlegung beschränkt. Für die hier präsentierte Ana-
lyse wurde das Konzept der sogenannten ‘Clustering Wedges’ auf den Fourierraum übertragen,
um einen komplementären Ansatz zur Vermessung des anisotropen LDS zu verfolgen. Dazu
wird der varianzoptimierte Schätzer für LDS-Wedges de�niert und an die Galaxiengewichtung,
die unvermeidbare Beobachtungsfehler im BOSS-Katalog behebt, angepasst. Zudem wird auch
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der Formalismus zur Beschreibung der Fensterfunktion auf die Wedges erweitert.
Das verwendete Modell für das anistrope Galaxien-LDS ist auf neuartigen Ansätzen zur Mo-

dellierung der nichtlinearen Gravitationsdynamik und der Verzerrungen im Rotverschiebungs-
raum aufgebaut, welche die Genauigkeit der Modellvorhersagen speziell im Übergang in den
nichtlinearen Bereich signi�kant verbessern. Daher kann das LDS bis zu kleineren Skalen als in
vorherigen Analysen ausgewertet werden, wodurch engere Einschränkungen des kosmologi-
schen Parameterraums erreicht werden. Die Modellierung wurde mit Hilfe von synthetischen
Katalogen, die auf großvolumigen Mehrkörpersimulationen basieren, veri�ziert. Dazu ist eine
theoretische Vorhersage der Kovarianzmatrix der anisotropischen Vermessung der Galaxien-
verteilung nötig, wofür ein Gaußsches Vorhersagemodell entwickelt wurde. Dieses ist neben
den Wedges auch für die komplementäre Multipolzerlegung sowohl des LDS als auch dessen
Fouriertransformierten, der Zwei-Punkt-Korrelationsfunktion, anwendbar.

Die LDS-Analyse anhand von Clustering Wedges, wie in dieser Arbeit präsentiert, ist Teil
der kombinierten Analyse des �nalen Galaxienkatalogs im Rahmen der BOSS-Kollaboration.
Unter Verwendung von zwei sich nicht überschneidenden Rotverschiebungsbereichen wird die
Winkeldurchmesserentfernung zu DM(ze� = 0.38) (r�d

d /rd) = 1525 ± 24 h−1 Mpc und DM(ze� =

0.61) (r�d
d /rd) = 2281+42

−43 h−1 Mpc bestimmt. Weiterhin wird der Hubbleparameter zu H (ze� =

0.38) (rd/r
�d
d ) = 81.2+2.2

−2.3 km s−1 Mpc−1 und H (ze� = 0.61) (rd/r
�d
d ) = 94.9 ± 2.5 km s−1 Mpc−1

vermessen (alle hier angegebenen Bereiche entsprechen einem Kon�denzintervall von 68%). Die
Wachstumsrate wird eingeschränkt auf f σ8(ze� = 0.38) = 0.498+0.044

−0.045 und f σ8(ze� = 0.61) =
0.409±0.040. Zusammen mit den Ergebnissen der komplementären Methoden, die innerhalb der
BOSS-Kollaboration zur Clustering-Analyse des �nalen Galaxienkatalogs eingesetzt werden,
werden diese Resultate zu einem abschließenden Konsensergebnis zusammengefasst.

Nur mit den Clustering-Weges-Messungen im Fourierraum, kombiniert mit MWH- und
SN-Daten, kann der Materiedichteparameter auf ΩM = 0.311+0.009

−0.010 und die Hubble-Konstan-
te auf H0 = 67.6+0.7

−0.6 km s−1 Mpc−1 unter Annahme des ΛCDM-Modells eingeschränken wer-
den. Wird ein Nichtstandard-Modell für DE angenommen, so ergibt sich ein DE-Zustandsglei-
chungsparameter von wDE = 1.019+0.048

−0.039. Modi�kationen der Wachstumsrate, parametrisiert
durch f (z) = [ΩM(z)]γ , werden auf γ = 0.52 ± 0.10 eingeschränkt. Diese beiden Messungen
sind in perfekter Übereinstimmung mit den Vorhersagen des ΛCDM-Modells, ebenso wie wei-
tere Ergebnisse, die sich unter der Annahme eines noch großzügigeren DE-Modells (welches
eine zeitliche Entwicklung von wDE erlaubt) ergeben. Daher wird das ΛCDM-Modell durch die
hier beschriebene Analyse weiter gefestigt.

Die Summe der Neutrinomassen wird zu ∑
mν < 0.143 eV bestimmt. Dieses obere Limit

be�ndet sich nicht weit entfernt von der unteren Schranke, die sich aus Teilchenphysik-Expe-
rimenten ergibt. Somit ist zu erwarten, dass die kosmologische Signatur, die massebehaftete
Neutrinos in der großskaligen Struktur des Universums hinterlassen, in naher Zukunft detek-
tiert werden kann.



Abstract

Galaxy surveys cover a large fraction of the celestial sphere using modern multi-�bre spec-
trographs. Thanks to ever increasing datasets, the analysis of the large-scale structure (LSS)
of the Universe has become a proli�c source of cosmological information. Together with the
observations of the cosmic microwave background (CMB) and samples of supernova (SN) of
type Ia, they helped to establish the standard cosmological paradigm, the ΛCDM model. From
the analysis of redshift-space galaxy clustering, the expansion history of the Universe can be
inferred using the feature of Baryon Acoustic Oscillations (BAO) as a standard ruler to measure
cosmic distances. The growth rate of cosmic structure can also be determined using redshift-
space distortions (RSD). These measurements provide insight into competing alternatives of
the ΛCDM model. The nature of the Dark Energy (DE), a strange component that is believed to
be responsible for the current phase of accelerating expansion of the Universe, can be unrav-
elled from BAO measurements of the late-time expansion. Modi�ed theories of gravity can be
constrained from the growth rate extracted from RSD, which can deviate from the prediction
of general relativity.

The redshift measurements of the Baryon Acoustic Oscillation Survey (BOSS) program that
was completed in 2014 yielded a galaxy sample that covers an unprecedented volume. In this
thesis, the standard model and its most important extensions are analysed using the cosmo-
logical information in the full-shape of the redshift-space two-point statistics measured from
the �nal BOSS galaxy sample. So far, anisotropic clustering analyses in Fourier space relied
on power spectrum multipole measurements. For this work, the concept of clustering wedges
was extended to Fourier space to establish a complementary approach to measure clustering
anisotropies: we introduce the optimal-variance estimator for clustering wedges, which is de-
signed to account for systematic weights that correct the observational incompleteness of the
BOSS sample, and also develop the window function formalism for the wedges.

Our modelling of the anisotropic galaxy clustering is based on novel approaches for the
description of non-linear gravitational dynamics and redshift-space distortions. This improved
modelling allows us to include smaller scales in our full-shape �ts than in previous BAO+RSD
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studies, resulting in tighter cosmological constraints. The galaxy clustering model is veri�ed
using synthetic catalogues based on large-volume N -body simulations. As this test requires
a theoretical description for the anisotropic clustering covariance matrix, a Gaussian formal-
ism was developed for that purpose. As a side project, this formalism is extended to describe
clustering wedges and multipoles in Fourier and con�guration space.

The Fourier-space clustering measurements presented in this thesis are part of the joint
analysis of the �nal BOSS sample. Using two non-overlapping redshift bins, we measure an
angular diameter distance of DM(ze� = 0.38) (r�d

d /rd) = 1525 ± 24 h−1 Mpc and DM(ze� =

0.61) (r�d
d /rd) = 2281+42

−43 h−1 Mpc, as well as a Hubble parameter of H (ze� = 0.38) (rd/r
�d
d ) =

81.2+2.2
−2.3 km s−1 Mpc−1 and H (ze� = 0.61) (rd/r

�d
d ) = 94.9 ± 2.5 km s−1 Mpc−1 (all limits corre-

spond to the statistical error of a con�dence level of 68%). The growth rate is constrained to
f σ8(ze� = 0.38) = 0.498+0.044

−0.045 and f σ8(ze� = 0.61) = 0.409 ± 0.040. These measurements will
be combined with the complementary results from other galaxy clustering methods in con�g-
uration and Fourier space in order to determine the �nal BOSS consensus measurements.

From our analysis alone, in combination with CMB and SN Ia data, we obtain a matter den-
sity parameter of ΩM = 0.311+0.009

−0.010 and a local Hubble parameter of H0 = 67.6+0.7
−0.6 km s−1 Mpc−1

assuming a ΛCDM cosmology. Allowing for a non-standard DE model, we �nd an equation-
of-state parameter of wDE = 1.019+0.048

−0.039. Modi�cations of the growth rate, parametrized as
f (z) = [ΩM(z)]γ , are constrained to γ = 0.52 ± 0.10. These two results, along with those
obtained using a more general DE model to identify a time-evolution of wDE, are in perfect
agreement with the ΛCDM predictions. Thus, the standard paradigm is further consolidated by
our analysis.

The sum of neutrino masses is found to be ∑
mν < 0.143 eV. As this limit is close to the lower

bound from particle physics, a detection of the cosmological signature of massive neutrinos
from LSS analyses can be expected in the near future.
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Nomenclature

Throughout the thesis, the summation convention is employed, which requires indices that
appear both as super- and subscripts (‘dummy labels’) to be summed over.

If such indices are used for coordinates, Greek indices run from 0 to 3 (time and spatial
coordinates), while Latin indices only run from 1 to 3 (spatial coordinates). For example, (x µ ) =
(x0,xi ).

The decomposition of 4-vectors in time and spatial coordinates might also be written as
(x µ ) = (t ,x ) if convenient. Spatial coordinates might be further decomposed into an angular
and a radial part as x = (x̂ ,r ), where the angular part can, if helpful, be expressed with a polar
angle θ and an azimuthal angle φ. On the celestial sphere, these angular coordinates are usually
given in form of declination, DEC, and right ascension, RA, respectively.

In general, a bold font face denotes that x is a vector and the inner product of two vectors
is written as x ·y. x might denote the magnitude of a vector x (if the context is clear), x = |x | =
√
x · x and x̂ denotes the (normalized) direction of a vector, x̂ = x/x . Matrices are denoted with

bold capital letters, e.g., Ψ, and the outer product of a matrix and a vector is written as Ψ · x .
The transposed of a vector or matrix is written as xT.

For a complex number c , c∗ denotes complex conjugation. And for a function f (x ), the
Fourier transform is written as f̂ (k ). In this work, only spatial Fourier transformations with
coordinate pairs x ↔ k are used, where x is in con�guration space and k in Fourier space.

A spatial ‘bin’ is denoted as Vr and means the set of points inside it,

Vr ≡
{
r ∈ R3���r − ∆r/2 ≤ |r | ≤ r + ∆r/2

}
, (1)

when used as a limit in an integration and the volume of the bin when used as a number,
Vr ≡ 4π [(r +∆r/2)3 − (r −∆r/2)3]/3, for a given bin size ∆r , so that 1

Vr

∫
Vr

f (r )d3r corresponds
to the volume-average of f (r ) over the bin Vr .

Perturbed quantities on a spatially homogeneous background are written д(t ,x ) = д̄(t ) +
δд(t ,x ). The bar is dropped if the context is clear.
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Important de�nitions, concepts and physical quantities are written in italics when intro-
duced �rst. Names of spacecrafts (Planck, Euclid, . . . ) are also in italics.

Physical constants

The following table contains the physical constants used in this thesis. In this list, the CODATA-
recommended value and error as of January 2016 are given (National Institute of Standards and
Technology, 1998).

name value

speed of light c = 299 792 458 m/s (exactly)
Newton’s gravitational constant G = 6.674 08(31) × 10−11 m3/kg s2

The mathematical constant equal to a circle’s circumference divided by its diameter is de-
noted π .

Astronomical units

The following table contains some important derived astronomical and cosmological scales as
used and de�ned by the International Astronomical Union (IAU).

name value

light year 1 ly = 9 460 730 472 580 800 m (exactly)
astronomical unit 1 a.u. = 149 597 870 700 m (exactly)
parsec 1 pc = 648 000/π a.u. (exactly)

' 3.261 564 ly ' 30.856 776 × 1015 m
astronomical year 1 yr = 365.25 d ' 31.557 6 × 106 s
solar mass 1 M� = 1.989 1 × 1030 kg (exactly)

Conventions for frequently used symbols

The following table introduces the conventional meanings and units of symbols frequently used
in this thesis (roughly in the order of their �rst appearance).

symbol usage unit

t time (t = 0 at Big Bang) yr
t0 present time (age of the universe) yr
a scale factor (normalized such that a(t0) = 1) —
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symbol usage unit

τ conformal time (dt = a dτ ) yr
r ,r physical spatial coordinate, absolute distance Mpc
χ radial coordinate Mpc
x spatial comoving position (r = a x ) Mpc
K (spatial) curvature constant Mpc−2

H Hubble parameter (H = ȧ/a) km/(s Mpc)

H0 present Hubble parameter (H0 = H (t0)) km/(s Mpc)

h reduced value of the Hubble parameter (H0 = 100h km/(s Mpc)) —
H conformal Hubble parameter (H = a H ) km/(s Mpc)

v physical velocity �eld Mpc yr−1

u comoving velocity �eld (v = H x +u) Mpc yr−1

z redshift —
m mass M�
T temperature K
λ wavelength Mpc
k wavenumber = 2π/λ Mpc−1

ρ mass-energy density M�/Mpc3

Λ cosmological constant Mpc−2

Ω density parameter (Ω = ρ/ρcrit) —
ϕ gravitational potential Mpc2 yr−2

p hydrostatic pressure M�/(Mpc yr2)

w linear equation-of-state parameter (p = w ρ) —
R comoving curvature perturbation —
n number density Mpc−3

δ density contrast —
ξ (two-point) correlation function —
P power spectrum Mpc3

B bispectrum Mpc6

∆2 dimensionless power spectrum —
ξ (3),ζ (reduced) three-point correlation function —
φ cosmological scalar �eld —
V scalar potential M�/Mpc yr2

θ divergence of the comoving velocity �eld (θ = ∇ · u) yr−1

σL velocity dispersion in Lagrangian PT Mpc
T transfer functon —
ns scalar spectral index —
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symbol usage unit

σ8 clustering amplitude —
rs sound horizon scale Mpc
rd sound horizon scale at the drag epoch (rd = rs(zd)) Mpc
V volume (e.g., of a survey) Mpc3

Dc comoving distance Mpc
DV angle-averaged BAO distance Mpc
DA angular diameter distance Mpc
FAP Alcock-Paczynski parameter —
D growth factor / growth function —
f growth rate (f = dD

d lna ) —
q Lagrangian coordinates Mpc
Ψ (Lagrangian) displacement �eld Mpc
G propagator (in perturbation theory) —
b,[bn] local galaxy bias [of order n] —
β RSD parameter (β = f /b) —
γ2,γ3,γ

−
3 non-local galaxy bias —

F· Fingers-of-God term (for the orbital motion of virialized matter; ·:
FoG, vir, Gauss)

—

avir kurtosis parameter for Fvir —
σFoG velocity disperion in FGauss Mpc
µ LoS parameter (µ = r̂ · k̂ = cosθ ) —
w· weight / weighting function (·: star, see, sys, fc, rf, c, tot, FKP) —
αran (FKP) data-to-randoms ratio —
Φ (survey) selection function —
F (FKP) weighted density contrast —
S (FKP) shot-noise estimate Mpc3

Inorm (FKP) power-spectrum normalization Mpc−3

ftp true-pair fraction (for the shot-noise estimate) —
N total number (e.g., of galaxies in a survey) —
C (sector) completeness —
q (FKP) survey selection function —
Q (FKP) window function —
|W |2 window function estimate —
M window matrix (M = (wnm (ki ,k

′))) —
Pobs observed power spectrum (PS) measurements (Pobs = (PA(ki ))) Mpc3

P theo theoretical predictions for the underlying PS (P theo =
(
P̃A(ki )

)
) Mpc3
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symbol usage unit

Ppred theoretical predictions for the observed PS (Ppred =
(
P̂A(ki )

)
) Mpc3

CP covariance matrix for P (k ) Mpc6

Cξ covariance matrix for ξ (r ) —
ψP precision matrix for P (k ) Mpc−6

ψξ precision matrix for ξ (r ) —
X parameter space of a model —
ζ point in the parameter space —
P probability distribution —
L likelihood —
χ 2 log likelihood, χ 2 function —
D,M precision and parameter rescaling parameters —
L` Legendre polynomial of order ` —
j` spherical Bessel function of order ` —
R correlation matrix (i.e., normalized covariance matrix) —
q⊥,q‖ ,q (geometrical) distortion parameters (q3 = q2

⊥ q‖) —
α⊥,α‖ ,α Alcock-Paczynski parameters (α3 = α2

⊥ α‖) —
Ap power spectrum amplitude factor —
N (free, additional) shot noise parameter Mpc3

Important acronyms, initialisms and abbreviations

This thesis uses the acronyms and initialisms in the following table frequently (roughly in the
order of their �rst appearance).

initialism meaning

GR general relativity
LSS large-scale structure
CMB[R] cosmic microwave background [radiation]
BBN Big Bang nucleosynthesis
FLRW Friedman-Lemaître-Robertson-Walker (metric / universe)
DM Dark Matter
CDM cold dark matter
DE Dark Energy
ΛCDM standard cosmological model (including CDM and Λ)
EoS equation of state
DoF degrees of freedom
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initialism meaning

SN(e) [Ia] supernova(e) [of type Ia]
SNLS Supernovae Legacy Survey
JLA (SDSS-II/SNLS-3) Joint Light-curve Analysis
WMAP Wilkinson Microwave Anisotropy Probe
RSD redshift-space distortions
BAO baryon acoustic oscillations
MCMC Markov chain Monte Carlo
SDSS (II/III) Sloan Digital Sky Survey (II/III)
DR(1 - 12) Data Release (1 - 12)
MGS (SDSS) Main Galaxy Sample
LRG (SDSS) Luminous Red Galaxy (sample)
BOSS Bayron Oscillation Spectroscopic Survey
LOWZ (BOSS) low-redshift sample
CMASS (BOSS) constant-stellar-mass sample
eBOSS Extended Bayron Oscillation Spectroscopic Survey
ELG Emission Line Galaxy (sample)
2dF(GRS) Two-degree-Field (Galaxy Redshift Survey)
6dFGS Six-degree-Field Galaxy Survey
AP Alcock-Paczynski (e�ect)
Ly-α Lyman-α (emission line)
LoS line of sight
(2P)CF (Two-point) correlation function
PS power spectrum
FKP Feldman-Kaiser-Peacock (estimator)
PT perturbation theory
SPT Standard (Eulerian) PT
RPT Renormalized Perturbation Theory
gRPT Galilean-invariant RPT
LPT Lagrangian PT
CLPT Convolution Lagrangian PT
(e)TNS (extended) Taruya-Nishimichi-Saito (model)
FoG Fingers of God (non-linear RSD)
FoM Figure of Merit
CPL Chevallier-Polarski-Linder (parametrisation)
FT Fourier transform
FFT Fast Fourier Transform
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initialism meaning

QPM Quick-Particle-Mesh (simulation)
Patchy PerturbAtion Theory Catalog generator of Halo and galaxY distribu-

tions
HOD Halo Occupation Distribution (parametrisation)
NGC Northern Galactic Cap (of BOSS)
SGC Southern Galactic Cap (of BOSS)

This thesis uses the abbreviations in the following table in super- or subscripts.

abbreviation meaning

min minimal (value)
max maximal (value)
e� e�ective (value)
‖,⊥ parallel and transverse (component)
3w,n nth clustering wedge (of three)
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1
Introduction

“The physical universe was anthropocentric to primitive man. At a subsequent stage of
intellectual progress it was centred in a restricted area on the surface of the earth. Still later,
to Ptolemy and his school, the universe was geocentric; but since the time of Copernicus
the sun, as the dominating body of the solar system, has been considered to be at or near
the centre of the stellar realm. With the origin of each of these successive conceptions, the
system of stars has ever appeared larger than was thought before. Thus the signi�cance
of man and the earth in the sidereal scheme has dwindled with advancing knowledge of
the physical world, and our conception of the dimensions of the discernible stellar universe
has progressively changed. Is not further evolution of our ideas probable? In the face of
great accumulations of new and relevant information can we �rmly maintain our old cosmic
conceptions?”

Curtis (1921)

This thesis describes an analysis of the Fourier space galaxy clustering measurements ob-
tained from the �nal catalogue of the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al., 2013), which is part of the Sloan Digital Sky Survey III (SDSS-III; Eisenstein et al., 2011)
program. BOSS represents a milestone in the large-scale clustering analysis as it is the largest
sample of galaxies obtained in a spectroscopic survey to date. The footprint of the survey cov-
ers ca. 10 000 deg2. As extragalactic light is obscured by dust in the celestial regions around the
galactic plane of the Milky Way, the survey consists of two large patches in the Northern and
Southern Galactic Caps, as shown in the left-hand panel of Figure 1.1. BOSS is a spectroscopic
survey, measuring the redshift of galaxies from their optical spectra. The target galaxies are
fainter than in previous programs, which ensures a high number density of objects over the
full redshift coverage out to distances of more than 3 000 Mpc. The right-hand panel of Fig-
ure 1.1 shows a 2D slice through the survey. Due to its volume, the clustering analysis of the
galaxy sample provides access to invaluable cosmological information contained in the large-
scale structure of galaxies, the cosmic web. The BOSS survey builds upon, �rst, the rich history
of galaxy surveys that preceded it and their fruitful analyses, and secondly, the great e�ort
that was put in the conception and conduction of the SDSS-III programs. This �rst chapter
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Figure 1.1 – Left-hand panel: The BOSS DR12 combined sample footprint∗ of the galaxies in the subsamples cor-
responding to the Northern Galactic Cap (NGC, orange) and Southern Galactic Cap (SGC, red). The footprint is
plotted over the Galaxy dust map obtained from the Planck mission (gray, CMB polarization traces the dust in our
Galaxy). The BOSS survey covers ca. 10 000 deg2, mostly in the Northern Hemisphere of the sky, divided in two
large patches in order to avoid the regions around the galactic plane of the Milky way where dust inside our own
Galaxy obscures extragalactic light; Right-hand panel: A slice 7.6° < DEC < 8° of the full BOSS DR12 combined
sample. Redshifts have been converted to distances assuming the �ducial cosmology for the DR12 analysis.
∗ The galaxy map was made with the help of the LAMBDA footprint library, available at http://lambda.gsfc.nasa.gov/
toolbox/footprint/.

of the thesis presents a short introduction to large-scale structure (LSS) analysis with galaxy
surveys. Besides other cosmological observations, the clustering analysis helped to establish
the modern standard cosmological model, which is described in the �rst section of this chapter.
Later sections give a short historical overview over galaxy surveys, describe what cosmological
knowledge can be extracted from the cosmic web, and present a summary of the successes in
determining the physical nature of the Universe. A special emphasis is placed on the BOSS sur-
vey, because this thesis’ project was conducted as part of the galaxy clustering working group’s
e�orts to generate the �nal LSS galaxy catalogue and derive cosmological constraints from its
clustering properties. The achievements from the analysis of previous catalogue releases are
described in a separate section of this introduction. This chapter is concluded with an outline
of this thesis.

Unfortunately, this short overview can only outline the fundamental concepts and tech-
niques applied to the analysis of the cosmic large-scale structure. For detailed studies of the
concepts mentioned here, the reader is referred to standard textbooks such as Weinberg (1972)
and Liddle (2003) for general relativity and general cosmology, Liddle & Lyth (2000), Mukhanov
(2005), and Weinberg (2008) for in�ation and cosmological perturbation theory, Dodelson (2003)
for growth of structure, and Peacock (1998), Peebles (1993), Martinez & Saar (2001) for galaxy
clustering.

http://lambda.gsfc.nasa.gov/toolbox/footprint/
http://lambda.gsfc.nasa.gov/toolbox/footprint/
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1.1 The standard cosmological model

The standard cosmological paradigm is a well established theoretical framework whose predic-
tions match the observations of the cosmic microwave background (CMB) and the large-scale
structure of the Universe with high accuracy. This paradigm postulates that the Universe is
spatially �at, was formed in a hot Big Bang scenario 13.8 billion years ago (Planck 2015 results;
Ade et al., 2015) and has expanded ever since. The energy budget of the Universe comprises
of several components: non-relativistic matter consists of a small fraction of ordinary matter
(dubbed baryonic matter1), but is dominated by a component named cold Dark Matter (CDM).
Other component are relativistic radiation (light and neutrinos), and also a mysterious form
of energy, dubbed Dark Energy (DE), whose physical nature is not yet understood. Due to the
expansion, the Universe cooled down and the densities of the di�erent components evolved
with time, changing their relative ratios such that the Universe successively underwent epochs
of radiation-, matter-, and dark-energy domination.

Structure originates from quantum �uctuations during an exponentially expanding phase
at the onset of the Big Bang known as cosmic in�ation. Quantum perturbations were stretched
to macroscopic scales by the expansion and eventually became classical by decoherence after
growing larger than the cosmic horizon. In the decelerating expansion after the Big Bang,
these perturbations re-entered the horizon and formed the seeds of the cosmic web that we see
today, containing structures such as galaxies, galaxy clusters, and �laments of galaxies that
connect the clusters. Stars and galaxies are part of the baryonic matter, which clustered in the
gravitational potential wells sourced by CDM. This dominance of CDM resulted in a hierarchical
growth of structure: self-gravity lead to the formation of small objects �rst, and larger and more
massive objects are formed by merging in a continuous hierarchy.

Caused by DE, the expansion of the late-time universe is accelerating again. The faster rate
of expansion slows down the growth of structure. Despite the convincing evidence that DE
comprises the largest fraction of the Universe’s energy content today and that it is the driver of
the late-time expansion, its exact underlying physical nature is unknown. DE can be described
by a cosmological constant Λ. From this constant and the fact that CDM is the dominant form
of matter, the standard cosmological paradigm is referred to as the ‘ΛCDM model’.

This cosmological paradigm has passed many tests, most notable from observations of the
CMB, galaxy clustering analysis, and type Ia supernovae (SN Ia). The most important CMB
observations are measurements of the two- and three-point statistics of the CMB temperature
and polarization maps with the space missions WMAP (Bennett et al., 2013) and Planck (Adam
et al., 2015), as well as with Earth-bound radio telescopes such as SPT (George et al., 2015)
and ACT (Naess et al., 2014). Cosmological parameters can be inferred from galaxy surveys
by means of the spatial two-point statistics of galaxy clustering which are complementary to
the CMB measurements on a surface. Recent examples of galaxy clustering analyses make use
the 2dF (Sanchez et al., 2006), 6dFGS (Beutler et al., 2011), WiggleZ (Kazin et al., 2014), SDSS
(Sanchez et al., 2009; Oka et al., 2014; Ross et al., 2015) and BOSS (Anderson et al., 2014b) sur-

1Of the matter that is constituted by known particles, the baryons dominate the total mass. Thus the name
baryonic matter was chosen despite the fact that a large fraction of that matter is in atoms and molecules, which
are bound structures comprised of nuclei (baryons) and electrons (leptons).
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veys. Light curves of SN Ia serve as standardizable candles for distance measurements allowing
the detection of the aforementioned late-time acceleration of the Universe (Riess et al., 1998;
Perlmutter et al., 1999). They are analysed in samples such as those of the Supernova Cosmol-
ogy Project (Suzuki et al., 2012), the Supernovae Legacy Survey (Conley et al., 2011), and the
joint light-curve analysis sample (JLA; Betoule et al., 2014) that combines the two. Many of
these cosmological datasets will be described in more detail in later parts of this introduction.

Due to the fact that most predictions of the ΛCDM model have been well tested with data,
the standard paradigm is seen as very robust and clearly favourable over alternative models,
even though the answers to some questions are still pending. These open questions concern,
for example, the underlying physics of the driver of the expansion and the experimental ver-
i�cation of further cosmological predictions such as the detection of the signal of primordial
gravitational waves2 in the polarization of the CMB. Just as large-scale structure analysis had
its part in establishing the standard model, it will certainly also play a major role in shedding
light onto the open questions.

1.2 A brief history of large-scale structure analysis

1.2.1 First steps in surveying galaxies

The �rst essential step for the analysis of galaxy clustering was to realize that galaxies are
astronomical objects which emit light to us from outside our own Galaxy, the Milky Way. This
discovery was made in the �rst decades of the 20th century and concluded the ‘great debate’
between two groups of astronomers which were represented by Harlow Shapley and Heber
Curtis. At a time when astronomical observations lacked the bene�ts of modern technology,
the former scientist argued that spiral nebulae in question, such as those objects known today
as the Pinwheel Galaxy (M101) and the Andromeda Galaxy (M31), were inside the Milky Way.
Curtis and his supporters, however, believed these objects to be extragalactic. The resolution of
this debate was to a great degree due to the work of Edwin Hubble, who measured the distance
to the Andromeda Galaxy using Cepheid variable stars (Hubble, 1925). Doing so, he paved the
way to cosmological observations by clarifying that the nebulae are galaxies that must be large
and far away from us, populating our Universe in immense numbers.

The theoretical foundations of cosmology were also laid in the second decade of the last
century when Einstein postulated the theory of general relativity (GR; Einstein, 1915, 1916),
the fundamental theory of space, time, and gravitation. Realizing that of all physical interac-
tions, only gravitation acts on astronomical scales, and from the assumption of the cosmologi-
cal principle that postulates that the Universe is spatially homogeneous and isotropic on large
scales, the �rst theories on the Universe as a whole were formulated. Notable are, for exam-
ple, one of Einstein’s formulations which introduced the cosmological constant (Einstein, 1917)
and Friedmann’s �rst cosmological descriptions of spherically symmetric (closed) space (Fried-
mann, 1922) and hyperbolic (open) space (Friedmann, 1924). Extending work from Einstein,

2The detection of primordial gravitational waves is even more anticipated since gravitational waves sourced by
astrophysical objects were �rst detected just one week prior to the submission of this thesis (Abbott et al., 2016).
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Figure 1.2 – First observations of the angular clustering of galaxies: the left-hand panel shows the angular cor-
relation function from the Shane-Wirtanen and Zwicky galaxy catalogues (taken from Davis et al., 1977); the
right-hand panel shows the angular correlation function measured by Maddox et al. (1990) from the APM galaxy
survey using UK Schmidt plates (inset shows the clustering for larger scales).

de Sitter, Lemaítre, Robertson, and Walker (Einstein & de Sitter, 1932; Lemaître, 1927, 1931;
Robertson, 1935a,b, 1936; Walker, 1937), the standard cosmological theory using a spacetime
metric with a maximally symmetric spatial part and a time-dependent cosmological scale factor
— known as the Friedmann-Lemaítre-Robertson-Walker (FLRW)-metric — was formulated.

At that time, it was also realized that the extra-galactic nebulae we now simply call galax-
ies are actually moving away from us. A seminal work published by Hubble (1929) measured a
close relationship between the distance to spiral nebulae and their velocities, now referred to as
‘Hubble’s law’. This observation relied on distance measurements using the period-luminosity
relationship of Cepheid stars (found by Henrietta Swan Leavitt) and the measurement of ra-
dial velocities (rendered possible by the discovery of redshifts by Vesto Slipher). Thereby, the
paradigm of the expanding universe formed during a hot ‘Big Bang’ was created. The questions
raised by theoretical cosmologists at that time, like ‘Is the Universe limited to what we see? It
is �nite or in�nite? What is its curvature? Is the expansion slowing down or accelerating?
Or is the Universe in a steady state after all?’, had to remain unanswered for a long time in
which cosmological observations were in their infancy, if not to say almost impossible due to
technological restrictions.

Between the �rst postulation of ‘Dark Matter’ that is undetectable by direct observations
by Zwicky (1933, 1937) in order to explain the observed virial masses of galaxy clusters and the
discovery of su�cient evidence of the hierarchical growth of cosmological structure dominated
by non-relativistic (i.e., cold) dark matter, decades passed by. Whether there is just enough
matter to make the Universe critically dense (i.e., �at) was another important question raised.
Addressing these aspects asked for immense dedication from the �eld. Astronomers could only
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Figure 1.3 – (Image credit: Gott et al., 2005) First wide galaxy-redshift surveys such as the CfA survey (Huchra
et al., 1983) and the �rst Sloan program (York et al., 2000) revealed the clustering properties of galaxies for the
�rst time to such detail that individual large-scale structures of the cosmic web like the so-called ‘great walls’ have
been identi�ed (Geller & Huchra, 1989; Deng et al., 2007).

start to analyse the expansion of the Universe by creating catalogues of galaxies from visual
inspection of photographic plates in the 1960s (e.g., Zwicky et al., 1961; Zwicky & Kowal, 1968;
Shane & Wirtanen, 1967). Zwicky’s ‘Catalogue of Galaxies and of Clusters of Galaxies’ (CGCG,
1961—68) contained ca. 30,000 galaxies and 9,000 galaxy clusters, while the ‘Uppsala General
Catalogue of Galaxies’ (UGC, 1973) contained ca. 13,000 galaxies in the Northern Hemisphere.
Both were created from inspections of the photographic plates of the Palomar Observatory Sky
Survey (POSS).

With the ground-breaking idea of treating galaxies as — biased — tracers of matter clustering
(see series of publications starting with Peebles, 1973; Tonry & Davis, 1979), �rst studies of the
angular clustering (due to lack of accurate measures of the distances via redshifts, see e.g.,
Davis & Peebles, 1983) were undertaken to probe the cosmological framework of that time, a
matter-dominated �at FLRW universe. In a series of �rst systematic studies of galaxy clustering
using machine scans from the UK Schmidt telescope (e.g., Maddox et al., 1990), the power-law
behaviour of the angular two-point correlation function3 was con�rmed. Such measurements
are illustrated in Figure 1.2, where early measurements of the angular correlation function from
the Shane-Wirtanen (Shane & Wirtanen, 1967) and Zwicky catalogues are shown in the left-

3For the discussion of two-point statistics, see Section 2.2.1.
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Figure 1.4 – (Image credit: Saunders et al., 2000) Positions of the ca. 15,500 galaxies of the PSCz catalogues on the
sky and the number density of the catalogue versus redshift.

hand panel. The scatter of the measurements and the deviation from simulated predictions
(lines) show the early stage of the galaxy clustering observations at that time. In the right-hand
panel, the more precise measurements of the angular clustering of Maddox et al. (1990) taken
from automatic scans of photographic plates are showing that the angular correlation function
breaks away from a power law at larger distances. Despite the growing evidence for the CDM
paradigm in the 1980s, LSS analysis in the early 1990s (Maddox et al., 1990; Efstathiou et al.,
1990) indicated that a plain CDM cosmology cannot fully account for the clustering observed
in the local universe.

1.2.2 Automatic wide-�eld surveys

Technological progress such as machine plate scanning and CCDs enabled the construction of
automatic wide-�eld surveys beginning in the 1980s. This revolutionised large-scale structure
analysis and galaxies were now detected in large numbers using automated photometric sur-
veys. Galaxies detected in photometry were followed up with a spectroscopic analysis to infer
the radial velocities of the galaxies, as pioneered by the CfA survey (Huchra et al., 1983). Such
studies allowed the measurements of the 3D clustering properties of galaxies for the �rst time,
giving insight into the morphological structure of the cosmic web. The lower slice in Figure 1.3
shows an example of such a large structure, the so-called ‘great wall’ found in the �rst CfA cat-
alogue. Evidence increased that the CDM paradigm is not able to explain the galaxy clustering
of CfA galaxies (Vogeley et al., 1992) as well as those identi�ed from the �rst infrared telescope
in space, IRAS (Efstathiou et al., 1990; Saunders et al., 1991).

From the IRAS galaxies, the PSCz catalogue (Saunders et al., 2000), containing 15,411 galaxy
redshifts across 84% of the sky, was constructed by collections from all redshift databases that
were available to the authors. The angular and radial distribution is shown in Figure 1.4. In a
milestone analysis, Tadros et al. (1999) used the galaxy power spectrum of this sample to detect
for the �rst time distortions of the redshift-space clustering of the galaxies caused by the line-
of-sight components of their peculiar velocities, an e�ect known as redshift-space distortion
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Figure 1.5 – (Image credit: Blanton (2008) and SDSS collaboration) Projections of the SDSS-II main galaxy sample
(0.02 ≤ z ≤ 0.22, color coded by g-r color) from di�erent perspectives.

(RSD, see Section 2.4.2).
The spectroscopic follow-up analysis became a rapid redshift-producing machinery with

the invention of multi-�bre and multi-split spectrographs. One of the pioneering surveys us-
ing the multi-�bre technology was the Las Campanas Redshift Survey (LCRS; Shectman et al.,
1996) observing at the Las Campanas telescope (in Chile) where around 100 spectra could be
taken at once. Around the turn of the millenium, samples containing up to a hundred thousand
spectroscopically or even a million photometrically identi�ed galaxies were produced in the
Two-degree-Field Galaxy Redshift Survey (2dFGRS; Colless et al., 2001) and the �rst iteration
of the Sloan Digital Sky Survey (SDSS; York et al., 2000).

The early power spectrum analysis of 2dFGRS helped to establish the paradigm of a ΛCDM
universe (Percival et al., 2001; Efstathiou et al., 2002) by providing independent evidence for a
non-zero cosmological constant. The detection of the acceleration of the late-time expansion
caused by Dark Energy was due to the light-curve analysis of SN Ia (Riess et al., 1998; Perl-
mutter et al., 1999). The analysis of the �rst two data releases of SDSS (Abazajian et al., 2003,
2004) contained a ‘main galaxy sample’ (MGS) catalogue with more than a million photometri-
cally identi�ed galaxies (of which 260,490 were spectroscopically followed up) whose clustering
properties were analysed in angular projections (Tegmark et al., 2002; Szalay et al., 2003) and
from the full 3D power spectrum (Dodelson et al., 2001; Tegmark et al., 2004b) — projected 3D
slices of the catalogue are shown in Figure 1.5. The redshift-space analysis from the early SDSS
catalogues further consolidated the picture of a �at ΛCDM universe with a scale-invariant pri-
mordial power spectrum (Tegmark et al., 2004a), in consistency with complementary 2dFGRS
results and the early CMB observations of WMAP (Spergel et al., 2003).

Baryon acoustic oscillations (BAO), density-pressure waves that propagated in the primor-
dial baryon-photon plasma, leave an imprint in the galaxy clustering signal, which can only be
resolved with large galaxy samples. The two �rst detections of the BAO signal were published
in 2005. Eisenstein et al. (2005) detected it in the two-point correlation function (see the left-
hand panel of Figure 1.6) of a sample of ca. 47,000 luminous, red galaxies (LRG; Eisenstein et al.,
2001). The LRG selection was optimized for large-scale structure analysis and extends the main
sample to fainter and more far away galaxies than the main (�ux-limited) portion of the SDSS



1.2 A brief history of LSS analysis 9

Figure 1.6 – (Image credit: SDSS and 2dFGRS collaborations) The detection of the BAO signal in the two-point
correlation function of SDSS LRGs (Eisenstein et al., 2005, left) and the power spectrum of the 2dFGRS sample
(Cole et al., 2005, right). In con�guration space, the BAO signal can be seen as a single bump in the correlation
function around r ' 100h−1 Mpc and the SDSS detection paper �nds evidence for this feature with respect to a
featureless correlation function at a con�dence level of 3.4σ . In Fourier space, the BAO signal appears as a series of
wiggles (peaks and troughs). The 2dFGRS paper inferred the cosmological density parameters and baryon fraction
from the power spectrum in the wavenumber regime 0.05h Mpc−1 . k . 0.2h Mpc−1.

galaxy spectroscopic sample. The power spectrum analysis of the �nal 2dFGRS catalogues (Col-
less et al., 2003) with ca. 220,000 galaxy redshifts proved the existence of BAOs independently
(Cole et al., 2005, see the right-hand panel of Figure 1.6). The �nal 2dFGRS analysis (Cole et al.,
2005; Sanchez et al., 2006) also revealed, in agreement with the later analysis of the WMAP 3-yr
data (Spergel et al., 2007), that the primordial power spectrum is slightly titled as predicted by
standard models for in�ation.

Measurements of the apparent BAO distance can break degeneracies in the cosmological
constraints from CMB observations and thus help to get a more precise knowledge of the pa-
rameters of the standard model. Using the �nal SDSS-II DR7 (Abazajian et al., 2009) LRG sample,
the angle-averaged BAO distance, DV(ze� = 0.35), could be constrained at the level of a few
per cent (Reid et al., 2010). Further analysis combined the BAO distance measurements of DR7
LRG and main samples with the 2dFGRS sample to obtain a BAO distance ladder (Percival et al.,
2007b, 2010).

At lower redshifts, the BAO signal becomes degraded due to the bulk motion of matter
and non-linear structure formation (Meiksin et al., 1999; White, 2005; Eisenstein et al., 2007a;
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Figure 1.7 – (Image credit: WiggleZ collaboration) Cosmological implication of the full-shape power spectrum
analysis of the LSS galaxy sample obtained from the WiggleZ survey (Parkinson et al., 2012). Only the combination
of the power spectrum measurements with supernovae data (in addition to the CMB observations) can e�ectively
constrain the density and equation-of-state parameter of Dark Energy.

Crocce & Scoccimarro, 2008). Eisenstein et al. (2007b) proposed a simple method to partially
remove the e�ect of the bulk �ow by moving the galaxies back on their approximate trajectories
given by the linear velocity �eld in Lagrangian space. The success of this method was proven
theoretically (Padmanabhan et al., 2009; Noh et al., 2009) and in N -body simulations (Seo et al.,
2010; Mehta et al., 2011). The original method (Eisenstein et al., 2007b; Padmanabhan et al.,
2012) has been proven to provide almost optimal access to cosmological information in the
BAO (see e.g., Burden et al., 2015; Schmittfull et al., 2015).

The SDSS LRG sample was subject to the �rst application of density-�eld reconstruction
achieving a reduction of the BAO distance error from 3.5% to 1.9% in the LRG DR7 sample
(Padmanabhan et al., 2012). Further, the application of reconstruction to the SDSS DR7 MGS
galaxies (Ross et al., 2015) improved the determination of the local Hubble parameter through
its 4% distance measurement.

1.2.3 Present-day galaxy surveys

The success of BAO distance measurements led to the emergence of several LSS surveys with
a special focus on the BAO probe. For example, the WiggleZ survey (Drinkwater et al., 2010)
measured ca. 240,000 redshifts of blue emission line galaxies (ELG) in the range 0.2 ≤ z ≤ 1.0,
allowing the determination of an independent BAO distance ladder (Blake et al., 2011b; Parkin-
son et al., 2012). As shown in Figure 1.7, the full-shape WiggleZ power spectrum measurements
needed to be combined with supernovae data in order to e�ectively constrain the density and
equation-of-state parameter of Dark Energy due to the smaller volume of WiggleZ compared to
other modern surveys. Applying reconstruction to the WiggleZ data corresponds to an e�ective
increase of the survey volume by a factor of 2.5 (Kazin et al., 2014).

One of the present-day surveying programs clearly stands out: the BOSS program. It is the
most ambitious of the galaxy-redshift projects that have been completed at the time of writing
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Figure 1.8 – (Image credit: DESI collaboration) Projec-
tion of a slice of targets aimed at with the DESI sur-
vey: luminous red galaxies, emission line galaxies, and
quasars (DESI Collaboration, 2015). This multi-target ap-
proach allows for the mapping of the cosmic web out to
a redshift of 3.5.

this thesis. It was designed with the aim to provide the most-robust and voluminous galaxy
sample for BAO measurements so far. This survey is presented in more detail in Section 1.4.

The 6dF Galaxy Survey (6dFGS; Jones et al., 2004) measured 125,000 near-infrared selected
galaxy redshifts in the southern sky. The low e�ective redshift of this sample provides a good
handle on the local BAO distance, Hubble parameter, growth rate, and clustering amplitude
(Beutler et al., 2011, 2012). However, as the e�ective volume is small, 6dFGS can only contribute
marginally to the constraining power of the other present-day redshift surveys.

1.2.4 Future galaxy-redshift surveys

Early BAO measurements provide tight constraints on the six parameters of the ΛCDM model,
but relaxing the assumptions of the standard model opens up new degeneracies in the param-
eter space. One example is the open question of whether Dark Energy (DE) can be described
by a cosmological constant or is evolving with time. The quest for the true nature of DE is
the main driver for the construction of several on-going and future cosmological experiments.
The Dark Energy Task Force (Albrecht et al., 2006) has identi�ed BAO distance measurements
with large galaxy-redshift surveys as one of the main techniques to address this issue. The con-
straining power of galaxy surveys can be improved by increasing the probed volume, re�ning
the clustering models in the mild non-linear regime, or by reconstruction of the linear density
�eld. Further, probing BAO distances for multiple redshifts helps to constrain non-standard DE
models by probing the late-time evolution of the Universe.

In order to categorize the past, recent and proposed science programs exploring DE, they are
classi�ed in stages by the �gure-of-merit (FoM), which is an indicator of the intrinsic constrain-
ing power of a given cosmological probe or individual experiment on a DE model. Here, only
the on-going and future LSS galaxy survey programs will be discussed. Among the on-going
(Stage-III) experiments are the continuation programs of the BAO projects in SDSS, BOSS and
its extension eBOSS, which are described later in Section 1.4. Other Stage-III galaxy surveys are
the photometric Dark Energy Survey (DES; Abbott et al., 2005), which is about to release the
analysis of the �rst-year data in 2016, and the Hobby Eberly Telescope Dark Energy Experiment
(HETDEX; Hill et al., 2008), which will start the commissioning of its spectroscopic observations
of Ly-α emitters as tracers of the large-scale structure in the fall of 2016. In the future, next-
generation (Stage-IV) experiments such as the Dark Energy Spectroscopic Instrument (DESI;
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Levi et al., 2013), 4MOST (de Jong et al., 2014), the Subaru Prime Focus Spectrograph (PFS; Ellis
et al., 2014) and the space-based Euclid mission (Laureijs et al., 2011) will allow for an even more
accurate exploration of galaxy clustering over a wide range of redshifts. To illustrate the red-
shift coverage of future spectroscopic surveys, a projection of a mock slice through the cosmic
web as it will be observed with DESI targets (luminous red galaxies, emission line galaxies, and
quasars) is shown in Figure 1.8.

1.3 Information content of the cosmic web

The early galaxy surveys revealed the approximate shape of the clustering correlation function
and allowed a qualitative description of the cosmic web. This section brie�y outlines the main
quantitative measurements that have been used successfully in the last decades to infer tight
constraints on cosmological parameters from galaxy samples.

1.3.1 Growth of structure and redshift-space distortions

The clustering signal is distorted anisotropically in redshift-space due to the peculiar velocities
of the galaxies, which boost the clustering in the direction of the line of sight (LoS). Hence, an
LoS-dependent clustering measurement can probe the relation between the velocity and density
�elds. The RSD will be discussed in more detail in Section 2.4.2

To linear order, this relation is predicted by the Zeldovich equation (Zel’dovich, 1970) whose
coe�cient is given by the redshift space distortion parameter, β , de�ned as the ratio of the
growth rate and the linear galaxy bias. The linear velocity �eld describes the ‘Kaiser infall’
of structure into DM potential wells (Kaiser, 1987). The RSD parameter β has been measured
�rst from PSCz data by Tadros et al. (1999) and Hamilton et al. (2000). Later, the analysis was
repeated for the 2dFGRS sample (Verde et al., 2002; Hawkins et al., 2003; Ross et al., 2007).

Deviations from theΛCDM predictions for the growth rate could indicate that modi�cations
of the fundamental relations of general relativity (modi�ed gravity, or short MG) are required.
Alternatives or extensions to GR have been the focus of theoretical analyses since it was re-
alized that Einstein gravity cannot be quantized with the usual recipes applied to the other
fundamental forces in physics.

A ground-breaking analysis was performed by Guzzo et al. (2008) on the data of the VIMOS-
VLT Deep Survey, where a growth rate consistent with ΛCDM predictions was found. Since
then, RSD have been of great interest to cosmologists as they are a powerful and complemen-
tary cosmological probe to BAO distance measurements. So far, no measurement has shown
signi�cant tension with ΛCDM predictions despite improved sensitivity due to ever increasing
survey volumes.

1.3.2 The BAO as a standard ruler for distance measurements

A second feature in the galaxy clustering besides RSD are baroynic acoustic oscillations (BAO).
The periodic BAO �uctuations were produced when photons were still strongly coupled to
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baryons in the early universe, in which the baryonic matter was ionized as the typical ther-
mal energy of photons was larger than the ionization energy of the hydrogen atom. Photons
were tied with the free electrons due to a strong interaction between them (Thomson scatter-
ing) and all charged particles exchanged energy in frequent collisions between them. Thus, all
baryons, leptons and photons formed an ionized plasma, the primordial baryon-photon �uid.
In this plasma, counteracting gravitational forces and high photon-baryon pressure resulted
in oscillations similar to sound waves propagating away from overdense regions (see a more
detailed description in Section 2.3.2). At decoupling, when the Universe became transparent
due to re-combination of atoms, the photons were released and formed the CMB due to further
redshifting since that time (which was when the Universe was ca. 3000 K hot at a redshift of
z ' 1089). The BAO propagated a distance given by the sound horizon scale between Big Bang
and decoupling, when they were frozen in. Due to gravitational interaction with the CDM, the
BAO imprint in the matter clustering, which corresponds to an enhanced correlation between
density peaks separated by the sound horizon scale, was formed.

Since the detection of the BAO feature imprinted into the matter clustering, using the BAO
as a standard ruler for cosmological distance measurements (such as the angular diameter dis-
tance discussed later in Section 2.1.2) has become a main science driver for galaxy surveys.
The signal becomes anisotropically distorted if redshifts are converted to distances assuming
a cosmology which di�ers from the true one. This geometrical distortion is called the Alcock-
Paczynski (AP) e�ect. Measurements of the distorted acoustic peaks in the LSS clustering of
large-volume surveys are a robust geometrical probe in the quasi-linear regime (Eisenstein &
White, 2004; Seo & Eisenstein, 2005) o�ering the possibility to constrain the Hubble parame-
ter and the angular diameter distance the level of a few percent (Eisenstein et al., 1998; Seo &
Eisenstein, 2003; Blake & Glazebrook, 2003) in the redshift range up to z ≤ 1. Details of the AP
probe on the acoustic scale are discussed later in Section 2.4.7.

1.3.3 Full-shape measurements of galaxy clustering

The BAO distance is probed from a shift in the apparent sound horizon scale, while simple
RSD measurements make use of the anisotropic distortions of the clustering signal by taking
ratios between di�erent angular projections of the two-point statistics. These two measure-
ments usually marginalize over the large-scale shape of the clustering two-point statistics. But
cosmological constraints can be improved by taking the broad-band features of the clustering
into account as well. Early examples are the 2dFGRS power spectrum analysis (Percival et al.,
2001; Sanchez et al., 2006) and the SDSS MGS analysis (Tegmark et al., 2004b). After the BAO
distance ladder (Percival et al., 2007b) had been established, most analyses focussed on BAO-
only measurements, especially after these measurements became signi�cantly more precise by
applying the reconstruction technique.

To be competitive, the full-shape method needs to rely on accurate modelling of the galaxy
clustering signal, which can be achieved, for example, using renormalized perturbation theory
(RPT; Crocce & Scoccimarro, 2006a, 2008). Before BOSS, Sanchez et al. (2009) used the broad-
band shape of the SDSS LRG correlation function and the BAO signal to constrain the ΛCDM
parameters as well as non-standard DE models and spatial curvature (Montesano et al., 2012,
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the complementary analysis in Fourier space was performed in). Fitting the broad-band fea-
tures is seen as a necessary complementary probe to the BAO �ts using the AP e�ect; recent
applications of this technique are Parkinson et al. (2012); Contreras et al. (2013, WiggleZ), de la
Torre et al. (2013, VIPERS), and the BOSS analysis (Sánchez et al., 2014, e.g.).

1.4 Introduction to BOSS

“Many reports and articles have identi�ed dark energy as the most pressing problem in
fundamental physics. However, going beyond the detection of dark energy to informative
constraints on its properties requires measurements of the cosmic expansion history with
percent-level precision and correspondingly exquisite control of systematic uncertainties.
At present, the baryon acoustic oscillation method is believed to have the smallest sys-
tematic biases of any dark energy probe. Sound waves that propagate in the opaque early
universe imprint a characteristic scale in the clustering of dark matter, providing a ‘stan-
dard ruler’ whose length, 150 megaparsecs, can be computed using straightforward physics
and input parameters that are tightly constrained by cosmic microwave background obser-
vations.”

AS2 Proposal Team (2007)

The Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013) was proposed as
one of the four main surveys of the third iteration of the Sloan Digital Sky Survey program
(SDSS-III; Eisenstein et al., 2011). It is a 5-year program of spectroscopic galaxy observations
with the aim to measure the cosmic distance scale and expansion rate to percent-level precision
in the redshift ranges 0.2 ≤ z ≤ 0.75 (LSS galaxy samples) and z ' 2.5 (Ly-α forest) making
use of the BAO standard ruler (Schlegel et al., 2009). For the selection of the galaxies, the
program uses multi-colour SDSS imaging (Fukugita et al., 1996; Smith et al., 2002; Doi et al.,
2010) obtained with the drift-scanning mosaic CCD camera (Gunn et al., 1998) installed on the
2.5-meter wide-�eld telescope (Gunn et al., 2006) at the Apache Point Observatory dedicated to
the SDSS programs. The redshifts of selected targets have been measured with the SDSS multi-
�bre spectrograph (Smee et al., 2013). The spectral classi�cation and redshift �tting pipeline
was specially written for the BOSS program (Aihara et al., 2011; Bolton et al., 2012).

1.4.1 Galaxy clustering analysis with the previous data releases

DR9 (Ahn et al., 2012) was the �rst release of BOSS galaxy spectra and the two galaxy samples
for the LSS analysis. The ‘LOWZ’ sample (0.14 ≤ z ≤ 0.4) extends the SDSS-II LRG sample to
lower luminosities in order to achieve a higher spatial number density. The mean mass of DM
haloes hosting LOWZ galaxies is 5.2 × 1013 h−1 M� and a fraction of 12% are satellite galaxies
(Parejko et al., 2013). Secondly, the ‘CMASS’ sample (0.4 ≤ z ≤ 0.8) is a nearly complete sample
of the most-massive galaxies above the magnitude limit of the survey (Maraston et al., 2013)
aiming at a high-redshift sample with an almost constant stellar mass. The CMASS galaxies are
mostly red with a prominent 4000 Å break, but there is a small fraction of bluer galaxies. The
selection criteria for both samples were chosen to achieve a homogeneous comoving number
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Figure 1.9 – (Image credit: BOSS collaboration) The spectroscopic footprint of the ninth (DR9; Ahn et al., 2012),
tenth (DR10; Ahn et al., 2014), and eleventh (internal) data release of BOSS. The top panels show the coverage of
the Northern galactic cap (NGC) and the lower panels show the Southern galactic cap (SGC). The spectroscopic
completeness of the unique partitioning of the survey into sectors is indicated by colour according to the key in
the most left-hand lower panel. The sky coverage increased from ca. 3 300 deg2 (DR9) over ca. 6 200 deg2 (DR10)
to ca. 8 400 deg2 in DR11. Legacy redshift observations of the previous SDSS-II program are combined with new
BOSS observations to form the two galaxy-redshift catalogues, LOWZ and CMASS (see text).

density of n̄ ≈ 3 × 10−4 h3 Mpc−3 (Dawson et al., 2013, the actual number density depends on
the radial distance as shown in the right-hand panel of Figure 1.9). The CMASS galaxies live in
DM haloes with a mean halo mass of 2.6 × 1013 h−1 M� and the satellite fraction is 10% (White
et al., 2011). The galaxies of both samples are a highly biased tracer of the matter clustering
with a linear galaxy bias of ∼ 2.0 (Nuza et al., 2013), which is ideal for clustering analysis as the
power spectrum can be measured with a high signal-to-noise ratio.

With the DR9 version of these samples (containing in total ca. 264,000 galaxies), Anderson
et al. (2013) measured the BAO distance from the CMASS and DR7 LRG samples and derived the
cosmological implication of this measurement in combination with other cosmological probes.
Reid et al. (2012) presented AP and RSD measurements, whose interpretation with respect to
Dark Energy and modi�ed gravity was presented in Samushia et al. (2013). A full-shape clus-
tering measurement was performed in Sanchez et al. (2012). Tojeiro et al. (2012) used a model
for passively evolving galaxies to constrain the growth of structure from a low-redshift mix of
SDSS-II and -III galaxies to a similar precision to using the standard analysis technique on the
CMASS sample.

An anisotropic BAO measurement provides access to more information and thus increases
the constraining power on cosmological parameters compared to angle-averaged measure-
ments (Gaztanaga et al., 2009; Chuang & Wang, 2012). As the signal is degraded by RSD (Sec-
tion 2.4.2), the distortion of the acoustic peak has di�erent properties in the directions parallel
and transverse to the LoS. A 2D BAO analysis was performed on the reconstructed sample of
SDSS-II LRGs (Xu et al., 2013) using the �rst two multipole moments of the two-point cor-
relation function (monopole and quadrupole). Alternatively, the full 3D clustering signal can
be projected onto clustering wedges (Kazin et al., 2012) of the correlation function. The pure
BAO analysis of the two-point correlation function monopole and quadrupole (Anderson et al.,
2014a) and wedges (Kazin et al., 2013) measured the angular diameter distance and Hubble pa-
rameter to ca. 3% and 8% precision, respectively, from the DR9 CMASS sample by applying
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Figure 1.10 – (Image credit: BOSS collaboration) Anderson et al. (2014a) measured the anisotropic BAO infor-
mation in DR9 CMASS. The resulting constraints in the DA (z

CMASS
e� )–H (zCMASS

e� ) plane are shown in the left-hand
panel together with the isotropic constraints (Anderson et al., 2013) and WMAP9 predictions (Hinshaw et al.,
2013). In Anderson et al. (2014b), this analysis was repeated with the extended sky coverage of the DR10 and
DR11 samples. The centre panel compares the inferred DA and H constraints to the WMAP9 and Planck 2013 (Ade
et al., 2014a) predictions. The derived angle-averaged distance is compared to other BAO measurements and the
CMB predictions in the right-hand panel. All measurements use linear-density reconstruction to improve the BAO
distance constraints.

reconstruction and marginalizing over the broad-band shape of the clustering statistics. As the
broad-band shape can be modelled in the quasi-linear regime, its information content can im-
prove constraints on the BAO distance and growth of structure from RSD. Such an analysis was
performed on the DR9 CMASS sample using the Legendre moments (Chuang et al., 2013a) and
clustering wedges (Sánchez et al., 2013).

The footprints of the CMASS samples corresponding to the three partial data releases of
BOSS are plotted in the three left-hand panels of Figure 1.9. As the spectroscopic sky coverage
increased from 3 275 deg2 in DR9 to 6 161 deg2 in DR10, and then to 8 377 deg2 in DR11, the
sensitivity of the sample with respect to the BAO distance increased as well. The BAO feature
was detected to 7σ in the galaxy correlation function and power spectrum of DR11 CMASS
(Anderson et al., 2014b). From the reconstructed LOWZ sample, the isotropic BAO distance
was measured in con�guration and Fourier space, resulting in a consensus 2.0% distance mea-
surement at ze� = 0.32 (Tojeiro et al., 2014). The improved isotropic and anisotropic BAO
constraints are shown in Figure 1.10 and individual BAO measurements based on BOSS are
listed Table 1.1 (compared to some recent SDSS LRG constraints and WiggleZ measurements).

Besides BAO measurements from reconstructed density �elds, the CMASS sample provides
tight constraints on the growth of structure at its e�ective redshift ze� = 0.57. The results
have been published in a series of papers: Beutler et al. (2014a) �tted the power spectrum
monopole and quadrupole and measured the growth of structure using a sophisticated model for
RSD (see Section 2.4.6 for more details on non-linear RSD modelling). The correlation function
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Table 1.1 – Summary of the precision of isotropic and anistropic BAO distance measurements from the recon-
structed SDSS and BOSS galaxy samples. ‘CF’ indicates con�guration space analysis of the correlation function,
‘PS’ represents power spectrum measurements in Fourier space. ‘Consensus’ results combine P (k ) and ξ (s ) mea-
surements and the quoted error represents an estimate of the combined statistical and systematic errors.

Publication Galaxy sample & analysis DV DA H

Ross et al. (2015) DR7 MGS consensus 3.8% - -
Padmanabhan et al. (2012) DR7 LRG CF 1.9% - -
Xu et al. (2013) DR7 LRG CF multipoles 2.4% 3.6% 8.3%
Anderson et al. (2013) DR9 CF 1.7% - -
Sanchez et al. (2012) DR9 CF 1.5% - -
Anderson et al. (2014a) DR9 CF consensus 1.6% 3.2% 8.4%
Kazin et al. (2013) DR9 CF wedges 1.5% 1.9% 5.0%
Tojeiro et al. (2014) DR10 LOWZ consensus 2.8% - -
Tojeiro et al. (2014) DR11 LOWZ consensus 2.0% - -
Anderson et al. (2014b) DR10 consensus 1.5% 1.9% 5.0%
Chuang et al. (2013b) DR11 CMASS CF multipoles 1.3% 1.9% 3.1%
Sánchez et al. (2014) DR11 CMASS CF wedges 1.3% 1.9% 3.1%
Anderson et al. (2014b) DR11 consensus 1.0% 1.5% 3.3%
Gil-Marín et al. (2015c) DR12 LOWZ consensus† - 2.2% 6.0%
Cuesta et al. (2015) DR12 CMASS consensus† - 1.4% 2.9%
For comparison:
Kazin et al. (2014) WiggleZ CF up to 3.4% - -
Beutler et al. (2015) DR11 CMASS & WiggleZ CF up to 2.4% - -

† Consensus values of the PS multipole analysis in (Gil-Marín et al., 2015c) and the CF multipole analysis in (Cuesta et al., 2015).

monopole and quadrupole was �tted with an RSD streaming model in Samushia et al. (2014).
Chuang et al. (2013b) used only quasi-linear scales to �t a damped linear-theory model. A
model inspired by renormalized perturbation theory (RPT) is used in Sánchez et al. (2014) to
perform full-shape �ts with the LOWZ and CMASS correlation function wedges. After the
main series of papers of the BOSS DR11 analysis, the DR11 CMASS sample was �tted using a
clustering model based on Convolution Lagrangian Perturbation Theory (CLPT) with Gaussian
streaming model (GSRSD) for RSD, improving the growth constraints from the CF multipoles
by 10% (Alam et al., 2015b). Further, with the help of HOD �tting methods for the small-scale
clustering signal in con�guration space, the error on f σ8 was reduced to 2.5% (Reid et al., 2014),
the tightest constraint at the time of writing this thesis. This result is more model-dependent
than the other DR11 analyses and relied on a modi�ed correction for galaxies that could not
be observed due to collisions of the spectroscopic �bres on the observational plate. The RSD
constraints from BOSS measurements are compared to each other and those derived from other
datasets in Table 1.2.

In general, RSD measurements using galaxy two-point statistics alone show a correlation of
the growth rate f and the clustering amplitudeσ8 as only the product f σ8 is tightly constrained.
As a di�erent alignment of the line of degeneracy is found in �ts of the bispectrum Gil-Marín
et al. (2015a), the combination of the two- and three-point correlation measurements break



18 1. Introduction

Table 1.2 – Summary of growth measurements from RSD observations of the SDSS and BOSS galaxy samples. ‘CF’
indicates con�guration space analysis of the correlation function, ‘PS’ represents power spectrum measurements
in Fourier space. ‘Consensus’ results combine P (k ) and ξ (s ) measurements and the quoted error represents an
estimate of the combined statistical and systematic errors. The quoted errors on f σ8 are obtained by varying the
background cosmology; many authors also derived constraints by �xing the background cosmology to the most
recent CMB observation.

Publication Galaxy sample & analysis ze� DA H f σ8

Chuang & Wang (2013) DR7 LRG 2D CF 0.35 7.0% 9.7% 21%
Oka et al. (2014) DR7 LRG PS multipoles 0.3 4.3% 6.1% 17%
Reid et al. (2012) DR9 CMASS CF multipoles 0.57 2.8% 4.9% 16%
Sánchez et al. (2013) DR9 CMASS CF wedges 0.57 2.8% 4.5% 13%
Chuang et al. (2013a) DR9 CMASS CF multipoles 0.57 3.0% 6.9% 15%
Sánchez et al. (2014) DR10 LOWZ CF wedges 0.32 4.1% 4.0% 23%
Sánchez et al. (2014) DR11 LOWZ CF wedges 0.32 4.4% 5.4% 21%
Sánchez et al. (2014) DR10 CMASS CF wedges 0.57 2.2% 3.9% 13%
Sánchez et al. (2014) DR11 CMASS CF wedges 0.57 1.9% 3.2% 11%
Chuang et al. (2013b) DR11 LOWZ CF multipoles 0.32 6.4% 9.1% 25%
Chuang et al. (2013b) DR11 CMASS CF multipoles 0.57 6.2% 6.9% 17%
Beutler et al. (2014a) DR11 CMASS PS multipoles 0.57 1.5% 3.6% 11%
Samushia et al. (2014) DR11 CMASS CF multipoles 0.57 1.7% 3.2% 10%
Alam et al. (2015b) DR11 CMASS CF multipoles 0.57 1.6% 4.0% 8.9%
Reid et al. (2014) DR11 CMASS CF multipoles‡ 0.57 - - 2.5%
Gil-Marín et al. (2015d) DR12 LOWZ PS multipoles 0.32 3.0% 6.9% 16%
Gil-Marín et al. (2015d) DR12 CMASS PS multipoles 0.57 1.6% 3.2% 8.6%
For comparison:
Blake et al. (2012) WiggleZ 2D PS 0.6 6.9% 6.9% 16%
Beutler et al. (2012) 6dFGS 2D CF 0.07 - - 13%

‡ Reid et al. (2014) chose to analyse adopted CF multipoles to better correct for �bre collisions on smale scales.

the degeneracy on f and σ8 (Gil-Marín et al., 2015b), signi�cantly tightening the marginalized
constraints of each parameter individually.

1.4.2 State-of-the-art galaxy clustering analysis with the LOWZ, the

CMASS, and the combined sample of the �nal BOSS release

DR12 (Alam et al., 2015a) is the �nal release within the SDSS-III series (Eisenstein et al., 2011).
The spectroscopic observations for BOSS ended in July 2014 and the �nal survey footprint
covers ca. 10,400 square degrees on the sky with a mean sector completeness of 0.98. The
selection colour cuts, sample speci�cations, and structural properties of the galaxies in the �nal
DR12 samples are described in Reid et al. (2016). These samples contain in total ca. 1.5 million
massive galaxies corresponding to an increase in e�ective area of 10% over DR11. A �rst set
of 2D BAO and RSD measurements on the DR12 LOWZ and CMASS samples using �tting and
modelling recipes very similar to the ones from previous analyses were published in several
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Figure 1.11 – (Image credit: BOSS collaboration) The two panels on the left-hand side show the RSD constraints
from the BOSS DR11 LOWZ and CMASS samples using a damped linear-theory model �tted to the CF multipoles
(Chuang et al., 2013b), eTNS �ts to the PS multipoles (Beutler et al., 2014a), the original streaming model �tted
to CF multipoles (Samushia et al., 2014), RPT model constraints from CF wedges (Sánchez et al., 2014), HOD
�tting of the small-scale, �bre-collision-corrected CF clustering signal (Reid et al., 2014), Convolution Lagrangian
Perturbation Theory (CLPT) with Gaussian streaming model (GSRSD) �ts to the CF multipoles (Alam et al., 2015b),
RPT+TNS �ts to the power spectrum and bispectrum (Gil-Marín et al., 2015a), and �ts of the same model to the PS
multipoles of the BOSS DR12 LOWZ and CMASS samples (Gil-Marín et al., 2015d). The right-hand panel compares
f σ8 constraints of various LSS probes. In all panels, the Planck TT+lowP+lensing (Planck 2015; Adam et al., 2015)
predictions assuming a ΛCDM cosmology are shown as well.

papers: 2D BAO information from CF multipoles (Cuesta et al., 2015) and PS multipoles (Gil-
Marín et al., 2015d) are merged into consensus measurements of DA(z) and H (z), which show a
modest improvement in error compared to the DR11 results. Gil-Marín et al. (2015d) performs
an RSD growth analysis with recently improved models for the redshift-space clustering �tted
to the PS multipoles. As shown in Figure 1.11, the constraints on f σ8 improve slightly and are
completely consistent with previous measurements. They are also compatible with the newest
best-�t ΛCDM predictions from Planck 2015 observations (Adam et al., 2015).

As the e�ective volume of the LOWZ sample is less than half of that of CMASS, a uni�ed
‘combined sample’ was created for the �nal data release by the combination of the two samples;
this is justi�ed by the similarity of the clustering properties of LOWZ and CMASS. A series
of companion papers led by (Anderson et al., 2016, in prep.) focusses on the analysis of three
redshift bins (of which 2 are non-overlapping) of the combined sample. The analysis recipes are
modi�ed to optimally extract cosmological information. The research presented in this thesis
has been part of these e�orts, focussing especially on the BAO+RSD measurements in Fourier
space. The results of this analysis are discussed in the main chapters of this thesis and will be
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published in Grieb et al. (2016b, in prep.). Other RSD measurements are presented in Beutler
et al. (2016b, in prep.) and Sánchez et al. (2016, in prep.), the former employing a very similar
modelling for the analysis of the power spectrum multipoles and the latter is using the same
recipes for the RSD modelling as this work in con�guration space. The analysis of the combined
sample CF multipoles with the CLPT-GSRSD model already used in Alam et al. (2015b) will be
presented in Satpathy et al. (2016, in prep.). Ross et al. (2016, in prep., CF multipoles) and Beutler
et al. (2016a, in prep., PS multipoles) discuss BAO measurements pre- and post-reconstruction.
A consensus BAO+RSD measurement is determined by the covariance-weighted average of
the individual measurements and presented in Anderson et al. (2016, in prep.). The in�uence
of systematics on the reconstructed BAO measurements is analysed in Vargas-Magaña et al.
(2016, in prep.).

The systematic biases and the constraining power of the di�erent RSD approaches are com-
pared in an RSD challenge whose results are presented in Tinker et al. (2016, in prep.). A di�er-
ent, complementary technique is applied in Salazar-Albornoz et al. (2016, in prep.) where the
angular clustering is analysed in thin redshift shells. This tomographic approach does not rely
on the assumption of a �ducial cosmology.

1.4.3 Additional cosmological observations

The Lyman-α (Ly-α ) forest, the absorption features from the continuously redshifting Ly-α-line
in the spectra of distant galaxies and quasars (QSO) due to neutral hydrogen in the high-redshift
universe (Lynds, 1971; McDonald et al., 2000; McDonald, 2003), is the second major cosmological
probe of BOSS. The Ly-α signal also has an imprint of the BAO as it depends on the density and
ionization fraction of baryonic matter. Thus, the BAO distance can be measured at redshifts
before the onset of Dark Energy domination. The BAO was detected with a 3σ con�dence level
using the DR9 quasar sample in Slosar et al. (2013), measuring the BAO distance scale to 2%.
Using DR11, an anisotropic BAO measurement with the quasar-Ly-α forest was possible (Font-
Ribera et al., 2014; Delubac et al., 2015). The joint BOSS LSS and Ly-α analysis (Aubourg et al.,
2015) is able to build an ‘inverse distance ladder’ using SN 1a data and BAO measurements to
measure the local Hubble parameter to 1.7%.

1.4.4 The successor program: eBOSS

The extended Baryon Oscillation Spectroscopic Survey (eBOSS; Dawson et al., 2016) will fo-
cus on clustering measurements in the redshift range between current BOSS samples and the
quasars and extend the quasar sample (Myers et al., 2015) to improve high-redshift BAO con-
straints from quasar clustering (0.6 ≤ z ≤ 2.2) and the Ly-α forest (2 ≤ z ≤ 2.5). The LSS
samples will comprise of an extended LRG sample in addition with emission line galaxies (ELG;
Jouvel et al., 2015) in the redshift range 1 ≤ z ≤ 1.2. It is expected that the eBOSS survey can
improve the dark energy Figure-of-Merit (FoM) by a factor of up to three for the Chevallier-
Polarski-Linder (CPL) parametrisation of Dark Energy (Zhao et al., 2016) compared to current
BOSS constraints.
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1.5 Outline of the thesis

This PhD thesis is structured as follows: in Chapter 2, the fundamental theoretical concepts of
physical cosmology are presented, with an emphasis on those aspects that are most important
for the LSS analysis described in this thesis. This includes a discussion of the background cos-
mology and how structure is modelled as anisotropic perturbations on this background. This
chapter pays a special focus to the late-time evolution of density perturbations in our Universe
and how they are traced by galaxies in real- and redshift space. The Fourier space measure-
ments of the anisotropic galaxy clustering on the BOSS DR12 combined sample are presented
in Chapter 3. The de�nition of the optimal-variance estimator for clustering wedges in Fourier
space, one of the main results of this thesis, is given there. This chapter also explains observa-
tional systematics such as the window function e�ect and presents the Fourier-space wedges
measured from the data and synthetic catalogues whose clustering properties are matched to
the data.

Chapter 4 discusses covariance matrices for the anisotropic clustering analysis and derives
the theoretical Gaussian covariance matrices for redshift-space galaxy clustering (in con�gu-
ration and Fourier space). These are validated on a set of galaxy catalogues generated from the
Minerva simulations. The estimation of the data covariance matrix, however, is obtained from
the sets of BOSS mocks. The modelling of the redshift-space galaxy clustering statistics is ad-
dressed in Chapter 5, summarizing the model parameter space and the details of the parameter
estimation. Further, this chapter presents the veri�cation of the redshift-space clustering model
by means of performance test on synthetic catalogues obtained from Minerva simulations, as
well as those speci�cally designed for the BOSS RSD challenge, as well as the Patchy mocks
mimicking the full characteristics of the �nal BOSS sample.

Chapter 6 is the analysis of the measurements in a cosmological context and contains the
main results of this thesis. These include the full-shape measurements of the BAO distance and
growth rate for each redshift bin of the sample and the derivation of cosmological implications
for the standard model and usual extensions using full-shape clustering measurements in com-
bination with CMB and supernovae data. The outcome of this thesis is concluded and discussed
in Chapter 7.

Appendix A contains a brief introduction to Bayesian techniques with a special focus on
using the Markov chain Monte Carlo method to estimate parameter constraints. In Appendix B,
the constraints for all parameters of the full-shape measurements and the basic cosmological
and model parameters of the combined �ts of CMB data, Fourier space wedges, and optionally
SN Ia data are listed in tables.





2
Theory

“General relativity is the most beautiful physical theory ever invented. It describes one of
the most pervasive features of the world we experience — gravitation — in terms of an ele-
gant mathematical structure — the di�erential geometry of curved spacetime — leading to
unambiguous predictions that have received spectacular experimental con�rmation. Con-
sequences of general relativity, from the big bang to black holes, often get young people �rst
interested in physics, and it is an unalloyed joy to �nally reach the point in one’s studies
where these phenomena may be understood at a rigorous quantitative level.”

Carroll (2004)

In this second chapter of the thesis, I present the theoretical groundwork for the clustering
analysis of galaxy-redshift surveys. The structure in our Universe is physically described as
perturbations on a homogeneous background whose dynamics are derived in Section 2.1, dis-
cussing, for example, the FLRW universe, cosmic distances, and Dark Energy models. Starting
the introduction to the inhomogeneous universe, the clustering two-point statistics are intro-
duced in Section 2.2. In Section 2.3, the physics of the inhomogeneities of the early universe
are described to a level of detail that is su�cient to discuss the main features of the matter
power spectrum and the baryonic acoustic oscillations imprinted on it. Finally, Section 2.4 lays
the framework for the analysis of the galaxy clustering measurements. The discussion of the
late-time evolution of the density anisotropies includes an introduction to perturbation theory,
redshift-space distortions, and the Alcock-Paczynski e�ect. A special focus lies on the mod-
elling of two-point statistics of the evolved density perturbations, as traced by galaxies in real-
and redshift space, in the non-linear regime. Hence, the modelling of the matter clustering in
the non-linear regime (Section 2.4.4), galaxy bias (Section 2.4.5), and redshift-space distortions
(Section 2.4.6) used in this work are presented in more detail.

This chapter only presents the most relevant aspects of theoretical cosmology. For more
in-depth descriptions, the reader is referred to standard cosmology textbooks such as Dodelson
(2003).
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2.1 The smooth background universe

2.1.1 The background evolution

The only relevant physical interaction at cosmological scales is gravity, which is described by
general relativity (GR; Einstein, 1915, 1916). This and the cosmological principle stating that
the Universe is isotropic and homogeneous on large scales are the fundamental hypotheses
of cosmology. The space-time metric of the Universe is the spatially maximally symmetric
Friedmann-Lemaítre-Robertson-Walker (FLRW) metric,1

ds2 = дµν dx µ dxν = −dt2 + a2(t )

[
dr 2

1 − K r 2 + r
2
(
dθ 2 + sin2 θ dφ2

)]
, (2.1)

where a(t ) is the (dimensionless) scale factor, t is the time coordinate, r , θ , and φ are spatial
coordinates (in a spherical coordinate system), andK is the curvature constant. The last constant
de�nes the spatial geometry of the universe where K = 0 corresponds to �at (Euclidean), K < 0
to open (hyperbolic), and K > 0 to closed (elliptical) spatial hypersurfaces of the Universe.

Equation (2.1) is based on comoving coordinates that are chosen to be stationary with respect
to changes in a(t ). The physical spatial separations r , which expand with the scale factor a(t ),
are related to the comoving distances x by

r = a(t ) x , and v ≡ ṙ = ȧ(t ) x +u, (2.2)

where v is the physical velocity �eld, which is decomposed into a ‘cosmic �ow’ component
(ȧ x ) and a residual peculiar velocity �eld in comoving coordinates,u. The normalization of the
scale factor is chosen such that a(t0) = 1 where t0 is the time of today. The spatial curvature is
given by the scalar of curvature,

(3)R =
6K
a2(t )

. (2.3)

It is convenient to de�ne the conformal time τ by

dt = a(τ ) dτ , (2.4)

so that the FLRW metric can be factorized in a static metric and a time-dependent pre-factor,
ds2 = a2(τ )

[
−dτ 2 + dΣ2

]
.

By de�ning the radial coordinate χ as

dχ = dr
√

1 − Kr 2
, (2.5)

the spatial part dΣ2 of the FLRW metric of equation (2.1) can be written in an alternative form,

dΣ2 = dχ 2 + S2
K (χ )

[
dθ 2 + sin2 θ dφ2

]
, (2.6)

1Note that a unit system where c = 1 was adopted.
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Table 2.1 – The di�erent components of the energy budget of the Universe and its equation-of-state parameter
wi as de�ned by equation (2.14).

Component Abbreviation i EoS parameter wi

Radiation r 1/3
Cold dark matter c 0
Baryons b , 0, but suppressed
Cosmological constant Λ −1
(Dark Energy) DE wDE
(Curvature) K −1/3

where SK (χ ) is a function of the radial coordinate given by

SK (χ ) =




1√
k

sin(
√
k χ ) if K > 0,

χ if K = 0,
1√
|k |

sinh(
√
|k | χ ) if K < 0.

(2.7)

The dynamics of the metric are governed by the Einstein equation,

Gµν = Rµν −
1
2 дµν R = 8πGTµν , (2.8)

where G is Newton’s constant, Tµν the energy-momentum tensor, Rµν the Ricci tensor and R =
дµνRµν the Ricci scalar. Gµν and Rµν are tensors describing the curvature and as such funda-
mental quantities in the di�erential geometry of curved spacetime (GR is an example of such a
theory). They are given by non-linear functions of the metric дµν and its inverse metric дµν .
Other important concepts of di�erential geometry are the Christo�el symbols, the Levi-Cevita
connection, contra- and covariant indices and the covariant derivative ∇µ , which will not be
discussed in this brief introduction. The reader is referred to lectures and textbooks on general
relativity such as Weinberg (1972) and Carroll (2004).

The most general form of the energy-momentum tensor that is compatible with the hypoth-
esis of homogeneity and isotropy is a perfect �uid,

Tµν = (p + ρ)Uµ Uν + p дµν , (2.9)

where ρ, p, and U µ are the energy density, pressure, and four-velocity of the �uid.
With the assumptions of a FLRW metric and a perfect �uid, the Einstein equations in (2.8)

reduce to two independent Friedmann equations,(
ȧ

a

)2
=

8πG
3 ρ −

K

a2 (2.10)

ä

a
= −

4πG
3

(ρ + 3p) . (2.11)
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These equations implicitly contain the continuity equation,

ρ̇ + 3 ȧ

a
(ρ + p) = 0, (2.12)

as a result of the energy-momentum conservation equation, ∇νTµν = 0.
For non-interacting species of particles, the energy-momentum tensor can be written as

the sum over contributions of each type. Here, we use the (relativistic) radiation, the (non-
relativistic and pressureless) cold dark matter, the non-relativistic baryonic, and the vacuum
energy2 components,

Tµν = T
r
µν +T

c
µν +T

b
µν +T

Λ
µν , (2.13)

each modelled as a barotropic �uid. This assumes that each component is described as a perfect
�uid whose pressure pi and density ρi are related by a linear equation of state (EoS),

p = w ρ, w = const. (2.14)

The particle species are characterised by their equation-of-state parametersw , which are listed
in Table 2.1. These components de�ne the cosmological standard model (ΛCDM).

The energy density of a non-interacting barotropic �uid evolves as

ρ ∝ a−3(1+w ) (2.15)

with the scale factor. Due to the varying time dependence of each component, the total en-
ergy density of the Universe, ρ = ∑

i ρi , was dominated by di�erent species at di�erent times.
The transition times depend on the exact ratios of today’s energy densities: the Universe was
radiation-dominated after the Big Bang, then became matter-dominated, and �nally the cosmo-
logical constant dominates the dynamics. The energy density of the cosmological constant is
time-independent, ρΛ = (8πG )−1Λ, and for any expanding universe in which Λ , 0, this ‘vac-
uum energy’ will eventually prevail. In principle, a curvature-dominated era is also possible,
but this case is excluded by cosmological observations.

For convenience, the Hubble parameter is de�ned as

H ≡
ȧ

a
, (2.16)

whose value today is usually written as

H0 ≡ H (t0) = 100 h km s−1 Mpc−1. (2.17)
2Many textbooks and articles write the Einstein equation as

Gµν = Rµν −
1
2 дµν R + Λдµν = 8π GTµν ,

expressing the vacuum energy as the analogous cosmological constant Λ. We have adopted the convention to write
the vacuum energy, TΛ

µν = −
Λ

8πG дµν , as a contribution to Tµν .
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Equation (2.10) implies that the Universe is �at (K = 0) for a critical density given by

ρcrit ≡
3H 2

0
8πG = 2.773 × 1011 M� h

−1
(
h−1 Mpc

)−3
. (2.18)

Normalizing each density by the critical one, we de�ne the density parameters for each species
in equation (2.13),

Ωi ≡
ρi (t0)

ρcrit
=

8πG
3H 2

0
ρi (t0). (2.19)

Besides the natural components (Ωr, Ωc, Ωb, and ΩΛ for a ΛCDM universe), we de�ne the
curvature component as

ΩK ≡ −
K

H 2
0
, (2.20)

so that the �rst Friedmann equation reads ∑
i Ωi + ΩK = 1.

2.1.2 Cosmological distances

Cosmological distances, such as the radial or angular diameter distance, are derived as the nat-
ural extension of the analogous distances in a Euclidean universe. In a FLRW universe, the scale
factor plays a prominent role as it gives the scaling relation between comoving coordinates and
physical distances. The proper distance, Dp(t ), between the origin and an object of coordinates
(r ,θ ,φ) is given by

Dp(t ) ≡ a(t ) Dc = a(t )

∫ r

0

dr ′√
1 − K (r ′)2

= a(t )χ , (2.21)

where χ is the radial coordinate de�ned by equation (2.5), which coincides with the comoving
distance to the object, Dc. The comoving distance also corresponds to the present-day proper
distance Dp(t0) as we chose a(t0) = 1.

The cosmological redshift z is given by the ratio of the wavelength shift due to the expansion
of the Universe, ∆λobs, and the emitted wavelength λemit,

1 + z ≡ 1 + ∆λobs
λem

=
λobs
λem
=

1
a
. (2.22)

Thus, light that is received with a redshift z left the emitting galaxy, when the scale factor was
a = (1 + z)−1.

In cosmological observations, the redshift is the measured radial coordinate instead of time
or the scale length, a(t ). Hence, it is useful to relate the proper distance to redshift,

Dp(z) =

∫ z

0

dz′
H (z′)

. (2.23)

Here, the Hubble parameter at redshift z is given by

H 2(z) = H 2
0

∑
i

Ωi (1 + z)3(1+wi ), (2.24)
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where the EoS parameters wi can be found in Table 2.1.
For low redshifts, the linear approximation of equation (2.23) is the Hubble law,

Dp(z) ≈
c z

H0
, (2.25)

where the speed of light c was written explicitly despite the convention c = 1 elsewhere.
Thus, local measurements of the distance-redshift relation allow us to constrain the present-

day Hubble parameterH0, while observations of the redshift-distance relation over a wide range
of redshifts allows to infer the decomposition of the Universe into energy components and their
EoS parameter via H (z).

As the proper distance is not an observable, alternative concepts of distance are used in
cosmology to probe the distance-redshift relation. Here, we discuss the most important one for
this work, the angular diameter distance, DA(z).

Galaxies are extended objects on the sky. Let us assume that such an object at a comoving
distance χ (z) is perceived with an angular diameter δφ. According to the spatial FLRW metric
in spherical coordinates, given by equation (2.6), the physical size is

δl = a(z) SK (χ (z)) δφ . (2.26)

As the corresponding relation in a static Euclidean universe is

δl = D δφ, (2.27)

whereD is the distance to the object, the angular diameter distance is de�ned by the comparison
of these two equations,

DA(z) ≡ a(z) SK (χ (z)). (2.28)
For a �at universe, this reduces to DA(z) = Dc(z)/(1 + z). Thus, the angular diameter distance
follows a di�erent redshift evolution than the comoving distanceDc(z) for large z. In fact,DA(z)
has a turning point and galaxies of constant physical size very far away have a larger angular
diameter than those closer by (as their comoving size is also larger). Objects with a predictable
physical size are known as standard rulers and are further discussed in Section 2.4.7.

2.1.3 Dark Energy

Weakening the assumptions of the standard model, Dark Energy (DE) is not represented by a
cosmological constant as in the ΛCDM paradigm. A general Dark Energy model does not �x the
evolution of the EoS parameterwDE. In that case, the Hubble parameter H (z) in equation (2.24)
has to be modi�ed to

H (z)2 = H 2
0




∑
i,Λ

Ωi (1 + z)3(1+wi ) + ΩDE exp
[
−3

∫ z

0

(1 +wDE(z
′)
) dz′
z′

] 

. (2.29)

Common restrictions of the equation of state of DE are a constant EoS parameter,wDE = const,
and the Chevallier-Polarski-Linder (CPL) parametrization (Chevallier & Polarski, 2001; Linder,
2003),

wDE(z) = w0 +wa (1 − a) = w0 +wa
z

1 + z . (2.30)
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Here, the equation of state is allowed to have a linear modi�cation with the scale length of the
Universe, a(z) = (1 + z)−1.

The CPL parametrization is however entirely phenomenological, as the underlying physics
of a crossing of the phantom divide barrier,wDE = −1, is unknown (Vikman, 2005). For instance,
a crossing of this barrier cannot be modelled with a scalar �eld φ, which otherwise can model
a perfect �uid with an arbitrary equation of state,

wφ =

1
2φ̇

2 −V (φ)
1
2φ̇

2 +V (φ)
, (2.31)

where 1
2φ̇

2 and V (φ) are the kinetic and potential energy of the scalar �eld, respectively. This
scalar-�eld description for DE is used, for instance, in the Quintessence models (Ratra & Peebles,
1988)

2.2 Two- and N -point statistics

Before the physics of the anisotropic universe is discussed, this section introduces the concepts
of N -point statistics, which are used to quantify the cosmological inhomogeneities.

2.2.1 Two-point clustering measurements

All N -point clustering measurements are based on a density contrast or density �uctuation
�eld, δ (x ). Here, we assume Euclidean space in three dimensions with Cartesian coordinates x .
In large-scale structure measurements, galaxies are observed as (biased) tracers of the matter
clustering. The density contrast is de�ned by the spatial density of galaxies, n(x ), with respect
to the mean (background) density n̄,

δ (x ) ≡
n(x ) − n̄

n̄
. (2.32)

Here and in the following chapters, the Fourier transform is de�ned as

δ̂ (k ) ≡

∫
δ (x ) e−ik ·x d3x . (2.33)

Thus, the inverse Fourier transform is

δ (x ) =
1

(2π )3

∫
δ̂ (k ) eix ·k d3k . (2.34)

As there is only one Universe to observe, two-point statistics are taken as spatial averages,
denoted by 〈· · ·〉, over products of the density contrast. Clustering analyses measure two-point
statistics from a density ‘snapshot’ of the universe at a certain look-back time. Initially, the
density perturbations were small, |δ | � 1, so that their evolution from the setting of the initial
conditions to the snapshot time can be described by linear approximations of the gravitational
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�eld equations (linear perturbation theory). For large scales, the evolved density �uctuations
do not exceed |δ | ' 1 and still belong to the regime of linear evolution equations. Thus, uncor-
related Fourier modes evolve independently, so that the two-point function is more naturally
described in Fourier space. The power spectrum is de�ned as the covariance of the Fourier den-
sity �uctuations,

〈δ̂ (k ) δ̂ (k′)∗〉 = (2π )3δD(k − k
′) P (k ), (2.35)

where δD(k ) is the 3D Dirac delta function and δ̂ (k )∗ denotes the complex conjugate of the
Fourier density �eld.

The (two-point) correlation function, de�ned as

ξ (r ) ≡ 〈δ (x )δ (x + r )〉, (2.36)

represents the Fourier transform of the power spectrum,

ξ (r ) =
1

(2π )3

∫
P (k ) eik ·r d3k . (2.37)

According to the cosmological principle, the density �eld is assumed to be statistically isotropic
and homogeneous at large scales, so that the power spectrum depends only on the absolute
wavenumber k ≡ |k | and the correlation function only on the distance r = |r |. In this isotropic
case, the Fourier relation between power spectrum and correlation function reduces to

ξ (r ) =
1

2π 2

∫
P (k ) j0(kr ) k

2 dk . (2.38)

As the de�nition of the power spectrum in equation (2.35) has units of volume, it is useful to
de�ne a dimensionless power spectrum as

∆2(k ) =
k3

2π 2P (k ). (2.39)

Another observable derived from the power spectrum is the spectral index, ns, which repre-
sents the power-law approximation of the power spectrum,

ns ≡
d ln P (k )

d lnk . (2.40)

A power spectrum that satis�es ns = 1 is called scale-invariant.

2.2.2 Higher order correlations and Gaussianity

The N -point correlation function, ξ (n) (x1, . . . ,xn ), is de�ned by the relation (Peacock, 1998,
chapter 16.2):

1 + ξ (n) (x1, . . . ,xn ) = 〈
n∏
i=1

[1 + δ (xi )]〉. (2.41)
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Eachn-point function has contributions from lower orders and a reduced term that corresponds
to ξ (n)red (x1, . . . ,xn ) = 〈

∏n
i=1 δ (xi )〉. Here, we give the relation for the three-point function as an

example,

ξ (3) (x1,x2,x3) = ξ (x1 − x2) + ξ (x1 − x3) + ξ (x2 − x3) + ζ (x1,x2,x3), (2.42)

where ζ (x1,x2,x3) ≡ ξ
(3)
red(x1,x2,x3) = 〈δ (x1) δ (x2) δ (x3)〉 is the reduced three-point correlation

function.
The Fourier-space higher order correlations are de�ned likewise. For example, the bispec-

trum, B (k1,k2,k3), is de�ned as

〈δ̂ (k1) δ̂ (k2) δ̂ (k3)〉 = (2π )3 δD(k1 + k2 + k3) B (k1,k2,k3), (2.43)

which is the Fourier-space counterpart of the reduced three-point function ζ (x1,x2,x3).
For a Gaussian density �eld, the connected correlators of odd order vanish and the reduced

n-point functions with even n can be written in terms of the two-point statistics by the Isserlis
theorem (also known asWick theorem). For the evolved cosmic density �eld, gravitational mode-
coupling produced deviations from Gaussianity, so that the higher-order correlators di�er from
the predictions by the Isserlis theorem. Thus, a fraction of the cosmological information is only
accessible by means of the higher-order correlators as not all information is contained in the
two-point statistics.

An alternative to measurements of the higher-order statistics is the Gaussianisation of the
density �eld. Such techniques can restore the information in the two-point statistics that was
‘lost’ to higher-order correlators due to the non-linear evolution.

2.3 The early anisotropic universe

This section gives a summary of the physics of the early anisotropies in the Universe that are
relevant for the matter power spectrum at later times, especially for its broad-band shape and
the BAO feature imprinted onto it.

2.3.1 The linear-theory matter power spectrum

The primordial power spectrum

In addition to general relativity and the cosmological principle, the standard cosmological
paradigm includes an early phase of in�ation, in which the expansion of the scale factor was
very close to an exponential dependence on time (and thus the expansion accelerated). This
in�ationary epoch took place before the generation of known matter in the baryogenesis and
the Big Bang Nucleosynthesis and it is consistent with a number of observations, even though
no direct evidence of this scenario has been found yet. Most importantly, in�ation provides
a mechanism for the origin of the initial seeds of the large-scale structure that we see today.
Many in�ationary scenarios have been developed, but the most simple ones assume a single
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scalar �eld whose background evolution was in slow roll. This means that the potential energy
dominated over the kinematic energy and this state lasted for a period in which the scale factor
increased at least by a factor of exp (60) solving the horizon and �atness problem (for more
details on in�ation, see standard textbooks such as Liddle & Lyth, 2000). Due to the accelerated
expansion, the comoving Hubble scale (aH )−1 decreased. Outside the horizon, the �uctuations
of the scalar �eld are ‘frozen-in’ because they loose causal contact. On the spatial hypersheet
in which in�ation ends (due to the violation of the slow-roll conditions), the �uctuations are
converted to time perturbations. Thus, the initial density perturbations have been formed from
variations of the potential energy.

This simple scenario leads to a few generic predictions for the density perturbations, which
can be tested in cosmological observations:

1. The initial perturbations were Gaussian as they correspond to quantum �uctuations of a
scalar �eld residing in its ground state due to the fast dilution. Thus, the density �eld is
fully described by the primordial power spectrum.

2. As the structure of all other matter in the Universe can be explained by perturbations of
a single degree of freedom, these perturbations are adiabatic and can be described with
a single power spectrum, the density power spectrum Pδ .

3. Due to the slow-roll condition, this power spectrum is almost scale-invariant and can be
described by a power law. In terms of the comoving curvature perturbation, R, this power
law reads

∆2
δ (R ) = A

(
k

k0

)ns−1
, (2.44)

where ∆2
R

is the dimensionless power spectrum, de�ned in equation (2.39), of R, k0 is
an arbitrary reference scale, the amplitude A is a free parameter, and the spectral index
is ns (also known as tilt). Due to the slow-roll condition, ns is close to unity. In order
not to depend explicitly on the power-law assumption, the tilt can also be de�ned in a
scale-dependent manner as

ns(k ) − 1 ≡
d ln∆2

R
(k )

d lnk . (2.45)

4. Apart from scalar inhomogeneities, in�ation naturally produces tensors perturbations,
which propagate through the Universe as gravitational waves. These waves leave an
imprint in the CMB polarization, whose detection would be a strong indication of the
correctness of the in�ation paradigm.

The �rst three predictions have been veri�ed in observations to great precision, especially by
measurements of the CMB temperature and polarization (e.g., see the Planck 2015 results, Ade
et al., 2015).
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A note on cosmological perturbation theory. Cosmological perturbation theory must
take the gauge freedom into account. The free choice of the coordinate system that is used to
describe the perturbations means that besides physical degrees of freedom (DoF), the evolution
equations of a perturbed cosmological model also include DoF that correspond to rede�nitions
of the coordinates. Restricting the coordinate system to a speci�c choice removes these unphys-
ical solutions. Alternatively, results can be expressed in terms of gauge-independent variables
that do not depend on the choice of the coordinate system. One example is the comoving cur-
vature perturbation R that is used to describe the metric and density perturbations sourced by
the in�aton �eld.

The transfer function and the power spectrum in linear theory

The primordial curvature perturbations are conserved outside the horizon. During the radiation-
and matter-dominated epochs after the Big Bang, the Hubble scale increases and becomes suc-
cessively larger than the scale-length of the primordial �uctuations, which thus re-enter into
the horizon. The evolution of the perturbation modes after re-entry has to be described by fully
relativistic perturbation theory using the linearised Einstein equations for a perturbed FLRW
universe. This treatment is very complex (among other aspects due to gauge freedom) and a
full treatment is beyond the scope of the theory chapter of this thesis. The reader is referred
to the seminal review of Bardeen (1980) and textbooks such as Dodelson (2003) and Weinberg
(2008).

The most important e�ect on the evolution of density perturbations is the transition from
radiation to matter domination. The transition (or turn-over) scale is given by the horizon size
at the time of matter-radiation equality (1 + zeq ' 23900 ΩM h2),

keq ' 0.073 ΩM h2 Mpc−1. (2.46)

This scale naturally distinguishes two regimes of the transfer function,T (k ; z), which is de�ned
by its e�ect on the comoving curvature perturbation R via

∆2
R
(k ; z) = T 2(k ; z) ∆2

R
(k ). (2.47)

Thus, the transfer function expresses the time evolution of the power spectrum of scalar per-
turbations.

For a redshift z well after the transition, it can be shown that the asymptotic behaviour of
the transfer function is given by

T (k ; z) ∝



1 if k � keq,

k−2 lnk if k � keq.
(2.48)

As these asymptotes do not describe the power spectrum around the turn-over scale which is
the part probed by cosmological observations, more complex treatments need to be used in
practice. Analytical approximations of the transfer of power are the BBKS function (Bardeen
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Figure 2.1 – The matter power spectrum (left-hand panel) and two-point correlation function (right-hand panel)
as given by linear theory at redshift z = 0.57 for the Minerva cosmology given in Table 3.2. The blue solid line
shows the results obtained with CAMB and the black dotted line correspond to the ‘smooth’ EH98 predictions
for which the BAO feature is turned o�. The asymptotic trends given by the limits of the transfer function in
equation (2.48) are shown as red dashed and dot-dashed lines. The series of wiggles in the power spectrum and
the single peak in the correlation function are the signal imprinted by the BAO (cf., Section 2.3.2).

et al., 1986) and the improved �tting formula given in Eisenstein & Hu (1998, EH98). The lat-
ter approximation incorporates the e�ect of baryons on the matter power spectrum (cf., Sec-
tion 2.3.2), but this can be partly switched o� to produce a ‘smooth’ matter power spectrum
without BAO wiggles.

For more accurate results matching the requirements of modern cosmological experiments,
astronomers need to rely on numerical solvers of the perturbed Einstein equations for metric
and density perturbations and the hierarchy of Boltzmann equations for photon collisions. As
the photons are a system of a large number of interacting particles, the set of equations that
describe their dynamics can only be solved with an approximate hierarchical approach to the
Boltzmann equations, the Boltzmann hierarchy. Standard codes have been developed by the
community to solve the perturbed Einstein equations and the Boltzmann hierarchy, like CAMB3

(Lewis et al., 2000) and CLASS4 (Lesgourgues, 2011).

An example of the CAMB and ‘smooth’ EH98 results for the linear-theory matter power
spectrum and the corresponding two-point correlation function are shown in Figure 2.1 (for
the cosmology that is used for the Minerva simulations described later in Section 4.3). In the
left-hand panel, the asymptotic limits for the matter power spectrum as given by the limits of
the transfer function in equation (2.48) are shown as well.
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Figure 2.2 – Left-hand panel: The matter power spectrum as given by CAMB using the Minerva cosmological
parameters given in Table 3.2 for redshifts z ∈ {0,0.3,0.57,1.0,2.0}. The di�erence in Plin (k ) is only given by the
growth ∝ D2 (z). Right-hand panels: The growth function D (z) de�ned by equation (2.49) (upper panel) and linear
growth rate f (z) de�ned by equation (2.64) (lower panel) for the Minerva cosmology. In the matter-dominated
era, before the onset of late-time acceleration, these functions are given by D (z) = (1 + z)−1 and f = 1.

The growth factor

For times well in the matter-dominated epoch, the matter power spectrum only evolves by
growth with a2(t ). Thus, it can easily be extrapolated in time. In the late-time evolution where
the Universe is dominated by Dark Energy (or curvature in the absence of Dark Energy), the
power spectrum evolution di�ers from this behaviour. To account for this, the evolution of the
density �eld is described by factoring out a growth function D (a) de�ned by

P (k ,a) = A
D2(a)

D2(a = 1)

(
k

k0

)ns

T 2(k ), (2.49)

separating the growth of structure from the transfer function. The growth function is normal-
ized to D (a) = a during matter domination. For the general ΛCDM case, one can easily derive
from the Euler and Poisson equations for matter perturbations that the growth factor is given
by (Dodelson, 2003)

D (a) =
5ΩM

2
H (a)

H0

∫ a

0

H 3
0 da′

(a′)3H 3(a)
. (2.50)

In the left-hand panel of Figure 2.2, the e�ect of the growth function on the matter power
spectrum is illustrated for the Minerva cosmology. The corresponding growth function is
plotted as a black solid line in the upper panel on the right-hand side as a function of redshift,
normalized as D (z)/D (z = 0). For comparison, the extrapolation of the result for the matter-
dominated era, D (z) ∝ (1+z)−1 is shown as gray dashed line. The lower panel on the right-hand
side will be addressed later in Section 2.4.2.

3http://www.camb.info
4http://www.class-code.net

http://www.camb.info
http://www.class-code.net
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2.3.2 The baryon-photon plasma and baryonic acoustic oscillations

The explanation of the baryon acoustic oscillations needs a small detour back to the early uni-
verse. Due to the high temperatures, baryonic matter primordially existed in form of electrically
neutral neutrons and charged protons and electrons. During the Big Bang nucleosynthesis, the
neutrons and protons formed charged atomic cores, mostly hydrogen and helium ions. But
atoms could not be formed due to absorbed or scattered thermal photons whose mean energy
was above the ionization level. Prior to recombination, the baryonic matter (the frequently col-
liding charged electrons and ions) were strongly coupled with the photons by Thomson scat-
tering, the low-energy limit of Compton scattering, between photons and the free electrons. In
this so-called baryon-photon plasma, density-perturbations are damped relatively to the CDM
perturbations as the baryon-photon pressure prevents the growth due to gravitational instabil-
ity and gives rise to acoustic waves. These waves, dubbed baryonic acoustic oscillations (BAO),
propagated away from density peaks in the plasma.

Recombination marks an epoch at which the free particles formed atoms, as the Universe
became cold enough that these particle composites could not be ionized again by a typical ther-
mal photon. After recombination, the Universe became neutral and transparent. The photons
decouple from the baryon when their mean free path was larger than the Hubble horizon so
that light was allowed to cross the observable universe basically without scattering. From the
time of decoupling – which was when the Universe was ca. 3000 K hot at a redshift of z ' 1089
– until today, the CMB photons redshifted in to the microwave regime, forming the cosmic
microwave background (CMB).

The acoustic waves propagate further until the baryons are released from the photons at
the drag epoch at redshift zd (shortly after the decoupling of the photons). By then, the BAO
have travelled a distance

rs(zd) =

∫ τ (zd)

0

dτ√
3(1 + R)

, (2.51)

where R = [3ρb(t0)]/[4ργ (t0)] is the baryon-to-photon ratio.
Since the photon decoupling, the baryons are subject to the same growth of structure as

CDM so that they fall into the CDM potential wells as the density of CDM dominates over the
one of baryons. But the baryon density is non-negligible, so that the dark matter also feels a
pull towards the baryon density peaks that correspond to the frozen acoustic waves. This way,
the BAO signal is imprinted onto the matter power spectrum as an enhanced correlation of
density peaks that are roughly separated by the sound horizon scale rs(zd).

2.4 The late anisotropic universe

2.4.1 Lagrangian perturbation theory

In order to illustrate some aspects of the non-linear evolution of the matter density induced by
the gravitational dynamics, we brie�y discuss Lagrangian perturbation theory (LPT) here. In
Lagrangian coordinates, an in�nitesimal �uid element is followed through space and time by
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means of the Lagrangian displacement �eld Ψ(q,t ) that maps the (comoving) initial position q
of the �uid element to its (comoving) Eulerian position x (q,t ) at some late time t ,

x (q,t ) = q + Ψ(q,t ). (2.52)

The connection between the Eulerian overdensity, δ (x ,t ) = ρ (x ,t )/ρ̄ (t )−1, and (comoving)
peculiar velocity �eld, u (x ,t ), is given by the fact that the displacement is the integral of the
velocity over the trajectory,

Ψ(q,t ) =

∫ t

0
u (x (q,t ′),t ′) dt ′, (2.53)

and by the continuity equation and the assumption of a uniform initial density,

δ (x ,t ) =

∫
δD

[
x − q − Ψ(q,t )

] d3q − 1. (2.54)

This relation allows to express the power spectrum of equation (2.35) in terms of di�erences in
the displacement �eld,

P (k,t ) =

∫
eik ·q

(
〈eik ·∆Ψ〉 − 1

)
d3q , (2.55)

where ∆Ψ(q,t ) = Ψ(q,t ) − Ψ(0,t ).
Gravitational dynamics govern the evolution of the displacement �eld,

d2Ψ(q,t )

dt2 + 2H (t )
dΨ(q,t )

dt = −∇xϕ
[
q + Ψ(q,t )

] (2.56)

where H (t ) is the Hubble parameter as given by equation (2.24) and ϕ (x ) is the gravitational
potential sourced by the density �eld. The LPT approach (e.g. Bouchet et al., 1995; Taylor &
Hamilton, 1996) uses a perturbative expansion of Ψ,

Ψ(q,t ) =
∞∑
n=1

Ψn (q,t ), (2.57)

in order to solve the evolution equation in (2.56).
The �rst order solution (1LPT; Zel’dovich, 1970) is given by

Ψ1(q,t ) =

∫ d3k

(2π )3
ik
k2 δ̂1(k,t ) eik ·q . (2.58)

where δ̂1(k,t ) = D (t ) δ̂0(k ) for initial conditions δ0(k ) and D (t ) is the linear growth function
as given by equation (2.50). Assuming an isotropic initial power spectrum, 〈δ̂0(k )δ̂0(k′)∗〉 =
(2π )3 δD(k − k′) P0(k ), the 1LPT prediction for the power spectrum is

P1LPT(k ,t ) = D2(t ) P0(k ) exp *
,
−
σ 2

L (t ) k
2

2
+
-
. (2.59)



38 2. Theory

Here, the variance of the Zel’dovich displacement σ 2
L (t ) is given by

σ 2
L (t ) ≡

D2(t )

3π 2

∫ ∞

0
P0(k ), (2.60)

which suppresses the power on small scales by the exponential damping factor in P1LPT(k ,t ).
The second-order solution, dubbed 2LPT, is usually used to generate initial conditions for

simulations at a very high starting redshift, where LPT is an accurate approximation of the full
gravitational evolution. At later times, even higher-order LPT fails to describe the two-point
statistics of the evolved density �eld already in the mildly non-linear regime.

2.4.2 Linear redshift-space distortions and the growth of structure

In LSS analyses, the distances to astronomical objects are inferred from their observed redshifts,
zobs. Besides the cosmological redshift z of equation (2.22), there is an additional component
due to the peculiar velocities of the galaxies along the line of sight (LoS), u · n̂, where u is
the (comoving) peculiar velocity and n̂ the LoS direction (also in comoving coordinates). This
modi�es the observed redshift to

1 + zobs = (1 + z) (1 + zpec), where zpec =
u · n̂

c
, (2.61)

introducing LoS-dependent anisotropies in the galaxy clustering statistics.
The peculiar velocity has two major components. First, the large-scale infall into potential

wells whose linear-order prediction was �rst described in Kaiser (1987). Second, small-scale
distortions due to orbital motion in virialized structures (Jackson, 1972).

The �rst e�ect can be modelled in linear theory. Given initial Gaussian density contrast
perturbations δ (k ), the continuity and Euler equations imply that the density contrast grows
like

δ (k,a) = D (a) δ (k ), (2.62)

where D (a) is the growth function de�ned in equation (2.50). Further, the divergence of the
velocity �eld is given by (Zel’dovich, 1970, 1LPT)

∇ · u (k,a) = −a H (a) f (a) D (a) δ (k ), (2.63)

where f is the linear growth rate, the logarithmic derivative of the growth function w.r.t. the
scale factor,

f ≡
d lnD (a)

d lna . (2.64)

The linear growth rate for the Minerva cosmological parameters given in Table 3.2 is plotted in
the lower panel on the right-hand side of Figure 2.2. At redshifts lower than ' 2, the Minerva
universe is not purely matter-dominated due to the non-zero cosmological constant and this
deviation corresponds to f , 1.
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At linear order, the redshift-space (ξzs) and real-space (ξrs) correlation function of a galaxy
sample are related by the Kaiser factor, given by (Kaiser, 1987)

S ≡
ξzs
ξrs
= 1 + 2

3β +
1
5β

2, (2.65)

which depends on the redshift-space parameter β ≡ f /b, which is the ratio of the growth rate
f and the linear bias b of the galaxy sample.

A probe of the RSD anisotropies o�ers the possibility to test modi�cations of the growth
of structure from the predictions from ΛCDM, especially from modi�cations to the theory of
general relativity, by a measurement of f . In GR, the growth rate depends on the gravitational
potential and is approximately given by a power-law dependence on the matter density param-
eter ΩM(z) (Linder & Cahn, 2007; Gong, 2008),

f (z) = [ΩM(z)]γ , where γ '
3(1 −wDE)

5 − 6wDE
, (2.66)

with an exponent depending on the EoS parameter wDE of Dark Energy as DE dominates the
late-time evolution (cf., Section 2.1.3). For the ΛCDM model, wDE = −1, the dependence on
ΩM(z) reduces to

f ' [ΩM(z)]0.55 . (2.67)

The peculiar velocity on smaller scales has been modelled with simple phenomenological
models, where the velocity dispersion of virialized structure has a Gaussian or Lorentzian dis-
tribution. For a precise RSD analysis, more sophisticated approaches such as the streaming
model (Scoccimarro, 2004) are needed. Examples of non-linear RSD model are described later
in Section 2.4.6.

2.4.3 Non-linear gravitational dynamics and N -body simulations

Galaxy clustering analysis is easiest to perform on scales in the linear regime, i.e., scales at which
the density contrast satis�es δ � 1 (smaller scales can be excluded by applying an appropriate
�lter to smooth the density �eld). At these scales, the matter power spectrum can be obtained
from linear theory as described in Section 2.3.1. However, the inclusion of a wider range of
scales into the clustering analysis is bene�cial with respect to cosmological constraints due to
an increased sensitivity of the broad-band power spectrum of the evolved density �eld. Also,
the coupling of modes induced by the non-linear gravitational dynamics change the shape of
the BAO feature (described later in Section 2.3.2) resulting in a biased standard ruler.

The simplest way to go beyond linear theory is the brute-force simulation of gravitational
structure formation using Newtonian dynamics of a system of particles (usually of equal mass
mp). Such N-body simulations (for further details, see Hockney & Eastwood, 1988; Bertschinger,
1998) solve the initial-value/boundary-value problem by dissecting the CDM density �eld into
particles, each corresponding to millions or even billions of solar masses, mp ≈ 1010 M� . The
numerical code is usually heavily parallelized and uses adaptive time discretization to solve the
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Figure 2.3 – The spatial DM and halo dis-
tribution in an N -body snapshot of the set
of Minerva simulations described in Sec-
tion 4.3 at z = 0.57. The shown section has
a side length of 150 h−1 Mpc and a width
perpendicular to the plane of the plot of
30 h−1 Mpc. The DM particles are shown as
blended black dots, while the halo catalogue
that was obtained with SubFind is overplot-
ted as orange circles whose sizes correspond
to the halo mass.

dynamical equations either using tree methods, a particle-mesh scheme, or a combination of
both.

The expansion of the FLRW universe is taken into account by rescaling the comoving coor-
dinates used in N -body simulations to physical distances with the scale factor a, which is also
used to redshift the kinetic and potential energy. No further GR corrections are needed as only
negligible curvature perturbations are sourced by the gravitational potential and no relativistic
particle interaction is simulated.

Besides CDM, modernN -body implementations can also simulate baryonic matter using ap-
propriate approximations of the hydrodynamical equations. One time-e�cient method is called
Adaptive Mesh Re�nement (AMR) and uses a mesh whose cell sizes are dynamically adapted to
the local density. An alternative approach is to simulate the �uid with a representative number
of point masses (Smoothed Particle Hydrodynamics, SPH) as implemented in the Gadget suite
(Springel, 2005).

The initial conditions for N -body simulations are randomly drawn according to the linear-
theory power spectrum (e.g., as obtained with CAMB) for a moderately high redshift. Usually
this starting point is chosen to be around z ≈ 50, because if the perturbations are too small,
the N -body technique is ine�cient, but for too late times, the analytical approximation, usually
2LPT (cf., Section 2.4.1), becomes invalid. Snapshots of the evolved density �eld in the observ-
able range 0 ≤ z ≤ 3 are stored to disk and usually post-processed to extract information about
bound structures, the DM haloes. These haloes are gravitationally bound systems of DM parti-
cles, where the relation between kinetic and potential energy was driven to an equilibrium state
by gravitational virialization. These structures are identi�ed with halo �nding algorithms, for
example, by employing a Friends-of-Friends (FoF) algorithm with a �xed linking length. More
sophisticated approaches, such as the one adopted in SubFind (Springel et al., 2001), calcu-
lates the gravitational energy of FoF-identi�ed proto-haloes to remove kinematically unbound
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Figure 2.4 – (Image credit: Cooray & Sheth, 2002)
The matter power spectrum at present time as
predicted by the halo model. The curve labelled
‘PD’ shows the Peacock & Dodds (1996)-�tting
formula, while the dot-dashed curve labelled ‘lin’
shows the linear-theory P (k ). The dotted and
dashed curves show the two terms which are
summed to give the total power (solid line) in the
halo model.

particles, which are only spatially correlated with a halo.
In Figure 2.3, we show a small section of a single snapshot of the set of Minerva simulations

described in Section 4.3 at z = 0.57. The DM density �eld is shown as blended black dots (each
corresponding to one DM simulation particle) and the halo catalogue extracted with SubFind
is overplotted as orange circles. The halo mass is indicated by the size of each circle.

2.4.4 Modeling of the non-linear matter clustering

If the simulation of the non-linear evolution with the N -body technique is computationally too
expensive, careful modelling of the (real- and redshift-space) galaxy two-point statistics beyond
the linear regime with analytical approaches is required. In the last decade, cosmologists have
paid much e�ort to derive optimal non-linear recipes for the clustering analysis with BAO (An-
gulo et al., 2008; Sánchez et al., 2008; Smith et al., 2008). The development of novel techniques
in the recent past has increased the accuracy of the predictions, enabling the extension of the
full-shape analysis in the mildly non-linear regime.

Common approaches: the halo model and cosmological perturbation theory

In this section we discuss the two most common approaches to model the non-linear gravita-
tional dynamics. The �rst one is motivated by the paradigm that all matter resides in haloes,
i.e., overdense, virialized DM structures. The number density of haloes of a given virial mass
is given by the halo mass function, for which accurate theoretical recipes have been developed
(Press & Schechter, 1974; Jenkins et al., 2001; Tinker et al., 2008). The clustering of halos can be
predicted from the mass function using peak theory (Press & Schechter, 1974; Sheth & Tormen,
1999).

The ‘halo model’ (e.g. Peacock & Smith, 2000; Seljak, 2000; Cooray & Sheth, 2002) is an
analytical approach to describe the non-linear clustering by combining the halo mass function
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with a halo density pro�le such as the one given in Navarro et al. (1996, NFW). This recipe leads
to two di�erent contributions to the two-point statistics. The two-halo (2h) term, dominating
the large-scale power, is sourced by DM structures that reside in di�erent haloes. The one-
halo (1h) contribution from substructures located in the same halo, dominates the small-scale
correlation. These two contributions and their sum are shown in Figure 2.4 compared to the
linear real-space matter power spectrum and a simple �tting formula.

This technique has been re�ned by Smith et al. (2003) by introducing �tting terms into the
2h and 1h contributions to the non-linear power spectrum,

Phalo�t(k ) = P2h(k ) + P1h(k ), (2.68)

where the �tting parameters in P2h(k ) and P1h(k ) are obtained by comparison with simula-
tions and are found to depend slightly on the cosmology. This method, dubbed ‘halo�t’, has
been recalibrated by Takahashi et al. (2012) using high-resolution N -body simulations (even
accounting for wDE , −1), and can be obtained with Camb, the code that primarily calculates
the linear-theory power spectrum (see also Section 2.3.1).

Alternatively, the cosmological perturbation theory approach (see Bernardeau et al., 2002,
for a review) derives the non-linear power spectrum using an expansion series in the density
contrast δ (x ,τ ) = ρ (x ,τ )/ρ̄ (τ ) − 1 and (comoving) peculiar velocity �eld u (x ,τ ) to solve the
system of Poisson, continuity, and Euler equations. Typically, the single-stream approximation
is invoked, which assumes that the velocity �eld is single valued at each point (i.e., requiring
that streams of matter never cross). Gravitational collapse eventually leads to shell crossing,
but at that point the perturbation theory approach anyway breaks down. Using comoving
coordinates and the conformal Newtonian gauge5, these equations read

∇2ϕ (x ,τ ) −
3
2ΩM(τ )H 2(τ ) δ (x ,τ ) = 0, (2.69)

∂δ (x ,τ )

∂τ
+ ∇ · {(1 + δ (x ,τ )]u (x ,τ )} = 0, (2.70)

∂u (x ,τ )

∂τ
+H (τ )u (x ,τ ) +u (x ,τ ) · ∇u (x ,τ ) = −∇ϕ (x ,τ ) −

1
ρ
∇j

(
ρσij

)
, (2.71)

where τ is the conformal time,H = a H the conformal expansion rate, ϕ (x ,τ ) the gravitational
potential sourced by the density �eld ρ (x ,τ ), and σij is the stress tensor.

In cosmological perturbation theory, these relations are converted to Fourier space so that
derivatives are transformed to multiplications, simplifying the analytical structure of the system
of equations. In a general cosmology, the equations do not fully decouple in k and τ (which is
the case, e.g., for a Einstein-de Sitter universe, ΩM = 1,ΩΛ = 0). None the less, approximative

5For a discussion of gauges in cosmological perturbation theory, see Bardeen (1980).
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solutions can be derived with an expansion series ansatz of the form

δ̂ (k ,τ ) =
∞∑
n=1

Dn (τ ) δ̂n (k ), (2.72)

θ̂ (k ,τ ) = −H (τ ) f
∞∑
n=1

En (τ ) θ̂n (k ), (2.73)

where θ (x ,τ ) ≡ ∇ · u (x ,τ ) is the divergence of the velocity �eld and f the linear growth rate
de�ned in equation (2.64). It turns out that the time-dependent coe�cients are given by the
growth function D (a) given in equation (2.50), Dn (a) ≈ Dn (a), En (a) ≈ Dn (a), with a mild
dependency on the cosmological density parameters.

At �rst order, the linear-theory relations for δ1 and θ1 discussed in Section 2.4.2 are recov-
ered. The solutions at higher orders of the expansion are taken from the exact Einstein-de Sitter
solutions to the system of equations (2.69) to (2.71) for a pressureless perfect �uid (i.e., assuming
that the velocity �eld does not have vorticity, σij = 0),

δn (k ) =

∫ d3q1 · · · d3qn
(2π )2n−3 δD *

,
k −

n∑
i=1

qi+
-
Fn (q1, . . . ,qn ) δ1(q1) · · · δ1(qn ), (2.74)

θn (k ) =

∫ d3q1 · · · d3qn
(2π )2n−3 δD *

,
k −

n∑
i=1

qi+
-
Gn (q1, . . . ,qn ) δ1(q1) · · · δ1(qn ), (2.75)

where Fn and Gn are the perturbation theory kernels (see equations (43) and (44) in Bernardeau
et al., 2002).

The expansion in the density �eld results in a similar one for the power spectrum,

P (k ,a) =
∑
n

Pn (k ,a), where Pn (k ,a) =

(
D (a)

D (a = 1)

)2n
Pn (k,a = 1). (2.76)

Here, we have assumed isotropy of the power spectrum and that Dn (a) = En (a) = D (a). This
series is dubbed standard perturbation theory (SPT) in the following discussion.

The higher order contributions can be derived from the linear-theory matter power spec-
trum, P1(k ,a) = [D2(a)/D2(a = 1)] Plin(k ), and from the N -point function hierarchy of p-
moments of the density �eld δp . For Gaussian initial conditions (as those generated by in�a-
tion), odd-order moments vanish and only even powers of the density �eld survive. Thus, the
higher-order ‘loop’ corrections to the ‘tree-level’, i.e.linear-order, power spectrum are given by
the di�erent combinations that can add up to the next even power of the density �eld. For
example, the �rst two loop corrections are

P2(k ,a) = P22(k ,a) + P13(k ,a) and (2.77)
P3(k ,a) = P15(k ,a) + P24(k ,a) + P33(k ,a). (2.78)
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Here, the one-loop contributions are

P22(k ,a) =
1

4π 3

∫
|F2(k − q,q) |

2 P1( |k − q |,a) P1(q,a) d3q and (2.79)

P13(k ,a) =
3

4π 3 P1(k ,a)

∫
F3(k,q,−q) P1(q,a) d3q . (2.80)

The two-loop contributions in P3(k ,a) are given, e.g., in Carlson et al. (2009, appendix A);
higher-order contributions are rarely used.

SPT is useful to describe the non-linear matter power spectrum in the high-redshift universe
if contributions up to the third order in δ are considered (Jeong & Komatsu, 2006, 2009), but
the applicability of SPT is limited at lower redshifts. For redshifts z ≈ 0, taking contributions
up to the one-loop level gives good results only for scales k . 0.1 h Mpc−1 (Scoccimarro, 2004;
Carlson et al., 2009).

Phenomenologically, the non-linear evolution can be described in two e�ects. First, the
propagator that measures the decoherence of the �nal density �eld δ̂ (k,a) with respect to the
initial conditions given by δ̂0(k ),

G (k ,a) ≡
〈δ̂ (k ,a) δ̂0(k )〉

〈δ̂0(k ) δ̂0(k )〉
(2.81)

Secondly, large-scale modes a�ect the small-scale evolution generating additional power de-
scribed by mode-coupling terms.

Lagrangian perturbation theory (LPT; Matsubara, 2008a,b), discussed brie�y in Section 2.4.1,
is a complementary approach to SPT (which is sometimes also called Eulerian perturbation the-
ory to point out the analogy). In LPT, particle trajectories are the subjects of the perturbative
expansion instead of the density and velocity �elds. The transformation between Eulerian po-
sitions x and Lagrangian coordinates q mixes the orders in SPT, and thus can be seen as a
resummation of the Eulerian PT terms. In that sense, LPT is similar to the renormalization
scheme discussed next. The propagator G derived from the 1LPT expression for the power
spectrum in equation (2.59),

G1LPT(k ,a) = D (a) exp
(
−
σL(a) k
√

2

)
, (2.82)

approximates the full non-linear decoherence at a very good level. However, higher-order
power spectrum terms for the mode coupling are suppressed at a similar level, so that the LPT
expansion does not converge even for small δ � 1.

Renormalized perturbation theory and multi-point propagators

In order to improve the accuracy of the PT expansion at low orders, renormalized perturbation
theory (RPT; Crocce & Scoccimarro, 2006a,b) employs the Dyson-Wyld resummation scheme —
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Figure 2.5 – (Image credit: Crocce & Scoccimarro, 2006a) Dissection of the individual loop contributions to the
expansion series of the non-linear matter power spectrum (in the Zel’dovich approximation) in SPT (left-hand
panel) and RPT (right-hand panel). Pnl denotes the exact result for the non-linear power spectrum, whereas P (n)

PT
(P (n)

RPT) denotes then-loop correction in SPT (RPT). Negative values are indicated by a dashed line. The resummation
of the propagator involved in RPT leads to a well-de�ned perturbative expansion, unlike SPT, for which it is not
possible to determine where the truncate the expansion in the non-linear regime due to possibly cancelling positive
and negative higher-order terms.

known from other contexts such as hydrodynamics (L’vov & Procaccia, 1995) — by a reorgani-
zation of the perturbation series such that the propagator is taken out of the perturbative ex-
pansion, and the remaining PT expansion collects terms of the same number of mode-couplings
allowed to improve convergence. In such an expansion, G1LPT(k ,a) of equation (2.82) becomes
the renormalized propagator, summing up all orders of the PT expansion that are proportional
to Plin(k ), such as the P13(k ) term of SPT. In order to improve the description, the �xed velocity
dispersion σL(a) in the LPT propagator is replaced by a scale-dependent e�ective damping scale
σ ∗(k ) in the renormalized propagator GRPT(k ,a). Thus, the series is written as

PRPT(k ,a) = G
2
RPT(k ,a) Plin(k ) +

∞∑
n=1

Pmc,n (k ), (2.83)

where the Pmc,n (k ) are the mode-coupling terms ordered by the number of interaction vertices.
This recipe can partially resolve the problem that the SPT expansion becomes impossible to
truncate at a �xed convergence level in the mildly non-linear regime, δ < 1 (but not δ � 1),
due to negative and positive contributions from terms of successively higher orders, which have
to (at least partially) cancel each other. This issues is illustrated by the dissection of the non-
linear power spectrum prediction into the di�erent loop contributions shown in the left-hand
panel of Figure 2.5. This failure of convergence of SPT prevents the use of a truncated series of
equation (2.76) as a good approximation to the non-linear power spectrum.
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The loop expansion in RPT (shown in the right-hand panel of the same �gure) is much better
behaved in the sense that, i), the loop-terms are strictly positive, ii), each order has a smaller
amplitude than the previous one and, iii), each order peaks at a higher k than the previous one,
resulting in a series where each loop-order is dominant over a certain range of wavenumbers.
This makes it easy to truncate the series at a certain accuracy, as the RPT expansion takes
into account the non-linear contributions from all scales larger than a given scale, and the
neglected impact of smaller scales as described by the high-order terms is highly suppressed.
With this method, an accuracy of 1% for the non-linear matter power spectrum up to scales
k . 0.17 h Mpc−1 at redshift zero can be achieved if contributions up to the second loop order
are included (Crocce & Scoccimarro, 2008).

For model �ts, the RPT approach has been used to generate a simpler phenomenological
model, where the e�ective mode-coupling term P̃mc(k ) is taken as an approximation to the full
mode-coupling expansion in RPT (Crocce & Scoccimarro, 2008),

P̃RPT(k ,a) = G
2(k ,a) Plin(k ) + P̃mc(k ). (2.84)

Here, only the coupling of two modes is considered, P̃mc(k ) ∝ P22(k ). By introducing the
constant velocity dispersion σ 2 in the propagator G2(k ,a) and the relative amplitude of the
mode-coupling term P22 to the data as �tting parameters and by modelling halo/galaxy bias
with a constant linear bias b, this power spectrum model is accurate to scales k . 0.15 h Mpc−1

for usual redshifts of a galaxy survey (Montesano et al., 2010). It was applied in cosmological
full-shape �ts of the two-point correlation function of the LRG DR5 sample (Sanchez et al., 2009)
and the BOSS CMASS samples of DR9 to DR11 (Sánchez et al., 2013, 2014). The complementary
model for the power spectrum was �t to the DR7 power spectrum in Montesano et al. (2012).

Performing cosmological parameter estimation beyond this phenomenological scheme of
RPT, the computation of the mode-coupling terms is a critical aspect. It was found that the inte-
grals performing the resummations can be sped up using the multi-point propagator expansion
(Bernardeau et al., 2008; Crocce et al., 2012, MPT). As a result of the work by Crocce et al. (2012),
MPTbreeze6 was published. This is a code that can calculate the non-linear power spectrum
up to the two-loop RPT expansion, by using the MPT expansion, in a similar computing time
than needed for the linear-theory power spectrum prediction using Camb (cf., Section 2.3.1);
the full RPT resummations are computationally much more expensive.

gRPT: improving RPT with Galilean invariance

In this section, we shortly discuss the ‘gRPT’ model which uses an improved approach for the
RPT-like resummation of terms in the perturbative expansion. The propagator is derived using
the same recipe as in RPT, while the resummation of the mode-coupling contribution makes use
of the Galilean invariances of the equations of motion (gRPT; Blas et al., 2016, in prep.) in order
to achieve a better convergence of the mode-coupling expansion. This approach allows the
prediction of the matter power spectrum to an accuracy required by galaxy clustering analysis
up to signi�cantly larger wavenumbers (k . 0.25 h Mpc−1) than previous approaches. This

6http://maia.ice.cat/crocce/mptbreeze/

http://maia.ice.cat/crocce/mptbreeze/
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Figure 2.6 – The mean matter power spec-
trum Pm (k ) measured from the Minerva
simulations compared with perturbation
theory predictions: Plin (k ) is the linear-
theory prediction from Camb (Lewis et al.,
2000), Phalo�t (k ) is the ‘halo�t’ model (Smith
et al., 2003; Takahashi et al., 2012) included
in Camb, P̃RPT (k ) is the phenomenological
model of equation (2.84) (Montesano et al.,
2010, 2012), PRPT,2loop (k ) is the MPTbreeze
result using two-loop multi-point expan-
sion (Crocce et al., 2012), and ’PgRPT (k ) is
the ‘gRPT’ model used in this thesis (Blas
et al., 2016, in prep.). Only the ‘halo�t’ and
‘gRPT’ model are able to describe the mat-
ter power spectrum in the mildly non-linear
regime (k . 0.25 h Mpc−1).

improvement is illustrated in Figure 2.6 where the ‘gRPT’ results for the Minerva matter power
spectrum is compared with the mean power spectrum of 100 Minerva simulations described
in Section 4.3.1, as well as the predictions of the other modelling approaches discussed in this
section.

One of the advantages of the ‘gRPT’ model is that no free parameter is needed in this solution
of the dynamical equations. Thus, the non-linear matter power spectrum can be computed
directly from the linear-theory input power spectrum, modi�cations of the power spectrum
amplitude from the clustering strength σ8 or the growth function D (a) can be approximated
using pre-computed look-up tables. The computation time for the model calculations are of a
similar order than for Camb and MPTbreeze.

The full modelling of the anisotropic clustering measurements requires a description of the
velocity �eld. In particular, the clustering wedges model described in Section 5.1 requires the
density-density power spectrum Pδδ , the cross-spectrum Pδθ between density and the veloc-
ity divergence, θ = ∇u (x ), and the θ auto-spectrum, Pθθ . As ‘gRPT’ provides the one-loop
expansion of each of these terms, the redshift-space power spectrum can be obtained readily.

For a more detailed description of the theoretical framework of the model, the reader is
referred to Blas et al. (2016, in prep.). The con�guration-space analysis of the BOSS DR12 com-
bined sample that will be presented in Sánchez et al. (2016, in prep.) contains a more detailed
description of the implementation of this model into our analysis pipeline.

2.4.5 Galaxy bias

Galaxies are biased tracers of the matter density. The current understanding of galaxy forma-
tion is that galaxies form within DM haloes, which themselves are bound structures located at
peaks of the DM density. Galaxies do not necessarily only form in the centre of a halo, but are
dispersed in the central region of a halo and follow the substructure of a halo. As the halos
themselves are located in density peaks, they alone are already a biased tracer of the density
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�eld. A simple approach to derive the clustering of haloes and galaxies assumes a linear bias
and a technique known as the peak-background split (Mo et al., 1997; Sheth & Tormen, 1999).
The way in which galaxies populate halos of di�erent masses can be modelled by the halo
occupation distribution (HOD) recipe (e.g. Peacock & Smith, 2000).

Regardless of the details of the bias modelling, a usual approach is to expand the galaxy
density �uctuations δg(x ) as a Taylor series of the local matter density δm(x ),

δg(x ) =
∞∑
n=1

bn
n! δ

n
m(x ), (2.85)

where the expansion coe�cients bn are called bias parameters.
In linear theory, the bias is given by b1, but for the non-linear regime, more bias parameters

must be considered. As the convergence of the series in equation (2.85) cannot be guaranteed
to be well-behaved, a re-parametrization of the bias coe�cients might be bene�cial (McDon-
ald, 2006; Schmidt et al., 2013). In this work, we restrict the bias model to the linear bias b1
and an e�ective second-order bias b2 as the scale dependency is neglected in order to increase
the computational e�ciency. For the modelling of the power spectrum, this was found not to
introduce a systematic error into parameter constraints, but for the bispectrum the dependence
of b2 with scale needs to be considered.

The description of equation (2.85) assumes that galaxy bias is purely a function of the local
matter density. A non-local bias prescription was proposed by McDonald & Roy (2009), includ-
ing a functional dependence of δg on the velocity divergence and gravitational potential, which
both non-locally depend on δm. These non-local dependencies are introduced by the gravita-
tional dynamics even if the initial conditions of the galaxy and density perturbations satisfy
the local condition of equation (2.85). Here, we follow (Chan et al., 2012) and write the galaxy
�uctuations as

δg(x ) = δ
(loc)
g (x ) + δ (nonloc)

g (x ), (2.86)

where the local contribution δ (loc)
g (x ) is given by equation (2.85) and the non-local contribution

can expressed as

δ (nonloc)
g (x ) = γ2 G2[ϕu] (1 + β δm) + γ3 G3[ϕu] + γ−3 ∆3G + . . . (2.87)

Here, only contributions up to the third order are considered and the velocity �eld is assumed
to be bias-free (θg = θm = ∇u). The second and third ‘Galileon’ operator G2 and G3 of the
velocity potential ϕu are given by

G2[ϕu] =
(
∇ijϕu

)2
−

(
∇2ϕu

)2
, (2.88)

G3[ϕu] =
(
∇2ϕu

)3
+ 2

(
∇ijϕu

) (
∇jkϕu

)
(∇kiϕu ) − 3

(
∇ijϕu

)2
∇2ϕu , and (2.89)

∆3G = G2[ϕ] − G2[ϕu]. (2.90)

The coe�cients in equation (2.87) are the non-local bias parameters γi ∝ b1 − 1 and the ‘mixing’
parameter β ∝ b2. These parameters can be related to local Lagrangian bias theory (e.g. Catelan
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et al., 2000) that assumes a local dependence δg[δm] in Lagrangian coordinates. Following Chan
et al. (2012), this comparison yields7

γ2 = −
2
7 (b1 − 1), β =

b2
b1 − 1 , (2.91)

γ3 =
11
63 (b1 − 1), γ−3 =

3
2γ3.

For now, we keep the non-local contributions up to those terms corresponding to second-order
Lagrangian bias. Later in Section 5.1, we perform tests of the modelling with simulations in or-
der to decide for which non-local bias parameters the local Lagrangian relation can be assumed
as a valid approximation.

2.4.6 Non-linear redshift-space distortions

In redshift-space, the clustering signal measured from a galaxy survey is distorted as the ob-
served redshift, given in equation (2.61), is a�ected by the projected peculiar motion of the
galaxies (cf., Section 2.4.2). This introduced an anisotropy w.r.t. the LoS direction to the power
spectrum which therefore depends on the LoS parameter µ, de�ned8 as the cosine of the angle
between the LoS direction and the wavenumber vector, as well.

The non-linear Kaiser formula in Fourier space

The velocity �eld is assumed to be irrotational and thus it can entirely be described by the
divergence, θ (x ) = ∇u (x ). Another assumption is that the galaxy velocity �eld is not biased
w.r.t. to the matter velocity �eld, θg(x ) = θm(x ) ≡ θ (x ).

It has become conventional to use the following ansatz for the redshift-space power spec-
trum Pzs(k ,µ ) (Scoccimarro, 2004; Percival & White, 2009),

Pzs(k,µ ) = Pnonvir(k ,µ ) FFoG(k,µ ), (2.92)
Pnonvir(k,µ ) = Pgg(k ) + 2f µ2Pgθ (k ) + f 2µ4Pθθ (k ), (2.93)

where Pnonvir(k ,µ ) is a non-linear version of the Kaiser formula in Fourier space, which depends
on Pgg = 〈δ̂g(k ) δ̂g(k )〉, Pgθ = 〈δ̂g(k ) θ̂ (k )〉, and Pθθ = 〈θ̂ (k ) θ̂ (k )〉. Further, FFoG(k ,µ ) is a non-
linear extension modelling the ‘Fingers-of-God’ (FoG) e�ect caused by the non-linear velocity
component due to virialization.

In the simplest case, we can use the linear Zel’dovich approximation of equation (2.63) for
the velocity �eld. Then, we �nd Pgg(k )/b

2 = Pgθ (k )/b = Pθθ (k ) = Plin(k ), assuming a linear bias
b = δg/δm = const. The non-linear Kaiser formula in Pnonvir(k ,µ ) reduces to the well known
Kaiser factor given in equation (2.65) for the large-scale (angle-averaged) power spectrum,

S ≡

∫ 1
−1 Pzs(k ,µ ) dµ

Pδδ (k )
= 1 + 2

3 β +
1
5 β

2, (2.94)

7Sometimes, the prefactor of δG2[ϕu ] is denoted as γ×3 = β γ2. Its local Lagrangian relation is γ×3 = −
2
7b2.

8The de�nition of the LoS parameter µ is discussed in more detail in Section 3.1.
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where β = f /b. In Fourier-space, this is a crude approach even at very large scales (Scoccimarro,
2004; Angulo et al., 2008) and imperfections of the linear approach are usually captured in a
Gaussian or Lorentzian description of the isotropic FoG term FFoG(k ,µ ) = FFoG(k ).

Non-linear extension to the streaming model

We already identi�ed RSD earlier as a crucial aspect of the modelling as the velocity �eld re-
quires a non-linear treatment even at scales where the density perturbations are in the linear
regime. It has been noticed by Taruya et al. (2010) that the redshift-space power spectrum
in N -body simulations has a modulated acoustic peak and trough structure compared to PT
predictions that are based entirely on the non-linear Kaiser formula of equation (2.93). These
features cannot be captured in a broad-band term FFoG(k ,µ ) for the virial motion. Thus, we
rely on advanced approaches (developed in Scoccimarro, 2004; Taruya et al., 2010), where the
streaming model is extended to one-loop contributions,

Pnonvir(k ,µ ) = Pgg(k ) + 2f µ2Pgθ (k ) + f 2µ4Pθθ (k ) + (kµ f )A(k ,µ ) + (kµ f )2 B (k ,µ ), (2.95)

by adding corrective terms A(k ,µ ) and B (k ,µ ) to the expression in equation (2.93). These terms
are given by a three-level PT bispectrum contribution and a quadratic linear-theory power
spectrum expression,

A(k ,µ ) =

∫ d3p

(2π )3
pz
p2

[
Bσ (p,k − p,−k ) − Bσ (p,k,−k − p)

] (2.96)

B (k ,µ ) =

∫ d3p

(2π )3 F (p) F (k − p), (2.97)

where Bσ (k1,k2,k3) is given by the following mixed bispectrum,

〈θ (k1) σ (k2) σ (k3)〉 = (2π )3δD(k1 + k2 + k3) Bσ (k1,k2,k3), (2.98)

using σ (k ) = δg(k ) + f kz
k2 θ (k ) and F (p) = pz

p2

[
Pδθ (p) + f

p2
z
p2 Pθθ

]
. The corrective terms can

be evaluated with tree-level SPT (Taruya et al., 2010, Appendix A). Subsequent analysis found
that the improved treatment reproduced the redshift-space power spectrum measurements on
N -body simulations with an accuracy better then 1% for scales up to k . 0.2 h Mpc−1 at the
redshifts relevant for galaxy surveys (z ' 0.5). Neglecting these contributions is found to be
accurate only up to k . 0.1 h Mpc−1 (Taruya et al., 2010, Fig. 5).

As a scale-independent FoG model does not describe the virial motions accurately, a non-
linear correction is introduced to the Gaussian FoG term,

FFoG(k ,µ ) = Fvir(k ,µ ) ≡
1√

1 + f 2 µ2 k2 a2
vir

exp *
,

−f 2 µ2 k2

1 + f 2 µ2 k2 a2
vir

+
-
, (2.99)

where avir is a free �tting parameter that describes the kurtosis of the small-scale velocity dis-
tribution. Again, we refer to Sánchez et al. (2016, in prep.) where the implementation of this
model is explained in greater detail.
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eTNS

Non-Gaussian corrections to the RSD streaming model are postulated in a similar way in the so-
called ‘eTNS’ model (Taruya et al., 2010; Nishimichi & Taruya, 2011), where the same corrective
terms A(k ,µ ) and B (k,µ ) account for a large-scale enhancement in halo clustering, which is
sensitive to the galaxy bias.

In its usual form, the galaxy density perturbations are modelled in ‘eTNS’ using the renor-
malised linear- and second-order local bias and second- and third-order non-local bias (Mc-
Donald & Roy, 2009) and a constant stochasticity term for the galaxy bias. The non-local bias
parameters are assumed to be given by the local Lagrangian relations of equation (2.91). The
non-linear density and velocity power spectra — Pδδ , Pδθ , and Pθθ — are calculated up to second-
order loop contributions using the RegPT code (Taruya et al., 2012). The treatment of the non-
linear RSD e�ect di�ers in ‘eTNS’ from ‘gRPT+RSD’ as the second-order bias contributions to
the corrective term A(k,µ ) are dropped. In our approach, these terms are kept to be consistent
with the general consideration of the second-order bias.

The FoG term is assumed to be a scale-independent Gaussian,

FFoG(k ,µ ) = FGauss(k,µ ) ≡ exp
(
−(k µ f σFoG)

2
)
, (2.100)

where σFoG is a free �tting parameter to capture the velocity dispersion of the orbital motion
in bound structures.

Such a galaxy clustering model was used in previous analyses of the BOSS LSS samples, DR7
LRGs (Oka et al., 2014), DR11 CMASS (Beutler et al., 2014a; Gil-Marín et al., 2015a), and DR12
LOWZ and CMASS (Gil-Marín et al., 2015d). These studies di�er in the recipes used to obtain
the matter power spectrum and details of the implementation for the �tting process. Some
analyses use two-loop resummed perturbation theory (Gil-Marin et al., 2012) for the non-linear
matter power spectra instead of RegPT.

2.4.7 The Alcock-Paczynski test on the BAO scale

The Alcock-Paczynski test (Alcock & Paczynski, 1979) is an LSS clustering probe of the param-
eters of the cosmological model. It assumes an spherical object of �xed (but unknown) diameter
δl at a known redshift z. Its angular size on the sky is given by the angular diameter distance
relation in equation (2.28),

δφ =
δl

DA(z)
. (2.101)

From the di�erential proper distance of equation (2.23), the redshift di�erence δz between the
two endpoints of the object in radial direction can be calculated,

c δz = (1 + z)H (z) δl . (2.102)

Again here, we include c explicitly to facilitate calculations.
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Figure 2.7 – Illustration of the distance measurement us-
ing the Alcock-Paczynski e�ect and a standard ruler such
as the BAO scale. Here, galaxies which are physically
separated by the BAO scale δl are observed with an an-
gular separation s⊥ = δφ DA (z) and a radial separation
s ‖ =

c δz
1+z H (z ) . If the physical size of the standard ruler, δl ,

is known, DA (z) and H (z) can be measured from equat-
ing s⊥ = s ‖ = δl .

δlδϕ

ss
┴

║

By substituting the unknown δl in these equations, we are able to measure the Alcock-
Paczynski parameter, FAP(z), given by

FAP(z) ≡
1 + z
c

DA(z)H (z) =
δz

δφ
(2.103)

entirely from observations (provided that the redshift di�erence and angular separation can be
measured precisely).

A standard ruler is an object whose physical size is known or can be predicted from other
cosmological observations. With this information, the degeneracy of the factors DM(z) =
(1 + z) DA(z) and H (z) in equation (2.103) can be broken. The acoustic scale of BAO (cf. Sec-
tion 2.3.2) is such a measurable physical scale and the BAO peak in ξ (s ), or alternative the BAO
wiggles in P (k ), can be used as a standard ruler for geometric (distance) measurements as pro-
posed in Blake & Glazebrook (2003), by equating δl = rs(zd), given by equation (2.51). Using
an anisotropic clustering measurement, the combination of a standard ruler and the Alcock-
Paczynski test (Hu & Haiman, 2003) provides a precise handle on the Hubble parameter and
angular diameter distance,

DA(z) =
δl

δφ
, (2.104)

H (z) =
cδz

1 + z
1
δl
. (2.105)

This case is illustrated in Figure 2.7.
If anisotropies in the clustering signal are neglected, only an angle-averaged distance mea-

surement can be performed. In that case, the parameter combination

DV(z) =

[
(1 + z)2 DA(z)

2 c z

H (z)

]1/3
(2.106)

is measured with respect to the sound horizon scale, so that results are usually expressed as the
combination DV(z)/rs(zd). Thus, equivalently to the quantities in equations (2.104) and (2.105),
the pair DV(z)/rs(zd) and FAP(z) are given for anisotropic BAO distance measurements.
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As pointed out in several theoretical and numerical studies, BAO distance measurements are
a robust cosmological probe, as they relate the measured distance to a physical size which can
well measured from CMB observations (and thus is independent from unknown physics prior
to recombination, Eisenstein & White, 2004). Further, the BAO scales are in the linear regime
of late-time evolution and are thus only moderately degraded by the non-linear evolution of
the density �eld. The observed BAO signal is further degraded by redshift-space distortions.
Seo & Eisenstein (2005) show that non-linear redshift-space distortions are the dominant con-
tamination of BAO distance observations, preventing measurements of the Hubble parameter
H (z) to be as precise as expected from linear theory Fischer forecasts. This can be ameliorated
by improvements of the modelling of the RSD. The latter two e�ects will be accounted for in
full-shape �ts of the BAO distance by the modelling recipes described earlier in this section.

In addition, the observed BAO size δl is not exactly the sound horizon scale at the drag red-
shift, as it is a�ected by damping due to photon di�usion, known as Silk damping. The photons
encounter Thomson scattering o� electrons prior to recombination, washing out anisotropies
at scales smaller than the di�usion length. The true position of the BAO peak in the correlation
function and the horizon scale are shown to deviate by as much as 2% (depending on the baryon
fraction) in Sánchez et al. (2008).
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3
Anisotropic clustering measurements of the BOSS

galaxy catalogues in Fourier space

“Telescopes are in some ways like time machines. They reveal galaxies so far away that
their light has taken billions of years to reach us. We in astronomy have an advantage in
studying the universe, in that we can actually see the past. We owe our existence to stars,
because they make the atoms of which we are formed. So if you are romantic you can say
we are literally starstu�. If you’re less romantic you can say we’re the nuclear waste from
the fuel that makes stars shine. We’ve made so many advances in our understanding. A few
centuries ago, the pioneer navigators learnt the size and shape of our Earth, and the layout
of the continents. We are now just learning the dimensions and ingredients of our entire
cosmos, and can at last make some sense of our cosmic habitat.”

Lord Martin Rees

This chapter introduces anisotropic two-point statistics for galaxy clustering in Section 3.1
and derives the optimal-variance estimator for clustering wedges in Fourier space, one of the
main parts of this thesis, in Section 3.2. The observational systematics of the BOSS galaxy
samples, and how the estimator is corrected for these, are described in Section 3.3. Section 3.4
discusses the window function e�ect due to the survey selection function and introduces our
implementation for the modelling of this power spectrum modulation with a window matrix.
The two sets of synthetic catalogues mimicking the combined sample clustering properties
that are used for the estimate of the data covariance are presented in Section 3.5 explaining the
methods used for the generation of large sets of mock catalogues and verifying the estimator.
Section 3.6 contains the Fourier space analysis of the combined sample clustering, compares
the observed Fourier space wedges of the data with the measurements on the mocks, and also
discusses the consistency of the hemispherical subsamples to each other.
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Figure 3.1 – Illustration of the de�nition of the LoS
parameter µ for a pair of galaxies (labelled with A
and B) at positions xA and xB . µ is de�ned as the
cosine of the angle θ between the pair separation
vector xA→B and the LoS direction r̂ .
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3.1 Anisotropic galaxy two-point clustering

Galaxy density �uctuations estimated from a large-scale structure survey are characterized by
an anisotropic power spectrum P (k ). Otherwise, the angle-averaging of equation (2.38) re-
moves valuable information by marginalizing over the angular degrees of freedom. The most
important sources of anisotropy are RSD (cf., Section 2.4.2) and the AP e�ect (cf., Section 2.4.7),
which depend on the LoS direction. As there is a remaining invariance w.r.t. rotations around
the LoS axis, the two-point statistics are two-dimensional. The second parameter for the power
spectrum (correlation function) besides the wavenumber k (distance r ) is the LoS parameter µ,
de�ned as the cosine of the angle θ between the LoS direction r̂ and the wavevector k of the
Fourier modes,

µ ≡ cosθ = |k · r̂ | |k |−1. (3.1)

Thus, µ has values in the range−1 to 1 andθ ∈ [0,π ). The de�nition for the case of con�guration
space is illustrated in Figure 3.1.

A direct measurement of the 2D power spectrum, P (k ) = P (k ,µ ), and 2D correlation func-
tion, ξ (r ) = ξ (r ,µ ), is desired to allow for full access to the cosmological information in the
galaxy clustering two-point statistics. But as the signal-to-noise ratio (SNR) of the measurement
is limited by the size of the sample, it’s possible to �nd a good compromise between resolution
and precision by averaging P (k ,µ ) in multiple angular bin.

The power spectrum multipoles P` (k ) are projections onto multipole moments using Leg-
endre polynomials (Padmanabhan & White, 2008),

P (k ,µ ) =
∑
`

P` (k ) L` (µ ), (3.2)

where L` (µ ) denotes the Legendre polynomial of order `. Only P` (k ) with even ` are non-zero
due to the symmetry of µ ↔ −µ around the observer. The multipoles can be estimated from
the full power spectrum by

P` (k ) ≡
2` + 1

2

∫ 1

−1
L` (µ ) P (k ,µ ) dµ . (3.3)
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The redshift-space galaxy power spectrum is dominated by the lower-order multipoles as the
amplitudes decreases with ` (just as the SNR).

Alternatively, clustering wedges (introduced �rst for con�guration-space analysis by Kazin
et al., 2012) are projections with a similar SNR, using a �xed number of wide non-intersecting
bins of the LoS parameter,

P
µ2
µ1 (k ) ≡

1
µ2 − µ1

∫ µ2

µ1

P (k ,µ ) dµ . (3.4)

Here, µ1 and µ2 de�ne the lower and upper limits such that µ2−µ1 = ∆µ, where ∆µ is de�ned by
the total number of wedges. We use the usual convention for the case of two wedges and label
them as P⊥ and P‖ for the µ-ranges [0,0.5] and [0.5,1], respectively. For the case of three or more
(N ) wedges, we use the convention to label the measurement bin with (i − 1)/N ≤ |µ | ≤ i/N
(so that ∆µ = 1

N ) as PNw,i for i in 1 to N .
The con�guration-space counterpart of the power spectrum multipoles is the decomposi-

tion of the correlation function in terms of the Legendre multipoles (Hamilton, 1997),

ξ` (r ) ≡
2` + 1

2

∫ 1

−1
L` (µ ) ξ (r ,µ ) dµ, (3.5)

Adopting the distant-observer approximation,1 this decomposition can be derived from the
power spectrum multipoles using

ξ` (s ) =
i`

2π 2

∫ ∞

0
P` (k ) j` (ks ) k

2 dk , (3.6)

where j` (x ) is the spherical Bessel function of order `. Clustering wedges in con�guration space
are de�ned in a complete analogous way to their Fourier space counterparts,

ξ
µ2
µ1 (s ) ≡

1
µ2 − µ1

∫ µ2

µ1

ξ (s,µ ) dµ . (3.7)

By convention, we use the labels ξ⊥ and ξ‖ for the case of two wedges and ξNw,1 to ξNw,N for
the general case of N ≥ 3 wedges.

The relation between clustering wedges and multipoles are

P
µ2
µ1 (k ) =

∑
`

P` (k ) L̄`,µ1,µ2 , ξ
µ2
µ1 (r ) =

∑
`

ξ` (r ) L̄`,µ1,µ2 , (3.8)

where L̄`,µ1,µ2 is the average of the Legendre polynomial L` (µ ) over the µ-range of the wedge,

L̄`,µ1,µ2 ≡
1

µ2 − µ1

∫ µ2

µ1

L` (µ ) dµ, (3.9)

1Formally, the natural LoS parameter in con�guration space, the cosine of the angle between the separation
vector of a galaxy pair and the LoS, is not the same as the Fourier space µ adopted here. However, Yoo & Seljak
(2015) showed that the distant-observer approximation which assumes the same LoS parameter in both spaces is
a safe choice for surveys such as BOSS, where the galaxies are far away from the observer.
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which corresponds to

L̄`,µ1,µ2 =
1

µ2 − µ1

[
L`+1(µ2) − L`−1(µ2) − L`+1(µ1) + L`−1(µ1)

]
. (3.10)

3.2 Estimating the anisotropic clustering of a galaxy sam-

ple in Fourier space

We now de�ne the estimators for anisotropic clustering measurements in Fourier space with a
special focus on clustering wedges. First, we take into account that the expected number density
is not constant for any realistic galaxy survey so that the de�nition of the density contrast in
equation (2.32) needs to be modi�ed. The basic assumption of the two-point clustering analysis
with the Landy-Szalay estimator (Landy & Szalay, 1993) for the correlation function and the
Feldman-Kaiser-Peacock estimator (FKP, Feldman et al., 1994) for the power spectrum is that
the expected number density, nexp, for a constant underlying number density, n̄, is given by the
survey selection function Φ(x ),

nexp(x ) = Φ(x ) n̄. (3.11)

Analogously, Φ(x ) also gives the relation between the observed number density, nobs(x̂ ,z), and
the true number density of the underlying galaxy sample, ntrue(x̂ ,z).

Usually, the selection function of the survey can be written as the product of an angular
selection function Φang and a radial part Φrad, so that

nexp(x̂ ,z) = Φang(x̂ ) Φrad(z) n̄, (3.12)

where the spatial coordinate x has been decomposed into an angular part x̂ and a radial part z.
In the following we will refer to the radial selection function as n(z) = Φrad(z) n̄.

The expected number density nexp(x̂ ,z) is usually represented by a set of random points
whose size Nran should be much larger than the number of galaxies to ensure that the sur-
vey geometry is well sampled. Statistically the number density of these ‘randoms’, nran(x ), is
required to follow

〈nran(x̂ ,z)〉 = α
−1
ran nexp(x̂ ,z), where αran � 1. (3.13)

We denote the randoms-to-galaxies ratio as αran to prevent a naming con�ict with the AP pa-
rameter α = (α2

⊥ α‖ )
1/3 de�ned later in Section 5.1.1.

In order to have a distribution of randoms that follows the selection function of the survey,
its footprint is fragmented into small angular regions for which the spectroscopic completeness
is assumed to be uniform. This is described in more detail in Section 3.3.2. Angular positions
are drawn according to the completeness assigned to each sector. The redshifts are randomly
drawn from the measured galaxy redshifts .
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3.2.1 The FKP power spectrum estimator

As it will be useful as a reference when the estimators for the power spectrum multipoles and
wedges are discussed, the FKP estimator for the isotropic power spectrum is described �rst.
This estimator is based on a weighted density contrast de�ned in terms of nobs(x ) and nran(x ),

F (x ) ≡
wFKP(x )
√
Inorm

[nobs(x ) − αran nran(x )] . (3.14)

The normalization constant Inorm is discussed later and wFKP(x ) is an extra weight depending
on the expected number density that is designed to minimize the variance of the clustering
estimate (Feldman et al., 1994),

wFKP(x ) =
1

1 + nexp(x ) PFKP
. (3.15)

The expected amplitude of the power spectrum, PFKP, is assumed to be constant and set to
PFKP = 10,000 Mpc3/h3, roughly corresponding the amplitude of the CMASS power spectrum
at scales where the BAO wiggles are imprinted onto P (k ). Later in Section 3.3, this weight is
modi�ed to account for the observational incompleteness of BOSS.

The power spectrum is obtained from the weighted density contrast by

Pobs(k ) = F̂ (k ) F̂ (k )∗ − S = F̂ (k ) F̂ (−k ) − S , (3.16)

where F̂ (k ) is the Fourier transform of F (x ) and S is a constant shot-noise contribution that is
subtracted. The shot noise is due to the fact that nobs and nran correspond to Poisson point pro-
cesses of the observed and expected number density, respectively.2 The shot-noise contribution
is given by the following integral over the survey volume Vs (Feldman et al., 1994),

S =
1

Inorm

∫
Vs

nexp(x ) (1 + αran)wFKP
2(x ) d3x . (3.17)

The normalization constant here and in the weighted density �eld in equation (3.14) is set to

Inorm =

∫
Vs

n2
exp(x )wFKP

2(x ) d3x , (3.18)

so that the estimated power spectrum corresponds to the usual power spectrum de�ned by
equation (2.35) in the special case where nexp(x ) = const and consequently wFKP = const (i.e.,
no e�ect from the survey geometry).

2 The probability dPgal to �nd a galaxy in the in�nitesimal volume element dV is dPgal = nexp (x ) [1 + δ (x )] dV ,
where δ (x ) =

[
nobs (x ) − nexp (x )

]
/nexp (x ) (Peebles, 1980). The observed �eld is the point process with 〈nobs (x )〉 =

nexp (x ). Due to the clustering, the expectation value of the squared observed �eld is 〈nobs (x ) nobs (x ′)〉 =
nexp (x ) nexp (x ′) [1 + ξ (x − x ′)] + nexp (x ) δD (x − x ′) (Feldman et al., 1994). The random points are not clustered,
dPrnd = α

−1
ran nexp (x ) dV . Thus, 〈nran (x ) nran (x ′)〉 = α−2

ran nexp (x ) nexp (x ) + α−1
rannexp (x ) δD (x − x ′).
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The measurements of the isotropic power spectrum are given by the bin-average of equa-
tion (3.16),

Pobs(k ) =

∫
bin

F̂ (k ) F̂ (k )∗ dk̂ − S ≡ 1
Vk

∫
Vk

F̂ (k ) F̂ (k )∗ d3k − S , (3.19)

where Vk is the volume of the bin around k . The survey geometry a�ects the measured power
spectrum Pobs(k ), which corresponds to a convolution of the underlying power spectrum P true(k )
with the survey window function, Q (k ), so that

Pobs(k ) =

∫
P true(k′)Q (k − k′) d3k′ −

Q (k )

Q (0)

∫
P true(k′)Q (k′) d3k′ , (3.20)

where the second term is the so-called integral constraint that ensures that the convolution
does not introduce an arti�cial zero mode (Peacock & Nicholson, 1991). The window function
depends on the expected number density nexp(x ) and its estimator is given by

Q (k ) = q̂(k ) q̂(k )∗ −Qshot, (3.21)

where q̂(k ) is the Fourier transform of

q(x ) =
αran
√
Inorm

wFKP(x ) nran(x ). (3.22)

The shot noiseQshot is due to the stochasticity of the random �eld nran(x ) and can be estimated
using

Qshot =
αran
Inorm

∫
Vs

nexp(x )wFKP
2(x ) d3x . (3.23)

This estimate of the window function is used to convolve model predictions as described later
in Section 3.4.

3.2.2 The Yamamoto estimator for power spectrum multipoles

In order to take the anisotropies of the power spectrum into account, an optimal-variance esti-
mator for power spectrum multipoles was developed in Yamamoto et al. (2006). This estimator
uses the ‘pairwise-LoS’ method to de�ne the LoS direction as the direction to the midpoint of
the line that connects a pair of galaxies, as illustrated in Figure 3.2 by solid vectors. Equiv-
alently, another pairwise de�nition uses the direction that bisects the opening angle of the
galaxy pair (Yoo & Seljak, 2015). As the pairwise method needs to compute the LoS parameter
µ for each pair of galaxies, the power spectrum multipoles are estimated from a two-fold spatial
integration over the survey volume,

P` (k ) =
2` + 1

2

∫
bin

dk̂
∫
Vs

d3x

∫
Vs

d3x′ F (x ) F (x′) e−ik ·x eik ·x ′ L` (k̂ · x̂mid) − S`, (3.24)

where xmid = (x + x′)/2 and S` is the shot-noise contribution discussed later.
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LoS

LoS

A

A

¶

B¶

B
r
B

r
A

Figure 3.2 – (Modi�ed from Samushia et al., 2015, Fig. 1)
The ‘pairwise-LoS’ method de�nes the LoS as the direc-
tion to the midpoint of the pair separation vector, rmid =
(r + r ′)/2. Here, the LoS direction to two galaxy pairs
(A,A′) and (B,B′) is shown by the green solid arrow. The
‘moving-LoS’ approximation simpli�es this assumption
by using the distance vector to one of the galaxies, r , to
de�ne the LoS direction (as indicated by the green dashed
arrow). As discussed in the text, this reduces the compu-
tational costs of the estimator at the expense of introduc-
ing an error to the LoS parameter sourced by the mis-
match of the LoS directions used.

The evaluation of the two spatial integrals can only be implemented as a double sum over
the galaxies and randoms of the survey leading to immense computational costs for modern
galaxy surveys.

The Yamamoto-Blake estimator (Blake et al., 2011a) overcomes this hurdle by use of the
distant-observer approximation. In this case, the direction of the distance vector to one of the
galaxies in the pair can be used as the LoS direction. This is called the ‘moving-LoS’ method
(illustrated in Figure 3.2 by dashed vectors) and preserves most of the LoS information (as
shown by Samushia et al., 2015), in contrast to the plane-parallel approximation for the LoS
(‘�xed-LoS’ method). For wide-angle surveys such as BOSS, assuming the latter approach would
signi�cantly bias the anisotropic clustering measurement.

Hence, we follow the ‘moving-LoS’ approach, which simpli�es the integration kernel to

P` (k ) =
2` + 1

2

∫
bin

dk̂
∫
Vs

d3x

∫
Vs

d3x′ F (x ) F (x′) e−ik ·x eik ·x ′ L` (k̂ · x̂
′) − S` . (3.25)

The shot-noise contribution to the multipole power spectrum estimate is given by

S` =
2` + 1
2 Inorm

∫
Vs

nexp(x ) (1 + αran)wFKP
2(x ) L` (k̂ · x̂

′) d3x . (3.26)

As S` � S for multipoles of order ` > 0, the shot-noise correction is negligible for multipoles
other than the monopole (Beutler et al., 2014a; Gil-Marín et al., 2015d). In that case, the estimator
can be written as

P` (k ) =

∫
bin

F̂ (k )
[
F̂` (k )

]∗
dk̂ − S δK

`0, (3.27)

where δK
`0 is the Kronecker delta ensuring that the shot-noise contribution is only subtracted

from the monopole. The multipole moments of the weighted density contrast �eld are given by

F̂` (k ) ≡
2` + 1

2

∫
Vs

F (x ) e−ik ·x L` (k̂ · x̂ ) d3x . (3.28)
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This de�nition can be further decomposed into integrals over the number density �elds of
galaxies and randoms,

F̂` (k ) =
2` + 1

2
√
Inorm

[
n̂obs` (k ) − αran n̂ran` (k )

]
, (3.29)

where Inorm is the normalization constant already de�ned in equation (3.18),

n̂obs` (k ) =

∫
Vs

nobs(x )wFKP(x ) e−ik ·x L` (k̂ · x̂ ) d3x and (3.30)

n̂ran` (k ) =

∫
Vs

nran(x )wFKP(x ) e−ik ·x L` (k̂ · x̂ ) d3x . (3.31)

For simplicity, we have absorbed the FKP weights into the transformation. As the evaluation
of these integrals corresponds to a single sum, the computation complexity is reduced signi�-
cantly.

The approximative LoS recovery will eventually break down for galaxy pairs at low redshifts
and wide separation angles resulting in a bias that is only signi�cant for multipoles higher than
the quadrupole (Samushia et al., 2015). Since we are analysing a high-redshift sample in this
thesis with a monopole-dominated wedge signal, we expect this bias to be negligible for our
clustering wedge estimate.

The Yamamoto-Blake estimator is regularly used to measure the PS anisotropies of state-
of-the art galaxy surveys. Until recently, equation (3.28) was computed as a direct sum over
the galaxies and randoms. For example, Beutler et al. (2014a) estimates the power spectrum
multipoles from the BOSS DR11 CMASS sample in this way. Later in this section, we discuss
the recently developed FFT estimator for power spectrum multipoles, which reduces the com-
putation costs signi�cantly with respect to the traditional method.

3.2.3 The estimator for power spectrum wedges

We now extend the Yamamoto-Blake estimator to the clustering wedges in Fourier space de�ned
in equation (3.4). First, the weighted wedge overdensity �eld is de�ned as

F̂
µ2
µ1 (k ) ≡

1
(µ2 − µ1)

√
Inorm

[
n̂obs

µ2
µ1 (k ) − n̂ran

µ2
µ1 (k )

]
, (3.32)

where the wedge projections of the number density of galaxies and randoms are given by

n̂obs
µ2
µ1 (k ) =

∫
Vs

nobs(x )wFKP(x ) Θ
µ2
µ1 (k̂ · x̂ ) e−ik ·x d3x and (3.33)

n̂ran
µ2
µ1 (k ) =

∫
Vs

nran(x )wFKP(x ) Θ
µ2
µ1 (k̂ · x̂ ) e−ik ·x d3x . (3.34)

Again, the FKP weights are taken into the transformation. Here Θ
µ2
µ1 (µ ) is the top-hat function

for the range µ1 ≤ µ ≤ µ2. Our estimator for the wedge power spectrum is then given by

P
µ2
µ1 (k ) = F̂ (k )

[
F̂
µ2
µ1 (k )

]∗
− S

µ2
µ1 (k ). (3.35)
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Just like the usual Yamamoto-Blake estimator, this estimator assumes the distant-observer ap-
proximation (‘moving-LoS’ method).

The shot-noise term S
µ2
µ1 (k ) is given by

S
µ2
µ1 (k ) =

1
(µ2 − µ1) Inorm

∫
Vs

nexp(x ) (1 + αran)wFKP
2(x ) Θ

µ2
µ1

(
k · xj
|k | |x |

)
d3x , (3.36)

corresponding to the multipole shot-noise term de�ned in equation (3.26). This estimate will
be modi�ed due to the systematic errors a�ecting the BOSS survey in Section 3.3.3.

3.2.4 The Yamamoto-FFT estimator

Even though the computing time of the estimator has been signi�cantly reduced by adopting the
distant-observer approximation, time e�ciency is still a concern as the power spectrum wedges
must be estimated for thousands of mock realizations (cf. Section 3.5). As shown recently by
Bianchi et al. (2015) and Scoccimarro (2015), the Yamamoto-Blake estimator can be sped up
signi�cantly by use of multiple fast Fourier transforms. The Legendre polynomials L` (µ ) can
be expressed as a series of products µ` = (x̂ · k̂ )` , so that the x̂ and k components can be
factored out. The higher-order weighted density �elds F̂` (k ) of equation (3.28) can be written
as (Bianchi et al., 2015; Scoccimarro, 2015)

F̂2(k ) =
3
2
∑
i,j

k̂i k̂j Q̂ij (k ) −
1
2 F̂ (k ) and (3.37)

F̂4(k ) =
35
8

∑
i,j,k,l

k̂i k̂j k̂k k̂l Q̂ijkl (k ) −
15
4 F̂2(k ) +

3
8 F̂ (k ), (3.38)

where the Fourier transforms of the following tensors enter,

Qij (x ) = x̂i x̂j F (x ) and Qijkl (x ) = x̂i x̂j x̂k x̂l F (x ). (3.39)

Due to the symmetries of the Q· tensors, the calculation of F̂2(k ) needs six more FFTs in addi-
tion to the one of the original FKP estimator, calculating F̂4(k ) needs 15 additional transforms.
Because of the low computational costs of FFTs, even for large grid sizes, the computing time
is negligible compared to the original Yamamoto-Blake estimator.

Unfortunately, µ` products cannot be factored out from the top-hat kernels Θµ2
µ1 (µ ) used in

the estimator for clustering wedges de�ned in equation (3.35) and thus a FFT scheme does not
apply directly to this estimator. However, the clustering wedges can be calculated from the
multipoles using the transformation law in equation (3.8).

In foresight that we have to perform the measurement on thousands of mock realizations,
we adopt the Yamamoto-FFT scheme for wedges indirectly. We truncate the power spectrum
multipole series at the hexadecapole due to the very poor signal-to-noise of higher order mul-
tipoles (Yoo & Seljak, 2015; Grieb et al., 2016a) and the fact that perturbation theory does not
predict signi�cant P` (k ) at scales k . 0.25 h Mpc−1 for ` ≥ 6 (Taruya et al., 2011; Kazin et al.,
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2012). From the monopole, quadrupole, and hexadecapole measurement, the clustering wedges
are estimated as

P
µ2
µ1 (k ) =

∑
`∈{0,2,4}

P` (k )Tn`, (3.40)

using the transformation matrix T . The elements of this matrix are given by Tn` = L̄`,µ1,µ2 ,
where L̄`,µ1,µ2 is the wedge-averaged Legendre polynomial as given by equation (3.9).

The agreement of the estimator with the one given by equation (3.35) is shown for the
measurements of three power spectrum wedges from a CMASS-like catalogue in Section 3.5.3.

3.3 Observational systematics for the BOSS survey

Clustering analysis on previous releases of BOSS used two separate galaxy catalogues, LOWZ
(0.15 ≤ z ≤ 0.43) and CMASS (0.43 ≤ z ≤ 0.7). A short overview of the results from DR9 (Ahn
et al., 2012) to DR12 (Alam et al., 2015a) was given in Section 1.4.

In this thesis and in a set of companion papers led by Anderson et al. (2016, in prep.), the
DR12 combined sample (0.2 ≤ z ≤ 0.75) based on the concatenation of the two previous cata-
logues (Reid et al., 2016) is analysed, increasing the e�ective cosmic volume to Ve� = 7.4 Gpc3.
This �nal sample is tuned for optimal estimation of the two-point clustering statistics. As dis-
cussed later in more detail, an additional 1000 deg2 of ‘early’ data has been included in the
low-redshift part of the catalogue that was not present in previous releases of the LOWZ sam-
ple.

3.3.1 Incompleteness of a galaxy survey due to observational system-

atics and corrective weights

The number density of galaxies observed in BOSS, as in any realistic survey, is a�ected by sur-
vey systematics and thus not correspond to the underlying number density of the sample. Sys-
tematic e�ects originating from the targeting and observing strategies a�ect the galaxy sample
that is given by to observed and spectroscopically classi�ed galaxies. Thus also the clustering
signal that is observed from the sample can be biased due to these e�ects. Hence, these e�ects
are corrected for by applying corrective weights to the galaxy catalogue.

• The angular size of a spectroscopic �bre is 62”, which prevents to observe two galaxies
close by with a single observational plate (‘�bre collisions’). A weight wfc ≥ 1 is de�ned
to account for targets that could not be associated with a �bre, but belong to the same
class of targets than a near-by observed one (which gets up-weighted by unity). However,
it is possible to observe two close-by galaxies because of multiple observational plates for
the same pointing.

• In a similar way,wrf ≥ 1 is used to up-weight a near-by galaxy of the same target type in
case of a failure of the pipeline that determines the spectroscopic redshift.



3.3 Observational systematics for the BOSS survey 65

These �rst two weights are combined into the counting weight3, wc = wfc +wrf − 1.
Further, the target density of the CMASS sample is a�ected by the local stellar density and

seeing (Ross et al., 2012; Anderson et al., 2014b; Reid et al., 2016).

• A weight wstar based on the stellar density around a galaxy and the galaxies’ surface
brightness corrects for this systematic e�ect.

• Another systematic weight, wsee, corrects for the e�ect on the target density due to the
seeing conditions during the photometric observations.

These later two weights together assign a systematic weight, wsys = wstarwsee, to each galaxy.
It should be noted that the systematic weights are normalized such that they average to

one over the whole sky. To incorporate the ‘early’ data, the survey is decomposed into several
patches. Thus, the weights of each patch need to be normalized by the average wsys of that
region,

wsys 7→
wsys

〈wsys〉subsample
. (3.41)

The �nal weight, wtot(xi ), of a galaxy at position xi is given by

wtot(xi ) = wsys(xi )wc(xi ) = wstar(xi )wsee(xi ) [wfc(xi ) +wrf (xi ) − 1] . (3.42)

Due to the weighting, the e�ective number of galaxies,

Ngal,e� =

Ngal∑
i=1

wtot(xi ). (3.43)

is larger than the number of galaxies in the catalogue, Ngal,

3.3.2 Details of the selection function, the completeness, and the veto

mask

In order to characterize the angular selection function Φang of the BOSS survey, the BOSS foot-
print is split into sectors that correspond to the union of spherical polygons de�ned by a unique
intersection of spectroscopic tiles. The survey completeness, C , de�ned as the fraction of tar-
gets in a sector that are accounted for by observed galaxies including the weighting, is treated
as uniform within a sector (Reid et al., 2016, table 1). The left-hand panel of Figure 3.3 shows
the footprint of the survey, indicating each pointing of the survey with a circle whose colour
represents the sector completeness C .

The whole survey selection is described by the set of random points, which sample the
survey volume roughly 50 times more densely than the galaxies (Nran ' 50Ngal,e� ). Within the

3wc is also denoted as ‘completeness weight’ in the literature, but we want to avoid misunderstandings with
the de�nition of the sector completeness, so we use the name ‘counting weight’.
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Figure 3.3 – Left-hand panel: The BOSS DR12 footprint of the NGC and SGC subsamples with circles indicating the
di�erent pointings of the telescope. The sector completeness is indicated by the colour of the circle. The ‘early’
regions in the Northern hemisphere are indicated by a gray (‘early2’) and black (‘early3-6’) edging. Right-hand
panel: The (radial) selection function of the di�erent patches of the BOSS combined sample.

geometrical boundaries of the survey, certain small regions remain where galaxies could not
have been observed, such as the centre posts of the observational plates or the surroundings
of a bright star. Despite the small angular size of each individual ‘masked’ region, they are not
randomly distributed across the sky and sum to a non-negligible area. Thus, they are excluded
from any analysis by the use of veto masks removing points of the random catalogue that fall
within these masked regions (details in Reid et al., 2016).

Besides the footprint and mask, the decomposition into patches is relevant for the selection
function of the survey. The �ducial part of the Northern galactic cap (NGC) of LOWZ was
targeted with the same selection criteria as the Southern galactic cap (SGC), but the targets in
the Northern ‘early patches’ have been identi�ed erroneously using slightly di�erent criteria.
These patches are the BOSS chunks 2 (‘early2’) and chunks 3–6 (‘early3-6’), which both have
been targeted using di�erently faulty selection criteria. Starting with chunk 7, the correct target
selection algorithm was applied. As described in Reid et al. (2016), the early patches can be
included in the catalogue by taking into account the deviations of the radial selection functions
n(z) for each patch. The SGC sample does not include early regions and thus the �ducial SGC
is the full Southern sample. The individual selection functions of each patch are shown in the
right-hand panel of Figure 3.3. The NGC subsample is comprised of the di�erent patches in the
North; the NGC and SGC subsamples are combined to form the full �nal catalogue.

This combined sample is analysed in two wide, non-overlapping redshift bins — referred to
as ‘low’ ( 0.2 ≤ z < 0.5) and ‘high’ (0.5 ≤ z < 0.75) — while consistency checks are performed
with an overlapping, ‘intermediate’ redshift bin (0.4 ≤ z < 0.6). The de�nitions of the redshift
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Table 3.1 – The e�ective redshifts, volumes, and number densities of the three redshift bins de�ned for the com-
bined sample. The volumes Ve� (in units of h−3 Gpc3) and number densities ne� (in units of h3 Mpc−3) are given
for the di�erent regions of the survey individually, computed in the �ducial cosmology de�ned in Table 3.2. The
LOWZ and CMASS redshift ranges are given for comparison.

Bin Redshift range ze� Patch Ve� ne�

low 0.2 ≤ z ≤ 0.5 0.38 NGC, �d. 0.721 0.00032
NGC, early2 0.014 0.00029
NGC, early3-6 0.086 0.00025
SGC 0.317 0.00035

intermediate 0.4 ≤ z ≤ 0.6 0.51 NGC, �d. 0.824 0.00034
NGC, early2 0.018 0.00033
NGC, early3-6 0.119 0.00033
SGC 0.351 0.00033

high 0.5 ≤ z ≤ 0.75 0.61 NGC, �d. 0.782 0.00026
NGC, early2 0.017 0.00026
NGC, early3-6 0.116 0.00026
SGC 0.332 0.00025

For comparison:
LOWZ 0.2 ≤ z ≤ 0.43 0.32 NGC 0.425 0.00029

SGC 0.189 0.00031
CMASS 0.43 ≤ z ≤ 0.7 0.57 NGC 1.153 0.00028

SGC 0.555 0.00028

ranges are given in Table 3.1, listing also the e�ective redshifts, volumes, and number densities
for the di�erent patches of each bin (see Reid et al., 2016, equation 52).

The e�ective data-to-randoms ratio αran is de�ned by

αran ≡
*.
,

Ngal∑
i

wtot(xi )wFKP(xi )
+/
-

*.
,

Nran∑
j

wFKP(xj )
+/
-

−1

(3.44)

This choice ensures that the spatial average of the FKP density contrast F (x ) over the survey
volume is 〈F (x )〉 = 0. Note that Beutler et al. (2014a) and other works leave the FKP weight
wFKP out of the de�nition of αran, which should not change the result.

We now use the random catalogue to derive the normalization given by equation (3.18) by
expressing the survey integral as a sum over the set of random points using equation (3.13)
and the relation

∫
Vs

d3r nran(x ) f (x ) →
∑Nran

j f (xi ), which is valid for any smooth f (x ). This
transformation yields

Inorm = αran

Nran∑
j

nexp(xj )wFKP
2(xj ). (3.45)
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3.3.3 Modi�ed shot noise estimate

The shot-noise estimate in equation (3.17) does not account for deviations from a Poisson dis-
tributed galaxy and random sample. As a sample with the characteristics of a BOSS LSS sample
does not need to have pure Poisson noise, a modi�cation of this estimate is required to take into
account the presence of systematic weights and deviations from the pure Poisson case due to
the exclusion e�ect from �bre collisions. The latter arises because a good fraction of pairs that
are angularly close by are excluded from the sample as no spectroscopic �bre could be assigned
to one of the partners. The neighbour galaxy that is up-weighted using wfc(x ) as described
in Section 3.3.1 does not have to be radially related to the omitted galaxy. The modi�ed shot
noise is calculated using the phenomenological treatment described in Gil-Marín et al. (2015a,
App. A): if all galaxies that are combined to a �bre collision group were actually at the same
redshift, i.e., all �bre collision pairs happen to be ‘true pairs’, the shot noise is given by4

Stp =
1

Inorm

∫
Vs

nexp(x )wFKP
2(x )

(
wsys(x ) + αran

)
d3x . (3.46)

This is the only relation used in Beutler et al. (2014a). If, however, �bre collision pairs are only
angularly close but separated in redshift, i.e., ‘false pairs’, the shot noise is given by5

Sfp =
1

Inorm

∫
Vs

nexp(x )wFKP
2(x ) (wtot(x ) + αran) d3x . (3.47)

In reality, we expect to have a mixture of true and false pairs, so we expect

S�nal = ftp Stp + (1 − ftp) Sfp (3.48)

for a given true pair fraction ftp, which we assume to be f �d
tp ≡

1
2 in agreement with Gil-Marín

et al. (2015a) where tests against the PThalomock catalogues (Manera et al., 2012) �nd a similar
value.

Applying the same transformation to convert the integrals into sums as in the case of the
normalization constant Inorm, we need to account for the di�erent noise contributions from the
clustered data and the unclustered randoms in equations (3.46) and (3.47). Thus, we choose to
split the calculation accordingly into two sums, one corresponding to the systematic-weight
a�ected part and the another one for the αran-part of the equations above. For the former, we
have to take into account that we sum over weighted ‘galaxies’, each associated with a varying

4 In regions with less chance to detect a galaxy,wsys > 1, the number of auto-pairs drops bywsys
2. The detected

galaxies N (x ) are modelled as Poisson point process and the observed (e�ective) �eld is a (weighting) function
of this process, 〈nobs〉 = wsys (x ) 〈N (x )〉 = nexp (x ). Thus, 〈nobs (x ) nobs (x ′)〉 = wsys (x )wsys (x ′) 〈N (x ) N (x ′)〉 =
nexp (x ) nexp (x ′) [1 + ξ (x − x ′)] + nexp (x )wsys (x ) δD (x − x ′) in this case.

5 If e�ective galaxies (arti�cially) come in pairs, wc = 2, the number of auto-pairs (of pairs) drops by this
factor squared. The detected galaxy pairs are modelled as Poisson point process Ñ (x ) and the observed (e�ec-
tive) �eld is a (weighting) function of this process, 〈nobs〉 = wc (x ) 〈Ñ (x )〉 = nexp (x ). Thus, 〈nobs (x ) nobs (x ′)〉 =

wc (x )wc (x ′) 〈Ñ (x ) Ñ (x ′)〉 = nexp (x ) nexp (x ′) [1 + ξ (x − x ′)] + nexp (x )wc (x ) δD (x − x ′) in this case.
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�nite volume element wtot(x ) n−1
exp(x ). Hence, the conversion for the terms involving wsys(x )

and wtot(x ) — represented generally by w· (x ) below — is done by∫
Vs

nexp(x )wFKP
2(x )w· (x ) d3x =

∑
sample

wtot(x )wFKP
2(x )w· (x ). (3.49)

This leads to a �nal estimate of the shot noise given by

S�nal =
1

Inorm

[
ftp

∑
sample

wFKP
2(x )wtot(x )wsys(x )

+ (1 − ftp)
∑

sample
wFKP

2(x )wtot
2(x ) + α2

ran

∑
randoms

wFKP
2(x )

]
. (3.50)

This separation of pairs by ftp for the shot noise a�ects also the FKP weights as discussed
in Section 3.3.4. In the case of the estimator for clustering wedges in equation (3.35), we use
S
µ2
µ1 (k ) = S�nal, neglecting anisotropies in the shot-noise estimate the same way as for the Yama-

moto-Blake estimator in equation (3.27) for multipoles.
Due to the phenomenological nature of this treatment, we expect that the true shot noise

can deviate from the estimate of equation (3.50). Variations from the assumption of pure Poisson
shot noise are discussed in several recent studies (Casas-Miranda et al., 2002; Seljak et al., 2009;
Hamaus et al., 2010; Manera & Gaztanaga, 2011; Baldauf et al., 2013). An incomplete shot-
noise treatment can cause systematic biases on cosmological parameters. Thus, we include an
additional shot-noise term N (see Section 5.1) as a free parameter to our modelling in order to
capture any remaining residual shot-noise contribution. This parameter is marginalized over
in the BAO+RSD analysis.

3.3.4 Modi�ed FKP weights

The estimator for the power spectrum described in Section 3.2 weights each galaxy with the
FKP weight wFKP(x ) in order to minimize the variance of the estimate. This extra weight was
given in equation (3.15) assuming that the expected power spectrum amplitude PFKP is constant
and that αran � 1. Next we derive the optimal weighting in presence of systematic weights and
�bre collisions extending the work in Beutler et al. (2014a), who derived a simpler result based
on the shot-noise estimate in equation (3.46), ignoring the second shot-noise contribution in
equation (3.47).

Following Feldman et al. (1994), the error of the power spectrum estimation for a given
measurement bin centred around k can be expressed as

σ 2
P (k ) '

1
Vk

∫
d3k |P (k )Q (k ) + S�nal |

2, (3.51)

where Vk is the volume of the measurement bin, a spherical shell in k-space, and Q (k ) is the
window function as given by equation (3.21). The shot noise contribution S�nal follows our
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treatment of the �bre collisions in equation (3.50). Here, we neglect the shot noise of the survey
window as it is suppressed by α2

ran ≪ 1.
Performing the same steps as in the derivation in Beutler et al. (2014a, appendix A), we write

the fractional variance of the power spectrum as(
σP (k )

P (k )

)2
=

1
Vk

∫ �����
Q (k′) +

S�nal
P (k )

�����

2
d3k′ (3.52)

=

∫
wFKP

4(x ) f (x ) d3x
[∫

wFKP2(x ) д(x ) d3x
]2 , (3.53)

where the integration space was transformed using Parseval’s theorem, introducing two func-
tions f (x ) and д(x ) de�ned as

f (x ) ≡

�������
n2

exp(x ) +
nexp(x )

[
ftpwsys(x ) + (1 − ftp)wtot(x ) + αran

]

P (k )

�������

2

and (3.54)

д(x ) ≡ n2
exp(x ), (3.55)

respectively. Perturbing the weight wFKP(x ) → wFKP(x ) + δw (x ) yields(
σP (k )

P (k )

)2
'

∫
wFKP

4(x )
[
1 + 4 δw (x )

wFKP (x )

]
f (x ) d3x

���
∫
wFKP2(x )

[
1 + 2 δw (x )

wFKP (x )

]
д(x ) d3x ���

2 (3.56)

As proven in Beutler et al. (2014a, appendix A) by a Taylor expansion around δw (x ) = 0, the
optimal weight has to satisfy∫

wFKP
3(x ) f (x ) δw (x ) d3x∫

wFKP4(x ) f (x ) d3x
=

∫
wFKP(x ) д(x ) δw (x ) d3x∫

wFKP2(x ) д(x ) d3x
. (3.57)

The solution is given by wFKP(x ) ∝
√
д(x )/f (x ), where we insert the two functions given in

equations (3.54) and (3.54). Further simpli�cation yields

wFKP(x ) ∝
1

nexp(x ) +
[
ftpwsys(x ) + (1 − ftp)wtot(x ) + αran

]
/P (k )

. (3.58)

Neglecting the last term in the square brackets because of αran � 1 and using the simplifying
approximation of a constant expected power spectrum amplitude, P (k ) = PFKP = const, we �nd
that

wFKP =
1

ftpwsys(x ) + (1 − ftp)wtot(x ) + n̄(x ) PFKP
(3.59)

is the minimum-variance weight for our case. Here, ftp is the true pair fraction �ducially set
to ftp = 0.5 as in the �nal shot-noise estimate of equation (3.50). In the case of ftp = 1, we
recover the result presented in Beutler et al. (2014a, equation A.18), while setting wsys(x ) = 1
and wtot(x ) = 1 gives the standard FKP result of equation (3.15).
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3.3.5 Details of the implementation of the clusteringwedges estimator

using the Yamamoto-FFT scheme

Our implementation of the Yamamoto-FFT estimator for the power spectrum multipoles up to
the hexadecapole is mostly based on code written in C/C++ and uses the FFTW6 library, which
is one of the most common choices for a FFT library. Before applying the FFTs, the real-space
version of equation (3.32) is calculated on a mesh using 12003 grid cells applying the triangular-
shaped cloud (TSC) scheme to assign galaxies and randoms to the cells. The side length of the
grid is 4000 h−1 Mpc. After the FFT, the mass-assignment scheme is corrected for by using an
approximative, non-iterative version of the anti-aliasing correction introduced in Jing (2005).
Montesano et al. (2010, appendix A) show that dividing each Fourier mode by the corrective
term C1(k ) given in Jing (2005, equation 20),

CTSC
1 (k ) =

∏
i

[
1 − sin2

(
π ki
2kN

)
−

2
15 sin4

(
π ki
2kN

)]
, (3.60)

where kNy is the Nyquist frequency of the grid, yields a more precise power spectrum estimate
than dividing by the Fourier transform of the mass assignment function (e.g. Angulo et al.,
2008). ThisC1 scheme applied here was also used in Jeong & Komatsu (2009, studies on N -body
simulations) and Montesano et al. (2012, cosmological implications of the BOSS DR7 power
spectrum).

The �nal measurements are obtained by averaging the multipole estimates of equation (3.27)
over spherical shells in k-space as

P` (k ) =
1
Vk

∫
bin

P` (k ) dk̂ = 1
Nmodes(k )

∑
k−0.5∆k≤|k |<k+0.5∆k

P` (k ), (3.61)

where Vk is the shell volume and Nmodes(k ) is the number of k modes contained in that shell.
We de�ne wave-number bins with ∆k = 0.005 h Mpc−1 from kmin = 0 h Mpc−1 to kmax =
0.25 h Mpc−1. Thus each bin is signi�cantly larger than the fundamental mode of the grid,
kfund = 1.57 × 10−3 h Mpc−1. Also, kmax is always smaller than the Nyquist frequency of the
grid, kNy = 0.942 h Mpc−1 and thus we can expect the error from aliasing to be less than 0.01%
(Sefusatti et al., 2015). The central wave-numbers are denoted as ki in the following.

Post-processing steps, such as the conversion to clustering wedges, are performed using
Python scripts. We consider con�gurations of two and three bins in µ. For simplicity and
consistency with the analysis of two clustering wedges in con�guration space (Kazin et al.,
2012, 2013; Sánchez et al., 2013, 2014), the transverse and line-of-sight projections are labelled
P⊥(ki ) ≡ P0.5

0 (ki ) and P‖ (ki ) ≡ P1
0.5(ki ), respectively. If three wedges are used, we denote the

projections as P3w,1 to P3w,3 and the µ ranges are de�ned accordingly. For general references,
we label the power spectrum wedges as PA(ki ) and combine all measurement bins into a single
vector Pobs = (PA(ki )).

6http://www.fftw.org/

http://www.fftw.org/
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3.4 The window function e�ect

A non-trivial survey geometry biases the power spectrum estimator presented in Section 3.2.
For scales of sizes close to or larger than the distances between the boundaries of the survey,
the measured power spectrum is suppressed as the modes within the survey fail to resolve the
perturbations at their full length. This e�ect can be described with a convolution of a theoretical
prediction P theo(k ) with a window function as in equation (3.19). As already done in Gil-Marín
et al. (2015d), we omit the term from the integral constraint (Beutler et al., 2014a, section 5.2)
due to its negligible e�ect for large-volume surveys such as BOSS,

Pobs(k ) =

∫
Q (k − k′) P theo(k′) d3k′ . (3.62)

The estimator of the window function Q (k ) was given in equation (3.21).
The isotropic power spectra measurements of the LRG, LOWZ and CMASS samples in DR5

to DR10/DR11 (Percival et al., 2007a; Reid et al., 2010; Montesano et al., 2012; Anderson et al.,
2013, 2014b) de�ned an isotropic survey window function as the average of |W (k ) |2 ≡ Q (k ) over
spherical shells in k-space. In order to take the anisotropies of the power spectrum correctly
into account, multipole window functions were introduced in Beutler et al. (2014a, section 5.1).
The large-scale suppression of power is stronger for higher-order multipoles due to the lack
of resolution for wide angles. The multipole window function for the DR11 and DR12 BOSS
samples are discussed in Beutler et al. (2014a) and Gil-Marín et al. (2015d), respectively.

For our Fourier space analysis, we extend the formalism of the multipole window function
to clustering wedges. Consistently with our measurement method using the Yamamoto-FFT
estimator, the wedge window functions are derived from estimates of the multipole window
function (Beutler et al., 2014a, equation 33),

|W (k ,k′) |2`L = 2i` (−i)L (2` + 1)
Nran∑
ij,i,j

wFKP(xi )wFKP(xj )

× j` (k |∆x |) jL (k
′|∆x |) L` (x̂mid · x̂ ) LL (x̂mid · x̂ ), (3.63)

where ∆x = xi − xj , xmid = (xi + xj )/2, and j` (x ) represents the spherical Bessel function of
order `. Due to its immense computation time, this double sum was restricted to a subset of
ca. 65,000 randoms. We performed a convergence test and did not �nd improvement if a larger
subset of randoms is used.

The multipole window functions are subsequently transformed to wedge window functions
by use of the matrixT that transforms multipoles to wedges as in equation (3.40),

|W (k ,k′) |23w,nm =
∑

`,L∈{0,2,4}
Tn`T

−1
Lm |W (k ,k′) |2`L, (3.64)

where T −1
Lm are the elements of the inverse transformation matrix, T −1. For two wedges, only

the monopole and quadrupole are used to generate |W (k ,k′) |22w,nm in order to ensure that the
transformation matrix is non-singular.
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Figure 3.4 – The window matrix for the most-perpendicular wedge of the DR12 combined sample, w3w,11 (ki ,k
′).

The left-hand panel shows the dependency of w3w,11 on the redshift range (low redshift bin dashed, high redshift
bin solid) and the mean ki (given in h Mpc−1) of the output bin. In the right-hand panel, the di�erent window
matrices for the two galactic caps of the survey are plotted (NGC solid, SGC dashed) for the high-redshift bin and
lower output ki than in the �rst panel.
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We apply a forward approach to compare model predictions for the power spectrum wedges
to the measurements, by convolving the theoretical predictions P̃3w,n with the estimate for the
window function, as a deconvolution can amplify the noise in the measurement. In order to
reduce the computation time, the convolution is described by a window matrix multiplication.
The normalized window matrix M is precomputed, with elements w3w,nm (ki ,k

′) given by

w3w,nm (ki ,k
′) =W −1

ki
wk ′ |W (ki ,k

′) |23w,nm (k′)2. (3.65)

Here, the input wavenumbersk′ and their weightswk ′ are determined using the Gauss-Legendre
quadrature. The normalizationWki is chosen such that ∑3

n,m=1
∑

k ′w3w,nm (ki ,k
′) = 1 for each ki .

The �nal prediction for the power spectrum wedge vector, Ppred = (P̂3w,n (ki )), is then given
by

Ppred = M · P theo, P̂3w,n (ki ) =
∑
k ′

w3w,nm (ki ,k
′) P̃3w,m (k

′), (3.66)

where P theo = (P̃3w,n (k
′)) are model predictions for the wedges of the underlying power spec-

trum at the input wavenumbers k′.
To illustrate the features of the window matrix, we plot its elements for the most-perpen-

dicular wedge,w3w,11(ki ,k
′), using di�erent con�gurations in Figure 3.4. In the left-hand panel,

we show that the window matrices for the low and high redshift bin do not signi�cantly di�er.
Further, this plots shows the narrow width of the window function around each ki , as well as
the fast convergence of the normalized amplitude to an asymptotic height. In the right-hand
panel of the same �gure, it can be seen that the window matrices for North and South have a
slightly di�erent normalization due to the smaller volume of the South, but otherwise follow
the same trends with ki and k′.

In the left-hand panel of Figure 3.5, the cross- and auto-contributions of the three power
spectrum wedges are shown for ki = 0.0275 for the high-redshift bin. This plot illustrates that
the cross-talking induced by the anisotropic window matrix is non-negligible for the most-
parallel wedge. The right-hand panel of the same �gure shows the convolved power spectrum
for the Northern (NGC) and Southern (SGC) galactic cap versus the theoretical input power
spectrum (taken from the best-�tting parameters of a ΛCDM model) to emphasize that the
power suppression induces by the survey geometry is stronger for the SGC. In these two plots,
only the results for the high redshift bin are presented, but the conclusions are the same for the
other redshift bins.

While this thesis has been prepared, an alternative technique to account for the anisotropic
window function e�ect was published (Wilson et al., 2015). The advantage of this alternative
method is the faster computation of the convolution by using 1D FFTs. In its original formula-
tion, this technique does not account for wide-angle e�ects. This technique can be extended to
wide surveys such as BOSS (private communication with F. Beutler), but due to the su�cient
performance achieved by the precomputation of the window matrix, the bene�t from switching
to this new technique is small.
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Table 3.2 – The sets of cosmology parameters used in this thesis and for the BOSS DR12 combined sample analysis
(Anderson et al., 2016, in prep.). All cosmologies are �at ΛCDM, so that ΩΛ = 1 − ΩM. Except for the ‘template’
cosmology, Ωch

2 can be derived from Ωch
2 = ΩMh

2−Ωbh
2. For the template cosmology, there is a massive neutrino

component in addition, Ωνh
2 = 0.00064 (corresponding to ∑

mν = 0.06 eV) — just as for the Planck 2015 reference
ΛCDM cosmology (Adam et al., 2015).

Name ΩM h Ωbh
2 σ8 ns

Fiducial 0.31 0.676 0.022 0.8 0.97
QPM 0.29 0.7 0.02247 0.8 0.97
Patchy 0.307115 0.6777 0.02214 0.8288 0.96
Minerva 0.285 0.695 0.02104 0.828 0.9632
Template 0.315298 0.6726 0.022204 0.828 0.964817

3.5 Synthetic galaxy catalogues for the BOSS samples

Synthetic catalogues that mimic the clustering properties of the BOSS LSS samples serve as basis
to infer the covariance matrix for the �ts of the clustering measurements on the DR12 combined
sample. In order to ful�l this function, these catalogues incorporate the full survey geometry
(i.e., they share the same angular and radial selection function) and the most important obser-
vational systematics — see Section 3.3 and Reid et al. (2016) — such as the veto masks and �bre
collisions. A precise estimate of the covariance matrix requires a large number of mock cata-
logues, so that mass generation of hundreds to thousands of realizations is crucial. As accurate
modelling of the gravitational dynamics only needs to be achieved in the quasi-linear regime,
solving the large-scale dynamical evolution can rely on fast, approximate gravity solvers to
generate large-scale halo catalogues. These haloes are subsequently populated with synthetic
galaxies by use of phenomenological small-scale models that are calibrated on a few N -body
simulations. The performance of a wide variety of mock halo and galaxy catalogue generators
have been compared in Chuang et al. (2015). Also, our estimator for Fourier space wedges is
tested on such mock catalogues.

Within the BOSS collaboration, two sets of mock catalogues mimicking the DR12 combined
sample were constructed by separate teams using di�erent tools, allowing for additional tests
for systematic e�ects on the �nal constraints coming from the covariance matrix. Both sets of
DR12 mocks feature a large number of realizations to overcome the sample noise in the preci-
sion matrix estimate (see the discussion of the clustering likelihood evaluation in Section 4.1.2).
These e�orts re�ect the increasing need for the generation of accurate and reliable mock cata-
logues since the creation of the PThalos mocks for DR9 (Manera et al., 2012, 2015).

As the two sets of mocks are generated assuming cosmological parameters di�erent than
the ‘�ducial’ ones, these values are compared against each other in Table 3.2.

3.5.1 MultiDark-Patchy mocks

The set of MultiDark-Patchy (Kitaura et al., 2015, 2016) mocks are based on the Patchy (Kitaura
et al., 2014) recipe to generate mock halo catalogues. In a �rst step, the Augmented Lagrangian
Perturbation Theory (ALPT; Kitaura & Hess, 2013) formalism is used to generate a DM density



76 3. Anisotropic clustering measurements in Fourier space

and velocity �eld, splitting the Lagrangian displacement �eld (cf., Section 2.4.1) into a large-
scale component, which is derived by 2LPT, and a small-scale component that is modelled by
the spherical collapse approximation. The initial conditions are generated with cosmological
parameters that are matched to the Big-MultiDark N -body simulations (Klypin et al., 2014).
These parameters are given as ‘Patchy’ in Table 3.2.

The halo density �eld is then modelled using perturbation theory and nonlinear stochastic
biasing with parameters calibrated against the fully non-linear simulations (Rodríguez-Torres
et al., 2015). The second step populates the haloes with galaxies by halo abundance matching be-
tween the BOSS DR12 combined sample and simulations using Hadron (Zhao et al., 2015). The
clustering of the Patchy catalogues reproduce the BOSS DR12 two- and three-point statistics
(Rodríguez-Torres et al., 2015). The survey selection is applied to a light-cone interpolation of
the galaxy population at 10 di�erent intermediate redshifts (Sugar; see Rodríguez-Torres et al.,
2015). A set of 2045 realizations exists from which we obtain the covariance matrix discussed
in Section 4.5 for the �ts of the clustering model to the data.

3.5.2 QPM mocks

An alternative set of mock catalogues are based on a technique known as quick-particle-mesh
(QPM; White et al., 2014). This method uses a low-resolution particle mesh code to generate
the large-scale dark matter density �eld from initial conditions that have been created using
the cosmological parameters given as ‘QPM’ in Table 3.2. In a second step, sophisticated post-
processing of the proto-haloes in that density �eld makes use of halo occupation distribution
(HOD) modelling7 to ensure that the small-scale clustering of the BOSS DR12 data is matched
by that of the mocks. The combined-sample QPM mocks vary the HOD parameters over the
redshift in order to create a more realistic survey sample from the �xed simulation output at
z = 0.55. Three sets of 1000 realizations each were constructed for the DR12 LOWZ, CMASS,
and combined samples.

The CMASS realizations are used to verify the FFT estimator in Section 3.5.3 and for the
covariance matrix for the RSD challenge �ts (cf., Section 5.2.2). Later, the QPM combined sam-
ple covariance matrix is used as an alternative to the Patchy covariance matrix as a simple
consistency check for systematics in the covariance estimate (see Section 4.5.2).

3.5.3 Veri�cation of the FFT estimator

As described in Section 3.2, we estimate the power spectrum wedges by transforming the re-
sults of the Yamamoto-FFT multipole estimator (Bianchi et al., 2015; Scoccimarro, 2015) using
the transformation matrix given in equation (3.40). In order to verify that this does not give
biased results compared to the direct estimate by means of the analogy of the Yamamoto-Blake
estimator for power spectrum multipoles as given in equation (3.35), we compare these two
estimators on the QPM mocks described in Section 3.5.2 for the DR12 CMASS samples in a
version where �bre collisions have not been simulated to focus on the galaxy clustering only.

7The HOD technique is described in more details in Section 4.3, where it is used to generate galaxy catalogues
from the set of Minerva simulations.
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Figure 3.6 – Left-hand panel: Comparison of the mean power spectrum wedges of 1000 QPM DR12 CMASS mocks
from the Yamamoto-Blake direct-sum estimator given in equation (3.35) against the Yamamoto-FFT estimator of
Bianchi et al. (2015) and Scoccimarro (2015). The shaded region is the dispersion of the estimated power spectra
of the individual mocks. Right-hand panel: The ratio of these power spectra to highlight the insigni�cance of the
deviations.

As shown in Figure 3.6, no signi�cant deviations between the direct-sum and FFT estimated
power spectra wedges can be identi�ed at the scales of interest (|∆P3w,n (k ) |/P3w,n . .5% for
k . 0.25 h Mpc−1). Further, we test whether the simpli�cation proposed in Scoccimarro (2015),
reducing the number of FFTs per realization from 1+6+15 to 7, has a comparable performance
than the full version. Especially, the accuracy of the estimators with respect to the mean and
dispersion across the catalogues is relevant. Our comparison shows that the mean wedges
are almost exactly the same, but the Scoccimarro-estimated intermediate wedge has a slightly
smaller dispersion than the Bianchi-estimated one. As the method used in Scoccimarro (2015) is
not completely compatible with the Yamamoto-Blake estimator, we use the approach of Bianchi
et al. (2015) in this work. None the less, the RSD analysis should not be a�ected from deviations
in the dispersion because the covariance is estimated from the mock catalogues in the same way
as the data.

3.6 The Fourier space clustering wedges of the BOSS DR12

combined sample

In Figure 3.7, the three power spectrum wedges of the Northern (NGC, left-hand panels) and
Southern galactic cap (SGC, right-hand panels) of the combined sample are plotted for the low
(high) redshift bin in the upper (lower) panels. The measurements are shown with error bars
corresponding to the diagonal entries of the covariance matrix obtained from the Patchy mock
catalogues. All measurements, on the data and the mocks, are consistently performed assuming
the �ducial cosmology of the BOSS DR12 analysis (Anderson et al., 2016, in prep.), whose matter
density fraction is very close to the Planck 2013 (Ade et al., 2014c) and 2015 (Ade et al., 2015)
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Figure 3.7 – The power spectrum wedges for NGC and SGC of the BOSS DR12 combined sample in the low (upper)
and high (lower panel) redshift bin de�ned in Table 3.1. Error bars are derived as the square root of the diagonal
entries of Patchy covariance matrix (see Section 4.5.1). The model prediction is the best-�t ΛCDM model using the
maximum-likelihood parameters of a combined �t of the Planck 2015 CMB observations and BOSS DR12 Fourier
space wedges. The low redshift bin �ts used separate bias, RSD, and shot noise parameters for NGS (left-hand
panels) and SGC (right-hand panels), whereas the high bin used only one set of nuisance parameters.

central values. The full set of parameters for the �ducial cosmology is listed in Table 3.2.

In the same �gure, also the model predictions for the full shape of the clustering wedges
obtained with the techniques described in Section 5.1 are shown (solid lines). The model pa-
rameters are based on the maximum-likelihood values of a combined �t of a ΛCDM cosmology
to the BOSS DR12 clustering wedges of the low and high redshift bins in Fourier space and the
Planck 2015 CMB observations. For the low redshift bin, we use two di�erent sets of nuisance
parameters (the bias and RSD parameters and the additional shot noise) to account for the fact
that the NGC and SGC samples might contain two slightly di�erent galaxy population at low
redshifts as discussed later in Section 3.6.2.
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Figure 3.8 – MultiDark Patchy power spectrum wedges compared against the BOSS DR12 combined sample for
the low (left-hand panel), intermediate (centre panel) and high (right-hand panel) redshift bin. These measure-
ments correspond to 2045 full survey (combining NGC and SGC) mocks and have been performed assuming the
�ducial cosmology.
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Figure 3.9 – QPM power spectrum wedges compared against the BOSS DR12 combined sample for the low (left-
hand panel), intermediate (centre panel) and high (right-hand panel) redshift bin. These measurements correspond
to 1000 full survey (combining NGC and SGC) mocks and have been performed assuming the �ducial cosmology.

3.6.1 Galaxy clustering comparison between the data and the mocks

For consistency, the power spectrum measurements from the BOSS DR12 combined sample
and the mock realizations are performed in the �ducial cosmology as de�ned in Table 3.2. Thus
the �ducial distances in the measurements are di�erent from the true distances in the under-
lying synthetic galaxy samples. The relevant distance quantities such as DA(z) and H (z) are
compared later in Table 5.1.

Here, we compare the clustering measurements in Fourier space on the mocks with the data.
The mean power spectrum wedges derived from the Patchy mocks show very good agreement
with the clustering of the DR12 combined sample as shown by the comparison in Figure 3.8.
This agreement becomes slightly worse the higher the redshift is, but as the modelling of the full
characteristics of a galaxy survey such as BOSS is a great challenge, deviations can be expected.

The QPM mocks described in Section 3.5.2 are an alternative set of synthetic survey cat-
alogues used for comparison tests. In Figure 3.9, the mean and dispersion of the QPM power
spectrum wedges are compared against the measurements on the BOSS DR12 combined sample
for the low (left-hand panel) and the high redshift bin (right-hand panel) and the agreement is
found to be worse than for the Patchy mocks. Other than the larger dispersion of the Patchy
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mocks (discussed later in Section 4.5.3), the larger number of realizations, the better agreement
of the Patchy clustering with the data, and the improved modelling of the redshift evolution
in the Patchy mocks are reasons for the choice of the Patchy mocks as reference for the co-
variance estimate. The covariance matrices obtained from the Patchy and QPM mocks are
discussed in Section 4.5.

In the BOSS DR12 LOWZ and CMASS analyses (Gil-Marín et al., 2015d,c; Cuesta et al.,
2015), only minor di�erences were found in the covariance matrices obtained from the QPM and
Patchy mocks (in particular, QPM predicts a larger high-k dispersion of the power spectrum
monopole). However, no signi�cant e�ect from interchanging the covariances was found for
BAO and RSD �ts on the data.

3.6.2 The clustering properties of the NGC and SGC subsamples

Due to small di�erences in the photometry between the two galactic caps, the combined sam-
ple of BOSS does not have a unique selection function. As there are also erroneously targeted
‘early regions’, the sample is split into patches with their own selection function n(z), which
were shown in Figure 3.3. Thus, there is no guarantee that the galaxy populations of the dif-
ferent regions fully correspond to each other. As part of the Fourier space analysis presented
in this thesis, the clustering properties of the individual subsamples are compared, focussing
on hemispherical subsamples that combine the patches in each of the two galactic caps of the
survey (NGC and SGC).

In Figure 3.10, we show the power spectrum monopole for each subsample with error bars
derived from the diagonal of the Patchy covariance matrix (see Section 4.5.1) for the low (left-
hand panels) and high (right-hand panels) redshift bins. The centre panels show the P0(k ) up to
a wavenumber of kmax = 0.3 h Mpc−1, the lower panels show the ratio of SGC power spectrum
to the NGC power spectrum. The upper panel shows the selection functions for the di�erent
subsamples, excluding the early regions in the North.

The comparison of the measured power spectrum monopole, P0(k ), of the NGC and SGC
subsamples of the �nal catalogue with the predicted NGC–SGC dispersion from the Patchy
mocks shows signi�cant tension for the low redshift bin, while the di�erences in the high red-
shift bin are consistent with the sample variance of the mocks. In terms of the power spectrum
monopole, the SGC clustering in the low redshift bin shows a 4% amplitude mismatch.

As discussed in more detail in Ross et al. (2016, in prep.), the discrepancy can be solved by
taking into account the colour shifts between SDSS DR8 photometry (Aihara et al., 2011) in the
North and South that have been identi�ed by Schla�y & Finkbeiner (2011). These corrections
a�ect the LOWZ SGC colour cut on c‖ (Reid et al., 2016, equation 9),

rcmod < 13.5 + c‖,corr/0.3, where c‖,corr = c‖ − 0.015 (3.67)

and the CMASS SGC colour cuts on d⊥ (Reid et al., 2016, equations 13 and 14),

d⊥,corr > 0.55 and
icmod < min (19.86 + 1.6(d⊥,corr − 0.8),19.9) , where (3.68)
d⊥,corr = d⊥ − 0.0064.
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Figure 3.10 – The number density (upper panels) and power spectrum monopole (centre panels) for the NGC
(blue) and SGC (black lines) subsamples of the combined sample in the low (left-hand panels) and high (right-
hand panels) redshift bins. Error bars (shaded area) are derived from the Patchy mocks. The red line corresponds
to a corrected SGC sample taking the colour shifts between SDSS photometry in the North and South into account
(for more details, see Ross et al., 2016, in prep.). The lower panels shows the P0 (k ) ratio to highlight the deviations
between the samples in the two hemispheres.

The selection function and power spectrum monopole of the corrected SGC subsample are
overplotted in Figure 3.10. The SGC n(z) is reduced by 10% at low redshifts and the amplitude
mismatch in P0(k ) is lowered to a level that is consistent with the North. The corrected SGC
result is still below the one of NGC for most wavenumber bins, but as the window function
induces a correlation between the bin, only the analysis of the log likelihood χ 2, de�ned later
in equation (4.4), can quantify the level of consistency. Thus, apart from the di�erence vector,
the co-added NGC and SGC precision matrix is needed,

ψP
di� = (1 + D)

[
CP0

di�

]−1
, where CP0

di� = C
P0
NGC +C

P0
SGC, (3.69)

The covariance matrices were obtained from 1000 Patchy realizations and has been corrected
for sampling noise using the correction factor in equation (4.5), (1 + D), that is given in the
�gure. The likelihood, the precision matrix, and the correction factors are discussed in more
detail in Section 4.1.2.

This analysis shows that the low-redshift NGC–SGC di�erence in the corrected sample
is of the order of what can be expected for this number of measurement bins. Further, the
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high redshift bin also shows slightly increased consistency, even though it was already in good
agreement in the original sample.

These results on the shifts of n(z) and P0(k ) are in very good agreement with results pre-
sented in Ross et al. (2012) for the con�guration space DR9 CMASS analysis, which did not
�nd any signi�cant change in the galaxy clustering after correcting for the shifted photometry.
Further tests on the DR12 combined sample in con�guration space (Ross et al., 2016, in prep.)
show the same trends as seen in Fourier space, but the amplitude mismatch is not a signi�cant
change as the relative errors bars are much larger for the correlation function.

We see this analysis as good evidence that the NGC and SGC subsamples probe slightly
di�erent galaxy populations for redshifts lower than z ≤ 0.5. As a consequence, we describe
the two parts of the low redshift sample with two di�erent bias, RSD, and shot noise parameters
when modelling the power spectrum wedges (see Chapter 5). Using ‘gRPT+RSD’ �ts of the
Patchy mocks as those described in Section 5.2.3, we �nd that this assumption does not weaken
the constraining power for AP and growth parameters in BAO+RSD �ts.



4
Covariance Matrices

“Complicating the noise issue is the fact that one person’s noise is another person’s signal.
[. . . ] [T]he signals one astronomer was seeking were considered so much noise in the eyes
of another.”

Cole (1998)

Inference of cosmological information from large-scale structure observations relies on an
estimate for the covariance of the measurements. In order not to spoil the precision of the
cosmological observations, also the covariance matrix needs to be accurately estimated. The
covariance matrices associated with galaxy clustering are usually obtained from a brute-force
production of hundreds or thousands of synthetic realizations (called ‘mocks’) using fast ap-
proximate schemes for the gravitational evolution and formation of overdense structures. As
the cosmological observations are evaluated at quasi-linear scales, the clustering covariance is
not measured with full non-linear simulations as this would be computationally too expensive.
However, the covariance estimates from the mock method is a�ected by noise due to the �-
nite number of realizations as discussed in Section 4.1. This results in a biased estimate for the
inverse of the covariance matrix, which leads to biased estimates of the obtained constraints
(Taylor et al., 2013; Dodelson & Schneider, 2013; Percival et al., 2014; Taylor & Joachimi, 2014).
Pushing the number of mock realizations to the regime of a couple of thousands can ameliorate
this inaccuracy.

To validate the model of the redshift-space galaxy clustering described in sections 2.4.4 to
2.4.6, working with N -body simulations is a necessary step in order to verify how well the clus-
tering two-point statistics are described in the mildly non-linear regime. An improved accuracy
at small scales is bene�cial for cosmologial �ts as the number of modes increase with the third
power of maximum wavenumber of the �tting range. In general, only a few realizations of the
expensive N -body simulations are available, so that the data covariance matrix can only be pre-
dicted with a low signal-to-noise ratio. Even more so for a number of measurement bins that
is of the same order or larger than the number of realizations, in which case the obtained co-
variance matrix cannot be inverted to estimate the precision matrix (cf., Section 4.1.2). For this
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case, a theoretical framework for the modelling of anisotropic clustering covariance, relying on
the assumption of a Gaussian likelihood for the two-point statistics, is presented in Section 4.2.
These predictions are compared against the results from the set of 100 Minerva simulations in
Section 4.4. The simulations are described in Section 4.3.

Alternatively, the covariance can be estimated with methods that work on a small number
of independent realizations, or even only one. Examples of such methods are bootstrap and
jackknife. The latter technique will be used in this work to estimate the error on the covari-
ance. In the context of clustering covariance estimates, Hamilton et al. (2006) uses a reshu�ing
scheme for the phases of a periodic simulation to estimate the power spectrum covariance from
a single realization and a similar resampling was used by Schneider et al. (2011).

Parametric models of the covariance matrix model the broad features with smooth analyt-
ical functions depending on free parameters that are calibrated against a smaller number of
simulations (Pearson & Samushia, 2015). The noise in the obtained covariance matrix can also
be reduced by means of a shrinkage estimation (Pope & Szapudi, 2008) or covariance tapering
(Paz & Sanchez, 2015).

As the modelling of the survey systematics such as the selection function and the �bre col-
lisions are very non-trivial, the BOSS clustering working group bases their clustering analyses
on two large sets of mock catalogues that are used also for further checks for systematic of the
modelling apart from the estimate of the covariance matrix. The covariance matrices obtained
from these mocks are described in Section 4.5.

The complexity of the covariance estimation increases further if the dependence of the co-
variance on the cosmological model is to be analysed as well (e.g., for the BAO covariance,
Labatie et al., 2012). As the main aim of this thesis are the cosmological �ts to the BOSS DR12
clustering, only the most relevant aspects of the estimation of the covariance matrix are pre-
sented in this thesis.

4.1 Covariance matrix estimates from sets of mock simu-

lations and their noise properties

4.1.1 The data covariance matrix

For this section, we assume that the measurement vector Pobs = (PA(ki )) has elements PA(ki ) ≡
P iA that can denote power spectrum (PS) wedges or multipoles, measured at wavenumber bins
centred at ki . Analogously, the quantities ξA(ri ) ≡ ξ iA denote measurements of two-point cor-
relation function (2PCF) wedges or multipoles in separation bins centred at ri .

Usually the covariance matrixCP is estimated from a set ofNm mock measurements, denoted
(n)P iA, where n ∈ {1, . . . ,Nm}, so that1

CP
ABij =

1
Nm − 1

∑
n

(
(n)P iA − 〈P

i
A〉

) (
(n)P j

B − 〈P
j
B〉

)
. (4.1)

1The 2PCF covariance matrix Cξ =
(
C
ξ
ABi j

)
is likewise estimated from mock measurements (n)ξ iA.
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Table 4.1 – The correction factors of equation (4.5) for the precision matrices of our con�guration of measurement
bins and numbers of realizations used to estimate the covariance matrix of the anisotropic clustering in con�gura-
tion space (bins of seperation distance s) and Fourier space (bins of wavenumber k). The �rst set of con�gurations
is used for the covariance matrices of the Minerva simulations in Section 4.4; in this case except for the large con-
�guration space bins, the covariance matrix is singular due to Nb ≥ Nm − 2 or noise-dominated as D ≥ 0.5. The
second set of con�gurations is used for the covariances matrices of the BOSS DR12 combined sample discussed in
Section 4.5.

Nm Space Unit kmin/ kmax/ ∆k/ #(ki )/ #(wedges)/ Nb D

smin smin ∆s #(si ) #(multipoles)
100 k h Mpc−1 0 0.25 0.005 50 3 150 −

0.010 25 3 75 0.7677
100 s h−1 Mpc 0 180 5 36 3 108 −

15 12 3 36 0.3737
1000 k h Mpc−1 0.02 0.2 0.005 36 3 108 0.1091
2045 k h Mpc−1 0.02 0.2 0.005 36 3 108 0.0533

Here, the mean over all simulations is given by

〈P iA〉 =
1
Nm

∑
n

(n)P iA. (4.2)

4.1.2 The clustering likelihood and the precision matrix

Assuming that the Fourier transform of the density contrast δ̂ (k ), as de�ned in equation (2.32),
is a Gaussian random �eld, the Fourier modes |δ̂ (k ) |2 follow a Rayleigh distribution (see e.g.
Kalus et al., 2016). In the following, we assume that the number of Fourier modes observed
is large enough to validate the assumption that the power spectrum follows a multi-variate
Gaussian distribution with �xed covariance.2

We denote a point in the parameter space of a theoretical clustering model as ζ ∈ X and the
model predictions as Ppred(ζ ) =

(
P̂A(ki )

)
. Given that the covariance matrixCP is known exactly

and �xed, we can compute the likelihood of a model prediction for the clustering statistic, Ppred

or ξ pred, using its inverse, the precision matrix,ψP , by3

L
(
ζ | Pobs,ψP

)
=
|ψP |
√

2π
exp

[
−

1
2 χ

2(Ppred(ζ ),Pobs,ψP )
]
. (4.3)

2Deviations from the Gaussianity of the angular power spectrum likelihood have recently been analysed (Sun
et al., 2013; Kalus et al., 2016) and it was shown that constraints on primordial non-Gaussianity are a�ected by the
negligence of the non-Gaussian contribution. The logarithm of the spatial power spectrum was found to be closer
to a Gaussian random variable at large scales than the power spectrum itself by Ross et al. (2013). In this work,
we consider the assumption of a Gaussian likelihood as su�cient for quasi-linear scales (Manera et al., 2012; Ross
et al., 2013). Further, we neglect the dependence of the covariance on cosmological parameters as suggested by
Carron (2013).

3For the 2PCF likelihood, replace the Ppred, P̂ iA, Pobs, P iA, andψP by ξ pred, x̂iiA, ξ obs and ξ iA, andψξ .
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Table 4.2 – The correction factors for the parameter constraints as given by equation (4.6) for our con�gura-
tion of measurement bins, numbers of realizations used to estimate the covariance matrix, and number of �tting
parameters. kmin and kmax are given in units of h Mpc−1.

Nm kmin kmax Nb Np (z-bin) M

1000 0.02 0.2 108 8 (int,high) 1.0494
1000 0.02 0.2 108 13 (low) 1.0439
2045 0.02 0.2 108 8 (int,high) 1.0231
2045 0.02 0.2 108 13 (low) 1.0206

Here, the log-likelihood or χ 2 function is given by

χ 2(Ppred,Pobs,ψP ) =
(
Pobs − Ppred

)T
·ψP ·

(
Pobs − Ppred

)
=

∑
A,B

∑
i,j

(
P iA − P̂

i
A

)
ψ P
ABij

(
P j
B − P̂

j
B

)
, (4.4)

whereψ P
ABij are the elements of the precision matrixψP .

This likelihood is usually explored using Monte Carlo Markov chains to estimate the con-
straints in the parameter space X. This technique is further discussed in Appendix A.

If the exact covariance matrix is not known, but estimated using equation (4.1), the noise
in (CP )−1 must be considered as a potential systematic. Then, the likelihood of equation (4.3)
has to be marginalized over the distribution of the uncertainties in (CP )−1. In the case in which
(n)P iA are Gaussian random samples, the inverse covariance matrices follow an inverse Wishart
distribution with the true precision matrix ψP . In most analyses however, (CP )−1 is used to
replace the exact inverse covarianceψP , resulting in known biases of the parameter estimates
that must be corrected for (see e.g. Kaufman, 1967; Taylor et al., 2013; Dodelson & Schneider,
2013; Percival et al., 2014; Taylor & Joachimi, 2014). In this work, this bias is accounted for by
the usual rescaling (Hartlap et al., 2007),

ψP = (1 − D)CP−1
, where D =

Nb + 1
Nm − 1 , (4.5)

whereNb is the totbal number of bins in the measurements PA(ka ). Thus, the smaller the number
of realizations, Nm, the larger these corrections are; in the extreme case of Nb ≥ Nm − 2, the
covariance matrix CP becomes singular.

In addition, the e�ect of the noise propagates to the parameter constraints, so that the ob-
tained variance of each parameter needs to be rescaled by (Percival et al., 2014)

M =

√
1 + B (Nb − Np)

1 +A + B (Np + 1) , (4.6)

where Np is the number of �tting parameters and the two factors A and B are given as

A =
2

(Nm − Nb − 1) (Nm − Nb − 4) , (4.7)

B =
Nm − Nb − 2

(Nm − Nb − 1) (Nm − Nb − 4) . (4.8)
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As only a limited set of synthetic catalogues — the Minerva HOD samples discussed in
Section 4.3 — is available for the model testing in Section 5.2, a smooth and non-singular esti-
mate of the covariance matrix by theoretical modelling of the data covariance and its inverse is
derived in Section 4.2.

Our model does not take the survey selection function into account so that for the �nal
BOSS sample we base the covariance estimate on the sets of mocks described in Section 4.5.
As these sets are large, the correction factors for the covariance of the P3w,i (k ) measurements
and the �tted parameters, listed in Tables 4.1 and 4.2, respectively, are small despite the large
number of measurement bins used.

4.2 Theoretical Gaussian covariance matrices for tests of

redshift-space clustering models

The theoretical framework presented in this section relies on the Gaussian approximation for
the likelihood, which was found to be su�cient for clustering experiments in the linear and
quasi-linear regime (Manera et al., 2012). This work was published in Grieb et al. (2016a) and
all �gures and tables in this section and most of the text are borrowed from this paper. The
theoretical modelling of the anisotropic clustering covariance has not been studied in detail,
in contrast to the covariance of the angle-averaged clustering statistics (Feldman et al., 1994;
Smith et al., 2008; Sánchez et al., 2008) or the covariance of angular 2-point statistics (Crocce
et al., 2011). Our theoretical estimate aims at the model veri�cation using synthetic catalogues
with periodic boundary conditions, giving explicit formulae for the covariance of the multi-
poles as well as clustering wedges of the redshift-space galaxy PS and 2PCF for cubic mock
catalogues. For RSD and BAO studies, usually distance scales between 30 and 180 h−1 Mpc
and wavenumbers between 0.02 and 0.2 h Mpc−1 are considered as relevant (corresponding to
the quasi-linear regime of gravitational evolution). The accuracy of the theoretical estimates is
validated with the Minerva simulations. The incorporation of the e�ects of a non-trivial sur-
vey geometry (described by the angular and radial selection of galaxies) is left for future work,
which is discussed in Section 4.4.4. Also no supersurvey modes have been taken into account
for the modelling of the clustering covariance, in agreement with the absence of those modes
in our simulations.4

4.2.1 Modelling of the covariance of galaxy two-point clustering mea-

surements

Fourier space: the power spectrum covariance

The assumption made for the likelihood L of the clustering statistics given by equation (4.3)
— that the 2D power spectrum follows a Gaussian distribution — leads to the following relation

4Besides other e�ects, supersurvey modes alter the local clustering amplitude σ8 (and thus the zero mode of the
initial conditions) of a realization in a stochastic way. Such e�ects can be modelled using the ‘separate-universe’
approach (Sirko, 2005; Wagner et al., 2015).
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for the PS mode-by-mode covariance (see Feldman et al., 1994, for the monopole),

Cov [
P (k ),P (k′)

]
=

2 (2π )3
Vs

δD(k − k
′)

[
P (k ,µ ) + S

]2 , (4.9)

whereVs is the volume of the sample and S is a shot-noise contribution that takes into account
that the discrete galaxy positions of a given survey are sampled by a Poisson point process as
discussed in Section 3.2.1. In the case of a periodic box, the volume is given byVs = L3, whereL is
the side length of the box, and the shot noise is estimated from the inverse of the average number
density, S = n̄−1. For a survey with a selection function given by a random catalogue with
varying number density, the e�ective volume has to be estimated from the window function
(Bernstein, 1994; de Putter et al., 2012) and the shot noise as in equation (3.17). The Dirac
delta function re�ects the independence of Fourier modes for a random �eld with statistical
translational invariance and in the absence of gravitational mode coupling. The anisotropy of
the PS is taken into account by the dependency of P (k ,µ ) on the LoS parameter.

This ansatz for the covariance neglects the trispectrum contribution (Scoccimarro et al.,
1999) and the supersample covariance (SSC; also called beat coupling). The modelling of these
e�ects is beyond the scope of this thesis and, thus, their analysis is left to potential future
improvements of the modelling that are discussed in Section 4.4.4.

The theoretical covariance matrix for binned anisotropic PS measurements is obtained by
averaging per-mode equations such as (4.9) over the number of independent Fourier modes k
that contribute to each wavenumber bin. Just as in Section 3.3.5, we assume the bins to be
centred at ki with width ∆k so that their volume is Vki = 4π [(ki + ∆k/2)3 − (ki − ∆k/2)3]/3.
The bin-average is easily performed by integration in spherical coordinates, (k ,θ ,φ), so that
δD(k − k′) = δD(k − k′)δD(θ − θ

′)δD(φ − φ
′)/(2πk2 sinθ ), and making use of the following

relation:

1
Vki

∫
Vki

d3k
1
Vkj

∫
Vkj

d3k′ Cov [
P (k ),P (k′)

]
=

2 (2π )5
Vki Vkj Vs

∫ ki+∆k/2

ki−∆k/2
k2 dk

∫ kj+∆k/2

kj−∆k/2
(k′)2 dk′

×

∫ π/2

−π/2
sin(θ ) dθ

∫ π/2

−π/2
sin(θ ′) dθ ′δD(k − k

′)δD(θ − θ
′)

2πk2 sin(θ )
[P (k,cos(θ )) + S]2 . (4.10)

Multipole expansion of the power spectrum covariance. A useful de�nition is the mul-
tipole expansion of the per-mode covariance given by

σ 2
`1`2

(k ) ≡
(2`1 + 1) (2`2 + 1)

Vs

∫ 1

−1

[
P (k ,µ ) + S

]2
L`1 (µ ) L`2 (µ ) dµ . (4.11)

The normalization was chosen such that the pre-factor ofσ 2
00(k ) is the usual 2/Vs for an isotropic

PS.
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Replacing P (k ,µ ) by its multipole expansion, P (k ,µ ) = ∑
` P` (k )L` (µ ), we �nd

σ 2
`1`2
=

(2`1 + 1) (2`2 + 1)
Vs

∞∑
`3=0

`3∑
`4=0

[
P`4 (k ) + S δ`40

] [
P`3−`4 (k ) + S δ (`3−`4)0

]

×

∫ 1

−1
L`1 (µ ) L`2 (µ ) L`4 (µ ) L`3−`4 (µ ) dµ . (4.12)

At this point, we use the expansion of a product of two Legendre polynomials by use of Wigner
3j-symbols (Rotenberg et al., 1959),5

L`1 (µ )L`2 (µ ) =
`1+`2∑
`=|`1−`2 |

A``1`2 L` (µ ), where A``1`2 ≡ (2` + 1) *
,
`1 `1 `

0 0 0
+
-

2

(4.13)

and the orthogonality of the L` (x ), yielding

∫ 1

−1
L`1 (µ )L`2 (µ )L`4 (µ )L`3−`4 (µ ) dµ = 2

min(`1+`2 ,̀ 3)∑
`=max( |`1−`2 |,|2`4−`3 |)

A`
`1`2

2` + 1
A`
`4 (`3−`4)

2` + 1 . (4.14)

Inserting this back into the expression in equation (4.11) gives

σ 2
`1`2

(k ) =
2 (2`1 + 1) (2`2 + 1)

Vs

∞∑
`3=0

`3∑
`4=0

[
P`4 (k ) + S δ`40

] [
P`3−`4 (k ) + S δ (`4−`3)0

]

×

min(`1+`2 ,̀ 3)∑
`=max( |`1−`2 |,|2`4−`3 |)

A`
`1`2

2` + 1
A`
`4 (`3−`4)

2` + 1 , (4.15)

where δ`0 re�ects the fact that the shot noise contributes only to terms with the power spectrum
monopole.

Covariance of power spectrummultipoles. First, we consider PS Legendre moments mea-
sured in the wavenumber bins de�ned above. Their theoretical covariance matrixC`1`2ij can be

5An alternative expression for the product of two Legendre polynomials can be found in Bailey (1933),

A`1+`2−2`
`1`2

=
2`1 + 2`2 − 4` + 1
2`1 + 2`2 − 2` + 1

G`1−`G`G`2−`

G`1+`2−`
,

where G` ≡

∏2`−1
p=1 p

`! .

This expansion has been used recently in Wilson et al. (2015) for an FFT-based treatment of the window function
e�ect, cf. Section 3.4.
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obtained by the following integration over the bins:

Cov
[
P i`1 ,P

j
`2

]
=

(2`1 + 1) (2`2 + 1)
Vki Vkj

×

∫
Vki

∫
Vkj

Cov [
P (k ),P (k′)

]
L`1 (cos(θ )) L`2 (cos(θ ′)) d3k′ d3k . (4.16)

This equation expressed in spherical coordinates as in equation (4.10) reads

Cov
[
P i`1 ,P

j
`2

]
=

2 (2`1 + 1) (2`2 + 1) (2π )4
VkiVkj Vs

∫ ki+∆k/2

ki−∆k/2
k2 dk

∫ 1

−1
dµ [

P (k ,µ ) + S
]2
L`1 (µ ) L`2 (µ ),

(4.17)
where we already evaluated the Dirac delta functions. Using the de�nition of σ 2

`1`2
, the bin-

averaged PS multipole covariance CP
`1`2

(ki ,kj ) ≡ Cov
[
P i
`1
,P j

l2

]
yields

CP
`1`2

(ki ,kj ) =
2 (2π )4

V 2
ki

δij

∫ ki+∆k/2

ki−∆k/2
σ 2
`1`2

(k ) k2 dk . (4.18)

This expression was already given in Taruya et al. (2010, Appendix C), but was not averaged
over wavenumber bins. They used these terms up to ` ≤ 2 using the linear input power spec-
trum without validation.

Using the expansion of equation (4.15), the monopole covariance is found to be given by

CP
00(ki ,kj ) =

4 (2π )4

V 2
ki
Vs

δij
∑
`

1
2` + 1

∫ ki+∆k/2

ki−∆k/2
k2 [P` (k ) + S δ`0]2 dk . (4.19)

This shows that the naive guess that the monopole covariance would only be given by the
monopole power spectrum term, (P0(k ) + S )

2, is not correct. Instead, the monopole covariance
has contributions from all higher-order multipoles. In the same way, equation (4.18) shows
that the covariance of higher-order multipoles does not vanish — even though the input power
spectrum is only modelled up to ` = 4 (see Section 4.3.3) — as lower-order covariance terms
contribute as well, always dominated by the monopole covariance term. This is discussed also
in Yoo & Seljak (2015, appendix A) and will be important later on as well.

Covariance of power spectrum wedges. Second, we consider clustering wedges P µ2
µ1 (k ) as

de�ned by equation (3.4). We denote the measurement of P µ+∆µµ in the wavenumber bin centred
around ki as P iµ . Then, the integration over the wavenumber bins can be written as

Cov
[
P iµ ,P

j
µ ′

]
=

(2π )2
Vki Vkj (∆µ )

2

∫ ki+∆k/2

ki−∆k/2
k2

∫ kj+∆k/2

kj−∆k/2
(k′)2

×

∫
µ≤|µ̃ |≤µ+∆µ

∫
µ ′≤|µ̃ ′ |≤µ ′+∆µ

Cov [
P (k ),P (k′)

] dµ̃ dµ̃′ dk′ dk , (4.20)
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using an integration scheme similar to equation (4.10), restricted to the volume of each wedge,
∆µ Vki . The evaluation of the Dirac delta functions in Cov[P (k ),P (k′)] yields the theoretical
covariance of the bin-averaged wedges, CP

µµ ′ (ki ,kj ) ≡ Cov
[
P iµ ,P

j
µ ′

]
to be given by

CP
µµ ′ (ki ,kj ) =

4 (2π )4

V 2
ki
Vs (∆µ )2

δij δµµ ′

∫ ki+∆k/2

ki−∆k/2
k2 dk

∫ µ+∆µ

µ

[
P (k , µ̃ ) + S

]2 dµ̃, (4.21)

where δµµ ′ re�ects that the wedges are discrete and non-intersecting. An additional factor of
2 comes from the fact that the symmetry in µ → −µ has been used to simplify the integration
over the µ range into a single contiguous interval.

In contrast to the multipoles, di�erent Fourier space wedges are not correlated in our linear
Gaussian theory, even after integration over the wavenumber bin.

Con�guration Space: the 2PCF Covariance

First, the covariance of the (unbinned) 2PCF multipole moments is derived from the results in
Fourier space. The Fourier inverse of equation (2.37) yields

Cov [
ξ`1 (s ),ξ`2 (s

′)
]
=

1
(2π )6

∫
d3k

∫
d3k′ Cov [

P`1 (k ),P`2 (k
′)
] eik ·s eik ′·s ′, (4.22)

where the covariance of the power spectrum multipoles is given by

Cov [
P`1 (k ),P`2 (k

′)
]
= (2π )3δD(k − k

′) σ 2
`1`2

(k ), (4.23)

using the de�nition of the per-mode multipole covariance as in equation (4.11).
The resulting expression for the covariance of 2PCF multipoles is

Cov [
ξ`1 (s ),ξ`2 (s

′)
]
=

1
(2π )3

∫
σ 2
`1`2

(k ) eik ·s eik ·s ′ d3k , (4.24)

which can be simpli�ed by use of the same transformation as in equation (3.6) as

Cov [
ξ`1 (s ),ξ`2 (s

′)
]
=

i`1+`2
2π 2

∫ ∞

0
σ 2
`1`2

(k ) j`1 (ks ) j`2 (ks
′) k2 dk . (4.25)

This equation was already given in an almost identical form by White et al. (2015), but the
authors did not explicitly include the shot-noise contribution that enters σ 2

`1`2
(k ).

The covariance of the 2PCFmultipoles. The bin-averaged 2PCF multipole covariance ma-
trix,Cξ

`1`2
(si ,sj ) ≡ Cov

[
ξ i
`1
,ξ j

l2

]
is then given by the volume average over the distance bin around

si with volumeVsi = 4π
(
s3
i,max − s

3
i,min

)
/3. This bin average is necessary in order not to overes-

timate the 2PCF covariance (Cohn, 2006; Sánchez et al., 2008). The volume average is absorbed
in the bin-averaged spherical Bessel functions de�ned by

̄` (ksi ) ≡
4π
Vsi

∫ si+∆s/2

si−∆s/2
s2 j` (ks ) ds . (4.26)
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Thus, the elements of the resulting covariance matrix can be written as

C
ξ
`1`2

(si ,sj ) =
i`1+`2
2π 2

∫ ∞

0
k2 σ 2

`1`2
(k ) ̄`1 (ksi ) ̄`2 (ksj ) dk . (4.27)

This relation shows that the con�guration space multipoles pick up the same ‘mixing’ contri-
butions to their covariance as the power spectrum multipoles, but in addition all wavenumbers
k with non-vanishing power are mixed as well by the integration over the Bessel functions.

The covariance of the 2PCF wedges. We consider 2PCF clustering wedges as de�ned in
equation (3.7) and denote the measurement of ξ µ+∆µµ in the distance bin around si by ξ iµ . Using
the relation between wedges and Legendre moments given in equation (3.8), the covariance of
the con�guration space wedges is given by

Cov
[
ξ iµ ,ξ

j
µ ′

]
=

1
Vsi Vsj (∆µ )

2

∫ si+∆s/2

si−∆s/2
s2 ds

∫ sj+∆s/2

sj−∆s/2
(s′)2 ds′

∫ µ2

µ1

dµ̃
∫ µ ′+∆µ

µ ′
dµ̃′

×
∑
`1 ,̀ 2

Cov [
ξ`1 (s ),ξ`2 (s

′)
]
L`1 (µ ) L`2 (µ

′). (4.28)

By inserting the covariance of the multipoles from equation (4.27), the covariance of the 2PCF
clustering wedges, Cξ

µµ ′ (si ,sj ) ≡ Cov
[
ξ iµ ,ξ

j
µ ′

]
, is found to be

C
ξ
µµ ′ (si ,sj ) =

∑
`1 ,̀ 2

i`1+`2
2π 2 L̄`1,µ L̄`2,µ ′

∫ ∞

0
k2 σ 2

`1`2
(k ) ̄`1 (ksi ) ̄`2 (ksj ) dk , (4.29)

where the wedge-averaged Legendre polynomials L̄`,µ1,µ2 are given by equation (3.9).

4.3 TheMinerva simulations and syntheticHODcatalogues

The theoretical covariance matrix discussed in this chapter is veri�ed on quasi-linear scales
using a set of N -body simulations. The volume of each realization is large enough so that the
anisotropic galaxy clustering can be measured with a signal-to-noise and precision comparable
to present-day galaxy redshift surveys. The haloes of the simulations have been populated with
galaxies by use of the halo occupation distribution (HOD; Peacock & Smith, 2000; Scoccimarro
et al., 2001; Berlind & Weinberg, 2002) technique in order to mimick the clustering statistics of
real surveys such as BOSS. Besides the covariance tests, these simulations are used to validate
the clustering model of Chapter 5. For that purpose, the covariance matrix is obtained with the
theoretical description of this chapter as the covariance matrix estimated from the data cannot
be inverted due to the small number of realizations.
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Table 4.3 – The parameters of the HOD model of equations (4.30) to (4.32) de�ning our ‘CMASS-like’ galaxy
sample at z = 0.57. All masses are in units of h−1 M� .

Parameter log10 (Mmin) log10 (M0) log10 (M
′
1) σlog10 M α

Value 13.07 13.1 14.2 0.347 0.8

4.3.1 The Minerva N -body simulations

The Minerva simulations are a set of 100 dark matter-(DM)-only realizations obtained using
the N -body technique described in Section 2.4.3. We run this set of simulations using the N -
body code Gadget6 (Springel, 2005). Each realization uses 10003 DM particles in a cubic box
of side length 1500 h−1 Mpc with periodic boundary conditions. The simulations were started
at redshift zini = 63 using 2LPT7 initial conditions (Scoccimarro, 1998; Crocce et al., 2006, cf.,
Section 2.4.1) based on an input power spectrum computed using Camb (Lewis et al., 2000,
see also Section 2.3.1). In order to remove transients in the clustering sourced by the initial
distribution of particles, the initial positions have been obtained from a ‘glass-like’ distribution
of points (Baugh et al., 1995; White, 1994; L’Huillier et al., 2014). The cosmological parameters
for these simulations are given in Table 3.2 and are chosen to match the best-�tting ΛCDM
model of the WMAP9 + BOSS DR9 ξ (r ) analysis (Sánchez et al., 2013, Table I). The positions
and velocities of the DM particles were stored for �ve output redshifts z ∈ {2.0,1.0,0.57,0.3,0},
jointly with the halo positions and velocities found by a friends-of-friend halo �nder applied
with the standard linking length equal to 0.2 of the mean inter-particle separation. The halo
mass resolution ismmin = 2.67×1012 h−1 M� . In a post-processing step, SubFind (Springel et al.,
2001, section 4.2) was run to generate the �nal halo catalogues for each realization and output
redshift. The mean halo mass function for z = 0.57 is plotted in the upper part of Figure 4.1.

4.3.2 The Minerva HOD galaxy catalogues

In order to generate a galaxy catalogue comparable to the CMASS sample of BOSS, we populated
the haloes and subhaloes of each simulation with galaxies according to an HOD model with
suitable parameters. In such HOD models the average number N of synthetic galaxies in haloes
of mass M is given by the mean occupation function N (M ). This function is parametrized as in
Zheng et al. (2007),

〈N (M )〉 = 〈Ncen(M )〉 + 〈Nsat(M )〉, (4.30)

decomposing the number of galaxies into contributions from central and satellite galaxies. The
contribution to the mean occupation function by the centrals is given by

〈Ncen(M )〉 =
1
2

[
1 + erf

(
logM − logMmin

σlogM

)]
, (4.31)

6The latest public release is Gadget-2 which is available at http://www.gadgetcode.org/.
7A 2LPT code for generating initial conditions is available at http://cosmo.nyu.edu/roman/

2LPT/.

http://www.gadgetcode.org/
http://cosmo.nyu.edu/roman/2LPT/
http://cosmo.nyu.edu/roman/2LPT/
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Figure 4.1 – Upper left-hand panel: the mean halo mass function of the SubFind output for our Minerva snapshots
at z = 0.57 (black points) and the prediction (gray dashed line) based on the recipe of Tinker et al. (2008). Lower
left-hand panel: the mean galaxy occupation function as de�ned in equation (4.30), 〈N (M )〉 (red solid line), and
its decomposition into central (blue dashed line) and satellite components (green dotted line) for the parameters
given in Table 4.3. Right-hand panel: Comparison of the 2PCF clustering wedges ξHOD

⊥ (s ) and ξHOD
‖

(s ) of our
HOD sample (red and blue solid lines, respectively, standard deviation over our 100 realizations indicated by the
�lled region) compared with the corresponding measurements from the CMASS sample of BOSS DR11 (transverse
wedge: circles, parallel wedge: diamonds) by Sánchez et al. (2014).

modelling the scatter between the galaxy luminosity and mass with a smooth cut-o� at masses
of Mmin described by an error function with relative scale σlogM . Te satellites contribution is set
to

〈Nsat(M )〉 = 〈Ncen(M )〉

(
M −M0
M′1

)α
, (4.32)

so that only haloes already populated by a central galaxy have satellites assigned to them.
The number of satellite galaxies is sampled with a Poisson distribution with the mean set by
equation (4.32) where the cut-o� mass scale is M0, the normalization mass scale is M′1, and the
power-law slope is α . The positions and velocities of satellite galaxies are drawn from random
DM particles associated with the host halo, whereas the position and velocity of the central
galaxy are derived from the most-bounded DM particle of the halo.

The Minerva galaxy catalogues are generated at a redshift of z = 0.57, the mean redshift of
the BOSS CMASS sample, using the HOD parameters given in Table 4.3. The resulting mean
galaxy occupation function is shown in the lower left-hand panel of Figure 4.1. The �nal syn-
thetic galaxy catalogues have a mean galaxy density of n̄ ≈ 4 × 10−4 h3 Mpc−3 and a linear bias
of b ' 2 relative to the DM density �eld of the simulations. Using the ratio of the redshift- and
real-space monopole of the HOD sample at linear separation scales, we �nd the Kaiser factor
(cf., Section 2.4.2) to be S = 1.28, in perfect agreement with its theoretical prediction given by
the growth-rate factor of equation (2.64) for the Minerva cosmology, f (z = 0.57) = 0.76, and
the linear galaxy bias of the synthetic sample. The agreement between the anisotropic cluster-
ing of the HOD galaxy sample and the CMASS sample of BOSS DR11 is shown in the right-hand
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panel of Figure 4.1 comparing the 2PCF clustering wedges of both samples.

4.3.3 The LoS-dependent power spectrum

The theoretical prediction for the covariance matrix relies on an estimate for the anisotropic
power spectrum, which ideally is also given by a theoretical recipe. As the simplest case, we
assume a linear prediction for the 2D galaxy power spectrum where redshift-space anisotropies
are caused by the linear Kaiser e�ect (Kaiser, 1987, see also Section 2.4.2),

P lin(k,µ ) = b2PL(k ) (1 + β2µ2)2, (4.33)

where PL(k ) is the linear matter power spectrum (cf., Section 2.3.1) predicted by Camb for the
redshift of the sample, ze� = 0.57, and b is the linear galaxy bias. With these assumptions,
the only non-vanishing PS multipoles — the Legendre moments P` (k ) of the anisotropic power
spectrum as de�ned in equation (3.3) — are the monopole, quadrupole, and hexadecapole.

Figure 4.2 shows the mean PS monopole, quadrupole and hexadecapole measured from the
Minerva simulations. The linear theory de�nition of equation (4.33), shown by the dotted lines,
gives an inadequate description of the anisotropic galaxy power spectrum in the quasi-linear
regime. To improve upon this description we performed a smoothing spline interpolation of
our mean PS multipole measurements, P smooth

l
(k ), shown by the dashed lines in Figure 4.2, to

create a noiseless non-linear power spectrum that can be used for covariance predictions,

P smooth(k ,µ ) = P smooth
0 (k ) + P smooth

2 (k ) L2(µ ) + P
smooth
4 (k ) L4(µ ). (4.34)

For the estimation of the smoothing length, we take the measured dispersion of the PS multi-
poles into account. The BAO wiggles in the smoothed quadrupole have been slightly damped by
this procedure but, due to the small signal-to-noise ratio of the BAO feature in the quadrupole,
this does not a�ect the predicted covariance.
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In the same way as the linear model of equation (4.33), this ansatz also has only monopole,
quadrupole and hexadecapole contributions by de�nition. Higher-order multipoles are negli-
gible for k . 0.25 h Mpc−1. In the following, we will use these two power spectrum models
for the analysis and validation of our Gaussian covariance predictions (referred to as ‘lin’ and
‘smooth’, respectively).

4.4 Validation of the Gaussian prediction for the covari-

ance matrix

In this section, the agreement between the theoretical covariance prediction and the results
from the Minerva simulations described in Section 4.3 is discussed. Speci�cally, the Gaussian
covariance prediction of Section 4.2.1 is veri�ed on quasi-linear scales up to the uncertainty
found in the estimates from the simulations to show that the predictions are precise enough to
allow performance test of clustering+RSD models in Section 5.2.

In order to compare the theoretical predictions with the noisy estimates from the Minerva
simulations, we chose two di�erent binning con�gurations: one leading to an invertible covari-
ance matrix (in case of multipoles up to the hexadecapole or three clustering wedges) denoted
‘large’ and one appropriate for �tting of CMASS-like measurements (for which the data covari-
ance matrix obtained from 100 catalogues is singular) denoted ‘small’. These binning choices,
together with the resulting number of bins and the corresponding correction factors (1−D) as
de�ned by equation (4.5) are listed in Table 4.1.

As the measurements of the redshift-space two-point clustering from the cubic simulations
assume a global plane-parallel LoS along one of the axis of the simulation box (‘distant-observer
approximation’), the LoS is assumed to be along on the axes of the box (i ∈ {1,2,3}) and the LoS
parameter is simply given by µ = ki/|k |. Thus, the tensors Q· de�ned in equation (3.39) are not
needed to derive the power spectrum multipoles, P` (k ) in equation (3.27), and one single FFT
is su�cient for the estimator.8 In order to reduce the level of noise in the mean and covariance
of the measurements, we measure the two-point statistic of every realization three times by
assuming the LoS to be parallel to each of the three di�erent axes and then average the results.

Due to this averaging over the three LoS axes, the error on the covariance cannot easily be
predicted analytically. Thus, we measure the error on the covariance matrix CP as jackknife
estimate from the same set of mock measurements,9

(
∆CP

xyij

)2
=

Nm − 1
Nm

∑
m

(
(m)CP

xyij −C
P
xyij

)2
, (4.35)

8Likewise, the estimator for the con�guration space multipoles and wedges (Landy & Szalay, 1993) also simpli-
�es as the volume of the wavenumber and separation distance bins can be easily calculated numerically so that no
randoms have to be used. The con�guration space measurements used for this thesis and the publication (Grieb
et al., 2016a) have been measured by Ariel Sánchez using his well-tested code (Sánchez et al., 2013, 2014).

9The error on the covariance matrix of all con�guration space measurements, Cξxyi j , are obtained in an analo-
gous way.
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Figure 4.3 – Left-hand panels: Comparison of the dispersion of the PS multipoles, σP` (ki ), of our HOD realizations
(points) with the Gaussian predictions from equation (4.18) for the small (upper panel) and large (lower panel)
binning schemes. The dotted lines were derived using the linear model of equation (4.33), while the dashed lines
correspond to the smoothed non-linear recipe of equation (4.34). Upper right-hand panel: The full correlation
matrix of the PS multipoles, RP

`1`2
(ki ,kj ) = CP

`1`2
(ki ,kj )[σP smooth

`1
(ki ) σP smooth

`2
(kj )]−1 (normalized by the theoretical

prediction), shows a dominant diagonal and a signi�cant cross-correlation between monopole and quadrupole
(shown here: large binning). Lower right-hand panel: Cut through the correlation matrix for `1 = 0 at ki =
0.095 h Mpc−1. The correlation contamination from physical e�ects not accounted for by our model and from
noise is at the 15% level and well within the error bars.

where (m)CP
xyij is the covariance estimate based on leaving out themth realization,

(m)CP
xyij =

1
Nm − 1

∑
n,m

(
(n)P ix − 〈P

i
x〉

) (
(n)P j

y − 〈P
j
y〉

)
. (4.36)

We checked that the jackknife estimate of the error on the covariance matrix for the case of a
single LoS axis is in close agreement with the theoretical prediction given in Taylor et al. (2013).

4.4.1 Fourier-space covariance

The predicted covariance of the PS multipoles is compared against the data covariance mea-
sured from our 100 simulations in Figure 4.3. The dispersion of PS multipoles given by σP

` (ki ) ≡

[CP
`` (ki ,ki )]

1/2 for the small (large) binning setup is shown in the upper (lower) left-hand panel.
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The error bars in these plots are given by ∆σP
` (ki ) ≡ [∆CP

`` (ki ,ki )]
1/2, where ∆CP

`` (ki ,ki ) is ob-
tained with the jackknife estimator given in equation (4.35). The theoretical prediction is given
for ` ≤ 8, but we measured P` (k ) only for ` ≤ 4 due to the increasing noise.

The di�erences between linear and non-linear predictions (shown as dotted and dashed
lines, respectively) are small for the dispersion of the monopole and quadrupole. For the hex-
adecapole, however, the dispersion is slightly overpredicted (underpredicted) for lower (higher)
k by the linear theory curve, while a better match is obtained with the prediction from the
smoothed multipole measurements. The predicted dispersion σP` is shown to increase with
larger ` in both cases; this trend continues for higher-order multipoles as illustrated by the
plotted predictions for σP6 and σP8 shown in Figure 4.3.

The measurements of the o�-diagonal termsCP
`1 ,̀ 2

(ki ,kj ) su�er from low signal-to-noise and
hence show larger relative scatter than the dispersion terms. To highlight the full covariance
properties, we de�ne the correlation matrix for PS multipoles as

RP
`1`2

(ki ,kj ) = C
P
`1`2

(ki ,kj )
[
σP smooth

`1
(ki ) σP smooth

`2
(kj )

]−1
. (4.37)

Note that we normalized the data covariance by the theoretical dispersion obtained from the
smooth non-linear power spectrum, σP smooth

`
, in order to avoid further noise contamination.

The upper right-hand panel of Figure 4.3 represents the data correlation matrix (upper trian-
gular part) and the theoretical prediction (lower triangular part) by colour; the lower right-hand
panel shows a cut through this matrix. As the di�erences in our linear and non-linear modelling
are much smaller than the variations in the measurements we �nd equally good agreement be-
tween the two predictions and our simulation data. The level of unaccounted data correlation
in the o�-diagonal terms is up to 20%, but this is most likely due to noise contamination as the
error bars are of this size as well. Because of the scatter, we cannot identify additional contri-
butions not included in our Gaussian ansatz in our covariance measurements. The noise level
for the monopole is larger than for the higher-order multipoles due to the averaging over the
LOS directions as this procedure reduces the noise of the RSD contributions but not the one of
the real-space matter clustering.

Assuming three PS wedges, we label the covariance between the n-th and m-th wedge as
CP

3w,n,m (ki ,kj ) and the dispersion as σP
3w,n (ki ) ≡ [CP

3w,n,n (ki ,ki )]1/2 for clarity. For the case of two
clustering wedges, we use the labels ⊥ and ‖. Figure 4.4 compares the predicted covariance
of two (upper panels) and three (lower panels) wedges to the data covariance measured from
our 100 realizations for the small (left-hand panels) and large (right-hand panels) binning con-
�guration. In the linear-theory predictions, the BAO peaks and troughs in the dispersion are
not as damped as in the data, especially for the most parallel wedges. Further, using linear
theory the high-k dispersion of the intermediate and most perpendicular wedge is underpre-
dicted (k & 0.15 h/Mpc). The agreement can be improved by use of the theory curves from the
smoothed non-linear power spectrum.

We complete the PS wedge covariance analysis by showing the full correlation matrix com-
pared to the non-linear prediction in Figure 4.5. Here we restrict the analysis to the 3-wedges
case for brevity; the 2-wedges correlation matrix has similar properties. As described in Sec-
tion 4.2.1, the predicted cross-correlation CP

3w,n,m (ki ,kj ) vanishes for n ,m or ki , kj . The data
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correlation matrix,

R3w,n,m (ki ,kj ) = C
P
3w,n,m (ki ,kj )

[
σP smooth

3w,n
(ki ) σP smooth

3w,m
(kj )

]−1
, (4.38)

again normalized by the non-linear theoretical prediction, shows a level of unaccounted cross-
correlation of up to 15%. As for the multipoles, this is most likely noise contamination and the
scatter cannot be associated with any systematic deviations from our Gaussian model as the
error bars estimated with the jackknife method are also of this size.

4.4.2 Con�guration-space covariance

In con�guration space, the covariance matrix is not dominated by the diagonal entries. The
dispersion of the 2PCF multipoles, given by σ ξ

`
(si ) ≡ [Cξ

``
(si ,si )]1/2, contains the scaling of the

covariance with scale. In the left-hand panels of Figure 4.6, the predicted dispersion of the
2PCF multipoles is compared to the data dispersion measured from our 100 simulations for the
small (upper panel) and large (lower panel) binning setup. The di�erence between linear and
non-linear predictions for the multipole covariance is negligible compared to the deviations be-
tween the measurements and the theory estimates. Those deviations are largely due to the low
number of realizations and the fact that the Fourier transform to con�guration space translates
uncorrelated modes into highly correlated measurements of the binned anisotropic 2PCF. In
contrast to the power spectrum case, the dispersion of higher-order multipole moments of the
correlation function does not increase with `. In fact, the left-hand panels of Figure 4.6 show
that σξ6 and σξ8 follow a trend that is very similar in shape and amplitude to the quadrupole
and hexadecapole dispersions.

The correlation between measurement bins is best illustrated by the full information en-
coded in the correlation matrix, which is de�ned in an analogous way to the case of PS multi-
poles,

R
ξ
`1`2

(si ,sj ) = C
ξ
`1`2

(si ,sj )
[
σξ smooth

`1
(si ) σξ smooth

`2
(sj )

]−1
, (4.39)

using the non-linear prediction to normalize the matrix without introducing more noise. Cross-
covariance terms, Cξ

`1`2
(si ,sj ), show a large scatter due to the low signal-to-noise of our mea-

surements. We �nd that the di�erences in our linear and non-linear modelling are much smaller
than the scatter in the measurements and thus conclude agreement between the di�erent pre-
dictions and data on an equally good level.

In the upper right-hand panel of Figure 4.6, we show the structure in the data correlation
matrix (upper triangular part) next to the theoretical prediction (lower triangular part). For a
better visualization of the level of correlation, the lower panel shows a cut through the matrix.
The prediction for the monopole, quadrupole and hexadecapole correlation is in very good
agreement with the measurements, which show a slow decline of the correlation away from
the diagonal of the matrix. We see however that the data cross-correlations between di�erent
multipole moments (especially between monopole and hexadecapole) are noisy, but the mea-
sured decline of correlation away from the diagonals of the sub-matrices is followed by the
predictions.
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correlation matrix of the 2PCF multipoles, Rξ

`1`2 (si ,sj ) = C
ξ
`1`2

(si ,sj )[σξ smooth
`1

(si ) σξ smooth
`2

(sj )]−1 (normalized by the
theoretical prediction), shown here for the large binning, we see a high level of cross-correlation which is only
slowly declining away from the main diagonals and the diagonals of the monopole-quadrupole and quadrupole-
hexadecapole sub-matrices. The monopole and the hexadecapole are not correlated. Lower right-hand panel: Cut
through the correlation matrix for `1 = 0 at si = 112.5 h−1 Mpc. Although the correlation curves inferred from
our simulations are noisy, they follow the same trends as out our theoretical predictions.

As for PS wedges, we label the covariance between the n-th and m-th 2PCF wedge as
C
ξ
3w,n,m (si ,si ) and the dispersion as σ ξ3w,n (si ) ≡ [Cξ

3w,n,n (si ,si )]1/2. In the case of two wedges
only, we label each one with a subscript ⊥ or ‖.

In Figure 4.7, we plot the predicted dispersion of two (upper panels) and three (lower panels)
wedge measurements in con�guration space compared to the data dispersion measured from
the Minerva simulation for the small (left-hand panels) and large (right-hand panels) binning
con�guration. In all cases, there is no signi�cant di�erence between the linear and the non-
linear predictions. The estimate from linear theory is always slightly larger than the estimate
from the smoother interpolation of the measured power spectrum multipoles, but this di�erence
is much smaller than the deviation between theory and data.
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Figure 4.7 – Comparison of the dispersion of the 2PCF wedges of our HOD realizations (points) for the small
(left-hand panels) and large (right-hand panels) binning con�guration with the Gaussian predictions from equa-
tion (4.29). The dotted and dashed lines correspond to the linear and smoothed non-linear input power spectra,
respectively. The upper and lower panels show the cases of two wedges, σξ⊥,‖ (si ), and three wedges, σξ3w,n (si ),
respectively.

Figure 4.8 – Upper panel: The full correlation
matrix of the 2PCF wedges, R

ξ
3w,n,m (si ,sj ) =

C
ξ
3w,n,m (si ,sj )[σξ smooth

3w,n
(si ) σξ smooth

3w,m
(sj )]−1 (normalized

by the theoretical prediction), is dominated by a
high level of correlation between di�erent wedges
and distance bins (shown here for the large binning
con�guration). Lower panel: Cut through the corre-
lation matrix for the most transverse wedge, ξ3w,1, at
si = 112.5 h−1 Mpc. Although the data cross-correlations
are noisy, they are well described by our theoretical
prediction (the signi�cant correlation of the covariance
is discussed in the text).
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Figure 4.9 – Convergence of the dispersion of two con�guration space wedges (left-hand panel) and three wedges
(right-hand panel) with the multipole order included in equation (4.29). For two wedges, the sum can be safely
truncated after ` = 4 without changing the results on a signi�cant level. In case of three wedges, the convergence
at an appropriate level is reached by including terms up to ` = 6.

The cross-correlation for 2PCF wedges is as signi�cant as for the con�guration-space mul-
tipoles. In analogy to the discussion on the Fourier space wedges, we de�ne the correlation
matrix for 2PCF wedges as Rξ3w,n,m (si ,sj ) = C

ξ
3w,n,m (si ,sj )[σξ smooth

3w,n
(si ) σξ smooth

3w,m
(sj )]−1, normalized by

the non-linear theoretical prediction. We show the full correlation matrix compared to the non-
linear prediction in Figure 4.8. Again, we restrict our discussion to the case of three wedges for
brevity. The correlation matrix for two 2PCF wedges has similar properties. As the Fourier
transformation mixes independent Fourier modes, the covariance C

ξ
3w,n,m (si ,sj ) only decays

slowly with increased separation between the distance bins and ranges of the LOS parame-
ter. The data correlation (upper panel of Figure 4.8) shows good overall agreement between
the theoretical prediction (lower triangular part) and our measurement (upper triangular part).
The plotted full matrix shows also that the cross-correlation structure for 2PCF wedges is more
complex than for 2PCF multipoles. For better visualization, we show a cut through the matrix
in the lower panel of Figure 4.8. We �nd di�erences between our measurements and the the-
oretical predictions of up to 20%, which is a bit higher than for the multipole case. As for the
previous cases, these discrepancies are most likely due to noise contamination and the level of
noise is very similar for di�erent cuts through the matrix. The model under- or overpredicts the
data over wide ranges of pair separations because the noise in the covariance is as correlated as
the 2PCF itself. Hence, we are not able to test for deviations from of our Gaussian ansatz with
the number of realizations at hand.

The prediction for the dispersion of 2PCF wedges in Figure 4.7 and the covariance matrix
in Figure 4.8 are based on the sum over `1 and `2 in equation (4.29), including contributions
up to ` ≤ 6. We argue that this is enough to reach an appropriate accuracy by analysing the
convergence of the wedge covariance for the large binning scheme. For this, we �rst evaluate
the sum including all terms up to the hexadecapole, and then successively add the ` = 6 and
` = 8 contributions. As shown in Figure 4.9, the two wedge dispersion is converged after
including only those contributions up to ` ≤ 4; the dispersion for three wedges needs only to
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also include ` = 6 in the sum in order to achieve convergence at an appropriate level.
As already discussed in Section 4.2.1, the most signi�cant shortcoming of our model for

the analysed sample of N -body simulations is the neglected trispectrum contribution, which is
only relevant for scales in the non-linear regime. In order to validate extensions to the Gaussian
model that include the trispectrum contribution at the quasi-linear scales, which are of interest
for model veri�cation, we would need a much larger set of N -body simulations to reduce the
level of noise in the covariance.

As a �nal test, we analyse whether our model for the monopole covariance has improved
over the simplifying assumptions used by Sánchez et al. (2008), where the Gaussian real-space
covariance from linear theory has been rescaled by the Kaiser factor for linear RSD. This model
de�nes the monopole covariance in real-space as follows:

C
ξ ,lin,rs
0,0 (si ,sj ) =

1
π 2Vs

∫ ∞

0
[b PL(k ) + S]2 ̄` (ksi ) ̄` (ksj ) k

2 dk , (4.40)

From this, the z-space covariance is estimated to be C
ξ ,lin,zs
0,0 (si ,sj ) = S2C

ξ ,lin,rs
0,0 (si ,sj ), where

S = 1+ 2
3β+

1
5β

2. As shown in Figure 4.6, this simple ansatz gives already an excellent description
of the covariance of the redshift-space 2PCF monopole, even though the anisotropy of the input
power spectrum has been neglected. However, any RSD or BAO �t using anisotropic clustering
measurements would need to take the higher-order multipoles into account, which can only be
done by the formulae presented in this work.

Additional tests indicate that the discrepancy between the simpli�ed monopole recipe in
equation (4.40) and the full Gaussian model presented in Section 4.2.1 depends on the bias.
While there is a negligible di�erence for the highly biased HOD galaxy sample analysed here
(where b ' 2), the covariance of an under-biased tracer sample (b . 1, similar n̄) is only
correctly modelled taking the full anisotropy of the input power spectrum into account.

4.4.3 Validation of the precision matrix

Evaluation of the Gaussian likelihood via the χ 2 function given in equation (4.4) needs an es-
timate of the inverse of the covariance matrix, the precision matrix. As pointed out in Sec-
tion 4.1.2, the covariance matrix Cξ estimated from an ensemble of realizations is a�ected by
noise, resulting in a biased estimate of the precision matrix. This bias can be removed by the
rescaling of the inverse covariance matrix as given by equation (4.5), using the correction fac-
tors (1 − D) (Hartlap et al., 2007).

The level of noise is quite high in our case due to the small number of realizations and
large number of measurements bins, preventing extensive tests of the precision matrix. Thus,
here the focus of this section is on the validation of the covariance matrix. The inverse data
covariance matrix from our set of simulations is only discussed for binning schemes that do not
yield a singular covariance matrix or a precision matrix dominated by noise. Thus, we require
D < 0.5 for the correction factors listed in Table 4.1. Using three wedges or multipole orders,
this requirement is only ful�lled for the ‘large’ scheme in con�guration space (∆s = 15 h−1 Mpc,
and 12 bins per wedge/multipole measurement). For brevity, we only discuss the multipole
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Figure 4.11 – Upper panel:: The full precision matrix
of the 2PCF multipoles, obtained as bias-corrected
inverse data covariance matrix and normalized
by the theoretical prediction, R

ψ
`1`2

(ki ,kj ) =

ψ
ξ
`1`2

(si ,sj )[ψ ξ
smooth,`1`1

(si ,si )ψ
ξ
smooth,`2`2

(sj ,sj ))]−1/2.
The structure is more complex than for the correlation
matrix due to sign-changing o�-diagonal terms. The
diagonals of the sub-matrices, the ‘mixing terms’,
show a mirrored structure. Lower panel: Cut through
the precision matrix for `1 = 0 at si = 112.5 h1 Mpc.
The contamination from physical e�ects or noise not
accounted for by our modelling is within the error
bars which are very large due to the inversion of a
noise-contaminated covariance matrix. The precision
matrix was measured with distance bins in the range
30 h−1 Mpc ≤ s ≤ 180 h−1 Mpc using a bin size of
∆s = 10 h−1 Mpc

results,ψξ
`
= (1 − D) [Cξ

`
]−1, where Cξ

`
has elements C`1`2 (si ,sj ). Further, the axis-averaging of

the measurements of the redshift-space two-point statistics is abandoned because equation (4.5)
would need to be modi�ed in that case.

In analogy to the covariance notation, we write the elements of the precision matrixψξ
`

as
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ψ
ξ
`1`2

(sj ,sj ). The theoretical prediction, ψ ξ
smooth,̀ 1`2

(sj ,sj ), is obtained from the Gaussian predic-
tion for the multipole covariance using the smoothed input power spectrum (and by setting
D = 0 in equation (4.5) due to the absence of sampling noise). Here we focus only on the non-
linear prediction for illustration. The prediction from the linear input power spectrum is very
similar, as already discussed in Section 4.4.

The measured and predicted diagonal entries of the precision matrix are shown in Fig-
ure 4.10. The error bars are determined with the jackknife technique. For each jackknife esti-
mate, the inverse covariance matrix is rescaled using a modi�ed correction factor D accounting
for the removed realization by replacing Nm → Nm − 1. Due to the fact that the covariance ma-
trix is only poorly determined, the errors on the precision matrix are very large (up to ca.20%
after the application of the correction factor). Within these errors, the measurements do not
show signi�cant deviations from the model predictionsψ ξ

smooth.
The accuracy of the modelling for the o�-diagonal terms is analysed by plotting the full

precision matrix normalized by the theoretical prediction,

R
ψ
`1`2

(ki ,kj ) = ψ
ξ
`1`2

(si ,sj )
[
ψ
ξ
smooth,̀ 1`1

(si ,si )ψ
ξ
smooth,̀ 2`2

(sj ,sj ))
]− 1

2
, (4.41)

in the upper panel of Figure 4.11. In order to better visualize the complex structure a cut through
this matrix is shown in the lower panel. The sub-diagonal entries are negative and ‘mirror’ the
diagonal entries. A similar structure is found for terms mixing the monopole and quadrupole
as well as the quadrupole and hexadecapole entries. Further away from the block diagonals,
the structure is noise-dominated and deviations between data and theory are largely below the
noise level.

4.4.4 Outlook to the theoretical prediction of the anisotropic cluster-

ing covariance for real surveys

The aim of this work is limited to predictions of the anisotropic clustering covariance on quasi-
linear scales in order to be able to perform the validation of the clustering+RSD modelling on a
limited set of large-volume N -body realizations as done in Section 5.2. Further work is needed
to incorporate the beat coupling with supersurvey modes and the contributions from the con-
nected trispectrum part of the covariance that arises due to non-linear evolution (Scoccimarro
et al., 1999). These e�ects have been neglected here due to the absence of supersurvey modes
(supersample covariance; SSC) in the N -body realizations and the restrictions to quasi-linear
scales (k . 0.2 h Mpc−1, s & 40 h−1 Mpc). In order to validate a model for the in�uence of
the supersurvey response on the covariance on the anisotropic clustering covariance, an sim-
ilar analysis to the work in de Putter et al. (2012), Takada & Hu (2013), and Li et al. (2014) is
required, which is beyond the scope of the work published in Grieb et al. (2016a) and this the-
sis. The e�ect of beat coupling of smaller scales with supersurvey modes can be estimated, for
example, by use of the separate universe response (Li et al., 2014). Further, the fact that the
local density estimate is obtained in the presence of power on scales larger than the survey
size a�ects the power spectrum covariance of real surveys in the same manner as SSC, but the
net e�ect only makes up 10% of the original beat-coupling e�ect (de Putter et al., 2012). The
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Figure 4.12 – Correlation matrix of the MultiDark Patchy power spectrum wedges for the low (left-hand panel),
intermediate (centre panel) and high (right-hand panel) redshift bin. As in Figure 3.8 before, NGC and SGC have
been combined for this measurement for simplicity.

contribution of the two latter e�ects to the PS covariance has been shown to become important
at non-linear scales k & 0.1 h Mpc−1 for redshift zero (de Putter et al., 2012; Takada & Hu, 2013;
Li et al., 2014).

The mode coupling in the standard trispectrum term due to non-linear gravitational evolu-
tion is subdominant compared to SSC, but adds to it creating a plateau in the signal-to-noise
ratio of the matter power spectrum in the mildly non-linear regime and beyond (Carron et al.,
2015). Recently, O’Connell et al. (2015) presented a way to take into account non-Gaussian
contributions to the anisotropic 2PCF covariance matrix for a CMASS-like survey.

We expect careful modelling to be more important the more complex the analysed galaxy
sample is, and the deeper in the non-linear regime the clustering probe advances. The Gaussian
model derived here can easily be extended to account for the dependence of the covariance on
cosmological parameters by varying the input power spectrum. A second near-future exten-
sion can be the theoretical modelling of the clustering covariance of surveys with non-trivial
geometry; see de Putter et al. (2012) for the analytical treatment of the survey window in case
of the covariance of isotropic clustering measurements.

4.5 Data covariance matrices for the BOSS combined sam-

ple from mock catalogues

As current theoretical predictions of the anisotropic clustering covariance cannot take into ac-
count the observational systematics of the BOSS survey with the required accuracy, the covari-
ance matrix for the analysis of the BOSS DR12 combined sample is estimated from large sets
of mock catalogues. The reference matrix is obtained from the Patchy set of mocks that have
been described in section Section 3.5.1. An alternative set of mocks, the QPM mocks introduced
in Section 3.5.2, are used to cross-check the reference covariance matrix.
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Figure 4.13 – Correlation matrix of the QPM power spectrum wedges for the low (left-hand panel), intermediate
(centre panel) and high (right-hand panel) redshift bin. As in Figure 3.9 before, NGC and SGC have been combined
for this measurement for simplicity.

4.5.1 The Patchy covariance and precision matrix

The very good agreement of the mean Patchy power spectrum wedges with the clustering of
the DR12 combined sample was discussed in Section 3.6.1. The elements of the Patchy co-
variance matrix are estimated from the Nm = 2045 mocks using equation (4.1). For a better
visualization of the structure in the covariance matrix, the correlation matrix is plotted in Fig-
ure 4.12. In contrast to the de�nitions in Section 4.4, the data covariance is normalized by its
own diagonal terms,

RP
3w,n,m (si ,sj ) = C

P
3w,n,m (si ,sj )[σP3w,n (si ) σP3w,m (sj )]−1, (4.42)

as no theoretical prediction is available. Further, the SNR with which the diagonal terms,
σP3w,n (si ) = [CP

3w,n,n (si ,si )]1/2, are estimated is much better than for the covariance measured
on the Minerva catalogues (due to the larger number of realizations). The e�ect of the window
function, discussed earlier in Section 3.4, introduces a correlation between neighbouring bins
and wedges that can be seen as non-vanishing sub-diagonal entries. Especially in the correla-
tions for the most-parallel wedge in the high-redshift bin, cross-covariance between all bins is
increased by �bre collisions between galaxy pairs close in angular separation (which happens
more often for the CMASS sample than for LOWZ, Reid et al., 2016). The di�erent levels of
variance for the di�erent wedges and galactic hemispheres are discussed in Section 4.5.3.

When the precision matrix obtained from the Patchy reference covariance matrix is used
for χ 2 evaluations during BAO+RSD �ts, we use the correction factor (1−D) as de�ned by equa-
tion (4.5) given in Table 4.1 for Nm = 2045; the rescaling factors for errors on �tted parameter
are given in Table 4.2.

4.5.2 The QPM covariance and precision matrix

The QPM covariance matrix used for cross-checks is likewise estimated using equation (4.1)
from the 1000 realizations. Again, the full covariance structure is better shown by the correla-
tion matrix for three power spectrum wedges, RP ,3w

n,m (ki ,kj ), as de�ned in equation (4.42). This
matrix is plotted in Figure 4.13. Qualitatively, neighbouring wavenumber bins and wedges are
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Figure 4.14 – Dispersion of the QPM and MultiDark Patchy power spectrum wedges for the low (upper panel)
and high (lower panel) redshift bin, separating the two galactic caps.

correlated due to the e�ect of the window function on a similar level than in the Patchy co-
variance estimate.

When the QPM covariance matrix is used for clustering measurements on the NGC and SGC
subsamples separately, we use the correction factor (1−D) given in Table 4.1 for Nm = 1000. If
the χ 2 function as given by equation (4.4) is evaluated for the precision matrix obtained from
the covariance of measurements combining the galactic hemispheres (such as the covariance
of the di�erence between the galactic caps), we need to take into account that the NGC and
SGC subsamples of the QPM mocks are correlated by a factor r 2 = V 2

shared/(VNGCVSGC) = 0.014.
Thus, we split the realizations in two independent subsets where the �rst subset is given by
the NGC of the �rst 500 mocks and the SGC of the last 500 mocks and the other subset has
the remaining realizations. The covariance matrices are calculated for each subset and then
averaged; the inverse of the averaged covariance matrix is rescaled by a modi�ed Hartlap et al.
(2007)-factor as used for the DR11 mocks which have an even more signi�cant overlap between
the subsamples (Percival et al., 2014),

ψ =

(
1 − 1 + r 2

2 D

)
C−1, (4.43)

where D is given by equation (4.5) using Nm = 500 to account for the number of independent
realizations in each subset.

4.5.3 Comparison of the clustering dispersion of the two set of mocks

In Figure 4.14, we plot the power spectrum wedges dispersion measured separately for each of
the two galactic caps from the two sets of mocks. The South has ca. 40% of the North’s volume
and thus its dispersion is ca. 1.6 times larger. The power spectrum dispersion obtained from
the Patchy mocks, due to their larger matter density parameter ΩM, is slightly larger than the
one derived from the alternative QPM mocks, especially in the low redshift bin (upper panel).
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In the high bin, the trend with k is stronger. Thus, the choice to use the Patchy mocks for the
reference covariance matrix also represents the more ‘conservative’ option, besides the good
arguments that the number of realizations is larger, the agreement of the measured two-point
clustering between the Patchy mocks and the data is better, and the more advanced modelling
of the redshift evolution.
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Modelling the redshi�s-space galaxy clustering

“If you want to make an apple pie from scratch, you must �rst create the universe.”

Carl Sagan

Modelling the redshift-space galaxy clustering is the key element to obtain accurate cos-
mological constraints from galaxy samples. As described in Section 2.4.7, the BAO signal in
the galaxy correlation function can be seen as a broad peak at the sound horizon scale of about
100 h−1 Mpc. Thus, this feature is located in the quasi-linear regime and, therefore, it pro-
vides us with a very robust probe of the expansion history of the Universe. However, non-
linearities distort this feature, even more so in redshift space. The model discussed in this
chapter speci�cally addresses redshift-space distortions. Section 5.1 contains a brief summary
of the modelling recipes used to generate model predictions, describing the tools and the under-
lying methods, that were developed by my collaborators Martín Crocce, Román Scoccimarro,
and Ariel Sánchez. My contribution to the modelling e�ort was the validation of the model
in Fourier space. In this �rst section, the full parameter space of the model is presented and
the meaning of each parameter summarized. The veri�cation of the redshift-space clustering
model and comparative performance tests on the challenge and combined sample mock cata-
logues described in Section 5.2 are a main part of the scienti�c work described in this thesis.
Section 5.2.1 presents the veri�cation of the modelling bases on the Minerva N -body simula-
tions. The results of the RSD �ts on the BOSS challenge mocks are discussed in Section 5.2.2.
Finally, Section 5.2.3 presents the veri�cation with the Patchy mocks mimicking the full char-
acteristics of the �nal BOSS sample.

5.1 The theoretical model for Fourier space wedges

An accurate model of the redshift-space galaxy clustering statistics is needed in order to have
a framework for full-shape �ts that is competitive with BAO distance measurements on recon-
structed density �elds. To meet the requirements in accuracy, a new full-shape model derived
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Table 5.1 – The sound horizon scale rs (zd) at the drag redshift and the angular diameter distances DA (ze� ) and
Hubble parameters H (ze� ) for the cosmologies speci�ed in Table 3.2 at the e�ective redshifts ze� of the ranges
de�ned in Table 3.1.

````````````Cosmology
Value [unit] rs (zd) ze� DA (ze� ) H (ze� )

[Mpc] [−] [Mpc] [km s−1 Mpc−1]
0.38 1108.9 82.92

Fiducial 147.78 0.51 1312.8 89.61
0.61 1433.0 95.21

Minerva 148.49 0.57 1363.5 93.71
0.38 1076.7 84.93

QPM 147.13 0.51 1276.9 91.50
0.61 1395.3 97.00
0.38 1106.9 83.00

Patchy 147.66 0.51 1310.9 89.66
0.61 1431.0 95.45
0.38 1112.1 82.79

Template 147.34 0.51 1316.3 89.54
0.61 1436.3 95.18

from Renormalized Perturbation Theory (denoted as ‘gRPT’) and a Gaussian streaming model
for redshift-space distortions (Scoccimarro, 2004) is used in this work. In order to account for
non-linear gravitational dynamics in the model prediction for the matter power spectrum, this
approach is based on the theoretical framework of RPT, which was described in Section 2.4.4.
The redshift-space galaxy clustering statistics are derived from the matter clustering signal by
use of a bias model that considers non-linear and non-local contributions. In redshift-space,
the galaxy density �eld has contributions from the velocity �eld, which requires a non-linear
RSD model even for the largest scales. These two aspects of the modelling were discussed in
Section 2.4.5 and Section 2.4.6, respectively. The aim of this section is to describe the parameter
set used in modelling in order to prepare the discussion of the RSD �ts in Chapter 6. Three com-
panion papers (Grieb et al., 2016b; Salazar-Albornoz et al., 2016; Sánchez et al., 2016, in prep.)
will make use of this model to infer cosmological implications from the BOSS DR12 combined
sample. The model, that is dubbed ‘gRPT+RSD’ in this thesis, will be described in more detail in
Blas et al. (2016, in prep.; non-linear gravitational dynamics) and Sánchez et al. (2016, in prep.;
modelling of the galaxy bias and RSD, details of the implementation).

5.1.1 Modelling the Alcock-Paczynski distortion

The results obtained with the ‘gRPT+RSD’ model rely on a prediction for the linear-theory
input power spectrum. When the parameters of the underlying cosmological model are not
varied, this prediction is computed using a �xed ‘template’ cosmology. The model predictions
are given in terms of the power spectrum monopole, quadrupole, and hexadecapole (Pmodel

`
(k )
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for ` ∈ {0,2,4}), which are combined in the full anisotropic (2D) power spectrum prediction,

Pmodel(k ,µ ) = Pmodel
0 (k ) + Pmodel

2 (k ) L2(µ ) + P
model
4 (k ) L4(µ ). (5.1)

Due to the Alcock-Paczynski (AP) e�ect described in Section 2.4.7, geometrical distortions
arise from a mismatch in the assumed and true cosmology. This e�ect is modelled with two
distortion parameters q⊥ andq‖ that describe the rescaling, in Fourier space, of the wavenumbers
transverse, k⊥, and parallel, k‖ , to the LoS direction,

q⊥ ≡
k�d
⊥

k⊥
and q‖ ≡

k�d
‖

k‖
, (5.2)

where k�d
⊥ and k�d

‖
are the observed wavenumbers assuming the �ducial cosmology.

Then, the distorted theoretical prediction for the power spectrum wedges is given by

P̃
µ2
µ1 (k

�d) =
q−3

µ2 − µ1

∫ µ2

µ1

Pmodel(k (k�d,µ�d),µ (k�d,µ�d)) dµ�d, (5.3)

where the integrand has the following rescaled parameters:

k (µ�d,k�d) ≡ k�d
√
q−2
‖

(µ�d)2 + q−2
⊥

[1 − (µ�d)2
] (5.4)

µ (µ�d,k�d) ≡ µ�d q−1
‖

(
q−2
‖

(µ�d)2 + q−2
⊥

[
1 − (µ�d)2

] )−1/2
. (5.5)

The scaling of the power spectrum with q−3 ≡ q−1
⊥ q−2

‖
is due to the volume distortion from the

AP e�ect.
In a BAO distance measurement (cf., Section 2.3.2), the angular diameter distance DA(z)

and Hubble parameter H (z) are measured relative to the sound horizon scale at the drag red-
shift, rs(zd), of the template. The distortion parameters q⊥ and q‖ of equation (5.2) only take
the geometric e�ect into account. Thus, results that are comparable across di�erent analyses
(using di�erent templates) can be obtained by de�ning a second set of Alcock-Paczynski param-
eters, which also include an additional rescaling of the angular-diameter distance DA(z) and the
Hubble parameter H (z) by the �ducial sound horizon scale, r�d

s (zd),

α⊥ ≡
DA(z)

D�d
A (z)

r�d
s (zd)

rs(zd)
and α‖ ≡

H�d(z)

H (z)

r�d
s (zd)

rs(zd)
. (5.6)

These ratios are de�ned using the conventional units Mpc and km s−1 Mpc−1 for DA(z) and
H (z) respectively. In our implementation of the model, the wavenumbers k are in units of
h Mpc−1. Thus, the distortion and AP parameters are related by

α⊥ = q⊥
r�d

s (zd)

rs(zd)

h�d

h
and α‖ = q‖

r�d
s (zd)

rs(zd)

h�d

h
. (5.7)

The cosmological distances entering these parameters, DA(z), H (z), and rs(zd), are listed in
Table 5.1 for the di�erent cosmologies used in this work.



114 5. Modelling the redshifts-space galaxy clustering

Table 5.2 – The set of parameters that de�ne the parameter space X of our full-shape �ts with the ‘gRPT+RSD’
model. BAO+RSD �ts use the distortion, growth, bias, RSD, shot-noise, and optionally the power spectrum ampli-
tude parameters. Fits for the cosmological interference use the bias, RSD, and shot-noise parameters, besides the
parameters of cosmological model and the nuisance parameters of the complementary cosmological probes. All
parameters have a �at prior which is uniform within the given limits and zero outside.

Parameter Function Unit Prior limits Starting Point Step size
Bias parameters

b1σ8 Linear bias − 0.5–9 1.9 0.06
b2σ8 Second-order bias − (−4)–4 0 0.06
γ−3 Non-local bias − (−3)–3 1 0.04

RSD parameter
avir FoG kurtosis − 0.2–10 2 0.06

Shot-noise parameter§

N Extra shot noise h−3 Mpc3 (−1800)–1800 1000 50
Power spectrum amplitude parameter¶

Ap Modulations of σ 2
8 − (−0.9)–1.1 1 0.01

Distortion parameters
q⊥ k⊥ rescaling − 0.5–1.5 1 0.02
q ‖ k ‖ rescaling − 0.5–1.5 1 0.04

Growth parameter
f σ8 Growth-rate factor − 0–3 0.47 0.04

§ In the case of the low-redshift bin, N is varied within −1000–1000, starting at 600, as the Poisson shot-noise estimate is also smaller.
¶ Ap is varied in the tests on Minerva, but not for �nal �ts on the real and mock combined sample, as it was found that �xing the power

spectrum amplitude is not relevant for the �nal BAO+RSD constraints.

For comparison with isotropic BAO distance observations, we de�ne the angle-averaged AP
parameter α as

α ≡
(
α2
⊥ α‖

)1/3
, so that α =

DV(z)

D�d
V (z)

r�d
s (zd)

rs(zd)
, (5.8)

where the angle-averaged distance DV(z) is given by equation (2.106).

5.1.2 Details of the implementation and summary of the �nal set of

model parameters

We perform two kinds of analyses with the Fourier space wedges, the conventional BAO+RSD
�ts using a �xed ‘template’ cosmology (denoted as ‘RSD-type full-shape �ts’ in the follow-
ing) and ‘cosmological full-shape �ts’, in which the predictions assuming a given cosmological
model with varying parameters are compared directly with the observed clustering wedges.

Originally, our model is de�ned to keep the non-local contributions to the galaxy bias up to
those terms corresponding to second-order Lagrangian bias (cf. Section 2.4.5). However, tests
of the modelling with simulations showed that �xing the γ3 coe�cient to the local Lagrangian
prediction of equation (2.91) yields less accurate results than marginalizing over a free γ3 pa-
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rameter. Thus, this coe�cient is �tted to the data in agreement with studies that show that
Eulerian bias is not necessarily compatible to local Lagrangian bias in the non-linear regime
(Matsubara, 2011).

For BAO+RSD �ts, the input power spectrum is kept �xed, modelling variations of the cos-
mology with the distortion parameters, the power spectrum amplitude Ap, and the growth rate
f , all varied as free parameters. The full parameter space X for the model veri�cation tests on
Minerva and the challenge mocks consists of 9 parameters,

ζ = (q⊥, q‖ , f σ8, b1 σ8, b2, γ
−
3 , avir, Ap, N )

T
∈ X, (5.9)

following the usual convention to express �nal results in terms of b1 σ8, and f σ8. Ap modu-
lates the clustering amplitude σ8 by a rescaling of the underlying linear-theory prediction for
the power spectrum. b1 and b2 are the local and quadratic local bias factors of the expansion
de�ned in equation (2.85). As described in Section 2.4.5, b2 is an e�ective parameter that also
takes up contributions from higher-order local bias parameters as the scale-dependency of the
quadratic bias has been neglected in our modelling. In our modelling of the non-local galaxy
bias, only γ−3 is varied as a free parameter, while γ2 is set by the local Lagrangian relation given
in equation (2.91). The parameters that a�ect the redshift-space anisotropies are the growth
rate f and avir, which is a parameter that corresponds to the kurtosis of the velocity dispersion
distribution modelled by the FoG function Fvir of equation (2.99). Finally, we account for devia-
tions from a pure Poisson shot noise with a free, constant, and additive shot-noise contribution
N to all power spectrum wedges.

We explore this parameter space using the Markov chain Monte Carlo (MCMC) technique
as described in Appendix A.2. Our implementation of ‘gRPT+RSD’ takes a few seconds to com-
pute the predicted power spectrum wedges P̃3w,n (k ,µ ), n ∈ {1,2,3}, from the input power spec-
trum Plin(k ). In order to decrease the computing time for each model prediction, precomputed
look-up tables are rescaled by the amplitude parameter in an approximative way to emulate
variations of σ8 of the order of several %. Thus, recalculating the power spectrum wedges from
a modi�ed Ap Plin(k ) takes a fraction of a second. Later in Section 5.2.1, we show that this pa-
rameter does not a�ect the RSD-type full-shape �ts for the Minerva simulations. Hence, we
do not include this parameter in the BAO+RSD �ts to the synthetic Patchy catalogues. For
these tests and the cosmological �ts of Chapter 6, CosmoMC1 (Lewis & Bridle, 2002, see also
Appendix A.3) was used.

In case of the cosmological full-shape �ts, the full model predictions must be computed from
the power spectrum given by the cosmological parameters for each point in the parameter space
that is evaluated.

As discussed in Appendix A.2, the choice of the prior distribution can have an in�uence on
the accuracy of the obtained parameter constraints. We choose �at priors on all parameters
given by the limits listed in Table 5.2. Careful analysis of our results makes us con�dent that
they are not a�ected by applying a too restrictive choice of limits or allowing for variations
in a too wide range. The chains are considered converged if the Gelman-Rubin convergence
criterion (Gelman & Rubin, 1992) as de�ned in equation (A.20) satis�es R̂ − 1 < 0.02.

1http://cosmologist.info/cosmomc/

http://cosmologist.info/cosmomc/
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5.2 Veri�cation of the model

The ‘gRPT+RSD’ model was comprehensively tested on a large set of full N -body simulations.
In Section 5.2.1 we present test on the performance of the model by applying it to the power
spectrum wedges measured from the Minerva HOD catalogues described in Section 4.3.2.

The BOSS collaboration chose to validate the performance of the di�erent BAO+RSD mea-
surement techniques used in the DR12 analysis by means of a set of ‘challenge’ mocks. These
results are used to quantify the systematic biases for the obtained BAO distance and growth
measurements. We describe our results of the mock challenge analysis in Section 5.2.2.

The challenge mocks only model the CMASS sample. In order to test the model on arti�cial
catalogues that match the clustering of the full combined sample, the set of Patchy mocks are
�tted in Section 5.2.3. These �ts also serve as a basis for the estimation of the cross covariance
between the results obtained from di�erent analysis approaches that are applied in the BOSS
galaxy clustering working group. This estimate is needed to generate the consensus distance
and growth measurements of (Anderson et al., 2016, in prep.).

5.2.1 Performance tests for the redshift-space clusteringmodelling on

the Minerva HOD catalogues

The Minerva HOD catalogues described in Section 4.3.2 have similar clustering properties as
the BOSS combined sample and are obtained from full N -body simulations. Thus, they repre-
sent a suitable test case to validate the modelling of the Fourier space wedges in redshift space.
For this test, we use the recipe for the theoretical covariance matrix for clustering wedges in
Fourier space presented in Section 4.2.

In the left-hand panel of Figure 5.1, we show the best-�t model of the power spectrum
wedges compared to the mean Minerva HOD measurements. For this �t, we chose kmin =
0.01 h Mpc−1 andkmax = 0.2 h Mpc−1 and match the cosmology of the template power spectrum
to the underlying cosmology of the N -body simulations (listed as ‘Minerva’ in Table 3.2). The
dispersion over the realisations, indicated by the error bars, is much larger than the deviations
between the model and the measurement at all scales. This agreement even extends into the
non-linear regime outside the �tting range.

In order to validate the best wavenumber range for which the model provides the tightest
unbiased estimates of the distortion and growth parameters, we used the ‘gRPT+RSD’ model
to perform RSD-type full-shape �ts on the mean measurements of the Minerva HOD power
spectrum wedges using two and three clustering wedges with a varying upper limit kmax for
the �tting range. The results, shown in the right-hand panel of Figure 5.1, are in excellent
agreement with the correct values of distortion parameters and f σ8(z̄) for the case of three
wedges. The marginalized con�dence intervals of the distortion parameters are not exactly
centred on the expectation values, which we �nd is due to the fact that the additional shot
noise parameter N is strongly correlated with most other bias and RSD nuisance parameters,
and also shows small trends with the distortion parameters and f σ8. Since the deviations are
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Figure 5.1 – Left-hand panel: Best-�tting ‘gRPT+RSD’ model to the mean power spectrum wedges of the Minerva
HOD sample using kmin = 0.01 h Mpc−1 and kmax = 0.2 h Mpc−1. The cosmology was �xed, i.e., q ‖ = q⊥ = 1,
f σ8 (z̄) = 0.473 (cf., Minerva in Table 3.2). Right-hand panel: Marginalized results for q ‖ , q⊥, and f σ8 (z̄) from
‘gRPT+RSD’ model �ts to the mean Fourier space wedges of the Minerva HOD samples using di�erent �tting
ranges 0.01 h Mpc−1 ≤ ki ≤ kmax. The �ts using three wedges (red) has signi�cantly smaller error bars than for
two wedges.

Table 5.3 – The results for q ‖ , q⊥, and f σ8 (z̄) from RSD-type full-shape ‘gRPT+RSD’ �ts to the mean and in-
dividual Minerva measurement using two and three Fourier space wedges �tting wavenumbers in the range
0.01 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. The measurements were obtained either assuming the true Minerva cosmol-
ogy or the �ducial cosmology of the BOSS DR12 analysis (whose parameters are listed in Table 3.2). Mean chain
results are given as the weighted mean and standard deviation of the burn-in removed Markov chains. The best-�t
parameters of the 100 individual �ts are given by the weighted average of each individual Markov chain; here we
report the mean and standard deviation of the best-�t parameters.

Con�guration Param. Mean chains Individual True Value
Two wedges, q⊥ 0.996 ± 0.015 0.996 ± 0.016 1.000
Minerva q ‖ 1.003 ± 0.032 1.005 ± 0.033 1.000
cosmology f σ8 (z̄) 0.471 ± 0.030 0.482 ± 0.035 0.473
Three wedges q⊥ 0.996 ± 0.013 0.995 ± 0.013 1.000
Minerva q ‖ 1.006 ± 0.022 1.007 ± 0.023 1.000
cosmology f σ8 (z̄) 0.469 ± 0.027 0.469 ± 0.028 0.473
Two wedges, q⊥ 1.005 ± 0.016 1.005 ± 0.016 1.010
�ducial q ‖ 1.025 ± 0.034 1.026 ± 0.034 1.020
cosmology f σ8 (z̄) 0.472 ± 0.030 0.485 ± 0.037 0.473
Three wedges, q⊥ 1.006 ± 0.013 1.005 ± 0.013 1.010
�ducial q ‖ 1.027 ± 0.023 1.028 ± 0.024 1.020
cosmology f σ8 (z̄) 0.471 ± 0.028 0.471 ± 0.028 0.473



118 5. Modelling the redshifts-space galaxy clustering

0.95 1.00 1.05
0

10

20

30

40

0.95 1.00 1.05
0.90

0.95

1.00

1.05

1.10

q ‖

0.95 1.00 1.05

q⊥

0.4

0.5

0.6

f
σ

8

0.90 0.95 1.00 1.05 1.10
0

5

10

15

20

25

MINERVA HOD z = 0.57

mean P2w,i(k)

best-fit
individual

0.90 0.95 1.00 1.05 1.10

q‖

0.4

0.5

0.6

0.4 0.5 0.6

f σ8

0

5

10

15

0.95 1.00 1.05
0

10

20

30

40

0.95 1.00 1.05
0.90

0.95

1.00

1.05

1.10

q ‖

0.95 1.00 1.05

q⊥

0.4

0.5

0.6

f
σ

8

0.90 0.95 1.00 1.05 1.10
0

10

20

30

MINERVA HOD z = 0.57

mean P3w,i(k)

best-fit
individual

0.90 0.95 1.00 1.05 1.10

q‖

0.4

0.5

0.6

0.4 0.5 0.6

f σ8

0

5

10

15

20

Figure 5.2 – Marginalized results for q ‖ , q⊥, and f σ8 (z̄) from RSD-type full-shape ‘gRPT+RSD’ �ts to the mean
(red) and individual (orange) Minerva HOD measurement of two (left-hand panel) and three (right-hand panel)
Fourier space wedges �tting a wavenumber range 0.01 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. As the plotting ranges
are chosen to be the same for all plots, it can easily be seen that the three-wedges constraints are a little tighter
than the results from the two-wedges �ts, especially for q ‖ as the degeneracy between q ‖ and q⊥ has been broken
by including a third angle-dependent projection. The expected parameters are indicated as dotted lines in the
histograms. They are recovered by the mean results of the �ts.

much smaller than the statistical error for a single Minerva volume,2 we do not take it into
account for the RSD analyses in the following.

In Figure 5.2, we show the corresponding marginalized histograms and 2D contours of con�-
dence levels of 68%, 95%, and 99% for the parametersq‖ ,q⊥, and f σ8(z̄) from the �ts toMinerva.
The left-hand panel shows the two-wedges results, while the right-hand panel corresponds to
the �ts using three wedges. The dispersion of the individual �ts (orange histograms) is in good
agreement with the marginalized posterior distributions obtained from the mean measurement;
all small fraction of ‘outliers’, especially for high f σ8, disappears by including a third wedge
into the measurement con�guration. In this case, we �nd perfect agreement between the con-
�dence levels derived from the chains and the disperion of the individual best-�t results and
expect them both to be unbiased estimates of the real uncertainty.

For the real data, the true cosmology is unknown and a �ducial cosmology has to be as-
sumed. Hence, we test whether assuming a di�erent cosmology for the measurement of the
power spectrum wedges, the �ducial cosmology for the BOSS DR12 analysis listed in Table 3.2,
could bias the results. In Table 5.1 we compare the �ts of the RSD-type full-shape �ts using the
true Minerva and the �ducial cosmology. The distortion and growth parameters are recovered
with very similar accuracies in both measurement cosmologies for two and three wedges.

Due to the increased constraining power of the analyses with three wedges over using two

2The volume of a single Minerva realization, V = (1500 h−1 Mpc)3, is roughly equivalent to the e�ective
volume of the full BOSS combined sample, cf., Table 3.1.
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Figure 5.3 – Marginalized results for q ‖ , q⊥, and f σ8 (z̄) from ‘gRPT+RSD’ �ts to the mean Minerva HOD mea-
surement of three Fourier space wedges �tting a wavenumber range 0.01 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. The
expected parameters are indicated as dotted lines in the histograms. Left panel: Overplotted in red are �ts where
the additional shot noise term N is �xed to zero (thus, only the Poisson shot noise estimate is subtracted from all
Fourier space wedges measurements). The small systematic biases on these three parameters that were found for
the standard parameter space are decreased by this con�guration indicating that these biases result from unavoid-
able correlations between the nuisance parameters and the three cosmological ones. Right panel: Overplotted in
red are �ts where the power spectrum amplitude parameter Ap is �xed to zero (here, N = 0 for both �ts). This
does not have any e�ect on the constraints of the three cosmological parameters.

wedges only, from now on we will present results obtained using P3w,n (k ) only. Exceptions
are RSD challenge analysis in Section 5.2.2 and the consistency tests on the data discussed in
Section 6.1.1.

Modelling robustness for extra shot noise and power spectrum amplitude variations

Testing for systematics induced by the varying shot-noise and amplitude parameters, we show
the marginalized 1D histograms and 2D contours of the parameters q‖ , q⊥, and f σ8(z̄), derived
from BAO+RSD �ts to the three Fourier space wedges using the ‘gRPT+RSD’ model in Figure 5.3.
Here, we use the mean measurement of the power spectrum wedges of the Minerva HOD
galaxy samples, �tting wavenumber bins in the range 0.01 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. In
the left panel, we show that �xing the extra shot noise to zero, N = 0, results in constraints
that are less biased with respect to the true values of these parameters (indicated by the dotted
lines). Thus, the minor deviations found in the recovered distortion parameters are likely due
to correlations between the nuisance and cosmological parameters. However, this systematic
cannot be avoided as the additional shot noise term is required in the full-shape �ts to real and
mock samples with the observational systematics of BOSS to account for deviations from pure
Poisson noise (cf., Section 3.3.3). N absorbs also a constant stochastic ‘shot-noise’ term in the
modelling of the redshift-space galaxy bias that has been neglected in Section 2.4.6.
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Table 5.4 – The set of synthetic galaxy catalogues used in BOSS RSD challenge. The cosmological density pa-
rameter ΩM and h have only been revealed after the submission of the ‘blind’ results. Of the challenge N series
(synthetic CMASS NGC sample), a set of 84 realizations was generated. For the periodic boxes, only a single
realization exists for each type. All samples are snapshots at a �xed redshift z̄.

Name Type ΩM h z̄ HOD
A periodic box 0.306 0.6777 0.5617 standard
B periodic box 0.306 0.6777 0.5617 high bias
C periodic box 0.27 0.7 0.441 velocity bias
D periodic box 0.286 0.7 0.5 standard
E periodic box 0.286 0.7 0.5 velocity bias
F periodic box 0.306 0.6777 0.5617 assembly bias
G periodic box 0.306 0.6777 0.5617 assembly bias
N series cut sky (CMASS NGC) 0.286 0.7 0.5 standard

In linear theory, there is a perfect degeneracy between the growth rate f and the clustering
amplitude σ8. We test if this is also true for the RSD-type full-shape �ts with the ‘gRPT+RSD’
model, where the amplitude of the input power spectrum Ap is used to model variations of
σ8. Hence, the recovered distortion and growth parameters, especially the constraints on the
combination f σ8, are compared for the cases of a free amplitude Ap and a �xed one (where
Ap = 1). Completely �xing the shape and amplitude of the template power spectrum is preferred
as it simpli�es the calculation of the model predictions. In the standard con�guration for the
Minerva RSD �ts, we varyAp by 10%. The right panel of Figure 5.1 shows that keepingAp �xed
does not change the constraints on the three cosmological parameters, q‖ , q⊥, and f σ8. Thus,
the Ap parameter is not used in the RSD-type full-shape �ts of the power spectrum wedges
obtained from the Patchy catalogues in Section 5.2.3.

5.2.2 Results for the BOSS RSD challenge catalogues

Within the BOSS collaboration, special attention is paid to perform stringent cross checks of
the di�erent modelling and measurement techniques used in the BOSS DR12 analysis of the
combined sample, especially for those approaches that are combined to obtain the BOSS DR12
consensus constraints (Anderson et al., 2016, in prep.). Hence the performance of the various
full-shape approaches are compared in an RSD-�t challenge on large-volume synthetic cata-
logues to check for (unknown) systematics and the consistency of the results from the di�erent
analysis techniques. The results from all contributing method will be discussed and compared
against each other in Tinker et al. (2016, in prep.).

The �rst part of the challenge was based on the analysis of six di�erent HOD galaxy samples
constructed out of large-volume N -body simulations. Apart from standard HOD parameters,
other non-standard cases, including velocity or assembly bias, are considered. The simulations
correspond to ΛCDM cosmologies with slightly di�erent density parameters (see the list in Ta-
ble 5.4). In Figure 5.4, the �nal results from �tting two (orange diamonds) and three (green
pentagons) Fourier-space wedges measured from the �rst �ve challenge boxes are shown. For
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Figure 5.4 – Marginalized results for q ‖ , q⊥,
and f σ8 (z̄) from ‘gRPT+RSD’ model �ts to the
clustering-wedges measurement of the periodic
challenge boxes A–E listed in Table 5.4, �tting
wavenumber bins in the range 0.01 h Mpc−1 ≤ ki ≤
0.2 h Mpc−1. The measurements are obtained from
averaging over the possible three LoS directions
assuming a plane-parallel redshift-space geometry.
Shown are the �nal results from two (orange) and
three (green) Fourier-space wedges, compared with
the results obtained from three con�guration-space
wedges (magenta, Sánchez et al., 2016, in prep.). The
empty symbols are an systematic error indicator
summed over all periodic boxes (see text) and the
shaded gray band shows the statistical error that
is expected for the constraints obtained from DR12
combined sample in the high-redshift bin.

Table 5.5 – Results of the distortion and growth parameters from RSD-type full-shape �ts with the ‘gRPT+RSD’
model to the Fourier-space wedges of the periodic challenge boxes listed in Table 5.4, �tting wavenumber bins in
the range 0.01 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. ∆x denotes the deviation between the best-�t result, obtained as
mean of the MCMC simulation, and the expected value, while σx is the standard deviation found from the chains
(for x ∈ {q ‖ ,q⊥, f σ8}). For the boxes A–E, an axis-averaged measurement was performed to reduce the sampling
noise of the reshift-space power spectrum. As only a single realization exists for each box type, the results are
none the less variance-limited for the normal and averaged measurements.

Two wedges Three wedges
Box ∆q ‖ σq‖ ∆q⊥ σq⊥ ∆f σ8 σf σ8 ∆q ‖ σq‖ ∆q⊥ σq⊥ ∆f σ8 σf σ8

Normal measurements
A 0.021 0.014 0.007 0.008 0.034 0.031 0.027 0.009 0.004 0.006 0.031 0.028
B 0.021 0.014 −0.003 0.008 0.049 0.033 0.028 0.010 −0.006 0.006 0.044 0.032
C 0.033 0.017 −0.005 0.007 0.068 0.039 0.029 0.013 −0.005 0.006 0.037 0.036
D −0.002 0.017 0.006 0.007 0.070 0.035 0.005 0.012 0.002 0.006 0.049 0.034
E −0.008 0.017 0.006 0.007 0.085 0.044 0.009 0.014 −0.000 0.007 0.070 0.046
F 0.024 0.014 0.002 0.008 0.016 0.032 0.033 0.009 −0.002 0.006 −0.014 0.038
G 0.018 0.015 −0.008 0.008 0.034 0.034 0.028 0.011 −0.004 0.007 0.017 0.038

Axis-averaged
A 0.017 0.015 0.007 0.007 0.013 0.031 0.026 0.010 0.004 0.006 0.010 0.028
B 0.015 0.017 0.000 0.008 0.032 0.034 0.025 0.011 −0.003 0.006 0.024 0.031
C 0.012 0.016 0.005 0.007 −0.005 0.032 0.005 0.011 0.006 0.006 −0.012 0.030
D 0.001 0.014 0.006 0.007 −0.025 0.027 0.001 0.011 0.003 0.006 −0.037 0.028
E 0.000 0.016 0.007 0.007 −0.009 0.040 0.013 0.012 0.001 0.006 −0.023 0.038
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Figure 5.5 – Marginalized results forq ‖ ,q⊥, and f σ8 (z̄) from ‘gRPT+RSD’ model �ts to the mean challenge N series
measurement of two (left-hand panel) and three (right-hand panel) Fourier space wedges �tting wavenumbers in
the range 0.02 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. The mean chain parameters are indicated as dashed red lines in the
histograms and as a �lled black circle with the standard deviation as errors in the 2D plots. The best-�t parameters
for each of the 84 individual mock measurements are indicated as orange dots in the 2D plots. Their histogram
is plotted over the mean chain histogram in fainter colors. The results using two wedges is similarly accurate
but less precise (please note the di�erent plotting ranges); just as for the Minerva �ts in Figure 5.2, the q⊥–q ‖
degeneracy has been broken in the three-wedges results of this CMASS-like sample. In addition to the Minerva
case, this sample is a�ected by the survey selection function and, thus, the window function e�ect has been taken
into account.

comparison, we also plot the results obtained from �tting three con�guration-space wedges
(magenta squares Sánchez et al., 2016, in prep.). For this test, the redshift-space clustering mea-
surements were performed by averaging the measurements obtained from taking the three
di�erent axes as LoS direction, in order to reduce the sampling noise of the reshift-space power
spectrum. The precision is probed by the standard deviation of the results, σx = 〈(x − 〈x〉)2〉1/2
(x ∈ {∆q⊥,∆q‖ ,∆f σ8/f σ8}), which are indicated by the empty symbols in Figure 5.4. The
Fourier space results reach the same level of precision as the con�guration space results; the
deviations from the true values are always much smaller than the statistical errors that are
expected for the high-redshift bin of the DR12 combined sample (which are indicated by the
shaded gray band in the plot). The accuracy cannot be tested with this limited set of realizations
as sample variance prevents the analysis of a systematic bias. The high values of the q‖ results
from the periodic boxes A, B, F, G (> 1σ ) do not indicate a failure of the model as these cata-
logues are obtained using di�erent HOD implementations from the same underlying N -body
realization. In fact, the small dispersion between these results shows the consistency of the
modelling with respect to the failure of the model assumptions such as assembly and velocity
bias.

The second part of the challenge are the ‘N series’ samples, a set of 84 synthetic catalogues
mimicking the DR12 CMASS NGC subsample (dubbed ‘cut-sky’ mocks). They are designed
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Table 5.6 – The results forq ‖ ,q⊥, and f σ8 (z̄) from RSD-type full-shape ‘gRPT+RSD’ �ts to the mean and individual
N series measurement using two and three Fourier space wedges �tting wavenumbers in the range 0.02 h Mpc−1 ≤
ki ≤ 0.2 h Mpc−1. The measurements were obtained assuming the �ducial cosmology of the BOSS DR12 analysis
(cf., Table 3.2), which is di�erent from the true N series cosmology (cf., Table 5.4). Mean chain results are given
as the weighted mean and standard deviation of the burn-in removed Markov chains. The best-�t parameters of
the 84 individual �ts are given by the weighted average of each individual Markov chain; here we report the mean
and standard deviation of the best-�t parameters.

Con�guration Param. Mean chains Individual True value
Two wedges q⊥ 1.004 ± 0.021 1.006 ± 0.020 1.008

q ‖ 1.021 ± 0.041 1.025 ± 0.037 1.017
f σ8 (z̄) 0.472 ± 0.045 0.475 ± 0.043 0.470

Three wedges q⊥ 1.002 ± 0.017 1.005 ± 0.017 1.008
q ‖ 1.026 ± 0.026 1.027 ± 0.025 1.017
f σ8 (z̄) 0.464 ± 0.040 0.468 ± 0.038 0.470

to allow for tests of a systematic bias in the obtained parameter con�dence levels as they are
all generated from N -body simulations assuming the same cosmological parameter (which are
close to the Minerva cosmology). The catalogues are obtained with a standard HOD model
(again with similar parameters to those of the Minerva HOD). As the full survey geometry is
modelled, the window matrix prescription of Section 3.4 was used to take the selection func-
tion into account in the �ts (in contrast to the Minerva performance tests in Section 5.2.1).
Figure 5.5 shows the marginalized constraints from the N series �ts in Fourier space. In agree-
ment with the results obtained fromMinerva, using three wedges (right-hand panels) improves
the contraints by breaking the degeneracy between the distortion parameters q⊥ and q‖ that
is present in the 2D constraints obtained from two wedges (left-hand panels). The results and
expected values are listed in Table 5.6. We obtain results that are in good agreement with those
inferred from Minerva, but the deviations of the mean α⊥ and α‖ results from the true values
are a little larger than those seen for Minerva. Tests of the scale-dependency of the results (by
varying kmin) do not show evidence for any systematic e�ect on the RSD �ts induced by the
window matrix treatment (which has a stronger e�ect on larger scales). Any deviations seen
are signi�cantly smaller than the statistical uncertainty obtained from a single realization.

5.2.3 Model validation with the Patchy synthetic catalogues

The Patchy mocks, described in Section 3.5.1, are used to measure the consistency and covari-
ance between the di�erent approaches used to analyse the BOSS DR12 combined sample. In
contrast to the Minerva simulations, these mocks provide a test case on the full redshift range
of the combined sample and take the survey geometry and observing systematic of BOSS into
account. The power spectrum wedge measurements of the Patchy mocks are �tted in the three
redshift bins de�ned in Table 3.1 using the window function convolution of the model wedges
described in Table 3.4. For consistency with the treatment of the data, two di�erent sets of
bias, RSD, and shot-noise parameters are assumed for the low-redshift bin to account for the
two potentially di�erent galaxy populations, as discussed in Section 3.6.2. Further, we �x the
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Figure 5.6 – Marginalized results forα ‖ , α⊥, and f σ8 (z̄) from ‘gRPT+RSD’ model �ts to the mean Patchymeasure-
ment of three Fourier space wedges in the low (left-hand panel), intermediate (centre panel), and high (right-hand
panel) redshift bins �tting wavenumbers in the range 0.02 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. The mean chain param-
eters are indicated as dashed lines in the histograms and as a �lled circle with the standard deviation as errors in
the 2D plots. The best-�t parameters for each of the 2045 individual mock measurements are shown as dots in
the 2D plots. In the plots on the diagonals of each panels, the histogram of best-�t parameters (fainter colors) is
plotted over the histogram of the posterior sample obtained from Markov chain for the mean measurments (darker
colors). The results for the di�erent redshift bins are very similar and no statistically relevant systematic biases are
found (however, f σ8 (z̄) in the low-redshift part of the sample is underestimated by roughly .5σ , see discussion in
the text). The low redshift bin �ts used separate bias, RSD, and shot noise parameters for NGS and SGC, whereas
the other two bins used only one set of nuisance parameters.

power spectrum amplitude parameter Ap, as suggested by the tests of Section 5.2.1, reducing
in this way the parameter space to 8 variables for the intermediate and high redshift bins, and
13 for the low redshift bin. As described in Section 4.1.2, the obtained parameter uncertainties
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Table 5.7 – The results forα ‖ , α⊥, and f σ8 (z̄) from ‘gRPT+RSD’ model �ts to the mean and individual Patchymea-
surement of three Fourier space wedges in all three redshift bins �tting wavenumbers in the range 0.02 h Mpc−1 ≤
ki ≤ 0.2 h Mpc−1. Mean chain results are given as the weighted mean and standard deviation of the burn-in re-
moved Markov chains. The best-�t parameters of the 2045 individual �ts are given by the weighted average of each
individual Markov chain; here we report the mean and standard deviation of the best-�t parameters. The results
for the di�erent redshift bins are very similar and no statistically relevant systematic biases are found (however,
f σ8 (z̄) in the low-redshift part of the sample is underestimated by roughly .5σ , see discussion in the text). The
low redshift bin �ts used separate bias, RSD, and shot noise parameters for NGS and SGC, whereas the other two
bins used only one set of nuisance parameters.

Bin Param. Mean chains Individual True value
α⊥ 0.996 ± 0.021 0.996 ± 0.023 0.999

Low α ‖ 0.998 ± 0.031 0.998 ± 0.037 1.000
f σ8 (z̄) 0.458 ± 0.044 0.462 ± 0.048 0.483
α⊥ 1.002 ± 0.019 0.999 ± 0.020 0.999

Intermediate α ‖ 1.014 ± 0.029 1.014 ± 0.031 1.000
f σ8 (z̄) 0.468 ± 0.038 0.467 ± 0.039 0.483
α⊥ 1.007 ± 0.019 0.004 ± 0.020 1.000

High α ‖ 1.005 ± 0.026 1.004 ± 0.028 1.001
f σ8 (z̄) 0.484 ± 0.036 0.479 ± 0.038 0.478

must be rescaled by the correction factors M of equation (4.6) in order to account for the impact
of sampling noise on the covariance matrix. These rescaling factors are given in Table 4.2 for
Nm = 2045.

The constraints on α‖ , α⊥, and f σ8(z̄) for the �ts to the mean and individual Patchy mea-
surements are given in Table 5.7. The 2D contours and 1D histograms of the marginalized
results for all three bins are shown in Figure 5.6, overplotting the individual results as 2D scat-
ter plot and 1D histogram in lighter colours. The mean and dispersion measured for the best-�t
values of the 2045 individual measurements (listed in the ‘Individual’ column) are in very good
agreement with the 68% con�dence region (given by the mean and error in the ‘Mean chains’
column) of the �t to the mean measurement.

In order to decide whether the deviations between the mean best-�t results and the true val-
ues are statistically relevant and need to be treated as a systematic error (especially the under-
estimated f σ8(z̄) in the low redshift bin), we discuss these deviations in terms of the statistical
error. We denote a measurement bias as ∆x ≡ x�t − xexp, where x�t is the mean marginalized
parameter of the MCMC chains for the mean measurements and xexp is the theoretical predic-
tion for the measured quantity. The largest systematic deviations are found for f σ8(z̄) in the
low redshift bin (∆f σ8 ≈ 0.5σ f σ8) and for α‖ in the intermediate bin (∆α‖ ≈ 0.5σα ‖ ), but these
are never much larger than half of the statistical error (denoted here as σx ) for one realization.

Scale dependency of the results

In order to test whether the window function introduces any systematic bias into our analysis,
we test the scale-dependency of the results of the ‘gRPT+RSD’ �ts to the Fourier space wedges.
By varying kmin, we exclude the regime at the low end of the wavenumber range from the
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Figure 5.7 – Marginalized results for q ‖ , q⊥, and f σ8 (z̄) from ‘gRPT+RSD’ model �ts to the mean Patchy mea-
surement of three Fourier space wedges in the high redshift bin �tting wavenumbers in the rangekmin ≤ ki ≤ kmax.
The results from �ts to the SGC subsample are marked by red diamonds, the NGC results by blue squares. For
the �ducial �tting range, kmin = 0.02 h Mpc−1 and kmax = 0.2 h Mpc−1, the results from combining NGC and SGC
(describing both subsamples with the same nuisance parameters) are shown as black dots. No systematic trend
with kmin (upper panel) or kmax (lower panel) can be identi�ed. Not shown here are the results on the low and
intermediate redshift bin, which also do not show indications of a scale-dependency.

analysis where the window function e�ect is more important. An incomplete treatment of the
window function e�ect can be expected to result in a trend of the cosmological results with
kmin. As shown in the upper panel of Figure 5.7, there is no dependency of the BAO+RSD
results for the mean Patchy P3w,n (k ) measurements on kmin (we only present the high redshift
bin in this plot, but the results for the other two redshift bins show a similar behaviour). Thus,
we are con�dent that our window matrix formalism does not induce any systematic bias into
our analysis.

In a similar analysis, we test for a scale-dependency of the cosmological parameters due to
inaccuracies of our clustering model for the (approximative) non-linear evolution of the clus-
tering obtained from the Patchy catalogues. We perform RSD-type full-shape �ts with varying
kmax and �nd consistent results, free of systematic trends with kmax, even when smaller scales
than our �ducial �tting range are including in the analysis (see lower panel of Figure 5.7). This
is consistent with the results obtained from the fully non-linear Minerva simulations in which
non-linearities could be more pronounced that for the Patchy mocks. For reasons of brevity,
again only the case of the high redshift bin has been shown as illustration. For the other two
redshift bins, a scale-dependency of the result can be excluded at the same level.
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Figure 5.8 – Mean results for the DM (z)
[
r�d

s (zd)/rs (zd)
]
, H (z)

[
rs (zd)/r

�d
s (zd)

]
, and f σ8 (z̄) best-�t values from

BAO+RSD �ts to the individual Patchy measurements in the three redshift bins. The error bars indicated the dis-
persion across the 1000 realizations that are included in this comparison. The results from the di�erent approaches
within the BOSS collaboration — PS multipoles (Beutler et al., 2016b, in prep.), PS wedges (this thesis), 2PCF mul-
tipoles (Satpathy et al., 2016, in prep.), and 2PCF wedges (Sánchez et al., 2016, in prep.) — are compared against the
predictions for the Patchy cosmology. The constraints obtained from all techniques are in excellent agreement
with each other. The con�dence regions obtained by �tting the clustering wedges with the ‘gRPT+RSD’ model are
the most precise. For better visibility, the results are shifted by an o�set in z.

Comparison of the results within the BOSS collaboration

The di�erent clustering analysis techniques that contribute to the �nal BOSS DR12 consen-
sus measurement (Anderson et al., 2016, in prep.) are PS multipoles (Beutler et al., 2016b, in
prep.), PS wedges (this thesis and Grieb et al., 2016b, in prep.), 2PCF multipoles (Satpathy et al.,
2016, in prep.), and 2PCF wedges (Sánchez et al., 2016, in prep.). In order to derive a consen-
sus measurement, the covariance between the results obtained with these approaches is esti-
mated from the respective results on a subset of the �rst 1000 Patchy mocks. The comparison
of the methods is shown in Figure 5.8 where the BAO distance and growth measurements,
DM(z)

[
r�d

s (zd)/rs(zd)
]
, H (z)

[
rs(zd)/r

�d
s (zd)

]
, and f σ8(z̄), are compared against the predic-

tions for the Patchy cosmology. Good consistency is found between the individual con�dence
regions; the methods using the ‘gRPT+RSD’ model (i.e., clustering wedges in con�guration and
Fourier space) provide the tightest constraints.

The generated cross-analysis covariance matrix will be discussed in (Anderson et al., 2016,
in prep.). As the cross-correlation between the measurements is below unity, it is bene�cial
to combine the di�erent analysis techniques into a consensus constraint. This constraint will
be dominated by the ‘gRPT+RSD’ results, but the other approaches will increase the precision
and the accuracy (as minor systematics of an individual technique can be compensated by the
others).
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6
Cosmological implications of the BOSS DR12

Fourier-space clustering wedges

“In a nutshell, the universe is 4% visible, 23% undetectable and 73% unimaginable. Welcome
to the cosmos, full of mass you can measure but not manhandle, driven by a force you can
infer but not explain.”

Tim Radford

In this chapter, the clustering wedges measured from the �nal combined sample of BOSS in
Fourier space are used to infer constraints in a cosmological context. Thus, this chapter contains
the main results of this thesis. The BAO distance and growth �ts to the power spectrum wedges
of each redshift bin separately are discussed in Section 6.1. A comparison with the results of
the corresponding con�guration space analysis and other complementary approaches for the
clustering analysis on the DR12 combined sample can be found in Section 6.2. Section 6.3 lists
the additional cosmological dataset used in the derivation of cosmological constraints from the
clustering measurements. Implications for various cosmological parameter spaces (including
the standard model and its most important extensions, as described in Section 6.4) from our
measurements in combination with Planck and SN Ia data are discussed in Section 6.5.

6.1 RSD-type full-shapemeasurements of theBAOdistance

and growth using Fourier-space wedges

In this section, we present the anisotropic BAO and RSD constraints derived from the full-
shape clustering analysis of the BOSS DR12 combined sample as ‘single-probe’ measurement
(assuming a Planck 2015 input power spectrum, whose parameters are listed as ‘template’ in
Table 3.2). For this analysis, the three power spectrum wedges of the combined sample are �t-
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Figure 6.1 – The power spectrum wedges for NGC and SGC of the combined sample in the low (upper) and high
(lower panel) redshift bin de�ned in Table 3.1. Error bars are derived as the square root of the diagonal entries of
Patchy covariance matrix (see Section 4.5.1). The model prediction are for the maximum-likelihood BAO+RSD
parameters using a best-�t Planck 2015 input power spectrum. The low redshift bin �ts used separate bias, RSD,
and shot noise parameters for NGC (left panels) and SGC (right panels), whereas the intermediate and high bins
used only one set of nuisance parameters.

ted using the ‘gRPT+RSD’ model, whose implementation is described in Chapter 5.1 The power
spectrum wedges of the Northern (NGC) and Southern (SGC) galactic cap of the combined sam-
ple are plotted in Figure 6.1. The solid lines show the model predictions corresponding to the
maximum-likelihood parameters from BAO+RSD �ts to each redshift bin using an input power
spectrum based on the best-�t Planck 2015 cosmological parameters. The model predictions

1Unless stated otherwise, all results in this section have been obtained by �tting the �ducial wavenumber range
0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the reference covariance matrix obtained from the Patchy mock catalogues
(see Section 4.5.1).
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Figure 6.2 – The regions of 68% and 95% con�dence level (CL) in the marginalized 2D posteriors of the comov-
ing transverse distance and the sound horizon ratio, DM (z)

[
r�d

s (zd)/rs (zd)
]
, the Hubble parameter and the sound

horizon ratio, H (z)
[
rs (zd)/r

�d
s (zd)

]
, and the growth parameter f σ8 (z̄) from BAO+RSD �ts to the DR12 com-

bined sample in the low (upper panel), intermediate (middle panel), and high redshift bin (lower panel). For these
MCMC-estimated contours plotted in green, three power spectrum have been �tted in the wavenumber range
0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the covariance from 2045 Patchy mocks. The low redshift bin �ts used
separate bias, RSD, and shot noise parameters for NGC (left panels) and SGC (right panels), whereas the results
in the high redshift bin were obtained using only one set of nuisance parameters. These measurements represent
the main results of this thesis. For comparison, the theoretical predictions for the standard cosmological model
(ΛCDM) from the Planck 2015 TT+lowP (Ade et al., 2015) observations are overplotted as blue con�dence regions.
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Table 6.1 – The results of the BAO+RSD �ts to the DR12 combined sample in terms of the comoving transverse
distance and the sound horizon ratio, DM (z)

[
r�d

s (zd)/rs (zd)
]
, the Hubble parameter and the sound horizon ratio,

H (z)
[
rs (zd)/r

�d
s (zd)

]
, and the growth rate parameter f σ8 (z̄). We also give the ratio of the angle-averaged BAO

distance and �ducial sound horizon scale, DV (z)/r
�d
s , and the Alcock-Paczynski parameter FAP (z) as these are usu-

ally used for cosmological inferences with CosmoMC (Lewis & Bridle, 2002). For these �ts, three power spectrum
have been �tted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the covariance matrix from 2045
Patchy mocks. Besides the mean values from the chains, we given the limits for a con�dence level of 68 % (and
95% in parenthesis).

Parameter Unit Low Intermediate High
f σ8 (z̄) − 0.498+0.044

−0.045
(
+0.088
−0.090

)
0.448 ± 0.038

(
+0.076
−0.078

)
0.409 ± 0.040

(
+0.086
−0.077

)
DM (z)

[
r �d

d
rd

]
Mpc 1525 ± 24

(
+52
−51

)
1990 ± 32 (±66) 2281+42

−43
(
+83
−88

)
H (z)

[
rd
r �d

d

]
km s−1 Mpc−1 81.2+2.2

−2.3
(
+4.6
−4.7

)
87.0+2.3

−2.4
(
+4.7
−4.8

)
94.9 ± 2.5

(
+5.3
−5.1

)
DV (z)/r

�d
s − 10.04 ± 0.14

(
+0.27
−0.29

)
12.92 ± 0.18

(
+0.37
−0.38

)
14.60 ± 0.24

(
+0.46
−0.48

)
FAP (z) − 0.413 ± 0.014

(
+0.028
−0.029

)
0.578 ± 0.018

(
+0.035
−0.038

)
0.722 ± 0.022

(
+0.044
−0.045

)

were convolved with the window matrix (see Section 3.4). In the low redshift bin, we use two
di�erent sets of nuisance parameters for the bias and RSD model to account for the fact that,
as discussed in Section 3.6.2, the NGC and SGC samples might contain two slightly di�erent
galaxy population at low redshifts. For the high redshift bin, the NGC–SGC di�erence in the
model prediction results only from the di�erent window matrices.

The BAO+RSD �ts are performed using the Markov chain Monte Carlo (MCMC) technique
by means of a modi�ed version of CosmoMC (Lewis & Bridle, 2002), adapted to compute our
‘gRPT+RSD’ model predictions as described in Sánchez et al. (2016, in prep.). As described
in Section 5.1.2, the parameter space X for our RSD-type full-shape �ts comprises of 8 free
parameters for the intermediate and high redshift bin and 13 for the low redshift bin. The
results of the �ts are given by the posterior distribution statistics taken from the chains as dis-
cussed in Appendix A.2.2. Using the de�nitions of the AP parameters in equation (5.6) and the
�ducial distances given in Table 5.1, the results are expressed in terms of the combinations,
DM(z)

[
r�d

s (zd)/rs(zd)
]
, H (z)

[
rs(zd)/r

�d
s (zd)

]
, and f σ8(z̄). The 68% and 95% con�dence levels

(CL) of the two-dimensional posterior distributions of these parameters for �ts of the BOSS
DR12 power spectrum wedges are show as green contours in Figure 6.2 (the panels correspond
to the low, intermediate, and high redshift bin from top to bottom). The resulting con�dence in-
tervals (1- and 2-sigma) of all redshift bins are listed in Table 6.1. The blue contours correspond
to the ΛCDM predictions from the Planck 2015 TT+lowP (Ade et al., 2015) measurements (in the
following labelled as Planck predictions). We �nd excellent consistency of these measurements
given our errors.

As BAO distance measurements are often expressed in terms of ratio of the angle-averaged
distance and the �ducial sound horizon scale, DV(z)/r

�d
s and the Alcock-Paczynski parameter

FAP(z), we give these derived quantities as well in Table 6.1. The 2D posterior contours of these
parameters, together with f σ8(z̄), can be more accurately described by a Gaussian approxima-
tion than those for DM(z), H (z) and f σ8(z̄). Thus, this combination of parameters will be used
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Figure 6.3 – The 2D posteriors of the comoving transverse distance and the sound horizon ratio,
DM (z)

[
r�d

s (zd)/rs (zd)
]
, the Hubble parameter and the sound horizon ratio, H (z)

[
rs (zd)/r

�d
s (zd)

]
, and the growth

parameter f σ8 (z̄) from BAO+RSD �ts to the DR12 combined sample in the low (upper panel), intermediate (cen-
tre panel), and high (lower panel) redshift bin. For this �t, two (gray contours) and three (green contours) power
spectrum wedges have been �tted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the reference
covariance matrix obtained from Patchy mocks (corresponding to the chosen number of wedges).

to derive the RSD consensus constraints in Anderson et al. (2016, in prep.) (see also the com-
parison the the results obtained from other analysis techniques that have been applied within
the BOSS collaboration in Section 6.2.2).

6.1.1 Internal consistency checks

In this section, we test our BOSS DR12 BAO+RSD measurements presented in the previous
section, for robustness against various potential sources of systematics, such as the set of mocks
used to obtain the covariance matrix, the galaxy population discrepancies between the NGC and
SGC subsamples described in Section 3.6.2, and e�ects indicated by the scale-dependency of the
results.
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Robustness with respect to the number of clustering wedges

A change in the number of wedges requires an adoption of the covariance matrix and window
matrix, accordingly. Thus, changing the number of wedges serves as an comprehensive test
for the robustness of the measurements; however, the changed information content has to be
taken into account when results are compared.

In Figure 6.3, we compare the regions of 68% and 95% CL from the geometric and growth
measurements obtained from a BAO+RSD �t to two (gray contours) and three (green contours)
power spectrum wedges using the same wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1

and the corresponding reference covariance matrix obtained from Patchy mocks. As already
seen in the tests performed on the Minerva catalogues discussed in Section 5.2.1, the con-
straints from two wedges have a stronger degeneracy in the DM(z)–H (z) parameter plane that
is broken when using three wedges. This results in tighter con�dence intervals obtained for
the Hubble parameter, while the angular diameter distance constraints improve less signif-
icantly. As the constrained region along the DM(z)–H (z) degeneracy using two clustering
wedges prefers lower values for both quantities than the three-wedges results in the low redshift
bin, but higher values in the high redshift bin, it is no surprise that the two- and three-wedges
con�dence regions are centred on each other for the overlapping intermediate bin.

The overall picture shows good consistency between the two measurement con�gurations,
justifying the choice of using the three-wedges case as main result of this work and to use them
for the combination with other cosmological probes.

Validity of the covariance matrix from the mocks

As a test of the robustness of the full-shape results, we perform cross-checks by repeating
the RSD-type full-shape �ts with the alternative QPM covariance matrices described in Sec-
tion 4.5.2. Due to the larger �ducial volume of the Patchy mocks (corresponding to the larger
density parameter ΩM), the volume of the Patchy mocks is smaller than for the QPM mocks. As
the variance of the power spectrum is inversely proportional to the volume, we expect slightly
tighter constraints for using the QPM matrix.

As shown in Figure 6.4, the contours of 68% and 95% CL for combinations of the parameters
DM(z)

[
r�d

s (zd)/rs(zd)
]
, H (z)

[
rs(zd)/r

�d
s (zd)

]
, and f σ8(z̄) obtained from BAO+RSD �ts using

the same data and the two di�erent covariance matrices are in good agreement with each other
(plotted are the low and high redshift bin in the top and bottom panel, respectively; the results
for the intermediate bin are similar). However, the 68% and 95% con�dence regions are slightly
smaller in the QPM case for the low redshift bin.

We check for potential inconsistencies between the statistical errors for the distance and
growth measurements obtained from the set of Patchy mocks and the errors measured on the
data. Figure 6.5 shows the distribution of errors on α‖ , α⊥, and f σ8(z̄) obtained from the BAO+
RSD �ts using the 2045 individual Patchy measurements of the power spectrum wedges in the
low, intermediate and high redshift bin (from the upper to lower panel). The error of the �t to
the mean measurement of the power spectrum wedges is indicated by a dashed vertical line.
For comparison, the size of the marginalized constraints of the DR12 combined sample �ts are
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Figure 6.4 – The 68% and 95% CL regions of the 2D posteriors of the comoving transverse distance and the sound
horizon ratio, DM (z)

[
r�d

s (zd)/rs (zd)
]
, the Hubble parameter and the sound horizon ratio, H (z)

[
rs (zd)/r

�d
s (zd)

]
,

and the growth parameter f σ8 (z̄) from BAO+RSD �ts to the DR12 combined sample in the low (upper panel) and
high (lower panel) redshift bin. For these �ts, three power spectrum wedges have been �tted in the wavenumber
range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the reference Patchy (green) and the alternative QPM (orange)
covariance matrix.
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Figure 6.5 – Histograms of the marginal-
ized error on α ‖ , α⊥, and f σ8 (z̄) from
‘gRPT+RSD’ model �ts to the individ-
ual measurement of three Fourier space
wedges of 2045 Patchy mocks in the
low (left-hand panel), intermediate (cen-
tre panel), and high (right-hand panel) red-
shift bins �tting wavenumbers in the range
0.02 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. The
error of the �ts to the mean measurement
is shown by vertical line. For comparison,
the error from the BAO+RSD �ts to the real
data has been included by a red dashed line.
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Figure 6.6 – The 68% and 95% CL contours of the 2D posteriors of the comoving transverse distance and the sound
horizon ratio, DM (z)

[
r�d

s (zd)/rs (zd)
]
, the Hubble parameter and the sound horizon ratio, H (z)

[
rs (zd)/r

�d
s (zd)

]
,

and the growth parameter f σ8 (z̄) from BAO+RSD �ts to the DR12 combined sample (green) and the colour-
corrected version (orange, see discussions in Section 3.6.2) in the low (upper) and high (lower panel) redshift bin.
For these �ts, three power spectrum wedges have been �tted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤
0.2 h Mpc−1 using the Patchy covariance matrix.

indicated by a dotted red line. In most cases, the errors obtained from the data are close to the
peak of the distribution, except for the error on the low-redshift α⊥, which is in the lower tail
of the error distribution on Patchy mocks. Thus, we conclude that the errors from the data are
largely consistent with the distribution of errors measured from Patchy.

Robustness with respect to photometric colour shifts

As discussed in Section 3.6.2, di�erences in the photometric calibration in the two galactic
hemispheres of the BOSS surveys might have led to slightly di�erent galaxy populations probed
by the NGC and SGC subsamples. Here we present the robustness of our main results with
respect to these discrepancies by repeating the RSD+BAO �ts with the SGC subsample replaced
by the colour-corrected one. In Figure 6.6 we show the constraints on DM(z)

[
r�d

s (zd)/rs(zd)
]
,

H (z)
[
rs(zd)/r

�d
s (zd)

]
, and f σ8(z̄) from BAO+RSD �ts to the DR12 combined sample (green)

and the colour-corrected version (orange) in the low (upper) and high (lower panel) redshift
bin; the results in the intermediate bin are similar. The di�erence in the 2D posteriors are
negligible, as the di�erences in the galaxy populations are correctly absorbed into the nuisance
parameters of the bias model.



6.1 RSD-type full-shape measurements using Fourier-space wedges 137

0.4

0.5

0.6

0.7

f
σ

8

0.90

0.95

1.00

1.05

1.10

q ⊥

combined sample 0.2 ≤ z < 0.5

0.02 0.03 0.04 0.05 0.06

kmin

0.90
0.95
1.00
1.05
1.10

q ‖

NGC P3w(k) SGC P3w(k) full P3w(k)

0.4

0.5

0.6

0.7

f
σ

8

0.90

0.95

1.00

1.05

1.10

q ⊥

combined sample 0.2 ≤ z < 0.5

0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

kmax

0.90
0.95
1.00
1.05
1.10

q ‖

NGC P3w(k) SGC P3w(k) full P3w(k)

0.35

0.40

0.45

0.50

0.55

f
σ

8

combined sample 0.5 ≤ z < 0.75

0.95

1.00

1.05

q ⊥

NGC P3w(k) SGC P3w(k) full P3w(k)

0.02 0.03 0.04 0.05 0.06

kmin

0.90

0.95

1.00

1.05

1.10

q ‖

0.35

0.40

0.45

0.50

0.55

f
σ

8

combined sample 0.5 ≤ z < 0.75

0.95

1.00

1.05

q ⊥

NGC P3w(k) SGC P3w(k) full P3w(k)

0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

kmax

0.90

0.95

1.00

1.05

1.10

q ‖

Figure 6.7 – Left panels: Marginalized results for q ‖ , q⊥, and f σ8 (z̄) from ‘gRPT+RSD’ model �ts to the DR12
combined sample measurement of three Fourier space wedges in the low (upper panels) and high redshift bins
(lower panels) �tting wavenumbers in the range kmin ≤ ki ≤ 0.2 h Mpc−1. The results from �ts to the SGC are
marked by red diamonds, the NGC results in blue squares. For the �ducial �tting range, kmin = 0.02 h Mpc−1,
the results from combining NGC and SGC (describing both subsamples with the same nuisance parameters) are
shown as black dots. Some deviations are expected from the negligence of some modes by tighter �tting ranges
and no systematic trend with kmin can be identi�ed.
Right panels: Marginalized results forq ‖ , q⊥, and f σ8 (z̄) from the same �ts of a wavenumber range 0.02 h Mpc−1 ≤
ki ≤ kmax. Some deviations are expected from the negligence of some modes by tighter �tting ranges and no
systematic trend with kmax can be identi�ed.

Robustness of the BAO+RSD �ts with respect to k ranges

In this subsection, we test the robustness of the BAO+RSD �ts to P3w,i (k ) of the NGC and SGC
with respect to variations of the wavenumber limits of the �tting range. By varying kmin we
exclude scales that could be a�ected by an inaccurate treatment of the window function and/or
other large-angle systematics of the survey, such as residuals from the stellar-density or seeing
correction (cf., Section 3.3.1).

In the left panels of Figure 6.7, we show the results obtained by varying kmin from 0.02 to
0.06 h Mpc−1 to exclude the largest scales where these e�ects have the biggest impact. Due
to sample variance, the inclusion of more almost uncorrelated large-scale Fourier modes is
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Figure 6.8 – The measurements of the comoving transverse distance over the sound horizon scale, DM (z) r−1
s (zd)

(left-hand panel), and the Hubble parameter times the sound horizon scale, H (z) rs (zd) (right-hand panel), in the
three di�erent redshift bins. The intermediate result has an empty marker in order to indicate the correlation with
the results of two outer redshift bins, which are independent from each other. The Planck ΛCDM predictions are
shown as blue bands where the darker (lighter) shaded region indicates the 1-sigma (2-sigma) region. See text for
the references to the previous full-shape measurements on BOSS samples.

expected to change the results smoothly and would lead to small changes of the results with
respect to kmin. Taking this into account, no trends of parameter constraints with kmin can be
identi�ed with worrying systematic e�ects. The variations we see can be expected from sample
variance and no trends can be found in the obtained constraints.

In addition, we vary kmax to check whether our model fails to correctly describe the non-
linearity of the data at some point in the quasi-linear regime (which could be exceptionally
large compared to the non-linear evolution of the Minerva simulations, on which the model
was validated, see Section 5.2.1). In the range from kmax = 0.16 h Mpc−1 to 0.22 h Mpc−1

plotted in the right panels of Figure 6.7, we again see shifts as expected as more information
is included in the analysis. No clear signalling of a failure of the model is found up to the
�ducial kmax = 0.2 h Mpc−1. Thus, we are con�dent that our model can accurately describe the
non-linear clustering seen in the data.

6.2 Comparison within the BOSS collaboration

6.2.1 Comparison with previous results

In order to verify the consistency with previous RSD-type full-shape measurements on the
BAO distance and the growth rate, and to show the improvement in precision that our results
represent, we here compare our main constraints to the most recent BAO+RSD analyses on the
LOWZ and CMASS samples of BOSS DR11 and DR12.

Our measurements of the combinations DM(z) r−1
s (zd) and H (z) rs(zd) in the three redshift
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Figure 6.9 – The f σ8 (z̄) measurements in the
three di�erent redshift bins. The intermediate
result has an empty marker in order to indicate
the correlation with the results of two outer red-
shift bins, which are independent from each other.
The Planck ΛCDM predictions are shown as blue
bands where the darker (lighter) shaded region in-
dicates the 1-sigma (2-sigma) region. See text for
the references to the previous growth measure-
ments on BOSS samples.

bins (of which the intermediate one is not independent from the other two) are compared
against Planck ΛCDM predictions and previous results from BOSS samples in Figure 6.8. The
predecessor full-shape measurements are taken from the analysis of the Sloan DR7 LRG sam-
ple (Oka et al., 2014, CF multipoles), the clustering wedges (Sánchez et al., 2014, CF wedges)
and the most-recent (Alam et al., 2015b, CF multipoles) analysis of the DR11 CMASS sample,
and the DR12 LOWZ and CMASS samples (Gil-Marín et al., 2015d, PS multipoles). For the
transverse distance (left-hand panel), our results are in perfect agreement with previous BOSS
measurements and the Planck ΛCDM predictios; the improvement mostly corresponds to a
better splitting of the redshift bins with e�ective volume giving a much better handle on the
low-redshift distance. Similarly, the Hubble parameter (right-hand panel) is better constrained
at low redshifts by our measurements compared to previous results

In Figure 6.9, we compare our f σ8(z̄) measurements in all three redshift bins with previous
results of the same BOSS analyses as before. Again, all results are completely consistent to each
other, with the LOWZ measurement of Gil-Marín et al. (2015d) being inconsistent with our low-
redshift measurement at roughly 1σ . Di�erences of this order are not a surprise as our low-z
measurement probes a larger volume than the LOWZ sample due to the extended redshift range.
However, we measured a value of f σ8(z̄) lower than the Planck ΛCDM prediction by roughly
1σ in the high-redshift bin. This is consistent with recent CMASS measurements (Sánchez et al.,
2014, see also the broader discussion of previous BOSS results in Section 1.4.1).

6.2.2 Comparison with other analysis approaches applied to the BOSS

DR12 combined sample

In Anderson et al. (2016, in prep.), the results presented here are combined with the companion
full-shape analyses on the BOSS DR12 combined sample in Beutler et al. (2016b, in prep., PS
multipoles), Sánchez et al. (2016, in prep., CF wedges), and Satpathy et al. (2016, in prep., CF
multipoles). As shown in Figure 6.10, all four approaches show excellent consistency between
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Figure 6.10 – The comparison of the 68% and 98% con�dence regions in the marginalized 2D posteriors of the
angle-averaged comoving distance over the sound horizon scal, DV (z) r

−1
s (zd), the Alcock-Paczynski parameter,

FAP (z), and the growth parameter f σ8 (z̄) from BAO+RSD �ts to the DR12 combined sample in the low (upper
panel), intermediate (middle panel), and high redshift bin (lower panel). The contours plotted in green are the �ts
to the three power spectrum �tted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 (whose marginal-
ized constraints on the alternative BAO+RSD parameters DA (z), H (z), and f σ8 (z̄) are presented in Figure 6.2).
The other constraints are the companion RSD analysis in Beutler et al. (2016b, in prep., PS multipoles, black),
Sánchez et al. (2016, in prep., CF wedges, orange), and Satpathy et al. (2016, in prep., CF multipoles, magenta). The
black ellipses are the 68% and 95% con�dence levels of the consensus measurements in Anderson et al. (2016, in
prep.), which combine these measurements in a single set of constraints. For comparison, the theoretical ΛCDM
predictions from Planck observations are overplotted as blue con�dence regions.
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each other at a level that can be expected from the cross-analysis covariance on the Patchy �ts
(cf. Anderson et al., 2016, in prep.; and also Section 5.2.3) indicating that no individual BAO+
RSD �tting approach is a�ected by systematics that are unaccounted for. The ‘gRPT+RSD’ �ts
to clustering wedges yield the tightest constraints for the distance and growth parameters in
all redshift bins.

The con�dence regions of the Fourier space multipoles (Beutler et al., 2016b, in prep.) are
larger due to the smaller wavenumber range probed (k < 0.15 h Mpc−1 for monopole and
quadrupole, the hexadecapole is only �tted up to 0.1 h Mpc−1) as their modelling approach has
less accuracy in the non-linear regime than ours. The results by Satpathy et al. (2016, in prep.)
show consistency with the trends of our results from the restriction to two clustering wedges
(see Figure 6.3), as their CLPT �ts only include the 2PCF monopole and quadrupole.

Using the Patchy covariance between the individual results, the consensus constraints are
estimated by combining the results from the di�erent approaches into a single set of constraints.
This procedure assumes Gaussianity of the posterior distributions, which we �nd to be given at
an appropriate level for each technique. The consensus constraints correctly take the covariance
between the di�erent measurements and parameters into account, resulting in �nal constraints
that are tighter and make maximal use of the cosmological information in the data. Ideally,
the combined RSD measurements also compensates for residual systematics of the di�erent
approaches (which must be minor, as the consistency check shows).

For the �nal consensus value presented in Anderson et al. (2016, in prep.), the full-shape
measurements are combined with the post-reconstruction BAO-only measurements of Ross
et al. (2016, in prep., CF multipoles) and Beutler et al. (2016a, in prep., PS multipoles). As density-
�eld reconstruction improves the BAO distance constraints signi�cantly — especially resulting
in more precise measurements of DV(z) r

−1
s (zd), — also the other derived parameters such as

f σ8(z̄) bene�t from a tighter constrained full parameter space. As the DR12 combined cata-
logue represents the largest galaxy sample currently available, the consensus constraints are
the most precise and most accurate BAO+RSD measurement obtained to date.

6.3 Additional cosmological data sets

A redshift survey such as BOSS probes the geometry of the Universe and the growth of structure
on a limited redshift range. Thus, the cclustering measurements mostly constrain the cosmolog-
ical parameters that are sensitive to the late-time evolution of the Universe. In order to obtain
the tightest possible cosmological constraints, the BAO+RSD or full-shape measurement must
be combined with complementary cosmological probes, most importantly CMB observations,
to determine the sound horizon at the drag epoch.

In this thesis, the cosmological information in the full-shape of the power spectrum wedges
of the DR12 combined sample in the low and high redshift bin, modelled with the non-linear
redshift-space clustering recipe ‘gRPT+RSD’ described in Chapter 5, is analysed. We dub our
method the cosmological full-shape analysis, in order to distinguish it from the conventional
BAO+RSD analysis that combines the anisotropic BAO distance and growth rate measurements
with other cosmological probes using an approximative Gaussian prior obtained from the BAO+
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Table 6.2 – The parameters and priors of the cosmological standard model and its extensions used in this work.
All parameters have a �at prior which is uniform within the given limits and zero outside. If no prior limits and
step size are given, the corresponding parameter was �xed.

Parameter Function Unit Prior limits Starting Point Step size
ΛCDM (�at, standard ν )

Ωb h
2 Baryon density — 0.005–0.1 0.0221 0.0001

Ωc h
2 CDM density — 0.001–0.99 0.12 0.0005

100θMC Acoustic scale — 0.5–10 1.0411 0.0002
τ Optical depth to re-ionization — 0.01–0.8 0.09 0.005
ns Scalar spectral tilt — 0.8–1.2 0.96 0.002
ln(1010 As) Primordial perturbation amplitude — 2–4 3.1 0.001
w Linear EoS for DE — — −1 —
ΩK Curvature component — — 0 —∑
mν Neutrino mass eV — 0.06 —

Ne� E�. #(relativistic DoF) — — 3.046 —

RSD �ts that used a �xed power spectrum. This other method is dubbed RSD-type full-shape
�t in this thesis.

Besides our full-shape measurements, we use the temperature and low-` polarization mea-
surements obtained from the Planck mission (denoted as Planck 2015 TT+lowP, Ade et al., 2015)
of the Planck 2015 release (Adam et al., 2015). We will see that Planck+BOSS DR12 is a very
powerful cosmological probe and that including other cosmological observations in the analy-
sis only adds little information, with the exception of supernovae of type Ia, which probe the
cosmic expansion history at low redshifts via the luminosity distance scale. Hence, we make
use of the joint analysis of the SDSS-II and SNLS supernova samples (JLA; Betoule et al., 2014).
In order to avoid a complicated systematic error budget and measurements that are correlated
with the ones described above, we abstain from including other cosmological probes such as
weak lensing or Ly-α forest BAO measurements.

6.4 Cosmological parameter spaces

The standard cosmological model is the 6-parameter ΛCDM model introduced in Section 1.1. It
assumes that the Universe has �at spatial hypersurfaces and that its energy budget comprises
of (pressureless) cold dark matter, baryonic non-relativistic matter, relativistic radiation, and
Dark Energy modelled as a cosmological constant (corresponding to vacuum energy). Just as
for the template cosmology, see Table 3.2, and the standard cosmological interpretation of the
Planck CMB observations in Adam et al. (2015), we assume that the relativistic radiation in the
ΛCDM Universe consists of a neutrino background with Ωνh

2 = 0.00064 besides the photon
background. This corresponds to a �xed sum over the neutrino masses of ∑

µν = 0.06 eV. The
most precise cosmological observations are very consistent with this standard paradigm (Ade
et al., 2015; Anderson et al., 2014b).

The parameters of the ΛCDM parameter space are listed in Table 6.2. The extensions to this
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Table 6.3 – The parameters and priors of the extensions to the standard cosmological model used in this work.
This list contains only the modi�cations with respect to the base parameters listed in Table 6.2. All parameters
have a �at prior which is uniform within the given limits and zero outside.

Parameter Function Unit Prior limits Starting Point Step size
wCDM (linear equation of state for DE)

w Linear EoS for DE — (−3)–(−0.3) −1 0.06
w0waCDM (CPL parametrization for DE)

w0 Zero-point of the CPL EoS for DE — (−3)–(−0.3) −1 0.06
wa Slope of the CPL EoS for DE — (−2)–2 0 0.5

ΛCDM + γ (modi�ed gravity)
γ Growth modi�cation — 0–3 0.55 0.1

wCDM + γ (linear EoS for DE, modi�ed gravity)
w Linear EoS for DE — (−3)–(−0.3) −1 0.06
γ Growth modi�cation — 0–3 0.55 0.1

K-ΛCDM (curvature, standard ν )
ΩK Curvature component — (−0.3)–0.3 0 0.02

K-wCDM (curvature, linear EoS for DE)
ΩK Curvature component — (−0.3)–0.3 0 0.02
w Linear EoS for DE — (−3)–(−0.3) −1 0.06

ΛCDM + massive neutrinos (free ∑
mν )∑

mν Neutrino mass eV 0–2 0.06 0.05
Ne�-ΛCDM (free #(relativistic DoF))

Ne� E�. #(relativistic DoF) — 0.05-10 3.046 0.04
wCDM + massive neutrinos (linear EoS for DE, free ∑

mν )∑
mν Neutrino mass eV 0–2 0.06 0.05

w Linear EoS for DE — (−3)–(−0.3) −1 0.06
Ne�-ΛCDM + massive neutrinos (free ∑

mν and #(rel. DoF))∑
mν Neutrino mass eV 0–2 0.06 0.05

Ne� E�. #(relativistic DoF) — 0.05-10 3.046 0.04

parameter space that are analysed in this thesis are listed in Table 6.3. Besides the cosmological
parameters in these lists, the full parameter space X for our cosmological �ts contains the
nuisance parameters of the set of cosmological probes included in the analysis. For the full-
shape �ts including the measurements of the BOSS DR12 clustering wedges, the additional
nuisance parameters are the bias, RSD, and shot-noise parameters listed in Table 5.2. All these
parameter tables contain the priors (assumed to be �at within the given range) and the step sizes
of our exploration of the parameter spaces using the cosmological MCMC code CosmoMC. In
addition to the given prior limits, H0 was enforced to be in the range 20 km s−1 Mpc−1 ≤ H0 ≤
100 km s−1 Mpc−1. More details on howCosmoMC can be used for cosmological interference are
given in Appendix A.3. The Planck and JLA modules are taken from the o�cial release (version
of July 2015), while the implementation of the ‘gRPT+RSD’ model described in Chapter 5 is
addressed in greater detail in (Sánchez et al., 2016, in prep.). The parameter spaces were explored
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Table 6.4 – Mean and standard deviation of the most-relevant model parameters for �ts using the cosmological
standard model and usual extensions to it. The �ts include at least the Planck 2015 TT+lowP data, which are
successively combined with the power spectrum wedges P3w (k ) of the BOSS DR12 low and high redshift bins and
the JLA SN Ia data. Given are the 1-sigma and 2-sigma (in parenthesis) intervals. The constraints for curvature
extensions are listed in Table 6.5, those for neutrino extensions in Table 6.6.

Parameter Planck 2015 + BOSS DR12 P3w (k ) + JLA SN Ia
ΛCDM (�at, standard ν )

ΩM 0.315 ± 0.014
(
+0.030
−0.027

)
0.312+0.008

−0.009
(
+0.015
−0.019

)
0.311+0.009

−0.010
(
+0.015
−0.019

)
h 0.673+0.011

−0.010 (±0.021) 0.675+0.007
−0.006

(
+0.014
−0.011

)
0.676+0.007

−0.006
(
+0.014
−0.011

)
wCDM (linear equation of state for DE)

ΩM 0.205+0.054
−0.051

(
+0.146
−0.060

)
0.306+0.014

−0.015
(
+0.028
−0.030

)
0.307+0.011

−0.012
(
+0.021
−0.022

)
w −1.55+0.32

−0.30
(
+0.66
−0.43

)
−1.029+0.070

−0.054
(
+0.117
−0.139

)
−1.019+0.048

−0.039
(
+0.079
−0.090

)
w0waCDM (CPL parametrization for DE)

w0 −1.44+0.47
−0.45

(
+0.95
−0.72

)
−1.03 ± 0.24

(
+0.48
−0.47

)
−0.98 ± 0.11

(
+0.22
−0.21

)
wa −0.42+1.23

−1.15
(
+2.15
−1.49

)
−0.06+0.77

−0.62
(
+1.25
−1.44

)
−0.16+0.46

−0.36
(
+0.75
−0.87

)
ΛCDM + γ (modi�ed gravity)

ΩM − 0.312+0.008
−0.009

(
+0.015
−0.019

)
0.311+0.009

−0.010
(
+0.015
−0.019

)
γ − 0.52 ± 0.10

(
+0.20
−0.19

)
0.52 ± 0.10 (±0.19)

wCDM + γ (linear EoS for DE, modi�ed gravity)
w − −1.04+0.10

−0.07
(
+0.15
−0.17

)
−1.02+0.06

−0.05 (±0.10)
γ − 0.56+0.12

−0.14
(
+0.27
−0.23

)
0.54 ± 0.11

(
+0.23
−0.21

)

using the fast–slow split of cosmological and nuisance parameters, enabling the ‘dragging’ of
the fast parameters along each Metropolis proposal of slow parameters (see Appendix A.2.1 for
more details on the Metropolis-Hastings algorithm).

The proposal probability was derived from parameter covariance matrices obtained from the
chains itself, updating the proposal matrix as long as 30 > R − 1 > 0.4 (where R is the Gelman-
Rubin convergence parameter that is de�ned in Appendix A.2.3). The initial proposal matrix
has been taken from the corresponding o�cial Planck chains for the probed parameter space
(or preliminary previous runs if available). The chains were stopped when they reached R <
1.02, which is the usual limit to consider Markov chains as being su�ciently converged to the
stationary posterior distribution to allow the determination of robust cosmological constraints.

6.5 Cosmological implications of the combined measure-

ments

Combining the results from our analysis with Planck and SN Ia data in cosmological full-shape
�ts, we infer the regions of 68% and 95% con�dence level for the cosmological parameters of
the standard model as well as a set of common extensions to it, such as alternative Dark Energy
models or non-�at geometries. As many cosmological parameters are correlated for CMB-only
constraints, adding low-redshift information on H0 and ΩM helps to tighten the marginalized
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Figure 6.11 – The marginalized 68 and 95
per cent con�dence levels (CL) in the ΩM–h
plane for the ΛCDM parameter space from
thee Planck 2015 TT+lowP (Ade et al., 2015)
observations (blue), successively adding the
DR12 combined sample P3w,n (k ) (green) and
JLA SN Ia (Betoule et al., 2014) data (orange).
For �tting the three power spectrum wedges
a wavenumber range 0.02 h Mpc−1 ≤ k ≤
0.2 h Mpc−1 and the reference Patchy co-
variance matrix were used. The Planck con-
�dence contours as well as the combined �ts
follow the ΩM h3 degeneracy (Percival et al.,
2002) shown as dotted gray line.

constraints of cosmological parameters (e.g. Riess et al., 2011; Amendola & Sellentin, 2016),
especially so in extended models such as wCDM. The marginalized 68% and 95% CL intervals
of the most relevant cosmological parameters for the standard model and the extensions of
alternative Dark Energy models are listed in Table 6.4.

6.5.1 The ΛCDM parameter space

The maximum-likelihood model for the combined ΛCDM �t to the Planck 2015 data and the
BOSS DR12 power spectrum wedges in the low and high redshift bin is shown in Figure 3.7. In
all the combined �ts, the clustering+RSD parameter space and the �tted wavenumber ranges
is the same as for the full-shape �ts to individual redshift bins in Section 6.1; here only the
independent low and high redshift bins are �tted with separate (low) and equal (high) sets of
nuisance parameters for the NGC and SGC subsamples. The resulting constraints on ΩM and h
of the combined Planck 2015 plus BOSS DR12 P3w(k ) �ts (green) are shown in Figure 6.11, com-
pared with the constraints from Planck alone (blue). The full-shape BOSS information prefers
slightly smaller values for the matter density parameter (ΩM = 0.312+0.008

−0.009) than the Planck
data alone, while the constraints on the Hubble constant (h = 0.675+0.007

−0.006) are centred around a
similar mean value. All constraints given in the text of this section correspond to the 68% CL.
Adding the JLA SN Ia data to the �ts does not increase the constraining power (the orange con-
tours obtained from the full combination almost completely overlaps with the green contours).
In all the cases analysed, the con�dence contours follow a degeneracy along ΩM h3 = const
given by equally good �ts to the locations and relative heights of the acoustic peaks (Perci-
val et al., 2002). The line given by ΩM h3 = const going through the centre of the CMB-only
constraints is indicated by a dotted gray line in the plot. The overall picture shows excellent
consistency between the three di�erent probes assuming a ΛCDM cosmology. The agreement
between Planck and BOSS data could be expected from the outcome of the RSD-type full-shape
�ts in Section 6.1.
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Figure 6.12 – Left-hand panel: The 68% and 95% CL in the ΩM–w parameter plane of the wCDM parameter space
from the Planck 2015 (blue) �ts, successively adding the BOSS DR12 P3w,n (k ) (green) and JLA SN Ia (orange) data.
Right-hand panel: The 68% and 95% CL in the w0–wa parameter plane of the w0waCDM parameter space from the
Planck 2015 (blue) �ts, successively adding the BOSS DR12 P3w,n (k ) (green) and JLA SN Ia (orange) data.

6.5.2 ThewCDM parameter space

The �rst relaxation of the assumptions of the standard model is to abandon the idea that Dark
Energy (DE) can be described by a cosmological constant. As discussed in Section 2.1.3, the
simplest model for the equation of state (EoS) of DE is a linear relation,

pDE = wDE ρDE, wDE = const. (6.1)

ForwDE = −1, the ΛCDM model with a cosmological constant is recovered. Consistent with the
literature, we denote this extended parameter space aswCDM and use the simple labelw ≡ wDE
for the EoS parameter of DE, if the context is clear.

As the equation-of-state parameter w is sensitive to the late-time expansion of the Uni-
verse, galaxy clustering and supernovae are ideal cosmological probes to constrain Dark En-
ergy, which is not well constrained by CMB data alone. In this last case,w follows a degeneracy
with ΩM and values much beloww = −1 are preferred, resulting in large 68% CL constraints of
w = −1.55+0.32

−0.30. As shown in the left-hand panel of Figure 6.12, including the power spectrum
wedges in the �ts results in con�dence regions that are centred around the standard ΛCDM
value of w = −1 within the 68 % CL, w = −1.029+0.066

−0.062. Including also SN data, the late-time
expansion is even better probed so that w is measured to 5% consistency with ΛCDM at 1σ :
w = −1.019+0.043

−0.045.

6.5.3 Thew0waCDM parameter space

We use the Chevallier-Polarski-Linder (CPL) parametrization (Chevallier & Polarski, 2001; Lin-
der, 2003) of a time-dependent equation of state for DE as given in equation (2.30):

wDE(z) = w0 +wa (1 − a) = w0 +wa
z

1 + z , (6.2)
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Figure 6.13 – The 68% and 95% CL for the
time-dependent equation of state wDE (z) of the
wCDM parameter space from the Planck 2015 (blue)
�ts, successively adding the BOSS DR12 P3w,n (k )
(green) and JLA SN Ia (orange) data. The er-
ror propagation from the constraints on w0 and
wa was computed with equation (6.4). The low-
redshift probes, BOSS DR12 and JLA SN Ia, con-
strain wDE (z) best at a pivot scale ap = (1 + zp )−1

roughly given by the e�ective mean redshift of the
probes, zp ' ze� .

recovering the ΛCDM model for w0 = −1 and wa = 0.
Again, the constraints on the equation-of-state parameters signi�cantly improve when late-

time expansion probes are taken into account. Thew0–wa parameter plane is practically uncon-
strained by CMB data alone: a large region roughly below the linewa = −3 (w0+1) is preferred.
This plane becomes tightly constrained by including the BOSS DR12 power spectrum wedges,
but there remains a degeneracy that follows the line given above, as shown in the right-hand
panel of Figure 6.12. The reason is that the combination of Planck + BOSS DR12 has the most
constraining power on wDE(z) at a ‘pivot scale’ zp ' ze� (discussed below). In our case, this is
at ze� ≈ 0.5, corresponding roughly to the mean e�ective redshift of the full combined sam-
ple. The degeneracy is further broken by including SN Ia data, resulting in tighter constraints
closely centred on the ΛCDM values (the error bars are cut down by half):

w0 = −1.02+0.25
−0.26

wa = −0.06+0.70
−0.72




(Planck + P3w(k ))
w0 = −0.98 ± 0.11
wa = −0.16 ± 0.42

}
(+ SN) (6.3)

In Figure 6.13, we plot the resulting con�dence level of the time-dependent equation of state,
wDE(z), in the w0waCDM parameter space. The con�dence regions around wDE(z) have been
computed by propagating the errors on w0 and wa as

〈δw2
DE〉 = 〈δw

2
0〉 + (1 − a)2 〈δw2

a〉 + 2 (1 − a) 〈δw0 δwa〉. (6.4)

The error has a minimum at the pivot scale ap = (1+zp)
−1 roughly given by the e�ective mean

redshift probed by the data, zp ' ze� . For the combination of Planck and BOSS DR12, this is at
zp ≈ 0.5; the minimal-error constraint at this pivot scale results in the degeneracy in thew0–wa
parameter plane (shown in the right-hand panel of Figure 6.12) that follows wa = −3 (w0 + 1).
Including SN Ia data as well, the pivot redshift moves closer to zp ≈ 0.3, resulting in the tighter
constraints in the w0–wa parameter plane following a slightly shifted line of degeneracy.

We conclude that the �nal constraints on the EoS parameter of DE are consistent with no
evolution of wDE(z), which is well described by a cosmological constant at all redshifts.
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Figure 6.14 – Left-hand panel: The 68% and 95% CL in the ΩM–γ parameter plane of the ΛCDM + γ parameter
space from the Planck 2015 and BOSS DR12 P3w,n (k ) observations (green), and adding JLA SN Ia (orange) data.
Right-hand panel: The 68% and 95% CL in the w–γ parameter plane of the wCDM + γ parameter space from the
Planck 2015 and the BOSS DR12 P3w,n (k ) observations (green), and adding JLA SN Ia (orange) data. The horizontal
dotted line shows the value of the exponent γ depending on the equation-of-state parameter w as given by (2.66).

6.5.4 Probing the growth rate as a test of modi�ed gravity

The growth-rate parameter f depends on the gravitational potential and thus measurements of
this quantity via RSD can be used as a probe of the theory of gravity as discussed in Section 2.4.2.
The growth rate has the approximate dependency on the matter density parameter ΩM given
by equation (2.66) (Linder & Cahn, 2007; Gong, 2008):

f (z) = [ΩM(z)]γ , where γ '
3(1 −wDE)

5 − 6wDE
, (6.5)

if the growth of structure is bound to Einstein’s general relativity (GR). For the ΛCDM case,
wDE = −1, the exponent is γ ' 0.55; otherwise, its value only mildly depends on the DE
equation of state, wDE.

In order to test for modi�cations of the fundamental relations of GR, we treat the exponent
γ as a free parameter in a ΛCDM background universe (dubbed as ΛCDM + γ parameter space
here). In the left-hand panel of Figure 6.14, we plot the regions with a 68 and 95 per cent CL in
the ΩM–γ parameter plane as constrained from the combination of Planck and full-shape BOSS
DR12 P3w,n (k ) observations. The measured CL regions (marginalized over all other parameters,
we obtain γ = 0.52 ± 0.10) show excellent agreement with the GR value, which is indicated by
a horizontal dotted line. As SN Ia do not depend on the growth, their inclusion only results in
marginally tighter con�dence regions.

This behaviour is di�erent if we allow non-constant DE, as now SN data help to constrain
the EoS parameter, w ≡ wDE, via the late-time expansion history. The resulting con�dence
contours in the w–γ parameter plane are shown in the right-hand panel of Figure 6.14. While
we obtainw = −1.04+0.08

−0.09 for the combination of Planck and BOSS DR12 data, the EoS parameter
is constrained to w = −1.02 ± 0.05 by the inclusion of SN data (corresponding to the �nal
con�dence interval obtained for the plain wCDM model, which is of a similar size). However,
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Table 6.5 – Mean and standard deviation of the most-relevant model parameters for �ts using curvature extensions
of the cosmological standard model. The �ts include at least the Planck 2015 TT+lowP data, which are successively
combined with the power spectrum wedges P3w (k ) of the BOSS DR12 low and high redshift bins and the JLA SN
Ia data. Given are the 1-sigma and 2-sigma (in parenthesis) intervals.

Parameter Planck 2015 + BOSS DR12 P3w (k ) + JLA SN Ia
K-ΛCDM (curvature, standard ν )

ΩM 0.53 ± 0.10
(
+0.25
−0.18

)
0.312 ± 0.009

(
+0.018
−0.019

)
0.311 ± 0.009

(
+0.018
−0.019

)
ΩK −0.057 ± 0.027

(
+0.047
−0.066

)
−0.001 ± 0.003 (±0.006) −0.001 ± 0.003 (±0.006)

K-wCDM (curvature, linear EoS for DE)
ΩM 0.49+0.28

−0.24
(
+0.42
−0.32

)
0.304+0.015

−0.016
(
+0.029
−0.031

)
0.308 ± 0.011

(
+0.021
−0.023

)
ΩK −0.057+0.011

−0.039
(
+0.049
−0.082

)
−0.002 ± 0.004

(
+0.008
−0.007

)
−0.001+0.004

−0.003
(
+0.007
−0.006

)
w −1.36+0.77

−0.85
(
+1.025
−1.44

)
−1.052+0.088

−0.071
(
+0.150
−0.173

)
−1.027+0.052

−0.045
(
+0.092
−0.104

)
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Figure 6.15 – Left-hand panel: The 68% and 95% CL in the ΩM–ΩK parameter plane of the K-ΛCDM parameter
space from the Planck 2015 observations (blue), and successively adding BOSS DR12 P3w,n (k ) (green) and JLA SN
Ia (orange) data. The horizontal dotted line indicates a �at universe, K = 0. Right-hand panel: The 68% and 95%
CL in the w–ΩK parameter plane of the K-wCDM parameter space from the Planck 2015 observations (blue), and
successively adding BOSS DR12 P3w,n (k ) (green) and JLA SN Ia (orange) data. The vertical dotted line shows the
value of the EoS parameter w = −1 for a cosmological constant (as in the ΛCDM model).

the exponent γ is only marginally better constrained (γ = 0.56 ± 0.13 shrinks to γ = 0.54 ±
0.11) as the P3w,n (k ) information forces the wCDM model to be close to the ΛCDM case and
the w–γ degeneracy of the con�dence levels does not follow the γ (w ) dependency given by
equation (2.66), which is shown as the vertical dotted line.

6.5.5 The curvature of the Universe

In a non-�at ΛCDM universe, the curvature constant K tells whether the FLRW metric of equa-
tion (2.1) describes a spatial geometry with open (hyperbolic, K < 0) or closed (elliptical, K > 0)
hypersurfaces. The standard case is a �at geometry, K = 0. CMB observations alone are not
sensitive to the curvature, as the density parameters ΩM and ΩK are practically unconstrained
due the ‘geometric degeneracy’ (Efstathiou & Bond, 1999) (as only the angular acoustic scale
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is �xed, whose dependency on the cosmological density parameters leaves this degeneracy).
Breaking these degeneracies can be achieved with the inclusion of the CMB lensing signal (Ade
et al., 2015) or to even higher accuracy with late-time growth constraints such as our BAO+RSD
measurements, which place tight constraints on ΩM.

This is shown by the 68% and 95% CL regions in the left-hand panel of Figure 6.15. The
addition of the power spectrum wedges results in constraints on the matter density parameter
that are of a similar order than for standard ΛCDM �ts (ΩM = 0.312 ± 0.009); the curvature
constraints, ΩK = −0.001 ± 0.003, prefer a �at universe over cosmologies with a non-zero
curvature. These constraints can only be improved at a very modest level from adding SN data.

The geometric degeneracy receives an additional degree of freedom in the K-wCDM pa-
rameter space as the EoS parameter w ≡ wDE changes the relation between ΩM, ΩK and the
angular scale of the acoustic peaks. The ΛCDM case (w = −1 and ΩK = 0, indicated by dotted
lines) is outside the 95% con�dence region for the CMB-only �ts. Including our P3w(k ) data
constrains the matter density parameter to ΩM = 0.304+0.015

−0.016, leaving a residual degeneracy
in the w–ΩK parameter plane. The statistical error on the DE equation of state (≈ 8%) is only
slightly larger than forwCDM �ts (≈ 6.5%). Successively adding SN Ia data places a tighter han-
dle on w by probing the late-time expansion history, resulting in constraints in the K-wCDM
parameter space in close agreement with the standard ΛCDM model: ΩK = −0.001+0.004

−0.003 and
w = −1.027 ± 0.049.

6.5.6 Cosmological constraints on neutrino physics fromLSS andCMB

observations

Neutrino physics and cosmology

The number and masses of neutrinos play a role in cosmology. Despite the fact that the cos-
mic neutrino background (CNB) has not been detected yet, there is strong indirect evidence
that a see of background neutrinos exists, comparable in number density to the photon back-
ground, the CMB. In fact, nν = (3/11) nγ , so that neutrinos are the most abundant particles in
the Universe after the photons. Since neutrinos hardly interact, preventing easy detection or
inference on their properties, neutrino physics are an interesting topic both in cosmology and
in particle physics. LSS analysis ties in with astroparticle physics as constraints on the sum of
neutrino masses can be inferred, in principle, from galaxy clustering and other cosmological
probes (Lesgourgues & Pastor, 2012).

Their contribution to the energy density of (relativistic) radiation (if mν � Tν ) must be
considered. In order to correctly account for neutrino physics in the standard cosmological
paradigm, the sum of neutrino masses, ∑mν , is taken to be non-zero as the mass-squared dif-
ferences between neutrino �avours have been detected in neutrino oscillation experiments (e.g.,
Jelley et al., 2009; Abe et al., 2011, Sudbury Neutrino Observatory and Super-Kamiokande). Also,
the neutrino background temperature Tν is slightly larger than the CMB temperature, due to
the energy input from e± annihilation in the early universe. Thus, the e�ective number of rela-
tivistic degrees of freedom, Ne� , is slightly larger than the number of neutrino �avours. For the
standard particle model, postulating electron (νe ), muon (νµ), and tau (ντ ) neutrinos, this number
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is given by Ne� ' 3.046. Neutrinos have often been considered to be massless as the precision
of cosmological probes was not su�cient to place constraints on the neutrino physics. Since
Planck 2013 (Ade et al., 2014c), the cosmological standard model takes the non-zero neutrino
masses into account with the assumption of three neutrino of equal mass whose sum adds up to
0.06 eV, which is slightly larger than the current lower bounds from neutrino oscillation exper-
iments (there is no lower bound on the least massive neutrino, so one neutrino mass eigenstate
could in principle have a zero mass). The mass-separation scale ∆m2 between two neutrino
mass eigenstates is observable with neutrino oscillation experiments. Its detection in two solar
neutrino experiments, Super-Kamiokande (SK) and Sudbury Neutrino Observatory (SNO), led
to awarding the 2015 Nobel prizes in physics to the heads of these two collaborations, Takaaki
Kajita (SK) and Arthur B. McDonald (SNO).

LSS constraints on neutrino physics

The number of �avours in the cosmic relic neutrinos — i.e., primordial neutrinos that decoupled
when the Universe was roughly 1 MeV hot, — does have to be limited to the known three lep-
ton �avours. However, the ‘bottom-up’ scenario of large-scale structure formation can explain
the observed cosmic web better than the ‘top-down’ scenario, which would correspond to a
dominant hot dark matter component. Thus, sterile relic neutrinos can only constitute a small
fraction of the dark matter component, which is dominated by CDM. The existence of a ‘warm’
component aside from CDM causes a damping of the small-scale tail of the matter power spec-
trum as the free-streaming of the sterile particles washes out the gravitational potential wells
sourced by clustered CDM. The neutrino constraints from CMB observations follow a complex
degeneracy, which can partially be broken by low-redshift probes such as our measurements.
Assuming the three standard neutrino �avours, state-of-the art LSS experiments such as the
on-going eBOSS survey aim at detecting the sum of neutrino masses indirectly through their
impact on the clustering of galaxies (Zhao et al., 2016, section 4.4). Next-generation experi-
ments, such as DESI (Levi et al., 2013), 4MOST (de Jong et al., 2014), PSF (Ellis et al., 2014),
and Euclid (Laureijs et al., 2011) will be able to constrain the hierarchy of the neutrino mass
eigenstates (i.e., determining ∆m2

12 ≶ ∆m2
23).

Neutrino physics probed with Fourier space wedges of the BOSS DR12 combined sam-

ple and complimentary probes

The CMB constraints from Planck 2015 follows a degeneracy of the matter density parameter
ΩM and the sum of neutrino masses ∑

mν that is elongated along a line given by the precise
measurement of the matter-radiation equality zeq from the CMB. This transition is well con-
straint by the ratio of the heights of the �rst and third acoustic peaks. In the upper-left panel
of Figure 6.16, the CMB-only constraints in the ΩM–∑

mν parameter plane are shown as blue
contours. Marginalized over all other parameters, we obtain ∑

mν < 0.644 eV (the upper limits
in this section are given for 95% CL). The size of the con�dence interval could be decreased by
including CMB lensing information, as this probes the gravitational potential. In this section,
we focus on the improvement of the constraints by adding the BOSS DR12 P3w(k ) data (green
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Figure 6.16 – The 68% and 95% CL in the most relevant parameter planes of extensions to the ΛCDM parameter
space including massive and sterile neutrinos. Upper left-hand panel: The ΩM–∑

mν parameter plane of the param-
eter space ofΛCDM extend by varying the sum of neutrino masses showing the con�dence regions from the Planck
2015 observations (blue), and successively adding BOSS DR12 P3w,n (k ) (green) and JLA SN Ia (orange) data. The
horizontal dotted line indicates the conventional sum of neutrino masses for the ΛCDM universe, ∑mν = 0.06 eV.
Upper right-hand panel: The ΩM–Ne� parameter plane of the Ne�-ΛCDM parameter space (allowing for variations
in the e�ective number of relativistic degrees of freedom) with the con�dence regions from the same data sets as
for the upper left-hand panel. The vertical dotted line shows the value of Ne� for the standard model, Ne� = 3.046.
Lower left-hand panel: The ∑

mν–Ne� parameter plane of the Ne�-ΛCDM parameter space with a varying sum
of neutrino masses besides potential modi�cations of the relativistic degrees of freedom, showing the con�dence
regions from the same data sets as for the upper left-hand panel. The vertical and horizontal dotted lines indicate
the cuts through this parameter plane that correspond to ΛCDM. Lower right-hand panel: The ∑

mν–w parame-
ter plane of the parameter space of wCDM with a varying sum of neutrino masses with the con�dence regions
from the same data sets as for the upper left-hand panel. The vertical and horizontal dotted lines indicate the cuts
through this parameter plane that correspond to ΛCDM.
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Table 6.6 – Mean and standard deviation of the most-relevant model parameters for �ts using neutrino extensions
of the cosmological standard model. In the standard ΛCDM model, massive neutrinos with ∑

mν = 0.06 eV are
including; the e�ective number of relativistic degrees of freedom corresponding to the radiation and neutrino
background is given by Ne� = 3.046 The �ts include at least the Planck 2015 TT+lowP data, which are successively
combined with the power spectrum wedges P3w (k ) of the BOSS DR12 low and high redshift bins and the JLA SN
Ia data. Given are the 1-sigma and 2-sigma (in parenthesis) intervals.

Parameter Planck 2015 + BOSS DR12 P3w (k ) + JLA SN Ia
ΛCDM + massive neutrinos (free ∑

mν )
ΩM 0.34+0.031

−0.029
(
+0.070
−0.044

)
0.32+0.009

−0.010
(
+0.022
−0.020

)
0.32+0.009

−0.010 (±0.020)∑
mν < 0.299 (< 0.644) < 0.151 (< 0.275) < 0.143 (< 0.260)

Ne�-ΛCDM (free #(relativistic DoF))
ΩM 0.312 ± 0.021

(
+0.044
−0.042

)
0.311+0.010

−0.011
(
+0.020
−0.022

)
0.310+0.010

−0.011
(
+0.019
−0.022

)
Ne� 3.13 ± 0.32

(
+0.066
−0.060

)
3.05+0.020

−0.024
(
+0.046
−0.041

)
3.08+0.021

−0.024
(
+0.046
−0.042

)
Ne�-ΛCDM + massive neutrinos (free ∑

mν and #(rel. DoF))
ΩM 0.338+0.038

−0.036
(
+0.168
−0.067

)
0.314+0.010

−0.012 (±0.030) 0.312+0.010
−0.011 (±0.023)∑

mν < 0.294 (< 0.641) < 0.198 (< 0.380) < 0.192 (< 0.357)
Ne� 3.08 ± 0.33

(
+0.66
−0.61

)
3.18+0.25

−0.29
(
+0.52
−0.51

)
3.19+0.24

−0.29
(
+0.55
−0.48

)
wCDM + massive neutrinos (linear EoS for DE, free ∑

mν )
ΩM 0.244+0.060

−0.057
(
+0.168
−0.067

)
0.302 ± 0.016 (±0.030) 0.310 ± 0.012 (±0.023)∑

mν < 0.346 (< 0.697) 0.28+0.17
−0.20 (< 0.556) < 0.239 (< 0.416)

w −1.65+0.38
−0.34

(
+0.75
−0.62

)
−1.14+0.12

−0.10
(
+0.20
−0.21

)
−1.06+0.07

−0.06
(
+0.11
−0.12

)

contours). By tightening the con�dence limits on ΩM, the sum of neutrino mass is constrained
to an upper limit of ∑

mν < 0.275 eV . Only minor improvement is found by including SN Ia
data (orange contours) as these primarily help to constrain h, yielding ∑

mν < 0.260 eV.
The e�ective number Ne� of relativistic DoF in the neutrino sector can also be constrained

by CMB and LSS observations. Again, the constraints in the ΩM–Ne� parameter plane follow a
degeneracy de�ned by tight constraints on the matter-radiation equality,

1 + zeq =
ΩM h2

(1 + 0.227Ne� ) Ωr h2 . (6.6)

Just as for ∑
mν , the correlation of the parameter is broken by an indirect measurement of ΩM

from the BOSS DR12 analysis. The constraints on the ΩM–Ne� parameter plane are shown in
the upper right-hand panel of Figure 6.16. Marginalized over all other parameters, we obtain
Ne� = 3.05+0.020

−0.024 (68%), which corresponds to a reduction of the statistical error by a factor of
1.5 compared to Ne� = 3.12 ± 0.32 from CMB data alone. We do not �nd any improvement
in the marginalized constraints nor the FoM for the ΩM–Ne� parameter plane from adding the
JLA SN Ia data.

The same scenario as described before also applies to the combined parameter space of
Ne�-ΛCDM + a free ∑

mν : degeneracies between Ne� , ∑
mν , and ΩM along lines of constant

zeq are broken by a handle on ΩM from LSS observations. The 68% and 95% CL contours are
shown for the Ne�–∑

mν parameter plane in the lower panel of the left-hand side in Figure 6.16.
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As the there is a residual degeneracy between Ne� and ∑
mν , the �nal constraints (Planck +

P3w(k ) + SN) are slightly larger than the for the individual extensions of the parameter space,∑
mν < 0.357 eV (98% upper limit) and Ne� = 3.19±+0.24

−0.29 (68% CL).
For the last parameter space discussed in this thesis, a wCDM cosmology with a sum of

neutrino masses, including SN Ia data signi�cantly improves the constraints. As shown in the
lower right-hand panel of Figure 6.16, the ∑

mν–w parameter plane is hardly constrained by
CMB data alone. The information in the DR12 power spectrum wedges can constrain the late-
time expansion and thus w , but the remaining freedom along a degeneracy of ΩM and w also
leaves limits on ∑

mν that are roughly twice as large as for the ΛCDM case. This results in a
1-sigma signal for the sum of the neutrino masses, ∑mν = 0.28+0.17

−0.20 eV (68% CL), and also the
DE equation-of-state parameter is constrained to an interval that does not contain the ΛCDM
value at 68% CL,w = −1.14+0.12

−0.10. The addition of further information about the local expansion
from JLA breaks the remaining freedom and helps to tighten the constraints on ∑

mν andw . We
obtain ∑

mν < 0.416 eV (95 % CL) andw = −1.06+0.11
−0.12 in perfect agreement with a cosmological

constant and without the mildest signal of a lower bound of the sum of neutrino masses. The
statistical errors obtained correspond to a level less 1.5 times the errors found for each parameter
individually in the plain ΛCDM and wCDM cases.



7
Summary and discussion

“All knowledge and understanding of the Universe was no more than playing with stones
and shells on the seashore of the vast imponderable ocean of truth.”

Isaac Newton

Tremendous e�orts are made to infer knowledge about the parameter space of the standard
cosmological model and its possible extensions by exhausting the cosmological information
available in large-volume galaxy surveys. The research presented in this thesis was performed
as a part of the large-scale clustering analysis of the �nal galaxy sample obtained from BOSS (the
DR12 combined galaxy sample). This sample is unprecedented in volume, but the sensitivity
of the clustering analysis also depends on the modelling accuracy and other speci�cations of
the measurement and the parameter inference techniques. Anisotropic clustering models were
re�ned in the last decades as new concepts for the non-linear matter clustering and redshift-
space distortions were developed, so that their predictive power increased. Hence, full-shape
measurements of galaxy clustering have become competitive to distance measurements using
the BAO feature as a standard ruler. The precision of such BAO measurements was signi�cantly
increased using the linear density-�eld reconstruction technique.

The clustering analysis of the �nal BOSS sample relies on both measurement techniques,
combining the similar, but not completely redundant approaches into a consensus measure-
ment, which is the variance-weighted average of the individual constraints from each analysis
method. Among the few full-shape approaches applied to the data is the Fourier-space anal-
ysis of the anisotropic clustering presented in this thesis. Besides cosmological information
measured from a geometric distortion of the clustering signal, full-shape �ts can also infer the
growth rate of large-scale structure. This measurement can be used to constrain possible devi-
ations from the predictions of general relativity.

So far, anisotropic clustering analyses in Fourier space relied on power spectrum multipole
measurements. In this work, the concept of clustering wedges was extended to Fourier space to
establish a complementary approach to measure clustering anisotropies. The optimal-variance
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estimator for Fourier space wedges was de�ned in analogy to the Yamamoto-Blake estima-
tor as a direct Fourier sum over the galaxies in the sample. However, for reasons of e�cient
computation, the �nal measurement of Fourier space wedges were obtained by transforming
power-spectrum multipoles estimated using a fast FFT scheme. This method cannot be adapted
to the clustering wedges due to their di�erent transformation kernel. The compatibility of the
FFT-based and the direct-sum estimator was ensured by tests on synthetic catalogues.

The shot noise and optimal-variance weights of the power spectrum estimator have been
revised in order to fully account for all observational systematics of the BOSS survey that cause
the galaxy sample to be incomplete. Further, the geometry of the survey reduces the power on
scales of the order of the spatial extension of the survey. This e�ect is described by a window
function, with which predictions of the underlying power spectrum are convolved to estimate
the observed power spectrum. In this thesis, the modelling of this e�ect with a window matrix
is extended for the application to Fourier space wedges.

For the likelihood analysis of the power spectrum wedges, an estimate of the inverse of
the covariance matrix is needed. The data covariance used in full-shape �ts of the Fourier-
space wedges measured from the BOSS DR12 combined sample is estimated from large sets
of synthetic catalogues, the Patchy and QPM mocks. However, the ‘gRPT+RSD’ model used
in this thesis was validated using a set of 100 full N -body simulations. As the brute-force
estimation of the covariance does not produce invertible matrices when applied to sets with
such a small number of realizations, a theoretical recipe for the covariance of the anisotropic
clustering two-point statistics was needed. In this thesis, explicit formulae for the Gaussian
covariance matrix are presented aiming to be su�ciently precise for the model veri�cation.
In order to be as general as possible, we looked at the covariance of redshift-space clustering
statistics using clustering wedges (i.e., large bins in the LOS parameter) and multipole moments,
both in con�guration space as well as in Fourier space.

These formulae rely on a model for the input power spectrum. The two di�erent recipes
that were tested are, �rst, a simple model for the redshift-space galaxy power spectrum based
entirely on linear theory and, second, a smoothed interpolation of the measurements directly
from the simulations. Using both approaches, the covariance model was validated against the
set of Minerva simulations, �nding good agreement between the predictions of the Gaussian
covariance and the measurements. The theoretical predictions for the covariance of con�gu-
ration space wedges and multipoles accurately describe the full correlation structure, which is
important as measurements of the two-point correlation function are correlated across a wide
range of scales (in contrast to Fourier space clustering measurements).

The set of BOSS DR12 mocks were found to approximatively reproduce the clustering of
the real data. The e�ect of noise on the estimate of the inverse of the covariance matrix is small
and residual imperfections after the corrective rescaling can be considered negligible.

The synthetic galaxy catalogues obtained from the Minerva simulations also serve as a test
case for the ‘gRPT+RSD’ clustering model, allowing the determination of the optimal number of
wedges and wavenumber range for BAO+RSD �ts. We �nd that the best compromise between
sensitivity and accuracy is a con�guration of three wedges and a wavenumber range limited
by kmax = 0.2 h Mpc−1. Further model performance tests are conducted as part of the BOSS
RSD challenge with synthetic catalogues that are speci�cally designed to detect systematic
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biases in the distance and growth measurements obtained from the various approaches for
full-shape measurements within the BOSS galaxy clustering working group. Further, the model
was validated with the Patchy mocks as they mimic the entire combined sample by �tting each
realization individually. This sample of constraints is used to determine the cross covariance
between the results obtained using di�erent full-shape and BAO-only techniques. This estimate
is needed to derive the �nal consensus constraints from the BOSS DR12 combined sample.

Among the di�erent techniques, the full-shape �ts of the con�guration- and Fourier-space
wedges using the ‘gRPT+RSD’ model have the most constraining power. This is mainly due
to the improvements in modelling the non-linear redshift-space distortions, which allow us
to include more information from smaller scales than in previous approaches. No signi�cant
systematic bias (i.e., of comparable size to the statistical error) was found in any of the rigorous
tests on the model.

The Fourier space wedges measured from the BOSS DR12 combined sample in three redshift
bins were �tted with the full-shape approach using the ‘gRPT+RSD’ model in order to derive
constraints on the Alcock-Paczynski distortion and the growth rate. The results are in excellent
agreement with the analogous outcome in con�guration space, and with the �ndings of the
other approaches applied by members of the clustering working group. The ‘gRPT+RSD’ results
are the most precise measurements within the full-shape techniques. The errors were found
to be consistent with the distribution of statistical errors on the Patchy mocks. All tests for
systematic errors, such as using a sample corrected for colour shifts between the NGC and
SGC imaging, exchanging the Patchy and QPM covariance matrices, restricting the analysis
to only two wedges, and restricting the wavenumber ranges included in the �ts to check for a
scale-dependency of the results, were negative.

The results from our full-shape �ts using Fourier-space wedges are compatible with previ-
ous �ndings on the BOSS LOWZ and CMASS samples, but are signi�cantly more precise due
the optimization of the analysis and the improved modelling accuracy. Thus, we are able to infer
the most precise parameter constraints for the standard cosmological model and usual exten-
sions, such as modi�ed Dark Energy models, by combining the DR12 full-shape measurements
with CMB data from Planck (as of 2015) and the joint SN Ia sample (JLA).

7.1 Summary of the cosmological results

First, we summarize the BAO+RSD results on the DR12 combined sample, limiting the discus-
sion to the two non-overlapping outer redshift bins and 68% CL limits.

• The angular diameter distance was constrained to DM(ze� = 0.38) (r�d
d /rd) = 1525 ±

24 h−1 Mpc and DM(ze� = 0.61) (r�d
d /rd) = 2281+42

−43 h−1 Mpc. This corresponds to a
precision of 1.6% and 1.9%, respectively, and is, therefore, of the level of previous CMASS
constraints (which probes an e�ective volume that is by a factor of 1.4 larger than the
one of each of the combined sample redshift bins).

• The measured Hubble parameter is H (ze� = 0.38) (rd/r
�d
d ) = 81.2+2.2

−2.3 km s−1 Mpc−1 and
H (ze� = 0.61) (rd/r

�d
d ) = 94.9 ± 2.5 km s−1 Mpc−1, corresponding to precisions of 2.8%
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and 2.6%. These constraints are signi�cantly more precise than the results obtained from
previous analyses.

• The growth rate constraints were determined to be f σ8(ze� = 0.38) = 0.498+0.044
−0.045 and

f σ8(ze� = 0.61) = 0.409 ± 0.040 (9.0% and 9.7% precision). This is a major improvement
for the low-redshift bin (compared to the LOWZ measurements, which were less precise
due to the much smaller e�ective volume), while both results can be considered to be
substantially more accurate then previous constraints as intensive model testing ensured
the validity of the much improved RSD modelling.

All these measurements are consistent with the ΛCDM predictions from the Planck 2015 data
at the 1-sigma level.

Combining the full-shape clustering wedges measured from the DR12 combined sample
with the Planck 2015 and the JLA SN Ia data, we �nd that ΛCDM is the preferred cosmological
model among the variations explored in this thesis.

• Assuming a ΛCDM cosmology, the combined data sets constrain the matter density pa-
rameter to ΩM = 0.311+0.009

−0.010 and the Hubble constant to H0 = 67.6+0.7
−0.6 km s−1 Mpc−1.

These values, as well as the statistical errors, are in very good agreement with the results
from the Planck 2013 + CMASS + LOWZ + SN constraints found in Anderson et al. (2014b,
using the reconstructed BAO measurement and a di�erent SN Ia sample).

• Relaxing the assumption of a cosmological constant and allowing for a linear EoS with
wDE , −1, we �ndwDE = 1.019+0.048

−0.039. This corresponds to a signi�cant improvement over
the Planck 2013 + DR11 BAO + SN constraint (Anderson et al., 2014b), which had a 1.5
times larger error, and a minor improvement over the ePlanck + full-shape BOSS + SN
constraints obtained in Sánchez et al. (2014).

• In the more general CPL parametrization, which allows for a time-dependent EoS for DE,
the constraints on the o�set and slope ofwDE are also more precise by the same factor. In
all tested DE models, not even the mildest deviation from ΛCDM was found. wDE = −1 is
always found to be very well within the 1σ con�dence intervals (with the most extreme
case being the wCDM model with a free ∑

mν , where wDE = −1 lies close to the edge of
the interval).

• Allowing for a modi�cation in the growth rate by varying the exponentγ in f = [ΩM(z)]γ ,
we measure γ = 0.52 ± 0.10 in perfect agreement with GR (γGR = 0.55) and with an un-
certainty reduced by a factor of 1.5 compared to previous Planck 2013 + full-shape BOSS
constraints (Sánchez et al., 2014). The increase of precision in this test for modi�ed grav-
ity was achieved because of the improvements in the RSD modelling, which also resulted
in a more precise estimate of f in the RSD-type full-shape �ts.

• Any deviation from a �at spatial geometry of the Universe could be measured with a
cosmological model that allows for a curvature component. In order to allow for more
generous modi�cations, we also ease the assumptions on DE and constrain the K-wCDM
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parameter space in addition to the K-ΛCDM one. The curvature parameter ΩK is found
to be fully consistent with zero in both cases. The total density of the Universe today
is only allowed to deviate less than .3% from the critical density at 68% CL (Planck +
BOSS constraints for K-ΛCDM). The precision of our curvature measurements is of a
similar level than for the results obtained in other recent analyses that combined various
cosmological probes (Anderson et al., 2014b; Ade et al., 2015).

• The neutrino mass is found to be ∑
mν < 0.260 eV (95% CL), which does not correspond to

an improvement over previous constraints from BOSS, but gives a consistent picture with
other recent cosmological analyses such as weak lensing with CFHTLenS (Kitching et al.,
2016, ∑

mν < 0.28 eV at 68 % CL). However, previous indications of positive neutrino
masses that add up to larger sum (e.g., Beutler et al., 2014b, measured ∑

mν = 0.35 ±
0.10 eV at 68 % CL) cannot be con�rmed.

We conclude that the current understanding of the standard cosmological model has thus been
further consolidated.

7.2 Outlook

The presented analysis can readily be applied to other data from spectroscopic galaxy-redshift
surveys such as WiggleZ (for which the Fourier space wedges might even be measured with a
plane-parallel approximation for the individual patches that have a much smaller angular size
than a BOSS subsample). However, signi�cant improvements on the cosmological constraints
cannot be expected and such an application would primarily represent an cross-check of our
analysis and results.

With future galaxy surveys, such as DESI (Levi et al., 2013), 4MOST (de Jong et al., 2014), and
PFS (Ellis et al., 2014), the Figure-of-Merit (FoM) of alternative DE parametrizations such as CPL
will be drastically increased. Even before these new large surveys are complete, eBOSS results
will improve the FoM by a factor of 2–3 (Zhao et al., 2016). It will be especially interesting
to decide whether wDE(z) evolves with time with deep future samples that can be split into
large-volume bins over a wide redshift range.

Exciting results can be expected from near-future LSS analysis in regard of the neutrino
mass, as the current constraints – ∑

mν < 0.143 eV (68 % CL) in this work – are close to the
lower boundary found in neutrino oscillation experiments (∑mν & 0.06 eV). If not from eBOSS
alone, the combination of di�erent LSS probes (BAO+RSD, weak lensing, cluster counts, Ly-
α ) might be able not only to detect massive neutrinos (i.e., determine the sum of the neutrino
masses to be positive), but also infer the hierarchy of the neutrino masses, which is not asserted
yet as particle physics have only detected the mass square di�erences from neutrino oscillation
experiments so far. Parallel to the search for the cosmological signal of massive neutrinos, on-
going beta decay experiments are expected to measure the electron neutrino mass at a precision
comparable to current cosmological limits.

For the estimator of clustering wedges, it will be necessary to fully quantify the wide-angle
error that is introduced in low-redshift measurements in the Yamamoto-Blake-like estimator
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that uses the ‘moving-LOS’ approximation, which breaks down for low z and large angles (�rst
work on the bias introduced by this approximation was done for power spectrum multipoles in
Yoo & Seljak, 2015; Samushia et al., 2015).

The modelling of the redshift-space clustering two-point statistics seems to have converged
on a very robust level as the agreement of the RSD results with the BOSS collaboration shows.
Further improvement can be expected down the lines of phenomenological models for the pair-
wise velocity dispersion and the Gaussian and Edgeworth streaming models for RSD (Reid &
White, 2011; Uhlemann et al., 2015; Bianchi et al., 2016).

Important for nailing down the systematic error budget is to precisely quantify the error on
the covariance matrix from a large set of mocks. In Section 4.4.4, we already discussed the work
needed before an estimate of the anisotropic clustering covariance can be given theoretically.
Apart from a check of the covariance, an accurate modelling might render the very expensive
mass generation of synthetic catalogues unnecessary.

Finally, we want to highlight that with the increased depth of future galaxy surveys �bre
collisions might be more important than for BOSS (unless the observing strategy allows for
multiple passes). As the current treatment in the analysis has been found not to signi�cantly
in�uence the cosmological constraints, the power spectrum of an underlying sample has not
been exactly recovered from a realistic sample yet. There is a �eld of on-going research in
modelling of this e�ect (Guo et al., 2012), as well as avoiding it in the �rst place (Makarem
et al., 2014), which can be done by allowing multiple passes of each survey sector with faster
robotic �bre placements or by relying on IFU units for the spectroscopy.



A
Obtaining cosmological constraints with Markov chain

Monte Carlo

“There is a theory which states that if ever anybody discovers exactly what the Universe
is for and why it is here, it will instantly disappear and be replaced by something even
more bizarre and inexplicable. There is another theory which states that this has already
happened.”

Douglas Adams

This �rst appendix discusses the inference of constraints in the parameter space of the stan-
dard cosmological model and its extensions by use of Bayesian statistics and, in particular,
the Markov chain Monte Carlo (MCMC) method. The selection and presentation of the as-
pects addressed here follows the aim to describe how we apply the MCMC method to generate
marginalized con�dence levels for cosmological parameters. Good reviews on the statistical
techniques for Bayesian data analysis in cosmology are Dunkley et al. (2005), Verde (2007), and
Gelman et al. (2013). Following the lines given in these sources, Section A.1 describes the most
relevant aspects of Bayesian statistics taking the power spectrum prediction as an illustrative
case. In Section A.2, the parameter estimation for a given model by means of MCMC is dis-
cussed, again limited to power spectrum models for brevity. This restriction will be lifted in
Section A.3, introducing the cosmological parameter inference using CosmoMC from a broad
variety of data.

A.1 Bayesian statistics

A.1.1 Probability Theory

In this section, P (x ) is a probability density on a Np-dimensional parameter space ζ ∈ X that
is normalized such that ∫

X

P (ζ ) dNpζ = 1. (A.1)
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A conditional probability distribution is written as P (ζ |H ), meaning the probability of ζ given
the condition H . Quantifying probabilities always relies on a set of hypotheses which are usu-
ally hidden in the notation. These hypotheses, H , for instance the assumptions of the model,
can be made explicit in the notation by writing the conditioning rule as

P (x ,y |H ) = P (x |y,H ) P (y |H ), (A.2)

for a split of the parameter space into the subsets x andy. This short introduction only explains
parameter estimation using Bayesian statistics, given a model. As model selection, where the
hypothesis of probability densities change as the model assumptions change, is not discussed
here, we do not make the model assumptions explicit in our notation.

The expectation value and variance of a function f (ζ ) given a probability distribution P (ζ )
on X are given by

〈f 〉 =

∫
X

f (ζ ) P (ζ ) dNpζ and (A.3)

var( f ) =
∫
X

f 2(ζ ) P (ζ ) dNpζ − 〈f 〉2, (A.4)

respectively.

A.1.2 Bayes’ theorem

For our application, he data is the power spectrum wedges, Pobs. Be ζ a point in the Np-
dimensional parameter space X for which the model predictions, Ppred(ζ ), are are computed.
The joint probability distribution for ζ and Pobs is P (ζ ,Pobs) = P (ζ ) P (Pobs |ζ ) by use of the
conditional probability P (Pobs |ζ ) for a given ζ . Combining this with the reversed conditioning
relation P (ζ |Pobs) = P (ζ ,Pobs)/P (Pobs) yields Bayes’ theorem,

P (ζ |Pobs) =
P (ζ ) P (Pobs |ζ )

P (Pobs)
, (A.5)

where P (Pobs) is the evidence of the data, given by

P (Pobs) =

∫
X

P (ζ ) P (Pobs |ζ ) dNpζ . (A.6)

As this is a normalization constant, Bayes’ theorem is often used to derive the unnormalized
posterior density P (ζ |Pobs) ∝ P (ζ ) P (Pobs |ζ ) from the prior distributionP (ζ ) and the likelihood

P (Pobs |ζ ) = L
(
ζ | Pobs,ψP

)
, (A.7)

which in the case of the power spectrum was de�ned in equation (4.3). This is an example of
a likelihood function given by a multivariate Gaussian distribution, depending on the inverse
covariance matrix, the precision matrixψP , and the di�erence vector between the model pre-
diction Ppred(ζ ) and the observation Pobs. The likelihood is often approximated by a Gaussian
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probability distribution, especially if the observed data is probing a product of many random
variables, for which the central limit theorem guarantees the Gaussianity of the joint probability
distribution.

With this theorem, the derivation of parameter constraints given the data, derived from
marginalizations of P (ζ |Pobs), can be calculated from a prior on the parameter that has to be
assumed and the likelihood evaluation of the comparison of the model prediction with the data.
Bayes’ theorem can be seen as the ‘update’ of the original knowledge on the parameter in the
prior (which can be informative, generous, or also completely arbitrary) with the information in
the data that is put into the likelihood. The resulting posterior describes the enhanced knowl-
edge on the parameters, compromising between the prior and data information. Of course, the
�nal probability distribution depends on the prior, which thus needs to be chosen carefully.
For example, if the prior was chosen too restrictive, the posterior distribution still obeys the
restriction and will not reveal full insight in the information contained in the data.

For the power spectrum analysis, �at priors were assumed with limits given in Table 5.2.
These priors are uniform in the parameters θi , i = 1, . . . ,Np, within the limits [ai ,bi],

P (ζ ) =

Np∏
i=1
Pi (θi ), where Pi (θi ) =

1
bi − ai

×




1, for ai ≤ θi ≤ bi

0, otherwise.
(A.8)

A.2 Markov chain Monte Carlo

A key principle of the computation of posterior inferences is the simulation of random draws
of parameters ζ for which the posterior is evaluated. The more complex the parameter space
is, the more di�cult it is to explore it e�ciently, as a proper population of the posteriors needs
to prefer random draws in ‘likely’ regions of the parameter space. For instance, the direct
evaluation of the posterior on a grid of points in the full parameter space will be useless in most
cases in cosmology, where the parameter sets are large, but only small regions are preferred by
the data.

A more e�cient way are Markov chain simulations, also called Markov chain Monte Carlo.
With this technique, samples ζ i are drawn sequentially, with the distribution of the next step
only depending on the last drawn value; beginning at a starting point ζ 0, each step ζ i is drawn
from a transition distribution PT(ζ i |ζ i−1) that depends on the previous draw ζ i−1. This is the
de�ning principle of a Markovian chain. The transition probability must be constructed such
that the Markov chain converges to a unique stationary distribution given by the posterior
(which usually can only be computed for a given point but is not known entirely so that it cannot
be drawn from directly). Running the Markov chain long enough generates a distribution of
points in the parameter space that samples the posterior.

A.2.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a speci�c im-
plementation of the step process in the Markov chain that guarantees by use of an accep-
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tance/rejection rule for the transition probability that the stationarity of the chain is reached
and that the resulting distribution matches the posterior.

The procedure is de�ned as described next:

• The starting point ζ 0, for which P (ζ 0 |Pobs) > 0 must be given, is chosen appropriately
(usually estimated from a crude approximation of the posterior or an informative prior).

• For any step i = 1,2, . . ., perform the following steps:

1. A proposal ζ ∗ is sampled from a proposal distribution PP(ζ ∗ |ζ i−1). Usually, a Gaus-
sian distribution using a good guess of a step size, σζ , is used:

PP(ζ
∗ |ζ i−1) = N (ζ i−1,σζ ). (A.9)

2. The acceptance ratio is calculated by

r =
P (ζ ∗ |Pobs) PP(ζ i−1 |ζ ∗)

P (ζ i−1 |Pobs) PP(ζ ∗ |ζ i−1)
(A.10)

For a symmetric proposal distribution PP(x |y) = PP(y |x ) (which is true for a Gaus-
sian distribution), the second ratio is omitted. Further, the transition probability
should also only be > 0 if the proposal is included in the prior. Thus, for �at priors
as in our case, r reduces to the ratio of the likelihoods, r = P (Pobs |ζ ∗)/P (Pobs |ζ i−1).

3. A simple uniform random variable x ∈ [0,1) is drawn and for x < r , the step is
accepted, ζ i = ζ ∗, and rejected otherwise. In case of a rejection, the previous step is
repeated, ζ i = ζ i−1.

It can be shown easily that this method generates a Markov chain with a stationary dis-
tribution given by the posterior. The main bene�t is that usually the ratio in equation (A.10)
can be calculated fast by evaluating the prior and the likelihood at the proposal ζ ∗. In case of
Gaussian steps (i.e., a symmetric transition probability) and for a Gaussian likelihood given by
a χ 2 function as given by equation (4.4), this simpli�es to

r = exp
(
∆χ 2

)
≡ exp

(
χ 2(ζ ∗) − χ 2(ζ i−1)

)
, (A.11)

where in the illustrative case of our power spectrum model, χ 2(ζ ) ≡ χ 2(Ppred(ζ ),Pobs,ψP ).
The choice of the transition distribution directly relates to the e�ciency of the simulations.

If steps are chosen too large, the acceptance ratio is very low and the parameter space is not well
sampled. Too small steps also prevent a good sampling as larger distances between equiproba-
ble regions cannot be covered fast. Often, a crude approximation of the posterior distribution,
especially of the marginalized variance of each parameter, can be used to guess a good step size.
The MCMC sampling is also sensitive to re-parametrizations of the model as model parameters
can be degenerate preventing an e�cient ‘walk’ through the parameter space. An inappro-
priately guessed step size can be used to generate a �rst trial chain whose sampled posterior
might not be good enough for the estimation of parameter constraints, but can be used to re�ne
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the step size. The covariance of the sampled parameters of the short, approximate chain can
then be used to de�ne decorrelated parameters and re�ne the step sizes (or alternatively the
transition sampling can be chosen to be oriented along the axis of degeneration which can be
obtained from the eigenvectors of the parameter covariance matrix). Other issues that need
to be considered when a Markov chain is used for parameter estimation are ergodicity of the
parameter space and the ‘connectedness’ of regions of similar likeliness.

A.2.2 Posterior statistics

The points sampled by the Markov chain, ζ i , i = 0, . . . ,Nc, serve as a sample drawn by the
posterior. The marginalized mean and dispersion of a parameter θi or a derived function f (ζ )
can be obtained using1

f̄ ≡ 〈f 〉 =
1

Nc − Nb

Nc∑
i=Nb

f (ζ i ) and (A.12)

σ 2
f ≡ var( f ) = 1

Nc − Nb − 1

Nc∑
i=Nb

| f (ζ i ) − 〈f 〉|
2
, (A.13)

adopting the convention that θ̄i ≡ 〈fθi 〉 and σθi ≡ var( fθi ), where fθi (ζ ) = θi just selects the
appropriate element in the parameter space.

The estimation of the parameter con�dence levels depends on the inverse of the percentile
function,

P ( f̂ ) =
1

Nc − Nb

Nc∑
i=Nb

ΘH
(
f̂ − f (ζ i )

)
, (A.14)

where ΘH(x ) is the Heaviside function. The interval, [fmin, fmax], with 68.26% con�dence level
for a derived parameter f (x ) is given by the condition P ( fmin) = 15.87 and P ( fmax) = 84.13.
Analogously, the 95.44% CL interval is obtained by P ( fmin) = 2.28 and P ( fmax) = 97.72. In
this work, the CL limits are listed as f̄

+fmax− f̄

−( fmin− f̄ )
— or f̄ ± σ f in case of a symmetric interval

σ f = f̄ − fmin = fmax − f̄ . Again, the limits for a chain parameter θi are given by the same
formulas with fθi (ζ ) = θi .

Usually, the �rst Nb steps are removed as the burn-in fraction during which stationarity
was not yet reached. The burn-in length can be guessed from the coherence length within the
chain. Often, a very conservative approach is used by removing a fraction of a third to a half
of a long chain.

1Note that the notation adopted here uses repeated parameters, ζ i = ζ i−1, in case of rejection. Alternatively,
as used in our implementation and many other MCMC simulations, such as CosmoMC, the chain elements are not
repeated, but provided with a weight that is increased by unity for each rejection.
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A.2.3 Convergence criterion

As it is very di�cult to estimate whether the sample obtained from a single chain is repre-
sentative for the posterior or not, multiple chains should be started in parallel (with dispersed
starting points). Then, the convergence of the chains should be monitored by evaluating the
cross-chain variance, the so-called ‘mixing’ of the chains. Here, we adopt the Gelman-Rubin
convergence criterion (Gelman & Rubin, 1992). We assume NC chains, each having a length of
N (j )

c , j = 1, . . . ,NC, de�ne the mean for each chain and the total mean,

〈(j )ζ 〉 =
1

N (j )
c

N
(j )
c∑

i=1

(j )ζ i , and 〈ζ 〉 =
1
NC

NC∑
j=1

1
N (j )

c

N
(j )
c∑

i=1

(j )ζ i . (A.15)

The variance between the chains is given by

Bn ≡
1

NC − 1

NC∑
j=1
|〈(j )ζ 〉 − 〈ζ 〉|

2
, (A.16)

while the variance within a chain is

(j )W ≡
1

N (j )
c − 1

N
(j )
c∑

i=1
| (j )ζ i − 〈(j )ζ 〉|

2
. (A.17)

The normal estimator for the variance within all chains,

W ≡
1
NC

NC∑
j=1

(j )W , (A.18)

is underestimating the variance of the target distribution if the chains did not yet converge. We
can de�ne an estimator of the target variance that gives overestimated results for non-stationary
chains by

W̃ ≡
1
NC

NC∑
j=1

N (j )
c − 1
N (j )

c

(j )W + Bn

(
1 + 1

NC

)
(A.19)

Thus, the Gelman-Rubin ratio de�ned by

R̂ ≡
W̃

W
(A.20)

is a measure of the stationarity of the chains, which approaches the ideal value of unity from
above. Usually, the convergence criterion is given as R̂ − 1 and chains are considered as con-
verged for R̂ − 1 < 0.02. We also adopt this convergence rule for our model performance tests
in Section 5.2 and the full-shape �ts in Section 6.1.



A.3 CosmoMC 167

A.3 CosmoMC

CosmoMC (COSMOlogical Monte-Carlo; Lewis & Bridle, 2002) is an MCMC engine for explor-
ing cosmological parameter spaces, written in Fortran, and speci�cally designed to infer the
parameters of cosmological models from CMB observations. The code is widely used among
cosmologists and has been revised, extended, and improved by the community. The public
code is shared freely, together with additional tools for analysing Monte-Carlo samples and
importance sampling.

The matter power spectrum is computed using Camb (Lewis et al., 2000), taking into ac-
count BBN, recombination, and re-ionization with additional tools in order to predict the an-
gular power spectrum that is measured from the CMB today, as well as the late-time spatial
matter power spectrum as inferred from clustering probes. The code is structured in modules
so that extensions can be easily added. Likelihood packages exists for CMB observations, —
such as WMAP (Bennett et al., 2013), Planck (Ade et al., 2014c), ACT (Das et al., 2014), and SPT
(Reichardt et al., 2012), — lensing of the CMB (Ade et al., 2014d), SN Ia data, — such as SNLS
(Conley et al., 2011), Union (Suzuki et al., 2012), and JLA (Betoule et al., 2014), – galaxy cluster-
ing probes (BAO, RSD), Ly-α surveys, galaxy cluster statistics, and many more. The parameters
de�nitions can be done easily with con�guration scripts, allowing for �at and Gaussian priors.

By now, CosmoMC has implemented a wide variety of sampling algorithms among which
Metropolis-Hastings is only one option. More sophisticated sampling schemes take into account
the fact that the e�ect of some nuisance parameters on the model prediction can be calculated
fast, while changing the underlying cosmological parameters requires to recompute the full
model. Thus, the parameter space is split into sets of ‘fast’ and ‘slow’ parameters (Lewis, 2013),
allowing for a more computing-e�cient exploration of the parameter space by use of a ‘drag-
ging’ scheme (Neal, 2005). The convergence tests are based on the Gelman-Rubin R̂ statistic
de�ned in equation (A.20).

CosmoMC is the standard exploration tool for the CMB analysis of the WMAP and Planck
teams and is highly optimised to e�ciently calculate the CMB temperature and polarization
likelihoods, taking care of multi-frequency observations, foreground systematics, the large-
/small-scale separation (as they have di�erent sampling distributions; Ade et al., 2014b) of the
CMB analysis, and many other aspects that are relevant to get constraints from cosmological
data that are as precise as possible.

The analysis of the generated chains (like the marginalizations) can be automated using the
getdist package. Also a GUI for visual inspection of the sampled distributions exists.



168 A. Obtaining cosmological constraints with Markov chain Monte Carlo



B
Tables with cosmological constraints

Pumbaa: “Timon, ever wonder what those sparkly dots are up there?”
Timon: “Pumbaa, I don’t wonder; I know.”
Pumbaa: “Oh. What are they?”
Timon: “They’re �re�ies that got stuck up in that bluish-black thing.”
Pumbaa: “Oh, gee. I always thought they were balls of gas burning billions of miles away.”
Timon: “Pumbaa, with you, everything’s gas.”

The Lion King

In this appendix, the constraints (as 68% and 98% limits) for the full set of parameters for the
full-shape �ts in Section 6.1 and the concombined measurement �ts in Section 6.5 are listed in
tables. The parameter spaces are given by the parameters of the ‘gRPT+RSD’ model as listed in
Table 5.2 and the cosmological parameter spaces as listed in Tables 6.2 and 6.3. The listed limits
have been derived with the percentile function as discussed in Appendix A.2.2.

B.1 Full-shapemeasurements of theBAOdistance and growth

with the DR12 combined sample
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Table B.1 – The 68% and 95% limits for the parameters of the full-shape �t to three power spectrum wedges of the
DR12 combined sample in the low redshift bin �tted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1

using the covariance matrix from 2045 Patchy mocks.

Parameter 68% limits 95% limits
α⊥ 0.990 ± 0.016 0.990+0.033

−0.032
α ‖ 1.015+0.025

−0.030 1.015+0.059
−0.053

f σ8 0.498 ± 0.045 0.498+0.086
−0.089

bNGC
1 1.796+0.041

−0.046 1.796+0.089
−0.082

bSGC
1 1.840 ± 0.053 1.84+0.10

−0.10
bNGC

2 −0.16+0.37
−0.56 −0.16+0.94

−0.84
bSGC

2 0.50 ± 0.62 0.5+1.2
−1.2

γ−,NGC
3 0.54 ± 0.25 0.54+0.50

−0.50
γ−,SGC

3 1.04+0.38
−0.33 1.04+0.66

−0.68
aNGC

vir 4.50+1.1
−0.96 4.5+2.1

−2.2
aSGC

vir 7.3 ± 1.3 7.3+2.5
−2.3

NNGC 62 ± 500 —
N SGC 205+700

−300 > −661

Table B.2 – The 68% and 95% limits for the parameters of the full-shape �t to three power spectrum wedges of the
DR12 combined sample in the intermediate and high redshift bin �tted in the wavenumber range 0.02 h Mpc−1 ≤
k ≤ 0.2 h Mpc−1 using the covariance matrix from 2045 Patchy mocks.

Redshift bin Intermediate High
Parameter 68% limits 95% limits 68% limits 95% limits
α⊥ 0.997 ± 0.016 0.997+0.032

−0.032 0.982+0.019
−0.017 0.982+0.035

−0.037
α ‖ 1.023+0.025

−0.029 1.023+0.057
−0.052 0.997 ± 0.027 0.997+0.054

−0.052
f σ8 0.448 ± 0.038 0.448+0.074

−0.076 0.409+0.036
−0.042 0.409+0.084

−0.075
b1 1.919 ± 0.042 1.919+0.084

−0.080 1.979 ± 0.046 1.979+0.089
−0.092

b2 −0.23+0.49
−0.94 −0.2+1.4

−1.2 0.6+1.6
−1.8 0.6+1.9

−2.0
γ−3 1.01 ± 0.27 1.01+0.52

−0.52 1.01 ± 0.32 1.01+0.63
−0.64

avir 3.6+1.5
−1.2 3.6+2.6

−2.9 4.4+2.2
−1.8 4.4+3.2

−3.9
N 388+700

−900 > −686 162+500
−800 162+1000

−1000
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Table B.3 – The 68% and 95% limits for the parameters of the full-shape �t to two power spectrum wedges of the
DR12 combined sample in the low redshift bin �tted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1

using the covariance matrix from 2045 Patchy mocks.

Parameter 68% limits 95% limits
α⊥ 0.976+0.020

−0.017 0.976+0.038
−0.041

α ‖ 1.042+0.040
−0.044 1.042+0.086

−0.080
f σ8 0.496 ± 0.047 0.496+0.091

−0.095
bNGC

1 1.809 ± 0.051 1.81+0.10
−0.097

bSGC
1 1.848 ± 0.057 1.85+0.11

−0.11
bNGC

2 −0.05+0.40
−0.70 −0.05+1.1

−0.97
bSGC

2 0.44 ± 0.61 0.4+1.2
−1.2

γ−,NGC
3 0.57 ± 0.28 0.57+0.54

−0.54
γ−,SGC

3 1.02+0.39
−0.32 1.02+0.67

−0.70
aNGC

vir 5.4+1.6
−1.2 5.4+3.1

−3.4
aSGC

vir 7.77+1.7
−0.95 > 5.42

NNGC > 62.9 —
N SGC 101+600

−500 > −593

Table B.4 – The 68% and 95% limits for the parameters of the full-shape �t to two power spectrum wedges of the
DR12 combined sample in the intermediate and high redshift bin �tted in the wavenumber range 0.02 h Mpc−1 ≤
k ≤ 0.2 h Mpc−1 using the covariance matrix from 2045 Patchy mocks.

Redshift bin Intermediate High
Parameter 68% limits 95% limits 68% limits 95% limits
α⊥ 1.001 ± 0.020 1.001+0.042

−0.040 1.006 ± 0.022 1.006+0.044
−0.041

α ‖ 1.026+0.037
−0.042 1.026+0.086

−0.082 0.953+0.039
−0.033 0.953+0.067

−0.071
f σ8 0.452 ± 0.042 0.452+0.081

−0.085 0.433+0.035
−0.040 0.433+0.080

−0.072
b1 1.922+0.042

−0.049 1.922+0.096
−0.086 1.958 ± 0.043 1.958+0.085

−0.081
b2 −0.22+0.46

−0.98 −0.2+1.5
−1.2 0.26+0.69

−0.99 0.3+1.6
−1.5

γ−3 1.01 ± 0.28 1.01+0.54
−0.55 0.96 ± 0.33 0.96+0.64

−0.64
avir 3.4 ± 1.8 < 6.39 < 3.23 < 5.55
N 401+600

−800 > −661 −24+470
−710 −24+1400

−1100
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B.2 Combined constraints for the standard cosmological

model and some extensions

Table B.5 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a ΛCDM cosmology in both cases. The DR12
combined sample �t used a wavenumber range of 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 and the covariance matrix
from 2045 Patchy mocks. Only basic cosmological and galaxy clustering nuisance parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02221 ± 0.00020 0.02221+0.00041
−0.00040 0.02222 ± 0.00021 0.02222+0.00041

−0.00041
Ωc h

2 0.1192+0.0016
−0.0011 0.1192+0.0024

−0.0030 0.1191+0.0016
−0.0012 0.1191+0.0024

−0.0029
100θMC 1.04090 ± 0.00043 1.04090+0.00085

−0.00083 1.04092 ± 0.00044 1.04092+0.00087
−0.00084

τ 0.073 ± 0.018 0.073+0.035
−0.035 0.073 ± 0.019 0.073+0.037

−0.036
ln(1010 As) 3.078 ± 0.035 3.078+0.069

−0.069 3.077 ± 0.036 3.077+0.072
−0.070

ns 0.9657+0.0042
−0.0051 0.9657+0.0098

−0.0086 0.9659+0.0044
−0.0050 0.9659+0.0095

−0.0089
(z1)bNGC

1 1.810 ± 0.043 1.810+0.085
−0.083 1.810 ± 0.044 1.810+0.087

−0.086
(z1)bSGC

1 1.852 ± 0.050 1.85+0.10
−0.10 1.852 ± 0.051 1.852+0.099

−0.10
(z3)b1 1.991 ± 0.042 1.991+0.082

−0.083 1.992 ± 0.044 1.992+0.084
−0.086

(z1)bNGC
2 −0.09+0.40

−0.59 −0.09+0.98
−0.89 −0.10+0.40

−0.59 −0.10+0.99
−0.89

(z1)bSGC
2 0.53 ± 0.66 0.5+1.3

−1.2 0.52 ± 0.66 0.5+1.3
−1.2

(z3)b2 1.48+1.1
−0.45 1.5+1.4

−2.1 1.44+1.1
−0.43 1.4+1.4

−2.2
(z1)γ−,NGC

3 0.52 ± 0.25 0.52+0.49
−0.50 0.51 ± 0.25 0.51+0.49

−0.50
(z1)γ−,SGC

3 1.05+0.37
−0.33 1.05+0.66

−0.71 1.05+0.38
−0.33 1.05+0.65

−0.71
(z3)γ−3 1.13 ± 0.28 1.13+0.55

−0.57 1.12 ± 0.29 1.12+0.56
−0.58

(z1)aNGC
vir 4.06+1.2

−0.99 4.1+2.2
−2.3 4.0+1.2

−1.0 4.0+2.2
−2.3

(z1)aSGC
vir 6.8 ± 1.3 6.8+2.4

−2.5 6.7 ± 1.2 6.7+2.4
−2.5

(z3)avir 6.34+1.8
−0.81 6.3+2.6

−3.5 6.27+1.8
−0.77 6.3+2.5

−3.6
(z1)NNGC −127+360

−730 — −118+370
−730 —

(z1)N SGC 124+600
−400 — 134+700

−400 —
(z3)N 264+300

−400 264+900
−800 259+300

−400 259+900
−800
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Table B.6 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming awCDM cosmology in both cases. Only basic
cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02219 ± 0.00022 0.02219+0.00043
−0.00041 0.02221 ± 0.00021 0.02221+0.00042

−0.00042
Ωc h

2 0.1194 ± 0.0018 0.1194+0.0035
−0.0035 0.1192 ± 0.0017 0.1192+0.0035

−0.0033
100θMC 1.04087 ± 0.00047 1.04087+0.00092

−0.00092 1.04090 ± 0.00046 1.04090+0.00091
−0.00087

τ 0.070 ± 0.019 0.070+0.039
−0.037 0.071 ± 0.019 0.071+0.037

−0.037
w −1.029+0.070

−0.054 −1.03+0.11
−0.14 −1.019+0.048

−0.039 −1.019+0.079
−0.090

ln(1010 As) 3.073 ± 0.037 3.073+0.075
−0.073 3.075 ± 0.037 3.075+0.072

−0.071
ns 0.9650 ± 0.0056 0.965+0.011

−0.011 0.9656 ± 0.0054 0.966+0.011
−0.011

Table B.7 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a w0waCDM cosmology in both cases. Only
basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02218 ± 0.00022 0.02218+0.00043
−0.00043 0.02220 ± 0.00022 0.02220+0.00044

−0.00043
Ωc h

2 0.1197 ± 0.0019 0.1197+0.0037
−0.0036 0.1195 ± 0.0019 0.1195+0.0036

−0.0037
100θMC 1.04085 ± 0.00047 1.04085+0.00092

−0.00092 1.04087 ± 0.00046 1.04087+0.00093
−0.00090

τ 0.068 ± 0.020 0.068+0.039
−0.039 0.069 ± 0.019 0.069+0.038

−0.038
w0 −1.03 ± 0.24 −1.03+0.48

−0.47 −0.98 ± 0.11 −0.98+0.22
−0.21

wa −0.06+0.77
−0.62 −0.1+1.2

−1.4 −0.16+0.46
−0.36 −0.16+0.75

−0.87
ln(1010 As) 3.070 ± 0.038 3.070+0.074

−0.075 3.071 ± 0.037 3.071+0.072
−0.073

ns 0.9645 ± 0.0057 0.965+0.011
−0.011 0.9650 ± 0.0056 0.965+0.012

−0.011

Table B.8 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a ΛCDM cosmology with a free γ in both
cases. Only basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02221 ± 0.00021 0.02221+0.00041
−0.00039 0.02222 ± 0.00021 0.02222+0.00041

−0.00040
Ωc h

2 0.1192+0.0016
−0.0011 0.1192+0.0024

−0.0030 0.1190+0.0016
−0.0012 0.1190+0.0024

−0.0030
100θMC 1.04089 ± 0.00043 1.04089+0.00086

−0.00083 1.04094 ± 0.00044 1.04094+0.00085
−0.00086

τ 0.071 ± 0.019 0.071+0.037
−0.036 0.072 ± 0.019 0.072+0.037

−0.037
ln(1010 As) 3.075 ± 0.037 3.075+0.072

−0.072 3.076 ± 0.037 3.076+0.072
−0.074

ns 0.9655+0.0044
−0.0050 0.9655+0.0098

−0.0089 0.9660+0.0045
−0.0051 0.9660+0.0098

−0.0090
γ 0.526 ± 0.099 0.53+0.20

−0.19 0.523 ± 0.097 0.52+0.19
−0.19
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Table B.9 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a wCDM cosmology with a free γ in both
cases. Only basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02219 ± 0.00023 0.02219+0.00045
−0.00044 0.02220 ± 0.00022 0.02220+0.00043

−0.00042
Ωc h

2 0.1196 ± 0.0019 0.1196+0.0037
−0.0037 0.1193 ± 0.0018 0.1193+0.0036

−0.0035
100θMC 1.04086 ± 0.00048 1.04086+0.00093

−0.00093 1.04090 ± 0.00047 1.04090+0.00091
−0.00092

τ 0.069 ± 0.020 0.069+0.039
−0.040 0.071 ± 0.019 0.071+0.038

−0.039
w −1.041+0.092

−0.069 −1.04+0.15
−0.17 −1.020+0.052

−0.045 −1.020+0.091
−0.10

ln(1010 As) 3.071 ± 0.038 3.071+0.075
−0.078 3.074 ± 0.038 3.074+0.075

−0.077
ns 0.9647 ± 0.0057 0.965+0.011

−0.011 0.9654 ± 0.0054 0.965+0.010
−0.011

γ 0.56+0.12
−0.14 0.56+0.27

−0.23 0.54 ± 0.11 0.54+0.23
−0.21

Table B.10 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a K-ΛCDM cosmology in both cases. Only
basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02226 ± 0.00024 0.02226+0.00049
−0.00046 0.02226 ± 0.00024 0.02226+0.00047

−0.00044
Ωc h

2 0.1186 ± 0.0021 0.1186+0.0042
−0.0042 0.1186 ± 0.0021 0.1186+0.0041

−0.0041
100θMC 1.04098 ± 0.00049 1.04098+0.00098

−0.00096 1.04099 ± 0.00050 1.04099+0.00097
−0.00097

τ 0.074 ± 0.019 0.074+0.038
−0.036 0.074 ± 0.019 0.074+0.036

−0.036
ΩK −0.0008 ± 0.0027 −0.0008+0.0056

−0.0052 −0.0006+0.0025
−0.0028 −0.0006+0.0056

−0.0052
ln(1010 As) 3.079 ± 0.036 3.079+0.073

−0.069 3.079 ± 0.036 3.079+0.070
−0.070

ns 0.9671 ± 0.0062 0.967+0.012
−0.012 0.9672 ± 0.0062 0.967+0.012

−0.012

Table B.11 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a K-wCDM cosmology in both cases. Only
basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02226 ± 0.00024 0.02226+0.00048
−0.00046 0.02226 ± 0.00024 0.02226+0.00046

−0.00047
Ωc h

2 0.1187 ± 0.0022 0.1187+0.0042
−0.0043 0.1187 ± 0.0021 0.1187+0.0043

−0.0041
100θMC 1.04096 ± 0.00050 1.04096+0.00099

−0.0010 1.04098 ± 0.00049 1.04098+0.00095
−0.00096

τ 0.070 ± 0.020 0.070+0.039
−0.038 0.071 ± 0.019 0.071+0.037

−0.038
ΩK −0.0017+0.0032

−0.0036 −0.0017+0.0073
−0.0065 −0.0014+0.0029

−0.0033 −0.0014+0.0065
−0.0060

w −1.052+0.088
−0.071 −1.05+0.15

−0.17 −1.027+0.052
−0.045 −1.027+0.092

−0.10
ln(1010 As) 3.070 ± 0.038 3.070+0.075

−0.075 3.074 ± 0.036 3.074+0.071
−0.073

ns 0.9669 ± 0.0063 0.967+0.013
−0.012 0.9670 ± 0.0062 0.967+0.012

−0.012
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Table B.12 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a ΛCDM cosmology with a free ∑

mν in both
cases. Only basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02223 ± 0.00021 0.02223+0.00041
−0.00040 0.02224 ± 0.00021 0.02224+0.00041

−0.00040
Ωc h

2 0.1186+0.0017
−0.0015 0.1186+0.0029

−0.0032 0.1186+0.0017
−0.0015 0.1186+0.0029

−0.0032
100θMC 1.04095 ± 0.00043 1.04095+0.00086

−0.00083 1.04097 ± 0.00044 1.04097+0.00088
−0.00085

τ 0.078 ± 0.019 0.078+0.037
−0.036 0.078 ± 0.019 0.078+0.038

−0.036∑
mν < 0.151 < 0.275 < 0.143 < 0.260

ln(1010 As) 3.086 ± 0.036 3.086+0.072
−0.070 3.086 ± 0.037 3.086+0.072

−0.071
ns 0.9669 ± 0.0049 0.9669+0.0099

−0.0094 0.9672 ± 0.0051 0.967+0.010
−0.0099

Table B.13 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a ΛCDM cosmology with a free Ne� in both
cases. Only basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02222 ± 0.00025 0.02222+0.00051
−0.00048 0.02225+0.00024

−0.00027 0.02225+0.00052
−0.00048

Ωc h
2 0.1192 ± 0.0036 0.1192+0.0073

−0.0069 0.1193 ± 0.0036 0.1193+0.0073
−0.0071

100θMC 1.04093 ± 0.00056 1.0409+0.0011
−0.0011 1.04090 ± 0.00057 1.0409+0.0011

−0.0011
τ 0.073 ± 0.018 0.073+0.036

−0.035 0.074 ± 0.018 0.074+0.037
−0.036

Ne� 3.05+0.20
−0.24 3.05+0.46

−0.41 3.08+0.21
−0.24 3.08+0.46

−0.42
ln(1010 As) 3.077 ± 0.037 3.077+0.076

−0.072 3.080 ± 0.038 3.080+0.076
−0.074

ns 0.9662+0.0081
−0.010 0.966+0.019

−0.017 0.9672+0.0081
−0.010 0.967+0.020

−0.017

Table B.14 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a ΛCDM cosmology with a free ∑

mν and Ne�
in both cases. Only basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02232+0.00026
−0.00030 0.02232+0.00057

−0.00052 0.02234+0.00026
−0.00029 0.02234+0.00055

−0.00052
Ωc h

2 0.1203 ± 0.0038 0.1203+0.0075
−0.0073 0.1205 ± 0.0038 0.1205+0.0077

−0.0073
100θMC 1.04079 ± 0.00057 1.0408+0.0011

−0.0011 1.04077 ± 0.00057 1.0408+0.0011
−0.0011

τ 0.081+0.020
−0.022 0.081+0.042

−0.040 0.082 ± 0.021 0.082+0.041
−0.039∑

mν < 0.198 < 0.380 < 0.192 < 0.357
Ne� 3.18+0.25

−0.29 3.18+0.52
−0.51 3.19+0.24

−0.29 3.19+0.55
−0.48

ln(1010 As) 3.097+0.042
−0.048 3.097+0.089

−0.082 3.099 ± 0.043 3.099+0.087
−0.082

ns 0.972+0.010
−0.012 0.972+0.022

−0.021 0.9727+0.0099
−0.012 0.973+0.022

−0.020
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Table B.15 – The 68% and 95% limits for the parameters of the ‘gRPT+RSD’ �t to the Planck 2015 TT+lowP (Ade
et al., 2015) and three power spectrum wedges of the DR12 combined sample in the low and high redshift bin, as
well as the �t adding JLA SN Ia data (Betoule et al., 2014), assuming a wCDM cosmology with a free ∑

mν in both
cases. Only basic cosmological parameters are shown.

Data Planck 2015 + P3w,n (k ) + JLA SN Ia
Parameter 68% limits 95% limits 68% limits 95% limits
Ωb h

2 0.02213 ± 0.00022 0.02213+0.00045
−0.00043 0.02217 ± 0.00021 0.02217+0.00042

−0.00041
Ωc h

2 0.1193 ± 0.0018 0.1193+0.0035
−0.0034 0.1191 ± 0.0017 0.1191+0.0035

−0.0034
100θMC 1.04080 ± 0.00047 1.04080+0.00093

−0.00090 1.04086 ± 0.00045 1.04086+0.00089
−0.00088

τ 0.073 ± 0.021 0.073+0.041
−0.040 0.075 ± 0.019 0.075+0.037

−0.038∑
mν 0.28+0.14

−0.20 < 0.556 < 0.239 < 0.416
w −1.14+0.12

−0.096 −1.14+0.20
−0.21 −1.059+0.067

−0.051 −1.06+0.11
−0.12

ln(1010 As) 3.077 ± 0.039 3.077+0.078
−0.077 3.081 ± 0.037 3.081+0.071

−0.074
ns 0.9637 ± 0.0057 0.964+0.011

−0.011 0.9651 ± 0.0054 0.965+0.011
−0.010
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