
Technische Universität München

Lehrstuhl für Informatik mit Schwerpunkt Wissenschaftliches Rechnen

Enabling efficient simulations of radiative
transfer with CRASH

Nitya Hariharan

Vollständiger Abdruck der von der Fakultät für Informatik Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Hans-Joachim Bungartz
2. Hon.-Prof. Simon D.M. White, Ph.D.

Ludwig-Maximilians-Universität München

Die Dissertation wurde am 09.04.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 15.06.2015 angenommen.

Zusammenfassung

Der rasante Fortschritt in der Hochleistungsrechnung ermöglicht heute das Lösen von einer
Fülle an wissenschaftlichen Problemen. Von groëssem Nutzen ist dies auch im Bereich der
Astrophysik, wo, sowohl die Theorie als auch die Beobachtungen, die Wissenschaft voran
treiben. Die Entwicklung effizienter numerischer Methoden hat es ermöglicht, umfangreiche
kosmologische Simulationen durchzuführen, welche uns Einblick in die Frühphase des Uni-
versums gewähren, und seine Entwicklung bis hin zur Gegenwart. Diese Simulationen helfen
auch dabei, theoretische Modelle mit Messdaten abzugleichen und anhand von Beobachtun-
gen zu überprüfen. Um ein vollständiges Bild des Universums darstellen zu können, muss eine
große Anzahl physikalischer Abläufe berücksichtigt werden, welche auf vielschichtige Weise
miteinander wechselwirken und sich über einige räumliche sowie zeitliche Größenordnungen
erstrecken.

Diese Prozesse, allgemein eingestuft als chemische, mechanische oder strahlungs- Rückkopplung,
bilden eine wichtige Komponente kosmologischer Simulationen. Ihre akkurate Behandlung in
der numerischen Simulation ist rechentechnisch sehr aufwändig und setzt einige Annahmen
voraus, welche die Komplexität des Problems verringern. Unentwegt wird versucht, die gross-
skaligen Simulationen durch die Entwicklung besserer numerischer Methoden zu verbessern,
sodass die zur Verfügung stehenden Rechenresourcen möglichst effizient genutzt werden.

Speziell der Mechanismus der Strahlungsrückkopplung ist dabei von Bedeutung, auf Grund
seines sowohl kurzreichweitigen als auch fernwirksamen Einflusses. Er wird mit Hilfe von
Strahlungs-Transfer (RT) Verfahren numerisch dargestellt. Diese Doktorarbeit befasst sich
mit einem solchen Verfahren, genannt CRASH. Es handelt sich um einen 3D Monte Carlo
RT Code, welcher selbstkonsistent die Entwicklung von Wasserstoff und Helium simuliert,
sowohl in neutraler als auch in ionisierter Form, gemeinsam mit der Temperatur des Gas
Mediums. Der Code wird als Postprocessing Tool für kosmologische hydrodynamische Simu-
lationen verwendet, um die Auswirkung von Strahlungsrückkopplung auf Strukturbildung und
Reionisierung des intergalaktischen Mediums zu untersuchen. Die Fähigkeit, hochauflösende
Simulationen mit CRASH durchzuführen, ist daher eine entscheidende Voraussetzung. Diese
Art von Simulationen sind derzeit mit CRASH allerdings nicht möglich auf Grund seiner algo-
rithmischen Einschränkungen.

Um die Leistungsfähigkeit von CRASH zu verbessern und seine Verwendung auszuweiten, wird
die Benutzung ineinander verschachtelte, verfeinerte Gitter ermöglicht. Der erste wichtige
Schritt ist die Entwicklung einer neuen Version, CRASH-AMR. Diese kann RT Simulationen auf
verfeinerten Gittern ausführen, wobei die Adaptivität durch einen hydrodynamischen Code

4

bestimmt wird. CRASH erhält eine Schnittstelle zur Open-Source AMR Bibliothek CHOMBO,
und alle Software Entwicklungen in CRASH-AMR werden eingehend erläutert. CRASH-AMR wird
vollständig mit Hilfe einer vorgefertigten standard Testsuite für RT Codes geprüft. Zudem
werden hochauflösende RT Simulationen unter Verwendung von realistischen Dichtefeldern
durchgeführt, die von einem durch AMR unterstützten Hydrocode erhalten wurden. Dadurch
wird die Fähigkeit von CRASH-AMR getestet, Veränderungen im Gradienten des Gasdichtefeldes
korrekt zu verfolgen, welche die Strahlungs-Materie Wechselwirkung in der RT Simulation
beeinflusst.

Als Erweiterung der Arbeit wird CRASH-AMR parallelisiert mittels MPI und der relevanten
Grundstruktur im Rahmen von CHOMBO. Diese Arbeit enthält eine detaillierte Erläuterung der
verwendeten Parallelisierungstechniken. Der Code wird mit Hilfe von standard RT Testfällen
geprüft. Ausserdem wird die Leistungsfähigkeit des Codes unter Einsatz eines realistischen
Dichtefeldes betrachtet. Dabei werden verschiedene Verfeinerungsstufen des Gitters und zwei
unterschiedliche Maschinen des Rechenzentrums Garching verwendet.

Nun kann CRASH-AMR als Postprocessing Tool für einen durch AMR unterstützten Hydrocode
verwendet werden. Die Einführung von Adaptivität in den RT Code selbst ist jedoch schon
ein Schritt nach vorn in der adaptiven Gitterverfeinerung mittels Kriterien, welche durch RT
Simulationen gegeben werden. Auch wird die Durchführbarkeit der Implementierung einer
dynamischer Gitterverfeinerung in CRASH-AMR im Rahmen von AMR in CHOMBO betrachtet
und ein relevantes Beispiel untersucht.

Mit diesen wesentlichen Erweiterungen ist es jetzt möglich, hochauflösende RT Simulationen
mit CRASH durchzuführen; die neuen Entwicklungen bilden die Grundlage einer Kopplung des
Codes mit einem kosmologischen hydrodynamischen Code, um umfangreiche Simulationen
zur Strukturbildung durchzuführen.

Abstract

The rapid advances in computing have made it possible for a wide range of scientific problems
to be addressed. This has been especially useful in the area of astrophysics, that relies on
theories and observations for its progress. The development of efficient numerical methods
has made it possible to carry out large-scale cosmological simulations, giving us an insight into
the early stages of the universe and its evolution to the present day. These simulations have
also helped to verify and validate theoretical models against observational data. To provide
a complete picture of the universe, the inclusion of a large number of physical processes that
interact in a complex manner is required. These are relevant over spatial and temporal scales
that span several orders of magnitude.

These processes, broadly classified as chemical, mechanical and radiative feedback, form an
important aspect of cosmological simulations. Their precise treatment in numerical simula-
tions is computationally very expensive and necessitates that certain assumptions be made
in order to reduce their complexity. Efforts are constantly underway to improve these large-
scale simulations by developing better numerical methods that can make efficient use of the
computational resources available.

In particular, the radiative feedback mechanism is of importance due to its short and long
range effects and is modelled using radiative transfer (RT) schemes. This thesis focusses
on one such scheme, CRASH, a 3D Monte Carlo RT code that can self-consistently follow
the evolution of H and He, both neutral and ionized species, along with the temperature of
the gas medium. The code is used as a post-processing tool for cosmological hydrodynamic
simulations to study the effects of radiative feedback on structure formation and reionisation
of the intergalactic medium. The ability to perform very high resolution simulations using
CRASH is hence a crucial requirement. Such kind of simulations, though, are currently not
feasible with CRASH due to its computational, i.e. algorithmic limitations.

To improve the performance and extend the use of CRASH, we enable the use of nested, refined
grids. The first major step is the development of a new version, CRASH-AMR, that can perform
RT simulations on refined grids, whose adaptivity is decided by a hydro code. We interface
CRASH with the open-source Adaptive Mesh Refinement (AMR) library CHOMBO, and discuss
in detail the software developments carried out in CRASH-AMR. The code has been fully tested
against a suite of standard test cases prescribed for RT codes. Also, we carry out high
resolution RT simulations using realistic density fields obtained from an AMR enabled hydro
code. This tests the capability of CRASH-AMR to correctly track the variations in the gas
density field gradients that affects the radiation-matter interaction in the RT simulation.

6

As an extension of our work, we parallelise CRASH-AMR using MPI and the relevant framework
available in CHOMBO. A detailed discussion about the techniques used to parallelise the code
is given. The code has been tested with the standard RT test cases. We also look at the
performance of the code, when RT simulations are done on a realistic density field set on grids
with multiple refinement levels, on two different machines at the Rechenzentrum Garching.

CRASH-AMR can now be used as a post-processing tool for an AMR enabled hydro code. The
inclusion of adaptivity within the RT code itself is, however, an important step forward in
being able to adaptively refine the grid according to criteria as dictated by the RT simulation.
We take a look at the feasibility of implementing dynamic refinement in CRASH-AMR using the
AMR framework in CHOMBO and study a relevant example.

With these substantial extensions, it is now possible to carry out high-resolution RT simula-
tions with CRASH; the new development sets the stage for coupling the code with a cosmological
hydrodynamic code to carry out large scale simulations of structure formation.

Acknowledgements

There are a number of people I wish to thank, hopefully I have mentioned everyone here. My
sincere thanks to my supervisor, Benedetta Ciardi, for giving me an opportunity to work on
this project and for guiding me so patiently over the years. I am grateful to Professor H. J.
Bungartz for accepting me as an external student at his chair, and also for all the support he
has given me over the duration of my thesis. Many thanks to Luca Graziani for introducing
me to the CRASH code, and the problem at hand. He has helped me over the years and I would
not have been able to finish my work without his guidance. My thanks to Simon White for
accepting me as a PhD candidate at MPA and for his advice and support.

I am for ever grateful to my parents, my brother and his wife for their support over the years;
their love and affection has kept me going. My gratitude to all my friends in Munich for
making my stay here enjoyable. To all my friends who are not in Munich, thank you for the
moral support.

I am thankful to Francesco Miniati and Sebastiano Cantalupo for the valuable discussions
I had with them. My special thanks to Cornelia Rickl, Gabi Kratschmann, Maria Depner
and Sonja Gruendl for all their help and support at MPA; just talking to them was enough
to cheer me up. My gratitude to the system administrators at MPA for providing excellent
facilities to work with. I should for sure convey my thanks to Manuela Fischer at TUM, she
has patiently cleared all my doubts regarding the thesis submission formalities. And last but
not the least, thanks to my amma and appa at Namakkal for their love and blessings.

Contents

1 Introduction 1
1.1 Advances in computing . 2

1.2 Large scale structure formation . 3

1.3 Role of simulations in astrophysics . 4

1.3.1 Radiative Transfer . 6

1.4 Thesis outline . 7

2 Adaptive Mesh Refinement 9
2.1 Grid generation . 9

2.1.1 Structured grid generation . 12

2.1.2 Unstructured grid generation . 16

2.2 AMR schemes . 19

2.2.1 Structured AMR . 20

2.2.2 Unstructured AMR . 30

2.2.3 Pros and cons of SAMR and UAMR 34

2.2.4 AMR based applications . 35

2.2.5 AMR libraries . 37

2.2.6 CHOMBO Library . 38

2.3 Summary . 41

3 Radiative Transfer on static, nested grids in CRASH 43
3.1 Radiative Transfer code CRASH . 44

3.1.1 CRASH RT scheme . 44

3.1.2 CRASH software architecture . 47

3.2 Enhancing CRASH RT simulations using CHOMBO AMR 48

3.2.1 Interoperability between CRASH and CHOMBO 48

3.2.2 Setting up CHOMBO based AMR hierarchy in CRASH 49

3.2.3 Other technical considerations . 53

3.2.4 Software architecture of CRASH-AMR 54

3.3 Test scenarios and Results . 55

3.3.1 Test 1: Strömgren sphere in a H medium 55

3.3.2 Test 2: Strömgren sphere in a H+He medium 57

3.3.3 Test 3: a realistic density field . 59

3.4 Dependence on grid resolution . 66

3.4.1 Test 2 with different grid resolutions 66

3.4.2 Test 2 with different base grid resolution and refinement levels 67

3.5 Run time performance . 69

3.5.1 Set up with single point source . 70
3.5.2 Set up with multiple point sources . 71

3.6 Conclusion . 72

4 Parallelisation of Radiative Transfer in CRASH 75
4.1 Parallelising SAMR codes . 75

4.1.1 Parallel ray-tracing codes . 77
4.2 Parallelising CRASH-AMR . 78

4.2.1 Load balancing . 79
4.2.2 Changes to PCRASH-AMR and CHOMBO interface 82
4.2.3 Changes in PCRASH-AMR . 85
4.2.4 CHOMBO I/O . 90
4.2.5 Parallel RNGs . 90

4.3 Test scenarios . 91

4.3.1 Test 1: Strömgren sphere in a H medium 92
4.3.2 Test 2: Realistic density field with one point source 94
4.3.3 Test 3: Realistic density field with multiple point sources 96

4.4 Conclusion . 104

5 Adaptive Radiative Transfer simulations with CRASH 107
5.1 Adaptivity in Radiative Transfer codes . 107

5.2 Adaptive refinement in CHOMBO . 108

5.3 Feasibility of adaptive refinement in CRASH-AMR 109

5.4 Sample test case with CRASH-AMR . 110

5.5 Conclusion . 112

6 Conclusion 115

Bibliography 117

Chapter 1

Introduction

The world around us is made of multiple independent or inter-dependent systems. Some of
them evolve over a long period of time, for example the very universe we live in that has a
history of 13.6 billion years. Or the formation and growth of different layers of rock on the
earth’s crust that happens over millenia and cannot be witnessed in its entirety by humans
per se. Some others can evolve very rapidly, for example the folding of a complex protein
molecule, or the flow of fluid in a vortex; these events happen in a short period of time and
are hard to understand using mere visual observations.

Theoretical models and experimental set-ups help us to study these phenomena. However,
given their complexity, it is not always possible to use analytical models alone. In some
situations, experimental techniques might also not give accurate results due to the differences
in the experimental set-up and real life conditions, for example studying the air flow around
an airplane wing. Some scenarios might have safety concerns, for example the transport of
highly inflammable liquids. Others might occur over very long time scales to prevent any
reproducibility, such as rock formation or metal corrosion. In such cases, we need to rely on
computational techniques to model these systems and to verify our theories and experimental
data with simulation data. This is easier said than done since simulating a real world system
requires that its analytical model be first described using an algorithm that can then be
written as a program on a computer.

The use of computers as tools to model physical systems has undergone a drastic change over
the decades. We take a look at the history of computing in this Chapter, which is structured
as follows. In Section 1.1 we look at the developments that have taken place in the field of
computing in general. The progress of research in many fields has been underpinned by the
development of better numerical and simulation techniques and this has also been the case
within the astrophysics community. The study of large scale structure formation forms a
major aspect of this field and we introduce it briefly in Section 1.2. Then we look at the role
of simulations in astrophysics in Section 1.3 and conclude the Chapter with an outline of the
thesis in Section 1.4.

2 1. Introduction

1.1 Advances in computing

The beginning of the concept of modern computers, for automated computation, can be traced
back to the work of Charles Babbage who designed the Difference Engine in 1849 and the
Analytical engine in 1837, which although never built, included the concept of an arithmetic
logic unit and control flow for conditional branching; storage for variable values was also
provided. This was succeeded by punch card machines designed by Herman Hollerith in 1889.
The early and mid 20th century saw rapid changes in computer designs. The development
of vacuum tube machines, the ENIAC and EDVAC, established a prototype for the modern
computers. Boolean algebra, introduced by George Boole, had a huge impact on information
theory and the design of electronic computers. The Turing machine laid the foundations
for representing a problem as a set of instructions. This, together with the von Neumann
architecture, influenced the design of the first modern computer [101].

In 1960 the first supercomputer, CDC 6600, was manufactured at Control Data Corporation
(CDC) by Seymour Cray. The same decade saw the first vector processing machine, the
STAR-100, developed at CDC in collaboration with Texas Instruments. Vector machines were
the dominant designs for supercomputers through the 70s and 80s, mostly on Cray platforms.
In 1990s supercomputers with hundreds or thousands of processors gained prominence that
enabled massively parallel computations [101]. These machines could operate with a peak
performance of 1 teraFLOPS (floating point operations per second). The last decade has seen
a tremendous increase in computing power with the fastest supercomputer of today, Tianhe-2,
having a peak performance of 33.8 petaFLOPS 1.

Graphics processing units (GPUs), initially used in computer graphics, now have a consider-
able presence in the parallel computing scene. The general purpose GPUs of today provide
computing power equivalent to the multi-core processors available. Field Programmable Gate
Arrays (FPGAs) provide yet another alternative to CPUs and GPUs, they were initially used
in digital signal processing but are increasingly in use for scientific and industrial applications,
such as oil and gas exploration and cryptography [191].

The advances in computer design and the increase in computing power took place alongside
the development of improved numerical and computational methods for simulating complex
physical systems. We mention a few notable developments here. Scientific computing as a new
research area began in the 1940s, where it was first used in fluid dynamics and by 1950 was
also a part of numerical weather predictions. ENIAC which had been designed to calculate
ballistic trajectories made use of Ordinary Differential Equations (ODEs) in its calculations.
Later in 1950s, the increased memory capacity in computers saw the development of adaptive
ODE codes with variable step size [65]. Around the same period, the Conjugate Gradient
method was developed [82], a well known iterative method for solving sparse systems of linear
equations.

Particle-in-cell methods, used in plasma physics simulations to follow the trajectories of
charged particles in an electromagnetic field, were developed in the 1950s. Finite-element
(FE) and finite-volume (FV) methods to approximate the solutions of Partial Differential

1http://www.top500.org/system/177999

http://www.top500.org/system/177999

1.2 Large scale structure formation 3

Equations (PDEs) became well established in the 60s [132] by the aerospace and civil engi-
neering community [137]; FE methods are now an integral part of numerical analysis in struc-
tural mechanics. FV methods, on the other hand, are used in computational fluid dynamics
simulations. This decade also saw the Fast Fourier Transform (FFT) gain wide acceptance
among numerical analysts [46]. FFT has now been used in a wide range of applications that
include spectral analysis, data compression, pattern recognition and for numerical solution of
differential equations, to name a few.

The introduction of Smoothed Particle Hydrodynamic (SPH) methods in 1977 [67, 115], to
simulate physical processes spanning several orders of magnitude, was another important
milestone. The inital application of this method was in astrophysics to non-spherical stars.
Eulerian schemes were introduced in [44, 106] but they suffered from the problem of not
being able to provide temporal and spatial adaptivity in a simple way. The use of nested
grids and Adaptive Mesh Refinement (AMR) techniques introduced in [18, 19] resolved this
problem and they became important for simulations that resolved physical effects at much
higher resolution.

Nowadays, numerical simulations are accepted as the third pillar of science, along with theory
and observations, and are used in almost every field of scientific research. Among these, the
field of astrophysics is unique in the sense that one cannot carry out any experiments in the
lab to model cosmic objects. Research in this field is driven by observations, theory and
simulations which have contributed immensely in understanding the history of the universe.
We next discuss large scale structure formation, which forms an important aspect of modern
cosmology.

1.2 Large scale structure formation

The Big Bang cosmology is a standard model that explains the primordial stages of the
universe. At early epochs, the universe underwent a phase of rapid, exponential expansion
called the “cosmic inflation”. After the inflationary phase the universe consisted of a hot
plasma containing protons, electrons and other light nuclei. Around 400,000 years after the
Big Bang the temperature dropped enough to allow protons and electrons to combine and
form Hydrogen. This “cosmic recombination” led to the decoupling of radiation and matter,
allowing photons to travel further and get redshifted into the microwave regime [13]. This
radiation, called the “Cosmic Microwave Background” (CMB), is an important probe of
the early universe in observational cosmology. The CMB and its properties have been well
understood through the COsmic Background Explorer (COBE) 2, in the 1990s, followed by
the Wilkinson Microwave Anisotropy Probe (WMAP) campaign [17] and the recent Planck
mission [147]. The anisotropies found in the CMB have allowed us to tightly constrain the
cosmological parameters [185].

The universe that we observe today shows a large variation in structures as we move from the
large scales of hundreds of Mpc size, to the small, kilo-parsec scales. Independent observations
of the distribution of faint radio sources, optically selected galaxies, the X-ray background and
the CMB show that our universe is homogeneous on a scale larger than 200 Mpc (see [201]

2http://lambda.gsfc.nasa.gov/product/cobe/

4 1. Introduction

for a review), while at scales of tens of Mpc it appears inhomogeneous due to the presence of a
large number of structures: from galaxy clusters and galaxies, to stellar clusters and molecular
clouds. In the ΛCDM concordance model of our universe, the presence of primordial density
perturbations drove the gravitational collapse and cooling of the primordial gas in pre-existing
dark-matter (DM) haloes, leading to the formation of radiating sources like stars and quasars
[174]. The chemical, mechanical and radiative feedback by these sources on their surroundings
induces a complex interplay between the galaxy formation process and the evolution of the
intergalactic medium (IGM; [13, 39, 51, 126]).

Chemical feedback is associated to the metal enrichment of the gas by the first generations
of star that induces a transition from metal-free Pop III stars to metal-rich Pop II/I stars
[118, 165]. Mechanical feedback deals with energy deposition through supernova explosions
and galactic winds [161, 173]. Radiative feedback deals with the ionising/dissociating radia-
tion produced by massive stars. Radiative feedback has important consequences, due to its
short and long range effects, influencing the evolution of nearby objects and combining with
radiation from other sources to form a background [39]. One of the most relevant aspects
of radiative feedback is the reionisation of the IGM, which also plays an important role in
structure formation. This denotes the transition from a neutral intergalactic gas, to an IGM
which is (almost) fully ionised in its hydrogen component by z ∼ 6 [38, 86], while the helium
reionisation is believed to be complete at z ∼ 2.7 [45, 200].

A number of developments have taken place over the last few decades in computational
astrophysics to enable better and faster simulations of the different processes that are involved
in the formation and evolution of Large Scale Structures (LSS) in the universe. We discuss
them below.

1.3 Role of simulations in astrophysics

The importance of simulations in astrophysics can be made obvious by the fact that the term
“Astro-informatics” is now often used, similar to “Geo-informatics” and “Bio-informatics”.
This refers to the branch of astrophysics that relies on new algorithmic and computational
techniques specific to astrophysics [26]. Without simulations it would be impossible to take
into account the different physical processes, relevant at different spatial and temporal scales,
required to fully understand the universe from the Big Bang to its present state.

The first application of simulations to the study of astrophysical phenomena was done by
Martin Schwarzschild, to understand stellar evolution [80]. In 1958 programs to model stellar
interiors and stellar atmospheres were discussed by [138] using IBM magnetic drum calcula-
tors. Further increase in the computing power available allowed a realistic picture of stellar
evolution to emerge [84, 85].

In the 1970s, the very first cosmological N-body simulation, to understand the influence of DM
on structure formation, in a comoving periodic cube was done by [129], using 400 particles.
This aimed at exploring nonlinear gravitational clustering of objects, and the conclusions
reached by the authors were independently verified by [145] and [76]. Following this, in the 90s,
a large number of N-body simulations with ever increasing number of particles were carried out

1.3 Role of simulations in astrophysics 5

by e.g. [36, 59, 196], [180] (a tree code) and [66] (an adaptive particle-particle-particle mesh
code). These simulations helped to firmly establish certain aspects of structure formation,
such as abundance and density profiles of DM haloes [181]. The increasing availability of
computing resources has enabled N-body simulations of today to reach even larger particle
numbers. Examples include the 2HOT code which is based on the octree method and was
run with 128 billion particles [194], GreeM which scales up to a trillion particles [89] and
the “Millenium XXL” simulation which was done using the Gadget-3 code with 303 billion
particles [6].

In order to fully understand LSS, it is necessary for DM simulations to also include the effects
of gas (or hydro) dynamics, feedback effects and star formation. Hydrodynamic simulations
can be broadly classified into Eulerian grid-based and Lagrangian methods, such as SPH.
Eulerian schemes were used in hydro codes in 1970s to model a rotating protostellar cloud
collapse [21, 135]. The SPH method, first used for non-spherical stars as mentioned in Sec-
tion 1.1, has since been used for a wide range of astrophysical problems such as planetary
formation, binary stars and gas dynamics in large-scale cosmological simulations [83].

The use of hierarchical grids that allowed high resolutions only where necessary, was first done
by [57] who modeled isolated cloud collapse, including magnetic fields. This was followed by
[206] and [117] where they also used hierarchically nested grids to model cloud collapse. Soon
AMR hydro codes were developed, which include [159, 184], [30, 198], followed by AMR
Magneto Hydrodynamics (MHD) codes, for example [62, 127, 128]. Even though SPH and
AMR schemes have helped increase the spatial and temporal scales at which hydrodynamic
simulations are done, one still has to make certain assumptions to be able to account for the
different physical processes. For this reason, often sub-grid models are used for those effects
whose range is smaller than the grid resolution, for example, star formation, feedback from
active galactic nuclei (AGN), radiative cooling and photoionisation heating [48, 107, 163].

Cosmological simulations that take into account both DM and hydrodynamics along with
sub-grid models have now been carried out. Examples include the EAGLE simulation [164]
that was done with the Gadget-3 code and used 7 billion particles; the Illustris simulation
[192] made use of the moving mesh code Arepo and reached a total particle count of 18 billion.

The use of GPUs to accelerate codes has also been growing. Examples include simulations of
star clusters in galactic nuclei [175], gravitational N-body tree-codes [15, 16] and planetary
system simulations [74, 130]. Hybrid CPU/GPU codes are also being developed that work on
diverse computing architectures, the Hardware/Hybrid Accelerated Cosmology Code (HACC)
was able to perform one of the largest cosmological simulations with 3.6 trillion particles [77].

From our discussion above, it is clear that the field of computational astrophysics involves
the use of a large number of processes that act at different spatial scales. The simulation
codes currently in use still need to make certain assumptions in order to include all these
processes. However, the use of supercomputing facilities has led to major developments that
enable the proper inclusion of different phenomena necessary to form a complete picture of
LSS. Radiative feedback is one such example that is computationally expensive due to its
short and long range effects and also due to its relevance in different environments, such as
star forming regions, H II regions and the IGM. A number of different numerical techniques are
used to study the effects of the radiation field from sources such as stars and quasars, both
independently and along with hydrodynamic simulations. We next discuss the concept of

6 1. Introduction

Radiative Transfer (RT), that is used to describe the radiation field emitted from sources and
its propagation along a medium. The numerical formulation of RT along with the techniques
used to study it are discussed.

1.3.1 Radiative Transfer

The evolution in space and time of an electromagnetic field as it travels through a medium
can be described by the RT equation, which in comoving coordinates is given by [70, 198]

1

c

∂Iν
∂t

+
n̂ ·∆Iν
a

− H

c
(ν
∂Iν
∂ν
− 3Iν) = −κνIν + jν (1.1)

where the term Iν ≡ I(ν, x,Ω, t) is the radiation specific intensity in units of energy per time
t per solid angle Ω per unit area per frequency ν. H = ȧ/a is the Hubble constant where a is
the scale factor, a = a/aem is the ratio of the scale factors at the current time and the time of
emission and n̂ is the unit vector in the direction of photon propagation. The second term on
the left side describes the propagation of radiation, taking into account the cosmic expansion
implied by the factor 1/a. The third term accounts for the dilution of radiation and Doppler
redshift of the photons.

On the right hand side, the first term includes κν which is the absorption coefficient κν ≡
κν(x, ν, t) that describes every frequency dependent event resulting in the absorption of a
photon. The second term is the emission coefficient jν ≡ jν(x, ν, t) that characterises every
photon emission process (from point sources or diffuse radiation).

The RT equation, in its original form, is computationally expensive to solve due to its high
dimensionality. Some approximations can however be done to reduce its complexity in numer-
ical simulations. The (ν/c) term in Equation 1.1 can be neglected as it applies to relativistic
flows or very optically thick systems [198]. The term accounting for cosmic expansion, a, can
be assumed to be 1 since the time steps in dynamic calculations are small enough such that
∆a/a� 1. This second term thus reduces to n̂∂Iν/∂x. Finally, the redshifting of photons and
dilution of radiation becomes important only for large box sizes, where the light crossing time
is comparable to the Hubble time. This can be neglected in the case of a local approximation,
thus reducing the RT equation to a much simpler form given by

1

c

∂Iν
∂t

+ n̂
∂Iν
∂x

= −κνIν + jν (1.2)

Various methods to solve the RT equation, given in Equation 1.2, have been proposed. Each
method has its own merits and drawbacks, and is suitable for certain problems relating to RT.
Some of them rely on grid based methods while others use the SPH formulation, unstructured
grids have also been used to represent the domain over which the RT equations are solved. A
number of such RT codes have been compared against a suite of standard tests described in the
RT Code Comparison Project (RTCCP) [87]. All the codes tested as part of the comparison
project were found to be in good agreement with each other, with some differences arising
due to the inherent nature of the method being used to solve the RT equations.

1.4 Thesis outline 7

The different techniques available for carrying out RT simulations can be broadly classified
into [144]

(a) Ray-tracing methods - These methods solve the RT equation along a one dimensional
ray that propagates through the medium. These methods can again be classified into three
types, depending on how the ray is casted over the cells in the computational domain.

(i) Long characteristics method - In this case, the ray is cast from each source to
all the cells in the domain. For each ray that is cast, the optical depth in all the cells
lying between the source and the destination cell has to be calculated. This method
has a large computational overhead due to the redundant calculations involved [154].

(ii) Short characteristics method - This method removes the disadvantage of the
long characteristics method, where the optical depth is calculated multiple times
per cell. Here, the individual contribution of the cell to the ray’s optical depth
is calculated. The total optical depth for each ray originating from a source to a
particular cell is determined by summing up and interpolating the contributions of
the intermediate cells [154].

(iii) Monte Carlo (MC) ray-tracing - This is a simplification of the long characteris-
tics method where the solution to the RT equation is approximated by emitting rays
in random directions away from the source. The photon is propagated along the ray
and for each cell crossed by the ray, a set of probability distribution functions that
simulate radiation-matter interaction are solved and the properties of the medium
are updated. The required convergence of the solution determines the number of
photons that need to be emitted from the source [40].

(b) Variable Eddington tensor - In this method, the moment equations of the radiation
field are solved. This approach ensures that photon numbers and flux is conserved and
is also suitable for coupling with grid based hydrodynamic codes. However, the method
suffers from the drawback of unphysical propagation of ionisation fronts thus failing to
cast a sharp shadow behind an optically thick obstacle [69].

Cosmological RT forms an important part of the LSS research area and we will be focusing
on it further in our thesis. We conclude this Chapter by giving an outline of the thesis.

1.4 Thesis outline

The work done as part of this thesis is to develop an enhanced version of the RT code CRASH.
Our enhancements to the code will allow cosmological RT simulations to be done at much
higher resolutions, using AMR techniques, than was previously possible with the code due to
its algorithmic limitations.

The thesis is structured as follows, in Chapter 2 we discuss grid generation techniques used to
discretise and solve systems of PDEs with focus on AMR techniques. In Chapter 3 we present
the RT code CRASH explaining in detail the MC scheme used in CRASH to implement RT. The
need to do high resolution simulations is an issue for RT simulations as well, this allows them

8 1. Introduction

to evaluate the radiation-matter interaction with much more precision. To this effect, we have
developed a new version of the code, CRASH-AMR, that interfaces CRASH with an open source
AMR library CHOMBO. This development enables CRASH-AMR to carry out high-resolution RT
simulations, in the post-processing mode, on adaptive grids generated by a hydro code. We
discuss, in detail, the development of this code; a series of tests validating the new code are
provided.

In Chapter 4 we look at parallelising CRASH-AMR using distributed memory parallelism along
with tests done to highlight the efficiency of the parallel code. Chapter 5 looks at the feasibility
of introducing adaptivity in CRASH-AMR where the grids are refined within the RT simulation
itself. Finally we present our conclusions in Chapter 6.

Chapter 2

Adaptive Mesh Refinement

Computers, by their very nature, can only operate on discrete values. Real world systems on
the other hand, for example the flow of a fluid, are said to be continuous. Although a fluid
is made up of atoms and molecules which interact with each other, on macroscopic scales the
fluid motion is said to be continuous. In order to simulate a physical system, we need to define
its domain in discrete terms and solve the set of equations that describe the various processes
involved. The term grid or mesh is used to refer to this discretised domain. Generating a grid
of good quality is of high importance since its ability to correctly track system features can
have a huge impact on the solution of the equations, hence grid generation is an important
field of research with wide range of applications.

We take a more detailed look at the process of grid generation in this Chapter, which is organ-
ised as follows. Section 2.1 looks at how a physical system can be discretised for generating
a grid. Depending on the structure of the grid two main categories exist, structured and
unstructured. We discuss the different methods employed to generate both types of grids.
Simulations of physical systems are, in general, constrained by the grid resolution they use,
both in terms of solution accuracy and computational resources. AMR methods have been
found to ameliorate this problem to a great extent, by selectively refining the domain in areas
that need high resolution. They are used widely across the scientific community including
the field of astrophysics, we discuss these methods in detail in Section 2.2.

2.1 Grid generation

Let’s consider a system consisting of a viscous fluid. The state of the fluid at any particular
point in space and time can be described by a set of properties such as, to name a few, velocity,
pressure, viscosity and temperature. We can write the state of the fluid as a continuous
function u defined over a set of points in space x and time t where

−∞ < x <∞, t ≥ 0 (2.1)

10 2. Adaptive Mesh Refinement

The values that x and t can have represent the physical domain over which u is defined. Since
u depends on more than one independent variable, i.e. x and t, its rate of change is a Partial
Differential Equation (PDE) given by

f(x, t, u, ux, ut) = 0 (2.2)

where the terms ux and ut are said to be the partial derivatives of u at points x, t denoted by

ux =
∂u(x, t)

∂x
, ut =

∂u(x, t)

∂t
(2.3)

We can now discretise the domain as

U(x, t) = U0, U1, U2, ..., UN (2.4)

by defining the function u at N discrete points x = −xN , .., x0, .., xN and t = t0, t1, ..tN where
N ∈ R+. The value of the function U(x, t) at some initial and final values of x and t, i.e.

U0 = U(x0, t0), (2.5)

UN = U(xN , tN) (2.6)

are the boundary conditions. The values of U(x, t) can now be set on a uniform grid or mesh
as shown in the left panel in Figure 2.1. The grid contains rectangular cells that are all of a
particular width h. The term width here refers to the change in the value of x or t from one
cell to another. The partial derivative with respect to x and t can now be defined as

∂u(x, t)

∂x
=
U(x+ 1, t)− U(x, t)

h

∂u(x, t)

∂t
=
U(x, t+ 1)− U(x, t)

h

(2.7)

For the grid in Figure 2.1, left panel, the values of U(x, t) are set at the center of the cell.
Such a grid is said to be cell-centered. We can also set the values at the vertices of the cell,
the grid is then said to be vertex-centered. Note that the grid has been discretized both
in space and time, since the function u(x, t) that we want to discretize depends on both x
and t. This continuous function, now discretised on a grid, can be studied numerically on
a computer and forms the computational domain. The physical system that was discretised
forms the physical domain. Since we know the extent of the computational domain in x and
t, the grid can be stored as an array with the values for U(x, t). The function U can be solved

1http://ta.twi.tudelft.nl/users/wesselin/projects/unstructured.html

http://ta.twi.tudelft.nl/users/wesselin/projects/unstructured.html

2.1 Grid generation 11

Figure 2.1 Left: Uniform grid with rectangular cells containing values for the discrete func-
tion U(x, t). The black dots indicate where the value of U is defined for cell(x, t). Right:
Unstructured grid made of triangular cells around an airfoil1.

for different values of x and t. In general, the more number of points we use to set up the
grid, the better is its ability to correctly cover the physical domain. But generating such a
grid can also be computationally expensive and also once generated cannot be modified with
much ease.

The example of grid discretisation that we have chosen here shows a grid of uniform width
and rectangular cells, with the points that lie next to each other. Given a point in the grid, we
can find the neighboring points without much effort. Such a grid is said to be structured due
to the regular structure it follows. The cells are typically quadrilateral (2D) or hexahedral
(3D) in shape. The regularity of these grids makes memory management simpler which can
be exploited in numerical solvers. Structured grids have been mostly used in finite-difference
(FD) and FV schemes.

Figure 2.1 (right panel) shows a second type of grid, i.e., unstructured grids. Unlike struc-
tured grids, unstructured grids do not have a regular structure due to which connectivity
between the points cannot be determined implicitly. Hence, in addition to the location of
the points, a connectivity graph that describes the connection between the different points
has to be explicitly built. The cells are typically triangular or tetrahedral in shape [96, 125].
Unstructured grids are useful since the cells in such a grid can be placed in a way that they
cover the problem domain more accurately, especially near the domain boundaries, and can
be used to describe complex geometries but need more effort to maintain. They are mostly
used in FE and also in FV analysis [134].

Once a grid has been built, we might want to make local modifications to it by adding or
removing points depending on changes in the geometry of the problem at hand. Structured
grids although easy to build and maintain are not flexible to such local refinements, unstruc-
tured grids are better suited instead. On the other hand, parallelisation of solvers that rely on
structured grids are easier to achieve than for unstructured grids. Hybrid grids that combine
the advantages of both structured and unstructured grids prove to be a solution in such cases,
they are broadly classified into block-structured and hierarchical grids.

12 2. Adaptive Mesh Refinement

Figure 2.2 Left: A block structured grid containing two separate blocks of grid2. Right: A
hierarchical grid, with blocks consisting of cells with different widths.

Figure 2.2, left panel, shows a block-structured grid, which contains multiple blocks each of
which is structured (or unstructured), the overall placement of each block in the domain is
unstructured. One could, in principle, use only structured blocks here and represent complex
geometries as well. These grids are efficient in terms of memory management and solution
accuracy since each block can be handled independently. However, special care has to be taken
at the interface between two grids. Hierarchical grids on the other hand involve selecting
some parts of a grid based on certain criteria, and locally refining it in a structured way.
The advantage of such a grid is that the numerical solver within each block can also be
structured, which results in efficient performance. Here as well, care has to be taken at the
interface between two grids. Figure 2.2, right panel, shows a hierarchical grid with four sets
of structured blocks at different cell widths [162].

We now look at the different methods used to generate structured and unstructured grids.

2.1.1 Structured grid generation

There are different techniques used to generate structured grids, the most commonly used
methods are the algebraic method and elliptic method. We discuss them in this section. The
same techniques can also be used to generate block-structured grids.

2.1.1.1 Algebraic method

Algebraic methods involve transforming the structured computational domain to the physical
domain by means of interpolation functions. Once the transformation has been done, the
coordinates of the regular domain that have been partitioned into regular intervals map on
to the physical domain [186]. The transformation from a computational domain to a physical
domain can be written as a vector valued function [170]

X(ξ, η, ζ) =

x(ξ, η, ζ)
y(ξ, η, ζ)
z(ξ, η, ζ)

 (2.8)

2http://www.byclb.com/TR/Tutorials/dsp_advanced/ch1_1.htm

http://www.byclb.com/TR/Tutorials/dsp_advanced/ch1_1.htm

2.1 Grid generation 13

Computational domain Physical domain

X(, ,)

x

y

z

Figure 2.3 Transformation from the computational domain to the physical domain.

where

0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1 (2.9)

Given a set of points (I, J,K) where

I = 1, 2, 3, .., Î, J = 1, 2, 3, .., Ĵ ,K = 1, 2, 3, .., K̂ (2.10)

the discrete subset of the vector-valued function X(ξI , ηJ , ζK) forms a structured grid where

0 ≤ ξI =
I − 1

Î − 1
≤ 1, 0 ≤ ηJ =

J − 1

Ĵ − 1
≤ 1, 0 ≤ ζK =

K − 1

K̂ − 1
≤ 1 (2.11)

The relationship between the coordinates (ξ, η, ζ) and the points (I, J,K) gives a discrete
form of the domain with an implicit relationship between the neighboring points. This forms
a structured grid. Figure 2.3 shows the correspondence between the computational domain
and the physical domain.

Algebraic methods are mainly based on the Transfinite Interpolation method (TFI) which
expresses the vector function in 2.8 as a set of three univariate transformations, each of which
acts on one coordinate direction. These can then be evaluated in two different ways, the
Boolean sum transformation and the Recursion formulation.

2.1.1.1.1 Boolean sum formulation

This method specifies the interpolation in each direction [186], given by

14 2. Adaptive Mesh Refinement

U(ξ, η, ζ) =

L∑
i=1

P∑
n=0

αni (ξ)
∂nX(ξi, η, ζ)

∂ξn

V (ξ, η, ζ) =

M∑
j=1

Q∑
m=0

βmj (η)
∂mX(ξ, ηj , ζ)

∂ηm

W (ξ, η, ζ) =
N∑
k=1

R∑
l=0

γlk(ζ)
∂lX(ξ, η, ζk)

∂ζ l

(2.12)

and the corresponding tensor products are

UW = WU =
L∑
i=1

N∑
k=1

R∑
l=0

P∑
n=0

αni (ξ)γlk(ζ)
∂lnX(ξi, η, ζk)

∂ζ l∂ξn

UV = V U =

L∑
i=1

M∑
j=1

Q∑
m=0

P∑
n=0

αni (ξ)βmj (η)
∂nmX(ξi, ηj , ζ)

∂ηm∂ξn

VW = WV =
M∑
j=1

N∑
k=1

R∑
l=0

Q∑
m=0

βmj (η)γlk(ζ)
∂lmX(ξ, ηj , ζk)

∂ζ l∂ηm

UVW =

L∑
i=1

M∑
j=1

N∑
k=1

R∑
l=0

Q∑
m=0

P∑
n=0

αni (ξ)βmj (η)γlk(ζ)
∂lmnX(ξi, ηj , ζk)

∂ζ l∂ηm∂ξn

(2.13)

where αni (ξ), βmj (η), γlk(ζ) are blending functions. The tensor products are then used to cal-
culate a Boolean sum of the individual interpolations, given by

X(ξ, η, ζ) = U + V +W − UV − UW − VW + UVW (2.14)

2.1.1.1.2 Recursion formulation

The second method of evaluating the interpolation is to use a recursion formula. We begin
with the interpolation in one coordinate direction

X1(ξ, η, ζ) =
L∑
i=1

P∑
n=0

αni (ξ)
∂nX(ξi, η, ζ)

∂ξn
(2.15)

and define the second and third interpolations using the first

2.1 Grid generation 15

X2(ξ, η, ζ) = X1(ξ, η, ζ) +
M∑
j=1

Q∑
m=0

βmj (η)

[
∂mX(ξ, ηj , ζ)

∂ηm
− ∂mX1(ξ, ηj , ζ)

∂ηm

]

X3(ξ, η, ζ) = X2(ξ, η, ζ) +

N∑
k=1

R∑
l=0

γlk(ζ)

[
∂lX(ξ, η, ζk)

∂ζ l
− ∂lX2(ξ, η, ζk)

∂ζ l

] (2.16)

The TFI method allows control over grid spacing, which can be changed with the use of
the blending functions. These determine the number of cells that have to be placed over a
certain region of the grid based on specific criteria. Algebraic methods, in general, are easy
to implement but suffer from the drawback of producing irregularities in complex geometries.

2.1.1.2 Elliptic method

A second method to generate structured grids is the elliptic method, where a system of
differential equations are used to create the grid [162]. Consider, for example, the set of
equations

ξxx + ξyy = 0

ηxx + ηyy = 0
(2.17)

with specified boundary conditions. We can make use of the maximum principle for elliptic
PDEs which states that the maximum values of ξ and η are at the boundary and the interior
of the grid has no local extrema. The resulting alignment of grid points defined using the
elliptic equation ensures that the grid lines do not crossover. In order to determine the grid
points themselves, equation 2.17, which is defined in the physical domain, has to be solved
for the computational domain. The following equations result, by separating the dependent
and independent variables and applying the chain rule

(x2
η + y2

η)xξξ − 2(xξxη + yξyη)xξη + (x2
ξ + y2

ξ)xηη = 0

(x2
η + y2

η)yξξ − 2(xξxη + yξyη)yξη + (x2
ξ + y2

ξ)yηη = 0
(2.18)

The above set of equations can be solved using iterative solvers with boundary conditions
defined by the boundary curves in the physical domain. Similar to the algebraic method, grid
spacing can be controlled by adding source terms to 2.17

ξxx + ξyy = P (ξ, η)

ηxx + ηyy = Q(ξ, η)
(2.19)

Elliptic grid methods generate very smooth grids, with an optimal distribution of grid points.
However, when compared to algebraic methods, they are computationally more expensive.

We next look at methods to generate unstructured grids and the advantages of each approach.

16 2. Adaptive Mesh Refinement

2.1.2 Unstructured grid generation

There are different methods adopted to generate unstructured grids, the most commonly
used among them are the Advancing Front method (AFT), Delaunay triangulation which
uses triangular cells and the quadtree or octree methods which are easy to implement but
result in large irregularities near the domain boundary. Structured grids can be implemented
using simple and regular data structures, for example arrays. Unstructured grids, on the other
hand, need more well defined data structures that allow fast searches across the grid. We
discuss the AFT method and Delaunay triangulation in this section, we also briefly mention
the data structure used to optimise the generating algorithm.

2.1.2.1 AFT method

The AFT technique for triangular grids in 2D was first suggested by George [63], this was
extended to 3D [113] and has been modified to work with quadrilateral [23, 139, 205] and
hexahedral meshes as well [22]. AFT works by starting with a distribution of points at the
boundary of the problem domain, these make up the initial set of edges. Successive steps
then involve adding new edges to form cells till the domain is covered completely.

To add a new cell, the following steps are taken.

(a) A list of available edges, Le, that can be used to form cells is stored. This represents the
advancing front which is the separation between the meshed domain and the unmeshed
points. A list of points Lp that need to be meshed is also maintained.

(b) Using the points that form the last edge on list Le, all the unmeshed points that satisfy
a certain criteria are selected. For example, the distance between a point and the two
points in the last edge should be minimal.

(c) Once such a point has been identified, a triangular cell is created between the point and
the edges, the point is removed from Lp. The corresponding edge is removed from the
list Le.

Steps (a) to (c) are repeated till all points have been meshed and no more edges are available
to form cells. Figure 2.4 shows the steps taken in the AFT method, the left panel shows the
initial front where we only have the points at the domain boundary. The middle panel shows

Figure 2.4 AFT method to generate triangular cells, Left: Initial front at boundary edges.
Middle: Advancing the front (red line). Right: Final grid.

2.1 Grid generation 17

the front (red line) being advanced by forming edges. The right panel shows the unstructured
mesh covering the domain. The algorithm to implement AFT has to check that a valid point
has been found before a triangular cell can be created. The new triangle being generated
should not intersect with an existing triangle. If the point is not valid, another point from the
list Lp can be selected instead. The AFT method can be expensive as it has to perform these
checks for each point being added. Its advantage lies in its ability to automatically generate
grid points in the interior of the physical domain. Also, since the method starts from the
boundary, it ensures that the boundary of the domain has been covered by grid lines.

The AFT method requires a number of sorting and searching operations to build the mesh
efficiently. The advancing front needs a data structure to store information pertaining to
Le which requires frequent insert/delete operations. We also need to search the list Lp that
contains the next valid point to form the triangle. The Alternating Digital Tree (ADT) [25]
has been found to be an efficient solution for both the insert/delete and search operations.

2.1.2.2 Delaunay triangulation

The Delaunay triangulation [54] of a set of points is a dual of the Voronöı diagram [193]
which selects and marks a region such that it lies closer to a certain point than any other
point. The marked regions form a tessellation of the space and is called a Voronöı tessellation.
The “in-circle” criterion then dictates that for any three points in this space, the circle that
circumscribes these points does not contain any other point. A unique triangulation can be
formed for these points, which is called the Delaunay triangulation. In three dimensions, the
same criterion extends to a sphere containing the points which form a tetrahedron instead.
Figure 2.5 shows the Voronöı diagram for a set of points and the corresponding Delaunay
triangulation (dotted green lines).

There are different methods used to generate a Delaunay triangulation: the Bowyer-Watson
method, the Tanemuara-Ogawa-Ogita algorithm and the edge-swapping technique. We dis-
cuss all the three here.

The Bowyer-Watson [27, 195] method makes use of the “in-circle” criterion of the Delaunay
triangulation. It starts from a very coarse triangulation of the domain. Then, for each point
being added, the triangles whose circumcircles contain this point are determined and their

Figure 2.5 Voronöı tessellation of a set of points and the corresponding Delaunay triangulation
(dotted green lines).

18 2. Adaptive Mesh Refinement

New point

Figure 2.6 Insertion of new point in the Delaunay triangulation using the Bowyer-Watson
method. The red lines show the new edges that are formed.

Figure 2.7 Edge swapping between two neighboring triangles, Left: max-min Right: min-
max criterion.

edges deleted. A new triangulation is then formed by creating an edge between the new point
and the points that formed the edges of the deleted triangle. Figure 2.6, left panel, shows a
sample set of points whose circumcircles are marked in red, the new point being added is also
shown. The right panel shows the new edges (dotted red lines) that are formed. This method
typically makes use of an octree data structure to keep a list of all the points that have been
inserted; this is then searched to find a point nearest to the new point being inserted.

The Tanemuara-Ogawa-Ogita algorithm [183] is similar to the Bowyer-Watson method but
starts with a prescribed set of boundary edges and points instead of a coarse triangulation.
For an edge e, it constructs a circle Ci that passes through e and another point Pi. The circle
that is empty determines the new point Pi that can be used to form a new triangle. If the
two edges other than e that form this triangle have not been already defined, then they are
defined and added to a list of existing edges. The algorithm stops when all the boundary
edges belong to one side of a triangle and each interior point forms a common edge between
two triangles. However the usability of this algorithm for a 3D case is rather limited.

A third type of Delaunay triangulation technique is the edge-swapping algorithm where the
common edges between two triangles are checked and exchanged if the resulting triangles
satisfy certain criteria. This criteria could be the circumsphere test that maximizes the
minimum interior angle (max-min criterion) as in [195], or one that minimizes the maximum
interior angle [14] (min-max criterion). Figure 2.7 shows such an edge swap being done for
two triangles for the max-min (left panel) and the min-max criterion (right panel).

So far, we have looked at generating a grid based on certain initial conditions and the grid
structure does not change during the simulation. This method works well as long as we

2.2 AMR schemes 19

are only interested in the values of the discretised function U(x, t) (2.4) at a certain cell
width h. We cannot resolve further the values of U(x, t) in between the cells due to the grid
resolution. This is not ideal as we might be interested in knowing the properties of the fluid in
the corresponding sub-domain of the grid under study, for example, the turbulent motion in
some regions, interaction between the molecules in the fluid or its thermodynamic properties.
Adapting the mesh to resolve certain features in the flow would be important to find the
solution in regions with large gradients. AMR schemes provide a stable and efficient solution
for such situations and are used in a wide range of scientific applications. We next look at
AMR schemes in detail, for both structured and unstructured grids.

2.2 AMR schemes

AMR is a widely used method to discretise and refine the domain, where required, in a complex
system. It has been used in areas ranging from astrophysics, global weather modeling and
relativity to nuclear fusion modeling and fluid dynamics. AMR makes use of a mesh or a grid
to cover the problem domain and refines the mesh wherever necessary.

Depending on the type of grid, structured or unstructured, that is used to cover the domain,
AMR can be broadly classified into structured (SAMR) and unstructured AMR (UAMR)
[96]. SAMR, when compared to UAMR is better in terms of memory management since the
regular structure makes it easier to maintain mesh information. UAMR on the other hand
offers the advantage of being able to finely resolve domains that have sharp gradients but
needs more complicated data structures to maintain the mesh information.

AMR schemes use a mesh or a grid to describe the physical domain and to progressively
increase the grid resolution in certain parts of the mesh based on a set of refinement criteria.
By selectively increasing the resolution only in the interesting part of the domain, AMR
methods optimize the global memory and computational resource requirements. The adopted
refinement criterion in AMR can be, for e.g., a threshold value calculated using the Richardson
extrapolation [19], or the weighted sum of the first and second derivatives of some state
variables as in [203]. Application dependent refinement criterion have also been used: [198]
use the overdensity of baryon and dark matter, [128] adopt a local density criterion while
[184] follow the gradients of certain variables describing the gas flow and refine when they
exceed a threshold value.

In this Section, we discuss both SAMR and UAMR, citing their pros and cons. We mention
some of the applications that make use of both schemes and discuss examples of RT codes as
well. There are quite a few freely available AMR libraries based on these methods that are
used by the astrophysics community, we discuss them briefly and then focus on one SAMR
library, CHOMBO, explaining our reasons for choosing this library for the work done in this
thesis. The terms mesh and grid will be used interchangeably. Also the term cell and element
will be used interchangeably.

20 2. Adaptive Mesh Refinement

Figure 2.8 Pictorial representation of a quad-tree (left) and an octree (right). The cells with
’P’ denote a parent, and those with ’C’ denote a child.

2.2.1 Structured AMR

SAMR makes use of rectangular cells to discretize the domain. The cells can be either stored
independently or in the form of a grid. SAMR schemes are mostly designed for the solution
of systems of PDEs that use FD schemes [24]. Depending on how the cells are stored and
refined, SAMR can be classified into three methods, namely cell-based AMR (CBAMR),
block-structured AMR (BSAMR) and patch-based AMR (PBAMR). All the three methods
are discussed in more detail in this Section.

2.2.1.1 Cell-based AMR (CBAMR)

Cell-based AMR (CBAMR) [204] refines each cell of the grid as and when it is required. The
cell being refined is called a “parent” and the refined cells are called the “children” of the
parent cell. This sort of refinement is called a “tree-based” AMR due to the hierarchical
structure that is formed between the parent and child cells. A tree structure is used to
maintain the parent cells, and link them to the respective child cells. The child cells are in
turn linked to the parent cell, making up a quad-tree (2D) or octree (3D), as shown in Figure
2.8. A set of cells lying in the same position in the tree hierarchy forms a “level”.

In a quad-tree, the parent cell is linked to four child cells, and in an octree the parent cell is
linked to eight child cells. The cells at the “root” level or “base” level have no parent cells,
and the cells that are not covered by any other cells are called “leaves”. Since CBAMR refines
on a cell-by-cell basis, it limits the refined regions to wherever necessary (Figure 2.9). In this
Section we discuss the CBAMR framework, the description of the grid hierarchy formed by
CBAMR, the terminology used to refer to each part of the hierarchy, the time stepping done
in CBAMR and the interaction among different refinement levels.

2.2.1.1.1 CBAMR tree description

Figure 2.10, left panel, shows a sample quad-tree structure formed for CBAMR, with a base
level and two levels of refinement. The cells have been labeled with the level number and a
cell number. The parent cell at Level 0, C(0, 0) has links to four child cells, C(1, 0), C(1, 1),
C(1, 2) and C(1, 3). We use the term “siblings” to refer to child cells of the same parent and
“neighbor” to refer to child cells that are spatially adjacent to a child cell. A neighboring

2.2 AMR schemes 21

Figure 2.9 Selectively refining cells in CBAMR.

Figure 2.10 Left: - Cell hierarchy in CBAMR. Red lines indicate links between parent and
child cells. Green dotted lines are for links between sibling cells. Right: - Edge neighbors in
2D and face, edge neighbors in 3D.

cell can be at the same level of refinement. If the neighbors are at different levels, then their
cell size should not differ by a factor more than the refinement ratio which is the ratio of the
spatial widths, h, of the parent and child cells. Hence, in a quad-tree, a child cell will have
four neighbors along the edge, while in the octree a child cell can have six face neighbors and
12 edge neighbors [160], as shown in the right panel in Figure 2.10. The links between the
siblings in the quad-tree are shown with green dotted lines. Cells C(1, 0), C(1, 1), C(1, 2)
and C(1, 3) lie at the same level and are siblings. Cell C(1, 3) is further refined with four
child cells C(2, 0), C(2, 1), C(2, 2) and C(2, 3) which form the leaf cells at second level of
refinement. Depending on whether a cell is refined or unrefined, these links will have to be
updated accordingly.

The tree structure shown here can be expensive to maintain, and requires updating every time
a cell is refined or unrefined. One has to maintain a sufficiently large amount of information
for a single cell, its parent, child and siblings. Also tree traversal can be complicated if one
has to find a neighboring cell that belongs to another parent cell. There have been some
optimizations suggested in [96] that allow easier tree traversal to find neighboring cells, and
also make CBAMR suitable for parallelisation. The CBAMR implementation, referred to as
the “Fully Threaded Tree” (FTT) in [96], groups the child cells into an “oct” which is then

22 2. Adaptive Mesh Refinement

Figure 2.11 Time stepping on different AMR levels, with time step denoted as Tl,i at the base
level and tl,i at the higher refinement levels, where l refers to the AMR level and i refers to
the time step.

used to form the hierarchy among parents and child cells. The child cells of a single parent
cell can be stored in memory contiguously, which removes the need for a child cell to have a
pointer to its siblings. Also, the child cells can have pointers to the neighbors of the parent
cells, this gives information regarding the neighbors that are not siblings but lie at the same
refinement level. CBAMR has been implemented in many codes and we will discuss them in
some detail in Section 2.2.4.

2.2.1.1.2 CBAMR time stepping and data update

Let’s consider the function U(x, t) that we discussed in Section 2.1. At a given time t0 and
a point in space x0, we can determine the value of the function U(x, t). Now if we advance
the time by a small value ∆t, we can again calculate the value of U(x, t + ∆t). This small
increment in time ∆t is said to be a time step. We can discretize the domain of U(x, t) using
the cell hierarchy in CBAMR. Then to refine the domain, the refinement has to be done in
space and time since the function U(x, t) changes in both space and time. This essentially
means that as the mesh width is reduced on finer levels, the time step on a finer level is also
set to be a ratio of the time step on a coarser level. For example, if the width of the mesh for
a parent cell is h at Level l, then with a refinement ratio of 2, the width of the child cell at
Level l+ 1 is h/2. The corresponding time steps for the levels are then ∆t and ∆t/2. Figure
2.11 shows an example of time stepping on different refinement levels. The arrows indicate
the time step at which all the levels are synchronized before moving on to the next time step,
for example when level L0 is at time step T0,1, all the other levels must be at the same time
step, which for level L1 is t1,2 and for L2 is t2,4.

We now discuss the time stepping and advancing of the solution in the CBAMR framework
on the basis of the FTT implementation discussed in [96]. This solves the Euler equations for
an inviscid fluid flow, and the advancing of the solution for these equations for one time step
is coupled to the refinement and unrefinement of cells on each level. In order to determine
the time step at each level, a global time step is determined using a Courant-Friedrichs-Lewy
(CFL) condition which is a necessary condition for convergence while calculating solutions

2.2 AMR schemes 23

for a PDE [47]. This essentially requires the time step to be less than a certain minimum
value to get numerically correct results. In a 3D scenario, where the octree has leaves whose
coordinates are given by three directions, say (u, v, w), the global time step is given by

∆tglobal = cfl
2−lminL

maxi(maxj(ai+ | Ui,j |))
(2.20)

where lmin and lmax are the minimum and maximum level of the leaf cells, a is the speed
of sound, cfl < 1 is a constant, Ui,j is the velocity of the fluid flow and L is the size of the
domain. The term a is introduced due to the CFL condition which depends on the Courant
number, a dimensionless number given by

Courant number = v
∆t

h
(2.21)

where v is the velocity of the fluid flow, ∆t is the time step and h is the width of the cell.

The maximum value of ∆tglobal in 2.20 is calculated for all leaves i in directions j = (u, v, w).
The time step on each level is then calculated using the value of ∆tglobal given below

∆t(l) = 2lmin−l∆tglobal (2.22)

where l is the level number. Following this, the solution is advanced on each level in each
direction (u, v, w), so that we can know the right and left neighbors of a particular cell in
each direction. Then the values in each cell are updated using the neighboring cell values.

Having a global time step for the whole hierarchy involves going through all the levels in the
tree and doing refinements and advancing at each level. In Figure 2.11, one global time step
is completed when we advance from timestep T0,0 to T0,1 at level L0, timesteps t1,0 to t1,3 on
level L1 and timesteps t2,0 to t2,6 on level L2. In other words, at the end of a global time
step, all the levels must have been advanced to the same point in time. The values in the
parent cells are updated using the values in the child cells only after all the levels reach the
same coarser level time step. Say, for example, we have two levels of refinement with one
level of parent cells and one level of child cells. The data obtained from solving the system
of equations, as specified in [96], is maintained in both the parent and child cells. We need
to take two times steps on the child cells to reach one time step on the parent cell. It is only
after this that the values in the parent cells can be updated by averaging the data from the
corresponding child cells.

This concludes our discussion about the different aspects of CBAMR framework. We now
look at the technique used in the BSAMR scheme to implement these concepts.

2.2.1.2 Block-structured AMR (BSAMR)

The BSAMR approach is another method of doing AMR and was first suggested in [19].
It can be used to discretise the domain of the function U(x, t) (details are given in Section

24 2. Adaptive Mesh Refinement

L0

L1

L2

L3

Figure 2.12 Illustration of Block-structured AMR showing the grids at different levels. L0
refers to the base grid, L1 refers to the grid at one level above and so on.

2.1) over a rectangular grid and the equations for U(x, t) can be solved over the grid. The
grid created at the start of a simulation is called a base grid. Then, depending on certain
criteria, for example a threshold value in the grid cells, parts of the base grid are refined to
a higher resolution. The subgrids at higher resolution are represented as a disjoint union of
rectangular grids. A grid on the finer level may overlie more than one grid on the coarser
level (see Figure 2.12). Here again we refer to the grid at a coarser level as “parent”, the grid
at a finer level as “child”, and “sibling” or “neighbor” to refer to a “child” grid at the same
level. In other words, BSAMR approach also involves a hierarchical structure, but instead of
cells, as in CBAMR, the hierarchy is formed using grids at different refinement levels. Similar
to CBAMR, BSAMR forms a quad-tree for a 2D grid, and an octree for a 3D grid. In the
3D formulation, this approach is also called an “octree” approach due to the octree formed
to link the parent and child grids [208].

In the rest of this Section, we discuss the various components of the BSAMR technique as
discussed in [19]. We discuss the terminology used to refer to the grids at each level, the time
stepping done at each level, the process of clustering of cells that are selected for refinement,
refined grid generation around the selected cells and interaction between grids at different
levels. We also discuss the data structures used to store the grid information at each level.

2.2.1.2.1 Grid description

The BSAMR technique makes use of independent block-structured or hierarchical grids, Sec-
tion 2.1 provides more details on such types of grids. The term ‘independent’ points to the
fact that each grid has separate storage and can be refined or unrefined separately. The
system is discretised using a base grid G0 whose size remains fixed during the simulation.
G(0) itself can consist of multiple grids that are disjoint. Each component of the grid can
be referred to as G(0, j), where j is an index of the grid at level 0. The width of each mesh
point on the base grid is given by h0. The base grid can be refined to higher levels that can
be further refined. The subgrids at each level are then be referred to as G(l, j), where l is
level number and j is the index of the grid. Each subgrid has a mesh width hl which is an
integral ratio of h0. Each point on the finer grid must lie within the coarser grid unless it is
at the physical boundary. Additionally, a finer grid can lie over more than one coarser grid.

An important property of the finer grids in BSAMR is that they are independent from the

2.2 AMR schemes 25

coarser grids and are not intermeshed with them. This reduces the amount of complexity
required to maintain the data structure containing information about the grid hierarchy and
also makes it suitable for parallelisation. The grids at each level can be distributed among
the processors depending on the workload associated with each grid. Efficient domain de-
composition techniques of SAMR grids is a full fledged research area in itself. The interested
reader can find more details in the article by Ralf Deiterding in [149] and references therein.

Now that we have a basic overview of BSAMR grid topology, we look at how time-stepping
is implemented for this scheme.

2.2.1.2.2 Time-stepping and Regridding

BSAMR, like CBAMR, also refines the grids both in time and space. For example, if the
time step on the L0 level is ∆t, then on the L1 level, that has a refinement ratio of 2, the
time step is ∆t/2. So for each time step on the L0 level, the solution has to be advanced on
L1 level by two ∆t/2 time steps to keep both the levels at the same time. Figure 2.11 shows
an illustration on how the time stepping at different levels is done. For L1 to be at the same
time as L0, it has to take two time steps t0 and t1, for L2 this has to be four time steps each
of width ∆t/4.

BSAMR grids, like CBAMR grids, adapt over space and time, i.e., as the system evolves over
time there might be new regions in the domain that need refinement. Also, regions that were
previously refined might no longer satisfy the refinement criteria and hence are no longer
required. This can be checked every few time steps to see if the grid satisfies the conditions
for refinement. The criteria used to refine a grid can be application specific, for example one
could refine a grid based on a threshold value in the grid cells, or on the error estimate of an
equation that is solved over the grid data. If the refinement criteria are satisfied, the grids
have to undergo regridding, a process that needs to be applied to the grids at all levels.

The regridding process starts from the finest levels down to the coarsest levels. This is done
due to the fact that the finest levels hold more accurate data than the coarser levels, and
so need to be checked first to see if they need refinement. If we have level l grids, then the
finest grid at level l is checked to see if a level l + 1 grid has to be created. Then the grid
at level l − 1 is checked to see if it needs refinement, and if so it is refined making sure that
the newly created level l grid contains the level l + 1 grid and so on. At each point, we have
to ensure that the proper nesting conditions explained in Section 2.2.1.2.1 are satisfied. If
a level remains unchanged, then the data for that level is just copied over from the already
existing old data.

The process of regridding involves selecting the cells that need to be refined and generating
a new grid around these cells. We now look at this method in more detail.

2.2.1.2.3 Clustering and grid generation

One of the main process of regridding involves finding out the points that need to be refined
and generating refined grids around these points. To do so, one needs an efficient algorithm

26 2. Adaptive Mesh Refinement

that selects the points to be refined and generates refined grids that cover all the these points
whilst ensuring that the size of the refined regions is kept low. We do not want points on the
coarser regions that do not need refinement, to be selected while generating the refined grids.
The process of clustering, i.e. grouping together tagged cells such that they lie in the same
rectangle (if possible), and grid generation is also done when we refine the grid the first time
around to create the finer levels.

A method to do efficient clustering of selected points and generating refined grids around
these points was developed by [20]. The approach they suggest has been used to do edge
detection. The main point of the algorithm includes tagging points that need to be refined
and clustering them so that a rectangle covers all these points. To decide where the boundaries
of this rectangle lie, the edge detection algorithm is used. The ”edge” of the rectangle is taken
to be the point where there is transition from tagged regions to non-tagged regions. However,
detecting this edge is not a trivial task, as a single non-tagged cell in itself might not indicate
a transition. There might be small parts of non-tagged regions that form a kind of ”hole” in
between tagged regions. The algorithm has to efficiently decide if this is an actual edge and
whether to include these points in the rectangle or not.

A major consideration while generating these rectangles is the fill ratio, Fr, a number between
0 and 1, which denotes the efficiency with which the tagged cells are clustered and covered by
a rectangle. If the value of Fr is e.g. 0.8, then the rectangles generated are smaller in size, but
filled with a higher percentage of tags. This however also increases the number of rectangles
generated. If the ratio is low, then the rectangles can be larger in size, but will contain points
that do not need refinement. Also, it is necessary that the rectangles generated are disjoint,
so that a point does not belong to two rectangles. Figure 2.13 is an illustration of rectangles
formed around clustered points. These rectangles will be refined to form the refined grids.

Once the new grids have been generated, data is set on these grids via interactions between
the grids at different refinement levels.

2.2.1.2.4 Coarse-fine interactions

The data in the different refinement levels in the AMR hierarchy are coupled to each other,
and need to be updated every time a level is changed. This happens in two situations. First,
when a fine level is created, the data from the coarse level is interpolated on to the fine level.
This is done at the boundary between the coarse and finer levels as well. Second, during
advancement of the solution, after all the levels have been advanced upto the same time step,
the solution is updated on the coarser grids. The data on the finer grid is averaged on to
the coarser levels below. The interpolation of data at the coarse-fine boundaries introduces
errors. So the cells that lie on the coarser levels near the coarse-fine boundaries need to be
updated using divergence operators to maintain conservation of quantities across levels.

In order to communicate data among neighbors and also while setting data on the finer levels
from the coarser levels, ghost cells are used at the grid boundaries. If the ghost cells on the
finer levels overlap the data on any of their neighbors, then this data is copied over from the
neighbors.

2.2 AMR schemes 27

Figure 2.13 An illustration of the clustering of points to form enclosing rectangles [20]. The
black dots show the points that are marked for refinement, and the white dots are the points
that do not need refinement, but are part of the rectangle.

2.2.1.2.5 Data structures used for BSAMR

Now that we have the whole framework of BSAMR explained, we describe the data structure
used in BSAMR to form the hierarchy of grid levels. A tree structure is used to link the
grids at different levels. The grid at base level forms the root of the tree and has links to its
children. The child nodes in turn have links to their parents and children. A link between
child nodes at the same level, or siblings, can also be maintained. Note that this is not a
quad-tree or an octree, as typically a grid at a particular level may have many refined grids
depending on the refinement criteria and how the refined grid generation has been done, as
discussed in Section 2.2.1.2.3. This means that we cannot have a fixed array allocation to
point to the child nodes, and need a dynamic allocation method to keep track of the child
nodes that are created. This can be done by using a linked list, which can add child nodes
or remove them depending on whether a grid is refined or unrefined. Each node in the linked
list must contain enough information about the grid it refers to, for example:

• Level at which this grid is located.

• An unique id for the grid.

• Pointers to the parent grids.

• Pointers to any siblings.

• Pointers to any child grids.

• Size of the grid and its start and end coordinates with respect to the parent grid.

28 2. Adaptive Mesh Refinement

G(0,0)
G(1,0)

G(2,0)

G(3,0)

G(1,1)

G(2,1)

G(0,0)

G(1,0) G(1,1)

G(2,0) G(2,1)

G(3,0)

Figure 2.14 Left: Grids at different refinement levels in the BSAMR framework. Base grid
G(0, 0) contains the refined grid at different levels denoted by different colors, Level 1 (red),
Level 2 (blue) and Level 3 (green). Right: The tree structure created to link these grids.
Red arrows link the child and parent grids, the dotted green arrows link the siblings at the
same refinement level.

• Array to store the data.

The left panel in Figure 2.14 shows some of the grids at different levels, denoted by different
colors. The base grid is denoted by G(0, 0), grids G(1, 1), G(1, 2) are at Level 1 (red boxes),
grids G(2, 0), G(2, 1) are at Level 2 (blue boxes) and grid G(3, 0) is at level 3. The right panel
in 2.14 shows the tree structure formed to link all these grids. The grids G(2, 0) and G(2, 1)
lie over G(1, 1) and are both siblings. Grid G(2, 1) is the parent of G(3, 0).

We have now looked at the different aspects of the BSAMR framework, we now look at a
specific case of BSAMR that has a slightly different method of refining grids.

2.2.1.3 Patch-based AMR (PBAMR)

Patch-based AMR (PBAMR) incorporates the advantages of both CBAMR and BSAMR. In
BSAMR, the grid is refined whenever a cell within the grid satisfies the refinement criteria. In
CBAMR, individual cells that satisfy the refinement criteria are refined. In PBAMR, the cells
that need to be refined are clustered together to form rectangular patches. Hence the patches
are placed over the coarser levels only where they are required [50]. The main difference with
respect to BSAMR is that the patches at the same level can be different in size and can lie
over multiple parent grids. Figure 2.15 shows an example of grids created using the PBAMR
framework.

Since a grid at a finer level in the PBAMR framework can lie over many coarser grids, or in
other words can have more than one parent, we need to store a list of pointers to all parent
grids. The left panel in Figure 2.15 shows the grids at different levels, here a tree structure
can no longer be formed since a one-to-one relationship between a child and a parent no
longer exists. We can still link the grids at different refinement levels, this is shown in the

2.2 AMR schemes 29

G(0,0)

G(1,0)

G(1,1)

G(2,1)

G(2,0)

Figure 2.15 Left: Grids at different refinement levels in the PBAMR framework. Base grid
G(0, 0) contains the refined grid at different levels denoted by different colors, Level 1 (red)
and Level 2 (blue). Right: The hierarchical structure created to link these grids. Red
arrows link the child and parent grids, the dotted green arrows link the siblings at the same
refinement level.

right panel in Figure 2.15. The grid G(2, 1) lies over G(1, 0) and G(1, 1), i.e., is a child of
both grids and so has a pointer to each. In turn both the grids G(1, 0) and G(1, 1) are the
parents of G(2, 1) and have a pointer to it.

Similar to the BSAMR framework, the grids at different levels in the PBAMR framework
need to satisfy the “proper nesting” requirement. This states that

1. A grid at a finer level must be contained within a coarser grid, that is, the finer grid
must start from the end point of a cell in the coarser grid. It cannot lie in between two
coarser grid cells.

2. Given a level l − 2 cell and level l cell, there must be at least one level l − 1 cell that
lies in between these two cells.

Figure 2.16 shows some examples to illustrate the nesting criteria. The left panel at the
top shows a grid where the refined cells do not cover the coarser cells completely, this is an
invalid configuration. The panel on its right shows a valid scenario where the coarser cells
are properly covered. The left panel at the bottom shows a grid with three refinement levels.
The box at level L2 lies on the boundary between levels L1 and L0 which is again invalid.
The panel on its right shows a valid placement of grids.

The PBAMR framework follows the same approach as BSAMR for its time stepping and
regridding operations. At the end of each time step the data on all levels are updated using
the coarse-fine interactions mentioned in Section 2.2.1.2.4. The term “patch” and “block”
have been used interchangeably in some literature ([35], [4], [154], [184]). Henceforth we will
be using the term “patch” and “block” interchangeably to refer to a region of the domain. The
refined “patch” or “block” is overlaid on a coarser grid that satisfies the refinement criteria.
All “patches” or “blocks” are disjoint and are oriented along the coarser grids.

30 2. Adaptive Mesh Refinement

L2

L1

L1

L0

L2

L1

L1

L0

Figure 2.16 Illustration of “proper nesting” criteria of grids. The panels on the left show grid
configurations that are invalid. The ones on the right are valid. See text for more details.

To summarise, we have taken a look at the different SAMR methods and the technique used
to implement the AMR framework within each method. SAMR methods, in general, offer the
advantage of ease of memory management and parallelisation due to their regular structure.
However, for more complex geometries, UAMR methods are used. We next look at this
framework and the techniques used to implement it.

2.2.2 Unstructured AMR

In Section 2.1.2 we have looked at the different techniques used to generate unstructured
grids. We now look at the different methods adopted to introduce AMR schemes into such
grids. The motivation to have adaptive methods on unstructured grids is the same as that
for structured grids, i.e., to increase the resolution in the areas of interest so that parts of the
domain that exhibit rapid changes can be represented with higher resolution. This improves
the efficiency of the code, at the cost of increasing its complexity. However, the gain in
efficiency more than offsets the effort required to develop adaptive unstructured mesh codes.

Mesh adaptivity for unstructured grids can be broadly classified into three types depending
on how the existing mesh is changed. These include

1. The ’r’-refinement, which refines the locations of the nodes; this does not change the
total number of mesh points, but instead clusters the cells in the regions of interest.

2.2 AMR schemes 31

The connectivity information of the cells is also not changed.

2. The ’h’-refinement, which refines a “coarser” cell into multiple “refined” cells; the overall
topology of the mesh does not change as the refined cells cover the space occupied by
the coarser cell. This however increases the total number of cells in the mesh. This
method can be further classified into Isotropic and Anisotropic refinement. Isotropic
methods refine a D dimensional mesh in all dimensions, for example a 2D mesh will be
refined in both the (x, y) directions. Anisotropic methods instead are used when the
mesh needs to be refined in one particular direction, for example, a flow feature which
is limited to one direction.

3. The ’p’-refinement, which increases the resolution by increasing the order of the poly-
nomial approximation within each cell. This does not change the total number of cells
in the mesh or the mesh itself.

4. The ’hp’-refinement method, that combines both the ’h’ and ’p’-refinement methods.

The ’h’-refinement method falls under the category of UAMR. It has been found to be suitable
in parallel applications and is widely used. Hence we look at the different aspects of UAMR
schemes required to generate the new mesh in addition to the existing mesh. These include
error estimation to decide which cells need to be refined and mark them for refinement. The
mesh itself is then modified using different techniques which will be discussed as well.

2.2.2.1 Error estimation

UAMR methods are mostly used for FE and FV methods. Here we briefly discuss the error
estimation methods for both cases. Initial error estimators for FE based methods were a priori
or interpolation methods [55], but these were not found to be accurate in situations where
the domain had complex features, for example, boundary layers. The need for an accurate
estimation of the error led to the development of a-posteriori error estimation methods [3],
which use the computed solution to check if the mesh needs to be refined further.

The important factor in error estimation is the error estimator ητ for each cell (or element)
Tτ in the mesh. This depends on the solution calculated in Tτ and its neighboring elements
in addition to the boundary conditions specified for the problem [7]. Then

EZ =

{ ∑
τ∈Tτ ,τ⊆Z

η2
τ

}1/2

(2.23)

where EZ is the estimate of the error in a subdomain Z. If eh = uEX − uh where uEX and
uh are the exact solution and the FE solution of the problem respectively, then the aim is to
satisfy the criteria below

C̃LEZ ≤ |||eh|||Z ≤ C̃UEZ (2.24)

32 2. Adaptive Mesh Refinement

where |||eh|||Z is the norm of the error in the subdomain Z and C̃L, C̃U are constants with
values close to 1. To allow for the estimator to be used in AMR, 2.24 has to be valid in small
subdomains as well.

A good error estimator must necessarily have a computational cost smaller than the cost
of computing the solution, and should be able to find an error estimate for different mesh
spacings. There are different types of error estimators, which can be broadly categorised as

(a) Residual error estimators that depend on the solution of a local problem that is analoguous
to the higher-order FE approximation of the original problem. These are again categorised
into implicit or explicit estimators [3]. This has also been used in the FV method [90].

(b) Flux-projection error estimators that calculate the difference in the flux between the
original FE estimate and that obtained by post-processing the FE solution [207].

(c) Extrapolation error estimates that compare two FE solutions on different meshes to get
an error estimate [182].

(d) Interpolation error estimates [56].

a-posteriori error estimation methods for FV schemes are mostly based on residual error
estimates, however goal-oriented error estimation schemes that estimate the errors only for
variables of interest are also being used [37].

Once the error estimator has been applied, the elements that need to be modified can be
identified and the mesh can be modified accordingly.

2.2.2.2 Modifying the existing mesh

The procedure to modify an existing mesh to generate new ones depends on the error in the
calculated solution as computed by the error estimator. Any refinement done to the mesh
must result in a conforming mesh. In 2D terms this essentially means that the intersection
of any two triangles should either be a line segment connecting two points, a single point or
an empty set.

One method to divide a triangle is to subdivide it by determining the centroid of the triangle
and using it to bisect the edges of the triangle, this approach can result in a nonconforming
triangle and also the angle between the edges can approach 0 or π. This can degrade the
quality of the FE method [93].

Another method that is used is the bisection method, which divides a triangle in half to
generate two triangles. Once an element has been bisected, the resulting mesh is checked to
see if it is conforming. If not, then the nonconforming elements are also bisected till the final
mesh is conforming [93]. A third method, called regular refinement, suggested by [12] divides
the triangle into four smaller elements by joining the centroid with all edges. The triangles
that share a bisected edge are marked as “green triangles” and are divided as well. Figure 2.17
shows the three methods being applied to two triangles. In each case, the resulting triangle
is nonconforming.

2.2 AMR schemes 33

Two subdivisions

Bisection

Regular refinement

Modified bisection algorithm

Figure 2.17 Different schemes to divide triangles into multiple elements. Top: Two subdivi-
sions along the triangle centroid [93]. Second from top: Triangle bisection that divides a
triangle into two exact halves [93]. Third from top: Regular refinement of triangles, using
green edges. Bottom: Mesh refinement based on a modified bisection algorithm [156].

In [156], another mesh refinement technique was suggested that bisects a triangle based on
its longest edge. It marks the elements to be refined using error estimators and refines them.
Any other nonconforming triangles are also marked for refinement. This is done till the mesh
is conforming. The number of iterations to generate a conforming mesh, using this technique,
is finite and the angles in the resulting mesh elements lie within the range (0, π). A variation
of this technique first bisects the triangle along the longest edge, and any nonconforming
edges are bisected again even if they are not the longest. Figure 2.17 (last panel) shows this
modified version of the algorithm; the first bisection is along the longest edge and subsequent
bisections might not follow this rule. An alternative to this algorithm was suggested by
[78] where the triangle is bisected along the edge that has the maximal value of its length
multiplied by a “mesh density function” defined, a priori, at the middle of the edge.

In the case of 3D grids, conformity of the mesh implies an additional constraint that the
intersection of two tetrahedra is a triangle. An extension of the algorithm suggested in [156]
was suggested by [158] for the specific case of tetrahedra. However, it was not clear if the
quality of the mesh degraded over time due to the refinement and also if a finite number

34 2. Adaptive Mesh Refinement

of similar tetrahedron are generated. The methods suggested by [9] and [112] also generate
tetrahedra similar to the one in [158] and provide proof that the resulting elements are similar
and finite in number.

As a final step to mesh adaptation, we mention coarsening of the mesh which is useful in
time-dependent computations where we unrefine a region that was refined in the previous
step. This has to be done carefully in the case of triangles and tetrahedra since they cannot
be simply merged and form a conforming mesh. A method suggested in [157] unrefines the
mesh elements using the bisection method.

Now that we have given an overview of SAMR and UAMR methods, lets look at the advan-
tages and disadvantages of each method.

2.2.3 Pros and cons of SAMR and UAMR

From our discussion above, we know that SAMR and UAMR methods are suited to certain
problems and have their own advantages in terms of efficiency, accuracy of solution and effort
required to develop such a code. In the absence of any adaptivity, unstructured meshes require
more complex data structures than structured grids, and the numerical methods for solving
the equations on such meshes are also more complex. When adaptivity is taken into account,
both meshing schemes have equal complexity. UAMR methods provide an advantage of being
able to generate meshes that match the specific discretisation of the problem. Also the meshes
generated can align with the geometric features of the problem being looked at [110].

The regularity of grids in the SAMR approach make it possible to develop fast and efficient
computational kernels based on FE and FV methods. This is not the case with UAMR
due to the irregular connectivity among the different grid elements. SAMR schemes also have
relatively less memory requirements due to the implicit connectivity among the grid elements.
In contrast, UAMR schemes need to maintain an explicit connectivity graph thus consuming
more memory.

The presence of grid blocks increases the level of granularity in SAMR, parallelisation of this
method hence requires a proper load balancing scheme to ensure that the grids are distributed
evenly among the cores. Repartitioning the entire grid is not required in SAMR, only the
grids created in the new level need to be again distributed among the cores. Load balancing
for UAMR schemes is relatively easier as the grid is partitioned using individual elements.
However, the repartitioning of data can result in large scale migration of data among cores
and requires good strategies to ensure data locality [81].

SAMR schemes maintain numerical accuracy by use of interpolation schemes and interactions
among the grid levels which make it harder to employ higher-order schemes. UAMR methods
on the other hand do not require any such interpolation schemes since the conformity of
the mesh is ensure throughout [33]. Unlike SAMR methods, UAMR methods make use of
mesh generation and mesh insertion schemes, as discussed in Section 2.1.2 to introduce new
elements. This requires additional checks to ensure that the mesh quality is preserved [81].

This concludes our discussion about the different types of AMR schemes that are employed.
We now take a look at some of the applications of AMR, focusing on examples from the
astrophysics community.

2.2 AMR schemes 35

2.2.4 AMR based applications

AMR has been widely used in many scientific applications such as numerical relativity, global
weather modelling and nuclear fusion modelling [149]. The field of astrophysics is particularly
well suited for the use of AMR due to the large dynamic ranges involved. Examples range
from simulating a coronal mass ejection from the solar surface [75], the expanding front
of a supernova explosion [64], gravitational collapse of cold, dense gas to form stars [99],
reionisation from Pop III stars [198], to studying the effect of reionisation on star formation
in low-mass dwarf galaxy haloes [169].

A large number of simulations have been done to understand the formation of the first struc-
tures and the subsequent galaxy formation and evolution [see 103, and references therein]. To
simulate collisionless dark-matter particles N-body methods are used [6, 28, 79, 97, 166, 188],
while hydro simulations follow the gas dynamics resulting in formation and evolution of ob-
jects like galaxies and stars [164, 171]. RT simulations to study radiative feedback effects are
usually used as post-processing tools for hydro codes or N-body codes; they form a major
aspect of the study of structure formation in general, and the IGM reionisation in particular
(Gnedin and Abel 69, Iliev et al. 87; see also Ciardi 38 and references therein). Such large scale
hydro and RT simulations require a huge amount of computational and memory resources to
be able to handle spatial resolutions that span several orders of magnitude. This problem has
been resolved to a great extent by the use of AMR schemes [see 31, for a discussion].

The Adaptive Refinement Tree (ART) code by Kravtsov et al. [102] is an N-body code used
for cosmological simulations. The code has been used to study the structure of dark matter
haloes with higher resolution. The code makes use of the CBAMR framework to do AMR.
The tree structure used to link the parent and child cells is similar to the approach in FTT
where the child cells are grouped in a block called “oct”. A doubly linked list is used to link
the parent and child cells, and refinement and unrefinement of cells can be done to adjust the
tree structure.

Many hydro codes make use of AMR schemes to carry out gas dynamic simulations over a
range of spatial scales. Some of them are also coupled with RT schemes to perform self-
consistent simulations where the RT feedback is accounted for in the dynamical evolution
of the gas. The Hydrodynamics Adaptive Refinement Tree (HART) code [71, 102] uses the
OTVET approximation for the 3D RT implementation [69], while the cosmological hydrody-
namics code RAMSES [159], designed for simulations of structure formation, incorporates RT
using the M1 closure formalism [109]. Both HART and RAMSES make use of the FTT described
in [96] to implement AMR. RAMSES makes use of the CBAMR framework since the domain has
a very complex geometry because of the hierarchical structure formed due to halo clumping.
The child and parent cells are linked to each other with a doubly linked list which makes it
more efficient to modify the tree. One notable difference between the FTT implementation
in [96] and [102] and the approach in RAMSES is that no unrefinement criteria are applied to
the cells in RAMSES.

The RAGE radiation hydrodynamics code [68], makes use of the CBAMR method to implement
AMR. It makes use of an octree structure to refine the parent cell into eight child cells. Cells
can be refined and unrefined according to the refinement criteria, which adds or removes child
cells from the cell hierarchy. The load balancing is done by distributing the cells among the

36 2. Adaptive Mesh Refinement

processors, by using space filling curves to determine the cell to processor allocation. RAGE

has been used in models that study the impact of asteriods on a Martian surface [148], and
also to study the interaction of jets with clumpy media where the underlying structure being
studied is similar to that found in jets from young stars [197].

As a final example (see also [149] for more examples) we mention ENZO [30, 198], a well known
code in the cosmological community which uses hydro and N-body schemes coupled with
an adaptive ray-tracing scheme implemented in the HEALPix library [1, 72]. The interested
reader can find more examples in [88].

AMR can be important also in Magneto Hydrodynamics (MHD), for example in CHARM [128]
AMR is necessary to include gravity and collisionless particle dynamics, while in FLASH [62]
it is used to make detailed studies of thermonuclear flashes. The PLUTO code [127], is a high
resolution, multi-physics code used for solving equations of MHD and has been used to study
accretion disks and stellar and extragalactic jets.

Enabling AMR in a stand-alone RT code makes it suitable to post-process the output of
many grid-based hydro codes that use the same AMR logic. By representing the regions
of interest with high resolution grids, we can follow the growth of the H II regions around
the ionising sources and understand how RT feedback effects contribute towards structure
formation in grid-based hydro codes. A number of stand-alone RT codes implementing AMR
exist: some examples are RADAMESH [35], which is an MCRT code with a ray-tracing scheme.
It uses AMR to accurately represent the Ionisation fronts (I-fronts) propagating away from
the sources. FTTE [153] is another example that implements a scheme to do RT on refined
grids in the presence of diffuse and point sources, and finally IFT [5] which has been developed
to explicitly follow the I-front around a point source. [116] have developed an MC RT code
for carrying out simulations on the AMR grids generated by the ENZO.

All the examples mentioned above make use of the SAMR framework. In general, RT codes
are used as post-processing tools for hydro codes. The trend till recently has been to use
structured grids along with either the SPH method [150] or SAMR based methods to do
adaptive hydro simulations. As a result RT codes have also adopted the same methodology.
However, recently some hydro codes have made use of UAMR as well for being able to
resolve regions with more accuracy when compared to SAMR. The AREPO code makes use
of a moving unstructured mesh created using Voronöı tessellations [172]. TESS [58] is another
MHD code that uses unstructured grids to solve the equations of compressible hydrodynamics
for relativistic and non-relativistic fluids. A few RT codes that make use of unstructured grids
also exist; [140, 141] code is an RT code developed for use with dynamic, unstructured grids.
SKIRT [10, 34] is another code that also makes use of Voronöı tessellations to do RT on
unstructured grids, but is used as a post-processing tool and does not implement adaptivity
within the RT. Similarly, the LIME code [29] is another example that uses unstructured grids
and has been used for modeling ALMA 3 data.

Our discussion so far makes it evident that AMR methods are in wide use in the astrophysics
community and will continue to be so. With the availability of increased computing power,
the aim is to be able to carry out simulations that take into account the full dynamic range
in space and time required to understand the theory of large scale structure formation. AMR

3http://www.almaobservatory.org/

http://www.almaobservatory.org/

2.2 AMR schemes 37

is an important tool to achieve this goal. There are a number of computational groups that
implement the AMR framework in freely available libraries, this allows the users to quickly
introduce AMR into their codes without much effort. We now look at some of these libraries
and their applications.

2.2.5 AMR libraries

There are a number of free AMR libraries available based on the different techniques/frame-
works discussed above. Each has its own advantage due to the framework it is based on.
Many codes that use AMR have their own AMR implementations as this makes it easier
to tailor the implementation to the specific application and makes a code easily manageable.
Also, support for libraries from developers is discontinued sometimes, which could in principle
make any library related issues difficult to resolve. Nevertheless, AMR libraries are widely
used as they save a lot in terms of development time, and are done by experts in this field.
We briefly discuss the libraries below, the framework they are based on, and mention some of
the applications that use them. The list is by no means exhaustive, and only serves to give a
general idea of the trend that is followed in the design and development of such libraries.

CHOMBO [2] and the SAMRAI 4 library [199] are freely available AMR libraries, written in C++,
which are based on the BSAMR framework. The libraries are organised into classes, each
of which provides a specific function necessary for doing AMR. This makes it easier for a
user to incorporate AMR into their application as they need to only focus on implementing
the physics. The grid generation and management, refinement and time-stepping are taken
care by the library. Also, output files can be written out in the HDF55 format that can be
visualised using Visit 6. Both libraries are also useful for MPI-parallelised applications.

A salient feature of CHOMBO is that it makes use of Fortran in the computation of intensive
parts of the library where data stored in multi-dimensional arrays need to be used. It also
takes care of the interfacing required between C++ and Fortran. CHOMBO makes use of macros,
that depending on the dimensionality required for the application, ranging from 1D to 6D,
can tailor the library code. This makes the code essentially dimension independent. The user
while configuring CHOMBO can select the dimension required for the application and does not
need to do any other changes.

The PARAMESH 7 library by [119], which is freely available under the NASA-wide Open-Source
software license, is also based on the BSAMR framework. PARAMESH is written as a set of
Fortran90 routines and also provides a C interface. The library manages the grid structure
by forming an octree where the parent grids have a link to the child grids and their neighbors.
The grid that satisfies a refinement criteria undergoes refinement repetitively, forming child
grids, until a certain resolution is reached. This library is also suitable for MPI-parallelised
applications.

The BEARCLAW package [49], which is an extension of the AMRCLAW package [18], written in For-
tran90, also makes use of the BSAMR framework and implements a tree structure to maintain

4https://computation.llnl.gov/casc/SAMRAI/SAMRAI_Software.html
5TheHDFGroup,http://www.hdfgroup.org/HDF5
6https://wci.llnl.gov/codes/visit/home.html
7http://www.physics.drexel.edu/~{}olson/paramesh-doc/Users_manual/amr.html

https://computation.llnl.gov/casc/SAMRAI/SAMRAI_Software.html
The HDF Group, http://www.hdfgroup.org/HDF5
https://wci.llnl.gov/codes/visit/home.html
http://www.physics.drexel.edu/~{}olson/paramesh-doc/Users_manual/amr.html

38 2. Adaptive Mesh Refinement

the hierarchy of grids at different levels. AMROC [53] is another library that implements the
BSAMR framework and is written in C++.

There are also libraries that implement AMR on unstructured meshes, PYRAMID is a freely
available library [114, 136] that can be used to generate unstructured grids for use with parallel
FE and FV models. The library makes use of ParMetis [95] to partition the unstructured
grids across the computer cores. SUMAA3D [60] is an MPI based library that provides routines
that handle mesh generation, AMR and mesh optimisation. The library is interfaced with the
solver package PETSc [11]. libMesh [98] is another library for solving PDEs using unstructured
meshes on serial and parallel platforms.

We would like to highlight the fact that the codes CHARM and PLUTO make use of the CHOMBO

library to implement AMR. The FLASH code was, until a few years back, using the PARAMESH

library to implement AMR. However, PARAMESH is no longer supported and support for any
bug fixes is no longer provided. Hence, developments to enable FLASH to make use of the
CHOMBO library are underway. Another point to be noted is that FLASH is written in Fortran
and CHOMBO is a C++ library, which demonstrates that the library is interfaceable with other
codes. Hence, we will discuss the CHOMBO library in more detail.

2.2.6 CHOMBO Library

CHOMBO is a freely available AMR library; it is being actively developed at Lawrence Berkeley
National Laboratory (LBNL) and implements a PBAMR scheme on a C++ framework to
solve systems of hyperbolic, parabolic and elliptic partial differential equations; CHOMBO has
been successfully used by many gas dynamic codes such as CHARM [128], FLASH [62] and PLUTO

[127].

Before an application uses AMR, it is important to understand the reason why AMR is being
used in a particular code, and whether it provides any advantages. Once it is accepted that
AMR is required, a library can be selected which should be easy to use, and also can be used in
parallel applications, to provides any benefits of AMR. We discuss some of the performance
studies that have been done for CHOMBO with respect to its efficiency and scalability in a
parallel application, in Section 2.2.6.1.

CHOMBO is organised into a hierarchy of classes each of which provide a specific functionality.
In subsection 2.2.6.2 we discuss these classes in more detail, along with the terminology used
in the library to describe the BSAMR method by [19].

2.2.6.1 CHOMBO feasibility

In this Section we discuss some of the feasibility studies that have been done for CHOMBO.

There have been studies done with the CHOMBO library on the Cray XT4 and XT3 systems
to determine its scaling efficiency on a large number of cores [189]. The benchmark code
chosen was an explicit method for unsteady gas dynamics in 3D and CHOMBO optimisations
were applied to this benchmark code. The library developers opted to do benchmarking based

2.2 AMR schemes 39

on “replication scaling” where a grid hierarchy and data that was set on a certain number
of cores, is replicated over all the cores on which the code is being benchmarked. In other
words, multiple copies of the same simulation are run on multiple cores.

The benchmark code used AMR to only refine the grids once. There was no time dependent
grid refinement or “regridding” done, which is usually the case with the BSAMR approach.
Also the time taken to setup the grids initially were not taken into account for the benchmark.

The optimisations done to CHOMBO focused on the load balance among cores and the inter-core
communication for grid metadata information. To optimise load balancing, the developers
used Morton ordering [131] to split the domain among cores. This was found to be better
than the algorithm based on the Kernighan-Lin algorithm [111] used earlier.

The next optimisation was done to the grid metadata contained in each core. Each core needs
to have the information about the neighbors of the grids it contains. This global metadata
information is stored as a vector of tuples, where each tuple contains the box id and the
core id containing that box. This information is necessary while copying data at the grid
boundaries where ghost cells are placed to store boundary data. Using this metadata to get
the grid information was found to be inefficient while scaling to a large number of cores. So
optimisations that included caching the metadata were done to the library.

With the above mentioned optimisations, the benchmark code was run on cores ranging
from 128 to 8192. The simulations consisted of three AMR levels, one base level and two
refinement levels, with a refinement ratio of four among each level. The domain size was 163

on the coarsest level, and the run was done for one coarse level time step, which meant 16
time steps on the finest level. It was found that the parallel efficiency achieved on all the runs
was around 96% on the Cray machines. This is very hard to achieve and proves that CHOMBO
is well suited for parallelisation on a large number of cores.

In another optimisation exercise undertaken by the developers, the metadata storage was
further improved [190]. In the original approach, the metadata pertaining to the grids in-
creased in size as the number of cores and number of grids in the simulation increased. This
was changed to use a bitmap that stored a 1 if a grid belonged to a core and 0 if not. This
bitmap was then compressed and stored. This optimisation was found to improve the memory
performance quite substantially even on 196K cores.

From the above studies, it is evident that the library scales efficiently on a large number of
cores. This is an important requirement for an AMR library which ensures that applications
using it can be scaled on a large number of cores. Next, we look at the PBAMR framework
in CHOMBO to get an overview of how it is implemented in the library.

2.2.6.2 PBAMR framework in CHOMBO

CHOMBO is based on the PBAMR framework and discretizes the problem domain in rectangular
grids. The discretization can be cell-centered, face-centered or vertex-centered as shown in
Figure 2.18. The grids generated by CHOMBO satisfy the “proper nesting” requirement (Section
2.2.1.2 provides more details about this criteria).

40 2. Adaptive Mesh Refinement

Figure 2.18 Vertex , Cell and face ,) centered points on a grid, CHOMBO design document
[2]

We need to define some terms here, to refer to the data that is stored in the grids. From a
numerical point of view, the equations that are solved on a grid at a certain level are done
only on those regions that are not covered by finer grids. Such a region is said to be “valid”.
Any part of a grid that is covered by finer grids is said to be “invalid”. This indicates that
the data in the “invalid” region does not represent the exact solution to the equations being
solved, and that the overlaying finer grid should be used. Additionally, a “composite array”
is the collection of valid regions for each level of refinement [128].

The library is organised into hierarchy of classes each of which provides a specific func-
tionality for incorporating AMR into a stand-alone code with minimum effort, so that the
code developers only need to focus on implementing the physics. Some necessary but rou-
tine tasks associated for example with grid generation and management, its refinement and
time-stepping, are automatically managed by the library. Hereafter we describe some of the
functionalities implemented by CHOMBO and the classes associated with these functionalities.

• In-memory data organisation and grid processing. The IntVect class represents
points on the rectangular lattice ZD where D is the dimension of the grid, which in our
case is 3. The IntVectSet class holds a set of IntVect points to represent the coordinates
of the grid. The Box class represents a rectangular grid in ZD and can be coarsened or
refined. At each refinement level, the grid is represented as an array of disjoint boxes
(DisjointBoxLayout) which can be traversed with iterator classes (e.g. the DataIterator
and LayoutIterator classes) to access single object instances. Boxes that are neighbours
of some other specific box can be accessed instead by the NeighborIterator.

To store the data in each grid cell we used the Fortran Array Box class (FArrayBox),
which uses Fortran arrays. The data in FArrayBox can be viewed as a D + 1 array.
The extra dimension is added to indicate the different physical variables or components
that can be stored in the D dimensional array. For example we can store the gas
temperature or particle velocity in the FArrayBox and they form two components.
The user can either refer to each component separately or together as a set and carry

2.3 Summary 41

out arithmetic operations on them. The class also offers the advantage of providing a
Fortran pointer to each component stored in the grid and speeds up operations of data
access and update. The Interval class refers to the complete set of components that are
stored in the grid.

• AMR hierarchy management. CHOMBO provides the AMR class to handle the differ-
ent refinement levels of the SAMR framework. Each refinement level in the hierarchy
is represented by the AMRLevel class with pointers to the relevant parent or child level
for easy traversal.

• Interactions between different refinement levels. To maintain continuous gra-
dients of the physical quantities stored across different levels, AMR schemes adopt
interpolation and averaging methods at the interface of grids. To initialize the fine grid
from the existing coarse grids the FineInterp class can be used, while to update the
coarse grids with the data on the finer grids the CoarseAverage class is adopted. Here-
after the term “refinement ratio” will define the ratio of the spatial widths between the
cells in two adjacent levels of the AMR hierarchy.

• Data storage and grid data I/O. CHOMBO uses the HDF5 data format standard for
I/O of data, this can be easily post-processed and visualised by using state-of-the-art
visualisation software like Visit or Paraview which have CHOMBO plugins available.

2.3 Summary

In this Chapter we have looked at the different methods used to generate structured and
unstructured grids and the advantages each type provides. We then looked at the different
AMR schemes that are available to carry out adaptive refinement within grids. These are
important to model the evolution of a physical system over time, and also to focus compu-
tational resources where required. We discussed a few AMR libraries and their use in the
astrophysics community. We also looked at a few examples of hydro and RT codes that make
use of AMR. It is clear that RT codes stand to benefit from using AMR schemes in order to do
high resolution simulations. So, we have discussed in some detail the different AMR libraries
that are available and then focused on one open source AMR library, CHOMBO, highlighting its
salient features. Next, we will take a look at a RT code called CRASH and the techniques for
using CHOMBO library with this code to carry out efficient RT simulations.

Chapter 3

Radiative Transfer on static, nested
grids in CRASH

In Chapter 1 we have discussed the role of RT feedback effects on the IGM reionisation
and large scale structure formation in the universe. In Chapter 2 we mentioned a number of
examples of hydrodynamic codes coupled to RT codes and also stand-alone RT codes that are
used in post-processing. One such stand-alone RT code used in post-processing with hydro
codes is CRASH, it adopts the MC scheme to do RT simulations. CRASH has been applied to a
number of scenarios, for example to study H and He re-ionisation [41, 42, 43] and the role of
RT effects on a fluctuating UV background [122].

From the previous chapters, we know that AMR is a widely used methodology in the scientific
community to focus computational resources where needed. We have also looked at a large
number of examples from the astrophysical community that make use of AMR. It is clear from
the discussion that hydrodynamic codes and stand-alone RT codes stand to benefit from the
advantages that AMR provides. This incentivises us to develop CRASH so that it can also gain
from the AMR technique. SAMR is the preferred choice of most RT codes since they can then
be easily coupled to a hydro code, most of which also use SAMR. Also, many applications
make use of the BSAMR method for implementing AMR in their applications, the benefits
being better memory management and easier parallelisation due to the disjoint grids that
are formed at each level, which makes it easier to split the domain among processors. The
memory management in BSAMR is easier when compared to CBAMR as the hierarchy has
to be maintained only for grids and not at a cell level. This can be complex in CBAMR if
there are many cells that are refined. This motivates us in choosing the SAMR framework,
specifically the BSAMR framework, for incorporating AMR into CRASH as well. Also, we have
seen that the CHOMBO library is suitable for our goal due to its design, its scalability and the
fact that it is already being used by hydro codes. With this aim in mind, we have developed
CRASH-AMR, a novel implementation of CRASH which uses the CHOMBO library [2] to perform
RT simulations on PBAMR grids generated by hydro codes. The topology of the grids is
not changed within the RT simulation. This new feature of CRASH-AMR allows us to better
resolve small scales in our radiative transfer simulations and to capture the ionisation and
temperature patterns in high density structures.

44 3. Radiative Transfer on static, nested grids in CRASH

In this Chapter we introduce CRASH, describing in detail the numerical scheme adopted to
do MC RT simulations. We also take a look at the software architecture of the code, un-
derstanding the structure of the code is necessary to ensure that future developments are
easily maintainable. We then discuss the technical details involved in the implementation of
CRASH-AMR, keeping in mind the AMR framework in CHOMBO. We have tested the new release
by performing the simulations established in the RTCCP [87], finding an excellent agreement
between CRASH-AMR and the previous version of CRASH. We have also performed simulations
using realistic density fields obtained from the Santa Barbara project showing that the new
version of the code is able to accurately track the different size and shape of the ionised H II

bubble in regions with increased resolutions. CRASH-AMR is hence able to provide a more
accurate and detailed picture of the growth of H II regions through the different spatial scales
involved in the reionisation process.

3.1 Radiative Transfer code CRASH

CRASH [40, 73, 122, 123, 124, 144, 146] is a 3D MC RT code that can self-consistently follow
the formation and evolution in time of ionised regions created by sources present in a static
and inhomogeneous gas environment consisting of H, He and metals; the gas temperature
evolution is calculated self-consistently. The code can account for an arbitrary number of
point sources as well as a UV background. CRASH has undergone a number of phases of
code development; some of them were related to the addition of new physics modules for
example [123, 124] and some were involved with improving the computational efficiency of
the code through distributed memory parallelism [144]. The latest CRASH version, CRASH3,
involved the addition of new physics as well as a major restructuring of the code [73]; this
allows the addition of new physics or computational modules with ease. Our work is based
on CRASH3 [see 73, and references therein for more details] and the developments presented
here contribute to the new version CRASH-AMR by using CRASH3 as baseline but, for simplicity,
without the inclusion of metals. In this section we discuss the MC scheme used in the code,
and the RT effects that are accounted for during the simulation.

3.1.1 CRASH RT scheme

CRASH works by assigning the initial conditions (ICs) onto a static, regular 3D grid which spec-
ifies the gas number density ngas, temperature T, the H, He ionisation fractions (xHII, xHeII

and xHeIII). The radiation field is accounted for using multiple point sources Ns, uniform
UV background radiation or diffuse radiation from recombinations in the ionised gas. For the
case with point sources, their locations are specified using cartesian coordinates, luminosity
L and spectral energy distribution (SED) (S in erg s-1Hz-1). The background radiation is
treated by assigning an intensity and SED over the entire domain. The radiation from each
source is discretised into photon-packets represented by Nν frequency bins, each containing
Np,ν photons as determined by the SED. The photon-packets that are emitted by the sources
are propagated along the rays casted in random directions from the point sources. To emit
the ray in a random direction, we make use of the standard ran2 random number generator
(RNG). A total simulation time ts can be specified along with intermediate times for writing

3.1 Radiative Transfer code CRASH 45

out the relevant physical quantities. The simulation proceeds by emitting photon-packets
from all the sources and propagating them along the rays until the end of simulation time.

We now look at the RT scheme implemented in CRASH in more detail.

Consider a point source with a time-dependent bolometric luminosity Ls(t). For a total
simulation time ts, the total energy emitted by the source is

Es =

∫ ts

0
Ls(t)dt (3.1)

This energy is distributed into Np photon-packets, emitted by the point source at regular
time interval dt = ts/Np. The time resolution of the simulation is hence decided by Np.
When multiple point sources are present, the time evolution of the ionising radiation field is
reproduced by emitting a photon-packet from all the Ns sources at each time step tj = j dt.
Since a packet is emitted per time step, the number of time steps in the simulation is implicitly
set to Np. For each ray, associated with a photon-packet, we assign an angular direction
described using spherical coordinates (r, θ, φ), and the origin of the ray is said to be at
the emission cell (xe, ye, ze). Given the origin coordinates and angular direction, the ray
propagates in a direction given by

x = xe + rsinθcosφ

y = ye + rsinθsinφ

z = ze + rcosθ

(3.2)

We now look at ray propagation itself. Consider a ray along which a packet propagates by
crossing a series of cells. For each cell l that is crossed, we calculate the casted path δl, i.e.
the minimum distance the ray has to travel to exit the cell. To simulate the radiation-matter
interaction, CRASH calculates the absorption probability of the photon-packet in the current
cell as

P (τ) = 1− e−τ (3.3)

where τ is the total optical depth of the cell due to the contribution of the different species,
i.e.

τ = τHI + τHeI + τHeII

= [σHI(ν)nHI + σHeI(ν)nHeI + σHeII(ν)nHeII]δl,
(3.4)

here nA and σA are the number density and cross section of the absorber A = H I, He I, He II

respectively.

46 3. Radiative Transfer on static, nested grids in CRASH

The number of photons absorbed in the cell l, N l
A, is calculated as follows. A packet reaching

the cell l has a photon content of

N l
γ = N l−1

γ −N l−1
A = N l−1

γ e−τ
l−1 ≤ Np,ν (3.5)

If the packet reaches the cell with a photon content of N l
γ , then the number of photons

deposited in the cell is given by

N l
γ = Nγ(1− e−τ) (3.6)

N l
γ is then used to calculate the ionisation, recombination fractions and temperature equa-

tions that regulate the physical state of the gas (§2.4, [124]). The contribution of processes
like photo-ionisation and photo-heating are treated using discretised equations involving N l

γ ,
whereas recombinations, collisional ionisation and cooling are treated as continuous processes
using respective rates (Appendix A, [124]). The code keeps a track of the integration time-
step ∆t, i.e. the time taken for two subsequent ray crossings through the same cell. This is
used while calculating the change in ionisation fractions and other discretised quantities. For
processes that are treated as continuous, the value of ∆t should be much smaller than the
characteristic time scales of these processes for all species

∆t� tmin = min[trecom,I , tcoll,A, tcool] (3.7)

where I = H+, He+, He++ and A is the absorber, as defined above. If this is not the case,
the integration is split into ns steps where ns = int[∆t

fstmin
]; here fs is a fudge factor ranging

from 50 - 100 to minimise any discretisation errors.

The angular direction of the ray and coordinates of the current cell are used to calculate the
coordinates of the next cell that the ray will cross; this is repeated until the photon content
in the packet is extinguished or, if periodic boundary conditions are not applied, the packet
exits the grid. Note that once emitted, we do not change the direction of the photon-packet,
i.e. it does not undergo any scattering.

CRASH has been used in cosmological set ups, where we need to account for the evolution of
all physical quantities with redshift. This is done using a series of snapshots at successive
redshifts, each with a different ngas and point source configuration. The ngas is evolved at
different redshifts and the ICs for a snapshot are calculated self-consistently using the outputs
from a previous snapshot. Since CRASH is used in a post-processing mode, the feedback effects
of RT on the gas dynamics are not taken into account.

The numerical resolution within the code is determined by various factors, which we discuss
in the next section.

3.1 Radiative Transfer code CRASH 47

3.1.1.1 Numerical resolution

We briefly mention here some of the factors that determine the numerical resolution of the
code; these are important while setting up a CRASH simulation in order to get accurate results.
These factors include

(i) Ns - number of point sources

(ii) Np - number of photon packets emitted by each source and

(iii) N3
c - the number of grid cells

Let us consider a test case with Ns point sources, each emitting Np photon-packets. Then the
total number of photon packets emitted are Ntot = NpNs. If we have a grid of resolution Nc

cells in each dimension, then the number of cells that each packet will cross is, approximately,
fdNc where fd, a parameter, ranges in between [N−1

c , 1]. fd is ∼ 1 for optically thin cases
and ∼ N−1

c for optically thick cases. Hence, the total number of times a cell will be crossed
by the end of the simulation, Ncr, is given by

Ncr = Ntot
fdNc

N3
c

= fd
NsNp

N2
c

(3.8)

A user, while setting up the ICs of the simulation, must ensure that the value of Ncr is large
enough such that the radiation field is appropriately sampled in each cell location. For black-
body or power-law spectra, a value of 102 − 104 crossings per cell was found to be sufficient
enough for the radiation field to be well sampled [124]. Additionally the integration time-step
∆t imposes a further restriction on minimum value of Ncr.

Finally, the computational costs associated with the code scale with Ns, Np and Nc, these
altogether determine the number of times the RT equations are solved during the simulation.

We next look at the architecture of the code to understand the software engineering techniques
used to implement the RT scheme, in a structured and stable manner, in CRASH.

3.1.2 CRASH software architecture

We have discussed in detail the numerical method used in CRASH to implement RT. The
aim of this thesis is to enable CRASH to carry out efficient RT simulations. However, before
we move on to discussing how this can be done, we give an overall view of the software
architecture of the CRASH code to get an idea of how additional modules can be added to the
code. CRASH has undergone a number of phases of code development; our reference version
CRASH3 has a different software architecture compared to the previous versions of CRASH.
Henceforth, any future developments to the code will be done following the architectural
framework implemented in CRASH3.

CRASH3 separates the main CRASH work flow from modules with different functionalities. It
uses both control and data abstraction to manage the different modules involved. Each

48 3. Radiative Transfer on static, nested grids in CRASH

module is isolated from the rest of the code, which not only simplifies code development, but
also makes code debugging easier.

The workflow of the code is divided into the CRASH SYSTEM and CRASH SIMULATION software
layers, the former being responsible for setting up the simulation using the different ICs.
CRASH SIMULATION on the other hand takes care of the main RT simulation. A number of
logical switches, or controllers, allow the logical work-flow of the simulation to be changed.
Hence the user can set up a problem using different input configuration files that are associated
with different physical properties of the problem being looked at. This allows multiple RT
simulations with different ICs to be run simultaneously.

To abstract the data, the code makes use of different Fortran datatypes that store informa-
tion specific to a part of the RT simulation. For example, the datatype COSMOLOGICAL BOX

stores information specific to the physical cosmological box through which the photons are
propagated. This includes the size of the box (in kpc or Mpc), the number of cells in each
dimension and their size in cm. The physical variables related to the radiation field, for exam-
ple, the point source spectrum and coordinates are stored in a datatype called SIM RADIATION.
The properties of the gas medium, for example, the temperature T and ionisation fractions
of different species like H, He are stored in a datatype called SIM GAS and the information
pertaining to a photon-packet is stored in PHOTON PACKET.

The outputs from an RT simulations can be written out at specific times, and the format of
the output files can also be chosen. Some examples are HDF5, VTK and XML and binary
formats. A number of post-processing tools are also available to analyse the simulation
outputs.

We have now given an overview of the CRASH code, its numerical scheme and the software
architecture of the code. Our aim is to be able to run RT simulations on AMR grids that
have been generated by hydro codes. We next look at the techniques used to enable this in
CRASH.

3.2 Enhancing CRASH RT simulations using CHOMBO AMR

In this Section, we describe how CRASH and CHOMBO have been interfaced to implement
CRASH-AMR: we discuss both the adopted methodology and the solutions we found to the
various technical issues that occurred during the code development. Throughout this Sec-
tion, we will refer to the CHOMBO classes mentioned in Section 2.2.6.2 and describe how they
are used in CRASH-AMR.

3.2.1 Interoperability between CRASH and CHOMBO

CRASH is originally implemented in Fortran 95 while CHOMBO is a C++ code. During the
development of CRASH-AMR, we have moved to using features provided by the Fortran 2003
and some from the 2008 standard, to facilitate interfacing it with CHOMBO. We have created a
C interface between Fortran and C++ to allow CHOMBO to communicate and share informa-
tion with CRASH-AMR by using the interoperability features implemented in the programming

3.2 Enhancing CRASH RT simulations using CHOMBO AMR 49

languages specifications. We use the grid representation of CHOMBO in CRASH-AMR to store the
physical variables that have a spatial representation for e.g. ngas, xHII, xHeII, xHeIII and T .

In the ray-tracing algorithm implemented in CRASH-AMR, the interaction of radiation with
matter is computed in each crossed cell by solving the ionisation and temperature equations,
this implies that the instances of the Box classes need to be continuously accessed during
the propagation of the photon packets (see Section 3.1) to update and store the physical
quantities through the multiple AMR levels provided by the hydro code. The computational
cost of a continuous and inefficient access to the CHOMBO library could impact the global RT
performances. Depending on the chosen resolution in space and the maximum refinement
level provided by the gas dynamics simulation, a single ray could traverse in fact a large
number of cells spanning different refinement levels, making the box iteration computationally
inefficient when repeated for a large number of rays required by the MC convergence (typically
Np ≥ 107). Note that this is not the way PBAMR based libraries are typically used in
hydro-codes to access the information: the patch based scheme implemented in CHOMBO is in
fact very efficient in the management of memory and parallel computational resources but
provides information at the grid level instead of at the cell based quantities, as required by
the CRASH-AMR RT scheme. A further complication arises from the fact that a realistic RT
simulation generally involves an irregular distribution in space of the emitting sources from
which a large number of rays is emitted in random directions, implying that the boxes at each
refinement level are not accessed contiguously. As result, the standard interface provided by
the CHOMBO library cannot be simply re-used in CRASH-AMR; to address this issue we have
developed a new Fortran data structure, minimising the run-time overhead to access and
iterate the AMR layers. We discuss this in the next Section.

3.2.2 Setting up CHOMBO based AMR hierarchy in CRASH

The new data structure that we have developed makes extensive use of some of the CHOMBO

classes mentioned in Section 2.2.6.2, we mention these below.

• In-memory data organisation and grid processing. We use the Box class to rep-
resent CRASH data on a rectangular grid which can be coarsened or refined in specific
regions. The disjoint array of boxes represented by the (DisjointBoxLayout) class pro-
vide access to each box at a certain refinement level. To iterate through these boxes,
we use the DataIterator class.

CRASH does RT using a ray-tracing algorithm, as mentioned in Section 3.1.1. To propa-
gate the ray the algorithm requires the coordinates of the next cell that the ray passes
through. An AMR grid can have multiple adjacent boxes at a certain refinement level.
The coordinates of the next cell can lie in the same box or a neighboring box. So
we need access to the neighbors of any particular box, which can be done using the
NeighborIterator class.

We also need to ensure that during ray-tracing, the ray is always at the highest refine-
ment level possible for a particular location in the grid. For this, we need to know if
a cell has been refined or not, and if so move the ray to a finer level. The Box class
provides the coarsen and refine operations that coarsen or refine the box. We use this,

50 3. Radiative Transfer on static, nested grids in CRASH

along with the isEmpty routine to determine if the intersection of a box with another
box is empty. This indicates if the box lies within another box.

To store the data associated with the physical variables, in each grid cell, we used the
Fortran Array Box class (FArrayBox).

• AMR hierarchy management. We have set up a class called ChomboAMR that inherits
from the AMR class. This contains the complete AMR framework and manages each
refinement level in the hierarchy, represented by the AMRLevelCHOMBO class. The latter
inherits from the AMRLevel class in CHOMBO and contains information pertaining to the
size of the domain at a particular level, the associated DisjointBoxLayout and operators
from the FineInterp and CoarseAverage classes. ChomboAMR maintains a pointer to each
refinement level for easy access to the relevant parent or child level.

• Interactions between different refinement levels. Since we use CRASH-AMR in the
post-processing mode, operations of data smoothing are confined to the initialisation of
the RT and are not performed during ray-tracing. To initialize the fine grid from the
existing coarse grids we use the FineInterp class, while to update the coarse grids with
the data on the finer grids the CoarseAverage class is adopted.

• Data storage and grid I/O. We use the HDF5 data format as done in CHOMBO.

During each ray traversal the photon-packet information has to be propagated through the
AMR grid hierarchy from the highest refinement level to the coarse ones. At each step of
the RT simulation, the data structure needs to know the refinement level a cell belongs to,
whether the cell is refined or not, and which box contains the refined cell; the way all these
quantities are accessed and the mapping between CRASH and CHOMBO data is described in the
following paragraphs. Hereafter we will refer to the grid with the lowest resolution as ”base
grid“, while the refined grids will be referred to as ”refined levels“.

Figure 3.1 shows the data representation in CHOMBO on the left-hand side (see also Section
2.2.6.2 for more details), and the CRASH equivalent on the right-hand. We also use similar
colors in both sides to represent corresponding boxes, at a given refinement level. A simplified
but representative CHOMBO hierarchy, consisting of the base level 0 and its refinements from 1 to
L−1, is shown in the picture; for clarity purposes we just represent the boxes at levels 0, 1 and
2. To help the reader connecting this picture with the abstract data representation provided
in Section 2, we note that each refinement level (dashed boxes on the left) is implemented in
computer memory by an instance of the AMRLevel class, while the array of boxes at each
level is implemented by the DisjointBoxLayout class. Each box, for example the B(0,0) at
base level 0 (red box on the left), is an instance of the Box class.

The CRASH counterpart of the AMR hierarchy is mapped on the right-hand side of Figure 3.1:
the base grid is represented as refinement level 0, while the L AMR grid levels are mapped
with an array containing pointers to specific properties of each box. Also note that the boxes
at each level are uniquely identified by an associated localID and globalID. As the number
of boxes at each level is known to CHOMBO, we can have easy access to their information by
just iterating though their globalIDs. The corresponding localID, which is the index into the
disjoint box array represented by the DisjointBoxLayout class, is used to get direct access to
the data representing physical variables of the gas during the RT simulation. For example box

3.2 Enhancing CRASH RT simulations using CHOMBO AMR 51

B(0,1) indicates that at refinement Level 1 there is a box with localID of 0 and a globalID of
1. The localID of 0 gives access to the box at the 0th index of the corresponding disjoint box
array, and the relevant FArrayBox gives access to the physical data, via the Fortran pointers,
pertaining to the box. Finally, the start and end coordinates of the box, which determine its
size, are also stored to allow the ray-tracing algorithm to recognise if a ray has exited a box
at a given refinement level 1.

The information stored above is done at the grid level. Ray-tracing happens on a ”cell by
cell“ basis and we need some information at the cell level to ensure that the ray is always at
the highest refinement level possible for a particular location in the grid. For this, we need
to know if a cell has been refined or not, and if so move the ray to a finer level. We use the
coarsen, refine and isEmpty operations to find if a box at level l, say B(l, i) lies within a
box at level l − 1, say B(l − 1, i). If so, then for each cell in B(l, i) we store the globalID of
B(l − 1, i).

One important consequence of allowing multiple parents for a child grid is that it is not very
efficient to create a tree structure for such a grid hierarchy. Given that we might not have
a strict one-to-one relationship between a child and a parent grid, we have decided not to
implement a tree structure to store the AMR hierarchy. Instead we use an array format
that allows us to index into the data structure, at the right refinement level, to get the box
properties.

We mentioned in Section 2.2.6.2 that the pointer returned by the FArrayBox class points to
only one component in the grid. CRASH-AMR, in total needs ten components to store all the
data needed for its RT calculations, for e.g. ngas, xHII, xHeII, xHeIII and T and an additional
two components to determine the child-parent relationship between the boxes at different
refinement levels. So when we set up the data structure above, we set up an array of Fortran
pointers that point to the data in each component of an FArrayBox. This is replicated for all
boxes across different refinement levels.

The following paragraphs describe how the new data structure is used during the ray-tracing
algorithm. First note that the sources emitting photons do not move across the grid during
a RT simulation and then, in the notation established above, we only need to keep a track
of the globalID of the box in which the source lies in. During the propagation of the photon
packet, at each cell crossing, the following scenarios apply

(a) The ray might escape the grid and then we no longer follow it unless periodic boundary
conditions are applied.

(b) The photon content of the packet is completely absorbed and then the propagation stops.

(c) The ray crosses the cell and enters a new cell at the same AMR level.

(d) The ray crosses the cell and enters another cell at a finer (or coarser) AMR level.

1Note that in a PBAMR scheme a refined box might lie over multiple coarse boxes, and so we need to keep
a list of all parents. This is done by storing, for each box, the globalIDs of its parent(s), we also keep a list
of its neighbor(s). Here the term neighbor(s) denotes all the boxes that are adjacent to a box at the same
refinement level. Parent(s) refers to the box(es) at the coarser level that cover a particular box.

52 3. Radiative Transfer on static, nested grids in CRASH

CHOMBO

 Level 0

(base grid)

Figure 3.1 Interface between CRASH and CHOMBO, the grid hierarchy in CHOMBO being reflected
through the data structure built in CRASH. The AMR grids, stored as an array of boxes in
CHOMBO are stored in CRASH on a level basis, with pointers to the grid data at each level. Each
box has an associated localID and globalID, see text for more details.

While case a and b do not need further comments, for case c, the new cell might lie in the
same box or it might enter a new one. In the former case, we just continue the ray propagation
as described earlier; in the latter case we need to use the new cell coordinates to inspect the
neighbor list searching for the new box at the same refinement level. Case d finally needs a
different approach because the cell optical depth depends on the refinement level the ray is
crossing though the casted path (see Eq. 3.4). Here again different scenarios apply:

(1) The ray enters a finer level. In this case we use the globalID of box containing the child
cell to move the ray to the finest level in which the cell is found. Note that the ”proper
nesting“ criteria implies that while crossing levels, the ray can only move to the immediate
child level, so we have to only search in the level above.

(2) The ray exits a box, as in c. In this case, we first use the neighbor list to search the new
cell coordinates in the neighboring boxes. If not found we search in the parent list to find
the new box. Once found we move the ray, as in case 1, to a finer level if the neighbor or
parent is refined. Here as well, we only look in the levels immediately above or below to
find the child or parent box.

The same procedure is repeated until cases a and b apply and the photon packet propagation
stops. Once we get the globalID of the new box the ray is traversing, we use it to get the
pointers to all the components within the corresponding FArrayBox. Figure 3.2 shows an
example of rays propagating through multiple levels. The grid has three levels L0 (black
box), L1 (blue boxes) and L2 (red boxes) with the point sources lying on L2. The rays being
emitted from source S1 travel to a neighboring box at level L2 and to the parent level L1.
The ray being emitted from source S2 travels from level L2 to L1 and back to level L2.

Some additional issues had to be kept in mind while developing CRASH-AMR, we discuss these
in the following Section.

3.2 Enhancing CRASH RT simulations using CHOMBO AMR 53

L2

L1

L0

L2

L1

L0

S1

S2

Figure 3.2 Illustration to show ray propagation across different refinement levels. The different
levels L0, L1 and L2 are indicated by black, blue and red boxes respectively. Two sources S1
and S2 emit rays that travel through multiple levels.

3.2.3 Other technical considerations

It is imperative that we mention the other issues that need to be taken into account with
the interface described in the previous sub-sections. The data structure built in CRASH uses
a Fortran array at each refinement level to store the box properties. Fortran arrays can start
with indexes other than 1, the minimum globalID at a particular level decides the start index
of the array. For example, if the minimum globalID at level L1 is 10 and has 5 boxes, then
the Fortran array is also allocated such that the first index is 10. This makes it easier to
directly index into the array to get the necessary box.

We mentioned earlier that the data structure makes use of Fortran pointers to access the
physical data stored in CHOMBO. At any given point of time in the RT simulation, the ray is
passing through one unique box. Once we find the new box the ray is traversing through, we
map its associated Fortran pointer to a 3D pointer in CRASH-AMR till the point the ray exits
the box. The changes made to the physical data during this period are hence reflected on
the CHOMBO side as well. However we need to consider certain technical details while mapping
these pointers.

Fortran pointers, by default, start with an index of 1, unless declared otherwise. These point-
ers are mapped to a component in the FArrayBox, which can have different start coordinates
depending on its position in the 3D grid. As a result we need to make sure that we refer to the
right cell coordinates while propagating the ray. We keep a track of the 3D grid coordinates
at each cell crossing, this is used to check if the ray has exited a box or grid. The same
grid coordinates are then used to find the offset into a particular FArrayBox, i.e. the Fortran
pointer currently mapped to the data in the grid that the ray is traversing. This gives us
access to the physical data in the cell and also determines if we need to search for a new box
or stop ray traversal.

It is important to note that although we use CHOMBO to initialise and store the AMR grid,
once this data has been mapped on to the CRASH side, our implementation does not call any
CHOMBO routines during the RT simulation. The data structure is used purely to cross the

54 3. Radiative Transfer on static, nested grids in CRASH

levels and have a fast access to the grid data. As a consequence of this architectural choice,
there is no overhead of using CHOMBO during the ray-tracing routine but the time needed to
find the right cell. We do call the library to write out the output files at pre-determined times
during the simulation. However the total run time, when compared to CRASH3, increases by
only by 3% due to the use of CHOMBO. This can be attributed to the additional time taken to
set up the AMR grids in CHOMBO and the Fortran data structure in CRASH-AMR. Since this is
done once at the start of the simulation it is not a major impediment to the code.

The I/O in CHOMBO is done by making calls to the HDF5 library and passing each box at
a refinement level as data to be written out. In addition to this, some metadata pertaining
to the domain size, its periodicity and the names of all components are also written out.
We have made changes to these routines so that the component names are not generic, for
example, ”component 0“ but reflect the physical variable being referred to, for example, ”H
Ionisation fraction“. The structure of the output files, with respect to the metadata, is now
similar to that obtained from the hydro code. The read routines in CHOMBO have also been
changed to reflect the component names being read in.

This completes an overview of CRASH-AMR which has been developed following the same
software architecture as CRASH3. We look at some relevant details regarding the architecture
of the code.

3.2.4 Software architecture of CRASH-AMR

In Section 3.1.2 we had discussed the software architecture of CRASH3. The development of
CRASH-AMR has also been done in similar lines. Similar to CRASH3 we use control abstraction
to change the work flow of the code depending on whether the controller for the AMR module
is enabled or not. The user can compile the code with or without the AMR functionality and
enable or disable it during run time. When enabled, the code uses the AMR grids to do RT
simulations, the traditional method of data storage and setting up of simulation ICs only on
the base grid is done otherwise. If the AMR functionality is enabled then the user can either
run simple tests with pre-defined refinement criteria or more realistic test cases with AMR
grids provided by hydro codes, as shown in Section 3.3. By adopting pre-defined refinement
criteria, the user could decide, for example, to refine an arbitrary part of the base grid and
set up specific test cases, while for realistic gas configurations, the refinement is generally
determined by the hydro code and CRASH-AMR operates in a post-processing mode.

To generate the ICs mentioned we have developed a number of pre-processing tools; in addition
to these we also provide other options

• Options to generate point sources, at a certain location and refinement level, with a
given reference luminosity using high density peaks

• Gather point sources located at higher refinement levels on to the levels below

• Extract the necessary data from a hydro simulation output to generate input files for
CRASH-AMR

• Create uniform resolution grids from AMR grids, to compare the results of the RT
simulation with and without using AMR grids

3.3 Test scenarios and Results 55

These have been used for the tests mentioned in Section 3.3. In addition to the above, we
have also developed some post-processing tools for analysing the simulation outputs:

• Option to calculate the spherical average of a physical quantity like xHII and T for
comparing the results with CRASH3

• Combine two HDF5 files so that contour plots can be created

• Creating Line of Sights (LOSes) away from the point source to understand the shape
and extent of the H II region around the point source

Similar to the data abstraction methodology followed in CRASH3, we define a new datatype
AMR PARAM that contains general information about the AMR hierarchy, for example the
number of refinement levels, the domain size, refinement ratios between levels and periodicity
information. To reduce the number of accesses to the data structure shown in Figure 3.1
we define another datatype AMR BOX that contains the box properties of the box the ray is
currently traversing through. We use this to check if the ray has exited a box and when a
new box is found, its copied to AMR BOX.

This completes our description of the new code CRASH-AMR, we now look at the various tests
scenarios set up to test the code.

3.3 Test scenarios and Results

In this section we show the results of some of the tests we have performed to guarantee
the reliability of the new AMR implementation. We run a number of test cases in idealised
configurations, in Test 1 we compare CRASH-AMR with the AMR functionality disabled to
CRASH3, then we compare results with/without the AMR functionality enabled. These set-
ups are useful to check the numerical noise introduced by the presence of the AMR grids on
the RT algorithm. In Test 2, we apply CRASH-AMR to a realistic density field from the CHARM

simulations described in [128]. Henceforth, we use d to represent the comoving distance from
a point source, the units in kpc or Mpc are indicated accordingly.

3.3.1 Test 1: Strömgren sphere in a H medium

We have set up a test equivalent to Test 1 of the RTCCP. The test simulates the evolution of an
ionised region around a single point source located at the grid origin (0,0,0) in a cosmological
box of side length Lbox = 6.6 kpc (comoving) and mapped on a grid of 1283 cells. The source
is assumed to be steady with an ionising rate of Ṅγ = 5 · 1048 photons s−1 and an associated
monochromatic spectrum with hν = 13.6eV. The volume is filled by a uniform and static gas
of number density, ngas = 10−3 cm−3, containing only H. The gas is assumed to have an initial
ionization fraction (given by collisional equilibrium) xHII = 1.2 · 10−3, the gas temperature T
is fixed at 104 K with a simulation time tsim = 500 Myr, starting at redshift z = 0.1. We
output the results at intermediate times t=10, 50, 100, 200 and 500 Myr as in the original
set-up. A well defined analytical solution for calculating the position of the ionisation front
measured at fixed xHII = 0.5 (I-front), at different times in the simulation, exists for this
set-up (§3.2, [87]).

56 3. Radiative Transfer on static, nested grids in CRASH

0.001

0.01

0.1

1

x
x

HII
, CRASH3

x
HI

, CRASH3

x
HII

, CRASH-AMR (no AMR)

x
HI

, CRASH-AMR (no AMR)

0 1 2 3 4 5 6 7
d [kpc]

1e-05

0.0001

0.001

(∆
 x

/x
)

[%
]

1e-05

0.0001

0.001
(∆ x/x)

HII

Figure 3.3 Spherically-averaged profile at time t = 500 Myr, at d [kpc], for Test 1a. The
colors refer to CRASH3 (green) and CRASH-AMR (no AMR) (red). Top: Profiles of xHII (solid
lines) and xHI (dashed lines). Bottom: ∆ between the CRASH3 and CRASH-AMR (no AMR)
results.

3.3.1.1 Test 1a: AMR disabled

To verify that the changes done to enable RT on AMR grids do not introduce any numerical
noise, we have run Test 1 with AMR disabled in CRASH-AMR and compared the results to those
from CRASH3.

The outcome is shown in Figure 3.3, where the panel shows the spherically-averaged physical
quantities as a function of d [kpc], together with the percentage difference (∆) between the
CRASH3 and the CRASH-AMR (no AMR) results. We define ∆ = (Rref − Ri) · 100 / Rref
where Rref refers to results of CRASH3 and Ri refers to results of CRASH-AMR. We find an
excellent agreement between the results, the size of the ionised region in both cases extends
up to 5.4 kpc and drops thereafter, this agrees with the analytical solution given in [87] for
the Strömgren radius. The spikes that we see in ∆ are due to numerical artefacts caused
by optimisation of CRASH-AMR involving rearranging of floating point arithmetic expressions
and are not due to the changes associated with CHOMBO. This shows that the AMR feature in
CRASH-AMR is isolated from the rest of the code and can be disabled without introducing any
numerical noise into the results.

3.3.1.2 Test 1b: AMR enabled

Our next step has been to run the previous test, with the AMR functionality enabled. We
tag and refine, by a refinement factor of 2, 1003 cells around the source placed at the origin.
The ICs are set up on the base grid as well as on the refined grid. The source is located at the
highest refinement level which represents a domain of 2563. Our choice of refining a region of
1003 cells ensures that it is large enough (∼5.15 kpc each side) to represent the xHII region
at a higher resolution, but also allows to check that the ray-tracing code works correctly.

3.3 Test scenarios and Results 57

With such a set-up there will be rays that traverse from the finer to coarser levels and the
ray-tracing routine should take into account the change in grid levels while calculating the
optical depth. We compare the results of this test with those from CRASH-AMR in § 3.3.1.1.
Note that we compare results between a set up where the finest grid level represents a domain
of 2563 and the other represents a domain of 1283. This is intentional since we want to show
that for a test case which has an analytical solution, CRASH-AMR can be run with a higher
resolution in the region of interest and provide comparable results with a set up that uses
only one grid level.

Figure 3.4 shows the spherically-averaged physical quantities as a function of d [kpc], together
with the ∆ values calculated using Rref for results of CRASH-AMR (no AMR), Ri refers to the
results of CRASH-AMR with one refinement level (1 r.l.) results. The xHII region for CRASH-AMR
extends till 5.4 kpc, as per the analytical solution given in [87]. We find that ∆ is very high,
∼ 1000%, at a distance of 5.9 kpc and drops thereafter. The differences that we see are not
due to the implementation in CRASH-AMR, but rather they are associated to the higher grid
resolution in the refined region. When we have a grid at a higher refinement level all the
refined cells that cover a coarse cell might not lie within a given radius from the source and
thus not contribute to the spherical average.

We mentioned earlier that the setups described in Test 1a and 1b have a well defined analytical
solution for calculating rI , which is given by

rI = rS [1− exp(−t/trec)]1/3 (3.9)

where rS is the Strömgren radius, which in our case is 5.4 kpc and trec is the recombination
time for H given by

trec = [α(T)xHII]
−1 (3.10)

Assuming α(T), the recombination rate for H, is 2.59·10−13cm−3s−1, trec is 122.4 Myr. Figure
3.5 shows rI at times t=10, 50, 100, 200 and 500 Myr between the analytical solution and
CRASH3, CRASH-AMR results. In case of CRASH-AMR we show the results with AMR disabled and
with one r.l. The bottom panel shows the ∆ values calculated using Rref for the analytical
solution, Ri refers to the results of CRASH3 and CRASH-AMR. We find that, by the end of the
simulation where the codes reach convergence, the difference in the I-front position between
the analytical solution and the codes is only 4%. Between CRASH3 and CRASH-AMR, we do not
find any difference in the results.

Our next test is similar to Test 1 but takes into account the presence of He as well.

3.3.2 Test 2: Strömgren sphere in a H+He medium

We have set up a test equivalent to Test 2 of RTCCP [87]. The test simulates the evolution
of an ionised region around a single point source located at the grid origin (0,0,0) in a cos-
mological box of side length Lbox = 6.6 kpc (comoving) and mapped on a grid of 1283 cells.

58 3. Radiative Transfer on static, nested grids in CRASH

0.01

0.1

1

x x
HII

, no AMR

x
HII

, 1 r.l.

x
HI

, no AMR

x
HI

, 1 r.l.

0 1 2 3 4 5 6 7
d [kpc]

0.01

0.1

1

10

100

(∆
 x

/x
)

[%
]

0 1 2 3 4 5 6 7
0.01

0.1

1

10

100

(∆ x /x)
HII

Figure 3.4 Spherically-averaged profile at time t = 500 Myr, at d [kpc], for Test 1b. The
colors refer to CRASH-AMR (no AMR) (red) and CRASH-AMR with one refinement level (1 r.l.)
(blue). Top: Profiles of xHII (solid lines) and xHI (dashed lines). Bottom: ∆ between the
CRASH-AMR (no AMR) and CRASH-AMR (1 r.l.), results.

3

4

5

6

r I [
k

p
c]

Analytical solution

CRASH3
CRASH-AMR (no AMR)

CRASH-AMR, 1 r.l.

0 1 2 3 4
t / t

rec

2

4

6

8

10

(∆
 r

I/r
A

n
al

y
)

[%
] 10

CRASH3
CRASH-AMR (no AMR)

CRASH-AMR, 1 r.l.

Figure 3.5 Radius of the I-front, rI , at times t/trec, where t = 10, 50, 100, 200 and 500 Myr
and trec = 122.4 Myr, for Test 1a and 1b. The colors refer to the the analytical solution
(black), CRASH3 (green), CRASH-AMR (no AMR) (red) and CRASH-AMR with one refinement
level (1 r.l.) (blue). Top: rI for the analytical solution (dashed line) and CRASH3, CRASH-AMR
(solid lines). Bottom: ∆ between the analytical solution and CRASH3, CRASH-AMR (no AMR)
and CRASH-AMR (1 r.l.) results.

3.3 Test scenarios and Results 59

The source is assumed to be steady with an ionising rate of Ṅγ = 5 · 1048 photons s−1 and
an associated black-body spectrum at temperature TBB = 105 K. The volume is filled by a
uniform and static gas of number density, ngas = 10−3 cm−3, containing H (92%, by number)
and He (8%). The gas is assumed to be fully neutral, the gas temperature T is initially set
to 100 K and it is calculated self-consistently with the progress of ionisation for a simulation
time tsim = 500 Myr, starting at redshift z = 0.1. We output the results at intermediate
times t=10, 50, 100, 200 and 500 Myr as in the original set-up.

3.3.2.1 Test 2a: AMR disabled

Similar to Section 3.3.1.1, we have run Test 2 to verify that the changes done for CRASH-AMR
do not introduce any numerical noise. We have run Test 2 with AMR disabled in CRASH-AMR

and compared the results to those from CRASH3.

The outcome is given in Figure 3.6, where each panel shows spherically-averaged physical
quantities as a function of d [kpc], together with ∆ values, calculated using Rref for results of
CRASH3 and Ri for results of CRASH-AMR. From the Figure it is clear that there is no difference
between the two codes. As mentioned in 3.3.1.1 the spikes that we see in ∆ are due to
numerical artefacts caused by code optimisation.

3.3.2.2 Test 2b: AMR enabled

Our next step has been to run the previous test with AMR enabled. We set the ICs on a
grid similar to that in Test 1b. The results are shown in Figure 3.7, where each panel shows
the spherically-averaged physical quantities as a function of d, together with the ∆ values
between the CRASH-AMR (no AMR) and CRASH-AMR (1 r.l.) results. ∆ in this case uses Rref
as results of CRASH-AMR (no AMR), while Ri refers to the results of CRASH-AMR (1 r.l.). Here
we find that ∆ can be as high as 10 % for xHI and xHeIII in a handful of cells near the source
(∼ 0 - 1 kpc), but more typical values do not exceed 1 % for all the physical quantities.

As mentioned in Section 3.3.1.1 the differences seen are not due to the implementation in
CRASH-AMR, but are due to the way the spherical average is calculated. With a grid at a
higher refinement level all the refined cells that cover a coarse cell might not lie within a
given radius from the source and thus not contribute to the spherical average.

The code shows excellent results for the standard test cases prescribed in [87]. We provide
some additional tests showing the dependence of the results on the grid resolution in Section
3.4. Next, we look at some tests done with a realistic density field obtained from a hydro
simulation.

3.3.3 Test 3: a realistic density field

In this section we apply CRASH-AMR on a density field snapshot obtained from a simulation
defined by the “Santa Barbara Cluster Comparison Project”, where the formation of a galaxy
cluster in a standard CDM universe is simulated [61]. The simulation has been performed by

60 3. Radiative Transfer on static, nested grids in CRASH

0.2

0.4

0.6

0.8

1

x

x
HII

, CRASH3

x
HI

, CRASH3

x
HII

, CRASH-AMR (no AMR)

x
HI

, CRASH-AMR (no AMR)

0 1 2 3 4 5 6 7

d [kpc]

0.001

0.01

0.1

1

10

∆
x

 /
 x

 [
%

] (∆x/x)
HII

(∆x/x)
HI

2.0

3.0

4.0

T
 [

K
]

/
1

0
4

T, CRASH3

T, CRASH-AMR (no AMR)

0 1 2 3 4 5 6 7

d [kpc]

0.0001

0.001

0.01

0.1

1

∆
T

 /
 T

 [
%

] (∆T/T)

0.2

0.4

0.6

0.8

1

x

x
HeII

, CRASH3

x
HeIII

, CRASH3

x
HeII

, CRASH-AMR (no AMR)

x
HeIII

, CRASH-AMR (no AMR)

0 1 2 3 4 5 6 7

d [kpc]

0.001

0.01

0.1

1

10

∆
x
 /

 x
 [

%
] (∆x/x)

HeII

(∆x/x)
HeIII

Figure 3.6 Spherically-averaged profiles at time t = 500 Myr, at d [kpc], for Test 2a. The
colors refer to CRASH3 (green) and CRASH-AMR (no AMR) (red). Top left: Profiles of xHII

(solid lines) and xHI (dashed lines). Top right: Profile of T (dash-dot lines). Bottom:
Profiles of xHeII (dotted lines) and xHeIII (dot-dash lines). The bottom sub-panels show ∆
between the CRASH3 and CRASH-AMR (no AMR) results.

the hydro code CHARM [128] on a simulation box size Lbox = 64 Mpc (comoving) at redshift z =
0.1. The cosmological parameters were Ωm = 1,Ωb = 0.1, Ωl = 0 and H0 = 50kms−1Mpc−1.
The simulation is initialised at z = 40 with two grids, a base grid of 643 cells representing a
box of 643 Mpc, and a grid of 1283 cells placed at the centre of the base grid representing a box
of 32 Mpc on each side. Only the central region is refined based on a local density criterion,
with a refinement ratio nref = 2. At the end of the simulation there are six refinement levels
in total along with the base grid. The cell width at the coarsest level is 1 Mpc while that
at the finest level, with a resolution of 40963 cells, is 15 kpc (comoving). The code CHARM

adopts the CHOMBO library to implement the AMR functionality, and the HDF5 files available
from the output of this simulation can be immediately used as an input to CRASH-AMR by
extracting the necessary information from the HDF5 metadata. As the simulation does not
provide information on the star formation, we define the point source locations associating
them with the gas density peaks at the most refined level.

We set up the following simulations

3.3 Test scenarios and Results 61

0.2

0.4

0.6

0.8

1

x

x
HII

, no AMR

x
HI

, no AMR

x
HII

, AMR (1 r.l.)

x
HI

, AMR (1 r.l.)

0 1 2 3 4 5 6 7

d [kpc]

0.001

0.01

0.1

1

10

∆
x

 /
 x

 [
%

]

(∆ x/x)
HII

(∆ x/x)
HI

2.0

3.0

4.0

T
 [

K
]

/
1

0
4

T, no AMR

T, AMR (1 r.l.)

0 1 2 3 4 5 6 7

d [kpc]

0.001

0.01

0.1

1

∆
T

 /
 T

 [
%

]

(∆T/T)

0.2

0.4

0.6

0.8

1

x

x
HeII

, no AMR

x
HeIII

, no AMR

x
HeII

, AMR (1 r.l.)

x
HeIII

, AMR (1 r.l.)

0 1 2 3 4 5 6 7

d [kpc]

0.01

0.1

1

10

∆
x
 /

 x
 [

%
]

(∆x/x)
HeII

(∆x/x)
HeIII

Figure 3.7 Spherically-averaged profiles at time t = 500 Myr, at d [kpc], for Test 2b. The
colors refer to CRASH-AMR (no AMR) (red) and CRASH-AMR with one refinement level (1 r.l.)
(blue). Top left: Profiles of xHII (solid lines) and xHI (dashed lines). Top right: Profile
of T (dash-dot lines). Bottom: Profiles of xHeII (dotted lines) and xHeIII (dot-dash lines).
The bottom sub-panels show ∆ between the CRASH-AMR (no AMR) and CRASH-AMR (1 r.l.),
results.

(a) multiple point sources at locations far enough so that they do not gather at the lower
refinement levels, monochromatic sources, T kept constant;

(b) multiple point sources at locations close enough so that they can be gathered at the lower
refinement levels.

We set a reference ionisation rate, Ṅγ,ref , for the source at the highest gas density peak. For
the other sources i, Ṅγ,i was set as:

Ṅγ =
Ṅγ,ref ·mi

mref
, (3.11)

where mref and mi are the mass in the cell containing the reference source and source i,
respectively. The initial temperature is T = 100 K and gas is assumed to be fully neutral.

To emphasise the advantage of an AMR scheme, we compare results of simulations run with
different refinement levels. Additionally, as mentioned above, the sources are located at

62 3. Radiative Transfer on static, nested grids in CRASH

the highest refinement level, so that if one or more of them lie within the same cell at the
coarser levels, we consider them to be a single source with luminosity given by the sum of the
corresponding luminosities at the finest level.

To ensure a good convergence of the MC code, we sample the radiation field with a number of
photon packets high enough to reach convergence for each test case run at different refinement
levels. We find that the MC scheme converges with 108 photon packets per source (0.07%
difference in volume averaged xHII values between two test cases with 108 and 109 photon
packets per source). However the convergence of the MC scheme is very much problem
dependent and depends on multiple factors, hence we do not discuss this in more detail for
the test cases we present in the following sections.

3.3.3.1 Test 3a: multiple sources set far apart

Here we place twenty point sources far from each other enough to remain single sources at
all refinement levels. This configuration would test the effect of grid resolution on the RT
simulation. We adopt Ṅγ,ref = 8 · 1053 photons s−1 (3.11), and the total simulation time is
500 Myrs. For simplicity, here we consider a H only gas configuration and each point source
is monochromatic with Eν = 13.6 eV. The T is initially set to 100 K and is kept constant
throughout the simulation.

Figure 3.8 shows the maps of xHII created in simulations with different refinement levels (from
3rd to 6th level, from left to right), at simulation times t = 100, 200 and 500 Myr (from top
panel). In the bottom panels we also show the gas number density fields (ngas), as gradient
from black (low density) to white. Dotted lines represent the extent of the different refinement
levels (see the caption for more details). For reference, we also show the location of the most
luminous point source. Note that the RT is done in post-processing and the gas configuration
does not change during the ionisation evolution.

At t = 100 Myr (top panels), the xHII maps do not show much differences, being dominated
by the most luminous source which easily maintain the ionisation against the progressively
steeper density gradients introduced by AMR. Sensitive differences start to get more visible at
t = 200 Myr, where separate bubbles can be seen on the right side of the box as we go to higher
refinement levels. The largest differences are finally seen at the final time t = 500 Myr. First
note that we cannot observe a direct correlation between position of refinement levels and
distortions in the ionisation pattern (compare ionisation pictures with gas number density)
because the sources in the plane are able to easily maintain their surrounding regions fully
ionised against the various density gradients. Second, note that the extent of the fully and
partially ionised H II regions at different resolutions shows obvious differences: they get smaller
and sharper with higher resolution and do not tail away, as shown instead at lower resolutions.
For example, the ionisation front, measured at fixed xHII = 0.5, extends up to the left end
of the box for the case with 3 refinements, but is much more smaller for the case with 6
refinements. This is due to the larger density gradients present at higher resolutions, which
makes the escape of ionising photons difficult, and delays the ionisation fronts.

Finally note that the presence of multiple point sources on different planes of the cube, and
resolved by different AMR layers, creates an intricate combination of three-dimensional RT

3.3 Test scenarios and Results 63

x
H

I
I

x
H

I
I

x
H

I
I

n
g
a
s
 [

c
m

-3
]

(1
0
0
 M

y
r
)

(2
0
0
 M

y
r
)

(5
0
0
 M

y
r
)

Figure 3.8 Maps cut through the simulation volume for Test 3a. Top: Maps of xHII at time
t = 100 Myr. Second from top: Maps of xHII at time t = 200 Myr. Third from top:
Maps of xHII at time t = 500 Myr. Bottom: Maps of ngas, the dotted lines represent the
extent of the different refinement levels associated with ngas. The colours refer to different
refinement levels, light orange (base grid - not seen here), pink (1st r.l.), orange (2nd r.l.),
blue (3rd r.l.), green (4th r.l.), yellow (5th r.l.) and red (6th r.l.). From left to right, the
columns refer to simulations run with three, four, five and six refinement levels (see text for
more details). The width of each slice is 25 Mpc.

64 3. Radiative Transfer on static, nested grids in CRASH

0 5 10 15 20 25
d [Mpc]

0.2

0.4

0.6

0.8

1

x
H

II

3 r.l.
4 r.l.
5 r.l.
6 r.l.

0 5 10 15 20 25
d [Mpc]

0

0.2

0.4

0.6

0.8

1

x
H

II

3 r.l.
4 r.l.
5 r.l.
6 r.l.

0 5 10 15 20 25
d [Mpc]

0

0.2

0.4

0.6

0.8

1

x
H

II

3 r.l.
4 r.l.
5 r.l.
6 r.l.

Figure 3.9 LOSes in random directions when moving away from a point source, for Test 3a
at time t = 500 Myr. The colors refer to a test case with three (red), four (blue), five (green)
and six (black) r.l.

effects in the final configuration of the overlapping of H II fronts. This is more evident in
the case with 5 and 6 refinements, in two distinct regions. The H II region on the left is in
fact formed by a point source lying on a different plane in the simulation box, and evolves
differently with the increase of the AMR levels. This provides a final bubble distribution and
overlap in space, which is very sensitive to the number of adopted AMR refinements. These
different ionisation pictures also translate into quantifiable volume averaged properties of the
ionisation pattern: a H II fraction of 4.94, 4.74, 4.51 and 4.39 ·10−2 is estimated for the 3rd,
4th, 5th and 6th refinement levels, respectively, with a 12.5% difference between the 3rd and
6th levels.

Figure 3.9 shows three line of sights (LOSs) along random directions when moving away from
the most luminous point source in the simulation; for each LOS we plot the xHII values.

The trend found in the three LOSs is clear and reflects the global considerations already
made when commenting on Figure 3.8. In the first two panels the I-front systematically
recedes when a deepest layer is accounted for by an additional refinement level (see different
colour lines in the panel from red to black) due to the increased gradient in ngas and the
H recombination rate which is higher by a factor of 3.5, between the cases with 6 and 3
refinements, in the fixed T setup of this run. Also, the width of the I-front between the two
cases is smaller by 9 and 5% respectively, for the two panels. We finally note that the extent

3.3 Test scenarios and Results 65

of the fully ionised region (measured as distance d at which xHI drops below 0.1) is almost
the same in all cases, with a maximum difference of 10% between the cases with 3 and 6
refinement levels.

The third panel shows three ionised regions along the selected LOS: the first two are fully
ionised and do not show a sensitive difference between the refinement levels, while the most
distant shows a trend similar to the other two panels. The extent of the third ionised region is
in fact larger for the lowest resolution case and progressively smaller at increasing resolution,
while its variation is less evident than in the two previous panels. In conclusion, by analysing
three different LOSs, we find a trend similar to what was discussed for Figure 3.8: high density
regions near the bright sources are easily ionised despite additional AMR refinements, while
at larger d, other high density regions remain self shielded from the global radiation field and
are neutral. Low density regions, also far from the source, are instead ionised, probably from
nearby point sources or some global background established locally, at final simulation time.

We then conclude that the photo-ionisation algorithm of CRASH-AMR is highly sensitive to the
variations of gas number density gradients progressively resolved by an increasing number of
refinement levels; this is immediately reflected in the variations in patterns of the H ionisation
fronts. CRASH-AMR will provide a more precise and realistic representation of how the ionised
bubbles form and grow around the high density regions in which star formation occurs in
galaxies, as well as a better estimate of the escape of ionising photons through the IGM when
local-scale reionisation simulations, will be performed with this technique.

3.3.3.2 Test 3b: multiple sources set close to each other

Differently from Test 3a, here we place the twenty sources so that they are close enough at
the highest resolution to be gathered at lower refinement levels. This results in 12, 6 and 2
sources at the 5th, 4th and 3rd refinement level, respectively. We assume Ṅγref = 5 · 1053

photons s−1 (3.11). The rest of the ICs are the same as Test 3a.

The set-up of this test is such that multiple sources are represented at the coarser levels as a
single one of higher luminosity. As a result, we expect to see the growth of only one ionised
region at the coarser level whereas at higher levels the ionised regions are distinct from each
other, at least at early simulation times, and they would join only later on, once the regions
have grown in size.

Figure 3.10 shows maps of xHII for the different refinement levels in the simulations at time
t = 10 Myr. We find a single ionised region at low resolution but multiple, disjoint regions at
higher resolutions. As in previous cases, the ionised region is smaller at higher resolutions.
This translates into a volume averaged H II fraction of 1.38, 1.43, 1.38 and 1.37 ·10−3 for the
3rd, 4th, 5th and 6th refinement level, respectively, with a .7% difference between the 3rd
and 6th levels. At 500 Myr, the differences in the H II fraction averages are 1.1%.

Figure 3.11 shows the same LOSs in random directions when moving away from a point
source, for xHII at 500 Myr, for the different test cases. We find a trend similar to Test 3a,
with the largest differences observed in the partially ionised gas. Since the T is fixed for
this setup as well, and the density maps are the same as in Test 3a, the recombination rate

66 3. Radiative Transfer on static, nested grids in CRASH

x
H
I
I

Figure 3.10 Maps of xHII for Test 2c at time t = 10 Myr. From left to right, the columns refer
to simulations run with three, four, five and six r.l. (see text for more details). The width of
each slice is 6 Mpc.

increases by a factor of 3.5 at the highest refinement when compared to that for the lowest
refinement. Also the width of the I-front, for the case with 6 refinements, is smaller by 2, 28
and 3% respectively in the three panels, when compared to the case with 3 refinements. Here
as well, the differences we see in the ionised regions are due to the increasing grid resolution
and better representation of over density in the grid due to the adaptivity in the hydro code.

We have tested and verified the new code CRASH-AMR for standard test cases and with a
realistic test, obtaining excellent results in the process. Comparing the results with CRASH3

shows some differences, which are due to the code optimisations done in the new version. We
look at some additional test cases to ensure that this is the case.

3.4 Dependence on grid resolution

The difference in results that we see in Sections 3.3.1.2 and 3.3.2.2 are due to the grid reso-
lution only and not the implementation in CRASH-AMR. To demonstrate this, we have set up
test cases, similar to Test 2, where the grid resolution is different in CRASH-AMR, Section 3.4.1
discusses the results. We have also set up test cases where the resolution at the base grid
is different, but that at the finest refinement level is the same, Section 3.4.2 discusses these
results.

3.4.1 Test 2 with different grid resolutions

In this section we discuss the effect of higher grid resolutions on the xHII, xHeII, xHeIII and
T profiles. We ran a test with the set-up same as that of Test 2b, but the ICs are set on
different grid resolutions.

Figure 3.12 shows the spherical averages of xHII, xHI, T , xHeII and xHeIII from simulations
with grids of 643, 1283, 2563 and 5123 resolution, with no refinement. The bottom sub-panels
show the ∆, where Rref is the CRASH-AMR results with respect to the highest resolution, i.e.
5123, and Ri are the results with other resolutions. For clarity we show ∆ only for xHII and

3.4 Dependence on grid resolution 67

0 1 2 3 4 5
d [Mpc]

0.2

0.4

0.6

0.8

1

x
H

II

3 r.l.
4 r.l.
5 r.l.
6 r.l.

0 1 2 3 4 5
d [Mpc]

3 r.l.
4 r.l.
5 r.l.
6 r.l.

0 1 2 3 4 5
d [Mpc]

0

0.2

0.4

0.6

0.8

1

x
H

II

3 r.l.
4 r.l.
5 r.l.
6 r.l.

Figure 3.11 LOSs in random directions when moving away from a point source, for Test 2c
at time t = 500 Myr. The colors refer to a test case with three (red), four (blue), five (green)
and six (black) r.l.

xHeII in the respective panels. We find that the results agree well with the 5123 resolution
case, with a maximum of 10 % difference for all the four profiles. Also note that the difference
between the 2563 and 5123 results is the minimum (green line - bottom panels) for all the four
profiles. This is as expected since with increasing resolution the calculation of the spherical
average is more accurate and hence the difference should be minimum. As mentioned in
3.3.1.2, the spikes that we see in the profiles are numerical artefacts due to code optimization
and not due to the interfacing with CHOMBO.

3.4.2 Test 2 with different base grid resolution and refinement levels

We then turned our attention to running test cases where the resolution at the base grid is
different, but that at the finest AMR level is the same. Note that in these test cases we
have completely refined the grid, although this is not usually the case with AMR codes. This
sets the same grid resolution at the highest refinement level, and hence the results of the RT
simulation should also match. We set up test cases with the following grid properties:

1. Base grid resolution 643, three levels of refinement.

2. Base grid resolution 1283, two levels of refinement.

68 3. Radiative Transfer on static, nested grids in CRASH

2.0

3.0

4.0

T
 [

K
]

/
1

0
4

T, 64
3

T, 128
3

T, 256
3

T, 512
3

0 1 2 3 4 5 6 7

d [kpc]

0.01

0.1

1

10

∆
T

 /
 T

 [
%

]

64
3

vs 512
3

128
3

vs 512
3

256
3

vs 512
3

0.2

0.4

0.6

0.8

1

x

x
HeII

, 64
3

x
HeIII

, 64
3

x
HeII

, 128
3

x
HeIII

, 128
3

x
HeII

, 256
3

x
HeIII

, 256
3

x
HeII

, 512
3

x
HeIII

, 512
3

0 1 2 3 4 5 6 7
d [kpc]

0.001

0.01

0.1

1

10

(∆
x

/
x)

 [
%

]

(∆x/x)
HeII

, 64
3

vs 512
3

(∆x/x)
HeII

, 128
3

vs 512
3

(∆x/x)
HeII

, 256
3

vs 512
3

0.2

0.4

0.6

0.8

1

x

x
HII

, 64
3

x
HI

, 64
3

x
HII

, 128
3

x
HI

, 128
3

x
HII

, 256
3

x
HII

, 256
3

x
HII

, 512
3

x
HII

, 512
3

0 1 2 3 4 5 6 7

d [kpc]

0.001

0.01

0.1

1

(∆
x

 /
 x

)
[%

]

(∆x/x)
HII

, 64
3

vs 512
3

(∆x/x)
HII

, 128
3

vs 512
3

(∆x/x)
HII

, 256
3

vs 512
3

Figure 3.12 Spherically-averaged profiles at time t = 500 Myr for Test 2b. The colors refer
to CRASH-AMR with different base grid resolutions, 643 (red), 1283 (blue), 2563 (green) and
5123 (black). Top: Profiles of xHII (solid lines) and xHI (dashed lines). Middle: Profile of
T (dash-dot lines). Bottom: Profiles of xHeII (dotted lines) and xHeIII (dot-dash lines). The
bottom sub-panels show ∆ between the corresponding values at different resolutions when
compared to 5123.

3. Base grid resolution 2563, one refinement level.

4. Base grid resolution 5123, no refinement.

Figure 3.13 shows the spherical averages of xHII, xHI, T , xHeII and xHeIII from simulations
with base grid resolution of 643 with three refinement levels, 1283 with two refinement levels,
2563 with one refinement level and 5123 with no refinement. The bottom sub-panels show the
∆, calculated as mentioned in Section 3.4.1. For clarity we show ∆ only for xHII and xHeII in
the respective panels. The grid resolution at the highest refinement level in each case is 5123.
Since the grids are completely refined, we have calculated the spherical average at the highest
resolution for all cases, i.e. at 3rd refinement level for 643, 2nd refinement level for 1283 and
so on, so that they correspond to 5123. The ∆ between the different grid resolutions is zero
which is as expected since the values of xHII at the highest resolution, i.e. 5123 should be the
same for all cases.

The modified ray-tracing algorithm in CRASH-AMR now has to trace a ray across different
refinement levels. At each cell crossing the code has to check for a new cell at the same or a

3.5 Run time performance 69

0 1 2 3 4 5 6 7

d [kpc]

0.2

0.4

0.6

0.8

1

x

x
HeII

, 64
3

(3 r.l.)

x
HeIII

, 64
3

(3 r.l.)

x
HeII

, 128
3

(2 r.l.)

x
HeIII

, 128
3

(2 r.l.)

x
HeII

, 256
3

(1 r.l.)

x
HeIII

, 256
3

(1 r.l.)

x
HeII

, 512
3

(no ref.)

x
HeIII

, 512
3

(no ref.)

0 1 2 3 4 5 6 7

d [kpc]

0.2

0.4

0.6

0.8

1

x

x
HII

, 64
3

(3 r.l.)

x
HI

, 64
3

(3 r.l.)

x
HII

, 128
3

(2 r.l.)

x
HI

, 128
3

(2 r.l.)

x
HII

, 256
3

(1 r.l.)

x
HI

, 256
3

(1 r.l.)

x
HII

, 512
3

(no ref.)

x
HI

, 512
3

(no ref.)

0 1 2 3 4 5 6 7

d [kpc]

2.0

3.0

4.0

T
 [

K
]

/
1

0
4

T, 64
3

(3 r.l.)

T, 128
3

(2 r.l.)

T, 256
3

(1 r.l.)

T, 512
3

(no ref.)

Figure 3.13 Spherically-averaged profiles at time t = 500 Myr for Test 2b. The colors refer
to CRASH-AMR with different base grid resolutions, 643 (four AMR levels - red), 1283 (three
AMR levels - blue), 2563 (two AMR levels - green) and 5123 (no refinement - black). Top:
Profiles of xHII (solid lines) and xHI (dashed lines). Middle: Profile of T (dash-dot lines).
Bottom: Profiles of xHeII (dotted lines) and xHeIII (dot-dash lines).

different refinement level. This could have a negative impact on the run time performance of
the code. We set up some test cases to verify is this was the case, and we discuss them in the
following Section.

3.5 Run time performance

In Section 3.2 we had mentioned that there was no run time overhead of using CHOMBO based
AMR grids in CRASH, but only the additional time to search for the new cell in the multiple
refinement levels that the ray passes through. Even though this search adds to the total run
time in the RT simulations done using AMR grids, its effect is small when compared to doing
the RT simulation on a uniform high resolution grid. To prove that this is so, we ran some
test cases comparing the run times between grids at uniform resolution and AMR grids from
the CHARM simulation. Using CRASH-AMR to run the RT simulation on a uniform grid is the
same as using CRASH3 instead. Our intention is to demonstrate that CRASH-AMR is able to
provide results with the same accuracy as CRASH3, with much less computational efforts.

We have used a maximum grid resolution of 5123 for our test cases. At this stage CRASH-AMR is
still a serial code; it requires at least eleven, double precision, variables for its RT simulation,
i.e. ∼ 12 GB to store the data in a 5123 resolution grid. Hence, for the serial version, running

70 3. Radiative Transfer on static, nested grids in CRASH

Table 3.1. Run times (in hours) for CRASH-AMR simulations, similar to Test 1, along with
the corresponding volume averaged xHII at time t = 500 Myr.

Test case Grid resolution Run time (hours) xHII

U128 Uniform grid (UG), 1283 1.60 0.181
U256 UG, 2563 3.55 0.185
U512 UG, 5123 8.32 0.183
R128 Refined grid (RG), 1283 1.58 0.180
R256 RG, 2563 2.52 0.184
R512 RG, 5123 3.40 0.181

the RT simulation on a uniform grid at larger resolutions is not possible.

3.5.1 Set up with single point source

The set-up is similar to Test 1, with the ionised region from a single point source expanding
into a realistic density field. The source is placed at the highest density peak and is assumed
to be steady, with Ṅγ,ref = 5 · 1054 photons s−1, a monochromatic spectrum of hν = 13.6 eV.
The source emits Np = 2 · 108 photon packets, this value ensures that we reach convergence
by the end of simulation (see Section 3.1.1.1 for a discussion). The gas is assumed to contain
ony H with an initial ionisation fraction xHII set to 1.2 · 10−3. The gas temperature, T , is
initially set to 100 K and is kept constant throughout the simulation. The simulation time is
tsim = 500 Myr, starting at redshift z = 0.1. We output the results at intermediate times t
= 10, 20, 100, 200 and 500 Myr.

To compare the run times we have created uniform resolution grids from the AMR refined
grids used in Test 3 by interpolating the coarse data onto the finer levels. We use grids of
resolution 1283, 2563 and 5123 and compare the run times to that of grids with base resolution
of 643 with 1, 2 and 3 refinement levels respectively. We would like to point out that there are
other factors that also impact the run time of a CRASH simulation, for example the number of
point sources, presence of He with T evolution and number of photon packets. However, we
do not consider them here and focus instead on the performance of the code for a simple test
case.

Table 3.1 shows the run times on grids at uniform resolution of 1283 (U128), 2563 (U256)
and 5123 (U512). We compare these with the run times on grids with a base resolution of
643 with 1 (R128) , 2 (R256) and 3 (R512) refinement levels respectively. The corresponding
volume averaged xHII at time t = 500 Myr are also shown.

We compare test cases U128 with R128, U256 with R256 and U512 with R512. For cases
U128 and R128, the difference in run times is only 1.25 %, but as we go to higher resolutions
for example cases U512 and R512, the difference in run times is as high as 59 %. The
corresponding difference in volume averaged xHII is only 0.5 % and 1.1 %.

3.5 Run time performance 71

Table 3.2. Run times (in hours) for CRASH-AMR simulations, similar to Test 3a, along with
the corresponding volume averaged xHII at time t = 500 Myr.

Test case Grid resolution Run time (hours) xHII

U512 UG, 5123 11.4 0.0501
R512 RG, 5123 6.97 0.0494

Figure 3.14 compares two random LOSes, moving away from the source, for the case with
uniform and refined grid at different resolutions. The top panel compares the LOSes from
U128 and R128 test cases, the middle panel compares U256 and R256 and the bottom panel
compares U512 and R512. We find that the extent of the fully ionised H II region for the
uniform and AMR grid cases is the same for all the test cases. The partially ionised regions
show the largest differences; the size of the I-front is smaller for all the test cases where we
use refined grids when compared to the uniform grid case, with a maximum difference of 2 %.

3.5.2 Set up with multiple point sources

We look at another test case, similar to Test 3a, to confirm that CRASH-AMR provides accurate
results with shorter run times, when compared to CRASH3. We use a grid at a resolution of
5123 and compare the run time to that of a grid with a base resolution of 643 with 3 refinement
levels, see Section 3.3.3.1 for details on the set up.

Table 3.2 shows the run times on grids at uniform resolution of 5123 (U512) compared to
the run time on grids with a base resolution of 643 with 3 (R512) refinement levels. The
corresponding volume averaged xHII at time t = 500 Myr are also shown. We find that the
difference in run times between the two cases is as high as 38 %. The corresponding difference
in volume averaged xHII is only 1.3 %.

Figure 3.15 compares three random LOSes, moving away from the most luminous point source.
We show the same LOS, as plotted in Figure 3.9, for R512 and compare the results with that
of U512. Here as well we find that the size and extent of the ionised H II region formed in the
test case with refined grids matches well with that of the uniform grid. We find a maximum
difference of 2 % in the size of the I-front.

From the two test cases above it is clear that, quantitatively, CRASH-AMR is able to provide
results that are as accurate as CRASH3 but with much less run times. We have been able to
represent the regions of interest at a resolution increased by a factor of 64 and not lose any
accuracy in the results. Our interface with CHOMBO and the ray-tracing algorithm to search for
the new cell across different refinement levels during ray-tracing is highly efficient and does
not have a negative impact on the run time. CRASH-AMR is an improvement over CRASH3 both
in terms of run time and memory consumption; this will allow us to carry out RT simulations
at a much higher resolution than was possible earlier.

72 3. Radiative Transfer on static, nested grids in CRASH

3.6 Conclusion

We have introduced CRASH-AMR, a new version of the cosmological radiative transfer code
CRASH, enabled to run RT simulations on AMR grids. After an exhaustive introduction of the
code development we have shown the results of many tests both with the simplified set-up
prescribed in RTCCP and a realistic hydrodynamic simulation with AMR refinement. All
the tests show good agreement with the latest release of CRASH, confirming the correct intro-
duction of a more accurate and alternative geometry representation of the gas distribution
in the cosmological domain in which the RT is performed. Few differences found in our tests
show that small discrepancies are just due to the introduction of a higher grid resolution
of the refined levels or are simply ascribable to numerical artifacts introduced by averaging
operations.

Once applied to a more realistic density field, we find a sharp difference in the ionised region
patterns formed at different AMR resolutions because of the more accurate treatment of the
gas optical depth and cooling function. Consequently, the ionisation fractions of the H, He
species are calculated with greater accuracy at higher resolutions and the global process of
ionisation proceeds with accuracy in reproducing the bubble growth and the escape of ionising
radiation from high-density regions in which star formation is generally embedded.

Regarding the many advantages of CRASH-AMR, we note that the new code is able to perform
RT simulations in high density regions with the resolution increased by a factor of 64, without
experiencing serious memory limitations. It has been proven to be able to manage the entire
large set of information usually handled by the original version and to account for a large set
of physical processes. Such a high resolution would be unmanageable from the storage point
of view in a single compute core without this new version. We also find that when compared
to running on uniform, high resolution grids, we get up to 59 % reduction in run times when
the same set up is applied on smarter AMR grids; hence CRASH-AMR provides an advantage
both in terms of memory consumption and run time performances when compared to the
standard version of CRASH.

The adaptivity of the grids used in CRASH-AMR is decided by the hydro code and CRASH-AMR is
only used in a post-processing mode. However, the capability of adaptively refining the grid
within the RT simulation is of importance in certain situations, for example, studying the
contribution of quasars in IGM reionisation. As a start, we would like to use this adaptivity
feature for a test case with a single point source such as a quasar. The other application of
CRASH-AMR, that is of more importance, is the setting up of cosmological simulations on larger
volumes, with higher resolutions, and hundreds, if not thousands of point sources. So we first
look at parallelising CRASH-AMR using distributed memory parallelism. Then we look at the
feasibility of implementing adaptive RT in CRASH-AMR.

3.6 Conclusion 73

0

0.2

0.4

0.6

0.8

1

x H
II

U128
R128

U128
R128

0

0.2

0.4

0.6

0.8

1

x H
II

U256
R256

U256
R256

0 5 10 15 20 25 30 35
d [Mpc]

0

0.2

0.4

0.6

0.8

1

x H
II

U512
R512

0 5 10 15 20 25 30 35
d [Mpc]

U512
R512

Figure 3.14 LOSes in random directions when moving away from a point source, for Test 1
at time t = 500 Myr. The colors refer to CRASH-AMR with a uniform grid (black) and with
r.l. (red). Top: U128 and R128 (dashed lines). Middle: U256 and R256 (dot-dash lines).
Bottom: U512 and R512 (solid lines).

74 3. Radiative Transfer on static, nested grids in CRASH

0 5 10 15 20 25
d [Mpc]

0

0.2

0.4

0.6

0.8

1

x
H

II

U512
R512

0 5 10 15 20 25
d [Mpc]

0

0.2

0.4

0.6

0.8

1

x
H

II

U512
R512

0 5 10 15 20 25
d [Mpc]

0

0.2

0.4

0.6

0.8

1

x
H

II

U512
R512

Figure 3.15 LOSes in random directions when moving away from a point source, for Test 3a
at time t = 500 Myr. The colors refer to CRASH-AMR with a uniform grid (black) and with 3
r.l. (red).

Chapter 4

Parallelisation of Radiative Transfer
in CRASH

In Chapter 3 we spoke about the development of a new code CRASH-AMR that can do RT
simulations on static, nested grids that are the outputs of a hydro simulation. We use the
term static to refer to the fact that the adaptivity of these grids is decided by the hydro code,
while the RT simulation does not carry out any refinements. CRASH-AMR is a serial code, and
our next effort has been towards parallelising it using distributed memory parallelism. Even
though a parallel version of the CRASH code exists (PCRASH [144]), we have used CRASH3 as
our base version for further developments. Our motivation to do so is due to the fact that the
software architecture of CRASH3 makes it amenable for addition of further physics modules
or other algorithmic improvements. Also, when compared to PCRASH, it has the modules
necessary to include metals [73]. Even though we do not include metals in CRASH-AMR now,
it can be done easily in the future as the initial framework to do so already exists.

Parallelising CRASH-AMR will give us the advantage of being able to run RT simulations on
larger box sizes with more point sources. Also, we could look at the possibility of carrying
out RT simulations with cosmological set ups, by processing multiple snapshots. We begin
by discussing some of the techniques used to parallelise SAMR codes and the load balancing
techniques they adopt in Section 4.1. Next we look at the scheme we have adopted to
parallelise CRASH-AMR in Section 4.2. Finally, we discuss a number of tests that have been
done to study the performance our parallel code in Section 4.3.

4.1 Parallelising SAMR codes

Parallelisation of SAMR codes presents a unique set of challenges, when compared to codes
that use uniform grids, in terms of data-distribution and domain decomposition across cores.
The aim, as always, is to minimise communication and synchronisation events between the
various participating cores, while ensuring an optimal load balance. The complexity with
SAMR codes arises due to the fact that as the simulation progresses, the grid hierarchy can

76 4. Parallelisation of Radiative Transfer in CRASH

change due to addition or deletion of new refinement levels [167]. This requires new strategies
for an efficient parallel implementation.

The first step towards this parallelisation is to have suitable data structures to represent
the grid hierarchy. This allows the solution to be separated into different components that
corresponds to the grid hierarchy, the associated functions and components that relate the
two. In Section 2.2.1.2.5 we had discussed the different data structures required to implement
SAMR. The methodology adopted in CHOMBO, discussed in Section 2.2.6.2, provides the nec-
essary framework for parallelisation. The library provides classes, such as the DataIterator
and LayoutIterator, that clearly distinguish between data that is local or non-local to a core.
Separate classes provide the functionality required to solve the PDEs associated to the prob-
lem under consideration. The presence of independent grids at each level allows concurrent
operations to be done, thereby exploiting the inherent parallelism of SAMR.

With a well-defined data structure in place, one can now look at the various aspects of domain
decomposition required for adaptive codes. The key requirement for domain decomposition
schemes is to ensure [168]

(a) A logical consistency of the grid hierarchy across cores, in terms of information relating
to which core owns a particular grid [142].

(b) Spatial locality of grids which is necessary to reduce the number of communications
between cores. This communication can be classified as “intra-grid” and “inter-grid”.
Intra-grid communications are typically done to copy the boundary data between grids
that lie on the same level, these can be overlapped with computations done in the interior
parts of the grid. Inter-grid communications take place between grids at different levels of
refinement, involving interpolation and averaging operations among the child and parent
grids.

(c) Proper load balance across cores. The hierarchy in AMR consists of grids at different
resolutions, thus resulting in different computational loads associated with each grid.
An efficient domain decomposition scheme provides a balanced load distribution across
processors thereby reducing idle time among cores. The load balancing (LB) scheme
employed can be either static or dynamic depending on how often the grid hierarchy
changes.

We now discuss points a, b and c in more detail.

The data structure used to maintain the AMR hierarchy reflects the relationship between
the grids at different refinement levels. This can change during a simulation, due to addition
and deletion of grids. It is then necessary that the information pertaining to the neighbors,
child or parent patches are updated for each grid at all refinement levels. This can become
a bottleneck if all the cores need to replicate the entire hierarchy requiring synchronisation
events to get the updated patch information from other cores. Some AMR codes, such as
CHOMBO, replicate the metadata containing the entire grid hierarchy across all the cores. The
AstroBear library, on the other hand, makes use of a distributed tree, and each core stores
only the part of the AMR hierarchy necessary to carry out computations and communications
[133].

4.1 Parallelising SAMR codes 77

Preserving the spatial locality of grids in SAMR depends on the domain partitioner used,
these can be broadly classified as domain-based (DBP), patch-based (PBP) and hybrid (HP)
methods [92]. The DBP method [143, 177, 187] works by partitioning the whole physical
domain rather than the grids. This results in grids across all levels being assigned to the
same core. This can be further optimised by using Space-filling curves (SFC) to order the
grids in a one-dimensional list which is then cut according to a threshold value for the load
[52, 142]. The DBP method has an advantage of reduced communication volumes. The PBP
method, on the other hand, works by distributing the grids at each level independently. This
in theory provides perfect load balance but can result in more communication among cores
during synchronisation events [104, 151]. The HP method works by combining the advantages
of the DBP and PBP methods [105, 179, 187].

The DBP, PBP and HP methods discussed provide different strategies for balancing the load
across cores. These can be used as both static and dynamic LB schemes. In a static LB sce-
nario, the grids are distributed at the beginning of the simulation. In a dynamic LB scenario,
the loads needs to be redistributed due to the addition of new grids. Here, the advantage
of the PBP method becomes clear. Distributing the new patches introduced by SAMR can
be done fairly easily in the PBP method as it works at each level independently. The new
level of refinement could however add to the inter-grid communication and synchronisation
costs. The DBP method, when used for dynamic LB, requires a complete repartitioning of
the domain across all levels to avoid inhomogeneous work loads [152]. It was also found that
the DBP method works well only for grid hierarchies with up to three levels of refinement
and performed poorly when higher refinement levels were present [178]. The use of inverse
SFC methods have been shown to be a promising alternative instead [143, 176]. Another
method suggested in [179] for dynamic LB involves the use of a meta-partitioner that can
select from a list of partitioning schemes available and depending on the current state of the
application can redistribute the load. A similar technique suggested in [91] uses a database
consisting of application states and their associated performance measurements for different
partitioning algorithms. The scheme that gave the best performance for an application state
closely matching the current state is then selected.

Now that we have a general overview of the different aspects involved in parallelising SAMR
codes, we look at the techniques used by some other ray-tracing codes for parallelisation. In
particular, we look at ray-tracing codes that work on refined grids.

4.1.1 Parallel ray-tracing codes

Ray-tracing codes like CRASH are suitable for parallelisation since each core can work inde-
pendently by emitting the rays from the point-sources in its domain and follow them till they
exit the domain. However, their performance depends on careful considerations that need to
be applied for decomposing the domain among cores. Additionally, the ray-tracing algorithm
also has a huge impact on the efficiency of the code. We provide some examples of such
parallel ray-tracing codes, and mention the techniques they adopt for parallelisation.

The PCRASH code [144], based on a previous version of CRASH, carried out parallel RT simu-
lations and demonstrated good scaling up to 128 cores. The code made of uniform grids and

78 4. Parallelisation of Radiative Transfer in CRASH

employed a static LB scheme. The domain was decomposed among cores by using the Hilbert
SFC [8], and the load on each cell was calculated using criteria specific to RT simulations.

The adaptive ray-tracing method in MHD code ENZO uses a SAMR scheme for its hydrody-
namic simulations. The RT module of the code is based on an adaptive ray-tracing technique,
which has been parallelised using MPI [198]. ENZO stores the complete grid hierarchy in each
core and utilizes a “non-blocking” scheme where the packets are not propagated according
to the time at which they were emitted, but according to when they were received by a
core. This removes the need to synchronise between the different iterations. The code makes
use of a BSAMR framework, which has some differences to the PBAMR framework used in
CRASH-AMR. This changes the way ray-tracing can be done in ENZO since a one-to-one rela-
tionship between a child and parent grids exists, which is absent in CRASH-AMR. The load on
each box is set to the number of cells within the box; both static and dynamic LB schemes
are available which make use of the DBP, PBP and Hilbert curves to distribute the load. The
code shows good scaling up to 512 cores.

The FLASH code makes use of a “hybrid” method to do ray-tracing [32, 154] that takes
advantage of both the long and short characteristic methods, described in Section 1.3.1, to
calculate the optical depth or gas column density. Similar to CRASH-AMR the boxes at each
level are assigned a globalID and here as well all the patches are known to all the cores. It also
implements the BSAMR framework, similar to that of ENZO, where grids at different levels
do not overlap but are completely contained within the parent level below. The static LB
scheme adopted ensures that the AMR hierarchy is equally split among all cores by assigning
an equal number of “leaf blocks”, i.e. grids that are not covered by any other grid, to each
core. The tests done with the code scale up to 350 cores.

We also mention RADAMESH, an adaptive MCRT code that utilizes the BSAMR framework
for its adaptivity. Differently to the codes mentioned above, it has been parallelised using
OpenMPI and has been run on eight cores.

We have given some examples of ray-tracing codes that have been parallelised using different
techniques. Most of them make use of the BSAMR framework, and store the complete AMR
hierarchy on each core. Similar to these codes, CRASH-AMR also has to propagate the ray
through multiple refinement levels. Also, the problem is exacerbated by the fact that the
rays travel in random directions and the parts of the domain they will or should cover cannot
be decided a-priori. Depending on the geometry of the density field, the rays can travel
long or short distances. In our case we have yet another additional complexity that the
PBAMR framework does not have a tree structure where a one-to-one relationship between
the child and parent box exists. We need to use some searches to find the right parent box.
All these factors put together complicate ray propagation in CRASH-AMR and consequently its
parallelisation as well. Nevertheless, we take a look at some techniques that can be applied
to parallelise CRASH-AMR and demonstrate our initial attempts in this direction.

4.2 Parallelising CRASH-AMR

Parallelising CRASH-AMR has required a number of changes, in terms of the load balance and
domain decomposition across cores, the interface with CHOMBO to get the grid information back

4.2 Parallelising CRASH-AMR 79

to CRASH-AMR and the way the RT simulation itself is done. We mention these separately to
give a complete picture of the methodology adopted to parallelise CRASH-AMR. Henceforth, we
refer to the parallel version as PCRASH-AMR to distinguish it from the serial version CRASH-AMR.

The CHOMBO library provides thread level parallelism using OpenMP and process level par-
allelism using MPI. We use the relevant features in CHOMBO to parallelise PCRASH-AMR using
MPI. The library provides a number of routines to facilitate the data management and distri-
bution across cores. It also provides relevant classes that can access the whole grid hierarchy
now lying across cores. We will mention them as and when they are used. Calls to ini-
tialise and finalize MPI need to be taken care of by the user. The default communicator is
Chombo MPI::comm, instead of MPI COMM WORLD, and is converted to a Fortran integer
for use within PCRASH-AMR.

We discuss in detail the parallelisation scheme in PCRASH-AMR, and begin by looking at load
balancing technique used in the code which impact the other two changes we mentioned above.

4.2.1 Load balancing

For the case of the RT simulation on a uniform grid, the load on each core depends on

1. Number of point sources that are in the core domain: the photon-packets originating
from these sources have to be propagated and, if necessary, communicated.

2. Distance of a cell in a box from a point source: the closer the cell is to the source, the
more photon-packets cross it. This contributes to the total load in a box assigned to a
core.

3. The luminosity of a source: this can impact how far the photon-packets are able to
travel before they are absorbed by the medium. The further the packets are able to
travel, the larger the number of communications required to propagate the ray. Also,
initially the gas around the point source might be dense enough to prevent any photons
from escaping. As the simulation proceeds, the gas gets ionised, resulting in the photon-
packets traveling further before they get completely absorbed. This results in a scenario
where the packets emitted initially do not cross many cells, but at later times travel
further and require more MPI communications to be propagated.

In the case of RT simulations on multiple grid levels, we need to take into account an additional
factor. If a source lies in a box belonging to a core, P0, then there is an additional expense
attached to the box if its neighbor(s), child(ren) or parent(s) lie in other cores. Every time
the ray exits the box and moves to another box, we need to communicate the ray. One could
in principle use a DBP approach and assign the boxes that cover or are covered by other
boxes to same core. Although this strategy reduces the communication involved in the RT
code, it is rather inefficient for our purposes as the resulting load distribution might assign
a large number of boxes to one core. Take, for example, the refined grids obtained from the
CHARM hydro simulation as shown in Figure 4.1. We show a 2D image with the outlines of
the boxes at coarser (red boxes) and finer (green boxes) resolutions. The domain has been
split among four cores as per the criteria mentioned. One can immediately see that with this

80 4. Parallelisation of Radiative Transfer in CRASH

P0 P1

P2

P3

Mpc

M
p
c

Figure 4.1 2D image showing the refinements around high density regions for the simulation
outputs from the CHARM code, and the domain decomposed among four cores (P0, P1, P2

and P3). The red boxes show the grids at coarser resolutions, the green boxes are at higher
resolutions.

method core P1 has a larger number of green boxes, where point sources will be located and
distributing the load this way will not be conducive to the code performance. Also, CHOMBO
as of now does not provide a DBP approach. We have instead used the PBP approach for
partitioning the domain which we discuss this further in the context of PCRASH-AMR. Note
that we do these simulations in a post-processing mode, i.e. the grid hierarchy in the code
does not change during the simulation, so we only consider a static LB scheme as of now.

To calculate the load on each core, we provide the user two different LB routines to choose
from. This selection can be done during the set up of the simulation ICs. The first option
calls the default LB routine of CHOMBO. This sets the number of cells in each box as the load
on each box, similar to the scheme followed in [198]. Next, an array containing the load
for each box, l0, l1, .., lN , for the N boxes at each refinement level is specified. A “modified
Knapsack algorithm” is then used to balance the load. This starts by calculating an average
load on each core and assigning the first box to a core with MPI rank 0. For each subsequent
assignments, it calculates a dynamic goal based on the remaining load. This ensures that the
last core does not end up with an abnormally large workload. To improve locality, boxes with
equal number of cells can be swapped among cores.

The second option calls an alternate implementation of the LB routine in CHOMBO which
accepts an array of loads calculated with user-defined criteria. In our case, we set the load on
each box to be the “ray density” as defined in [144] . In an optically thin medium, the “ray
density” (RD) in each cell is proportional to the number of rays that passes through the cell
and can be defined as

4.2 Parallelising CRASH-AMR 81

S1

S2

dcell,S1
dcell,S2

Figure 4.2 Image showing five point sources with different luminosities in a grid. Sources S1
and S2 have a luminosity higher than that of the other three sources. A tree structure is
formed with S1 and S2 as the parents, and the sources near them as child(ren). In the image,
parents and child(ren) are connected by green arrows. The ray density from sources S1 and
S2 and their child(ren) is calculated for the cell containing the red dot. See text for more
details.

RDcell =
∑

sources

dcell,source (4.1)

where dcell,source is the distance between the point source and the cell for which the load is
being calculated. RDcell is calculated by summing the load on the cell from all the sources.
For a uniform grid, since all cells are at the same refinement level, this can be calculated
easily. In PCRASH-AMR we need to make some improvement as follows.

Once we have loaded the files that specify the source coordinates, we do the following:

1. We first sort the point sources in a decreasing order of luminosity, for convenience. Then
starting from the most luminous source, we build a tree structure linking all the other
sources (child) that lie within a certain radius from the more luminous source (parent).
The radius is a user specified variable provided when the ICs are set up in the RT
simulation. Then we find the next most luminous source which has not been added to
the tree, and we locate its child sources. This is repeated till all the sources have been
added to the tree.

2. Next, we mask out all cells at coarser levels that are covered by finer cells. As the ray
will not propagate through these cells during the RT simulation (in fact the ray will
only cross the cells at the most refined level), the load on them can be set to 0.

3. We loop through all remaining cells, and for each one we find RDcell as given in Eqn. 4.1,
summing up the values for all parent sources in the tree. If the cell lies in a refinement
level different than the one of the source, we scale up/down its coordinates to the source
level and then calculate the RD. The cell RD can then be written as:

82 4. Parallelisation of Radiative Transfer in CRASH

RDcell =
∑

psources

dcell,psource(1 +Nchild,psource) (4.2)

where Nchild,psource is the number of children each parent source psource has, and the
sum extends only over the parent sources.

Figure 4.2 shows a sample grid with five point sources depicted as yellow circles, the size
of which indicates the source luminosity. Sources S1 and S2 have a luminosity higher
than the one of the nearby sources. The dashed green lines connect S1 and S2 to the
less luminous sources that lie within a radius of three cells in each direction. The red
dot indicates the cell for which we want to calculate the load. We determine RD due
to sources S1 and S2 including the number of child(ren) in their respective trees, given
by the equation

RDcell = dcell,S1(1 +Nchild,S1) + dcell,S2(1 +Nchild,S2) (4.3)

where Nchild,S1 = 2 and Nchild,S2 = 1.

4. Once the load on each cell has been determined, this is summed up to give the load, lb,
for each box at each refinement level.

We can now specify an array containing the load for each box, l0, l1, .., lN for the N boxes at
each refinement level. This is passed as a parameter to the LB routine which balances the
load at each level separately by first sorting the loads in increasing order. Then in decreasing
order, starting with core P0, the loads are assigned to the next core with the minimum load.
If any core has a large deviation from the average load, then it is swapped with another core.
The swapping is done only if it improves the efficiency, i.e. the ratio of minimum to maximum
load, of the assignments.

At the end of the LB routine, we have a new distribution of boxes which can be used to
create a new DisjointBoxLayout. The data stored in FArrayBox, backed up prior to the
load distribution, is copied back to the new layout. Note that this copy involves calls to
MPI routines to exchange the data contained in a core with another core that now owns the
relevant box.

This concludes our discussion on the LB method used in PCRASH-AMR, we next look at the
changes done to the interface between the two codes.

4.2.2 Changes to PCRASH-AMR and CHOMBO interface

The interface between CRASH and CHOMBO sets up the relevant information from CHOMBO re-
quired to do ray tracing in CRASH. For the case of CRASH-AMR this only involved setting up the
grid hierarchy and getting back pointers to the data in each box. For the case of PCRASH-AMR,
the interface has to be set up differently.

4.2 Parallelising CRASH-AMR 83

4.2.2.1 Setting up local and global lists

Before starting a RT simulation with CRASH-AMR, the grid hierarchy needs to be built using
the data coming from CHOMBO. The interface between the two codes determines, for each box
at each refinement level, its neighbor(s), child(ren) and parent(s). Then the physical data
stored in all the boxes is also passed back to CRASH-AMR. In PCRASH-AMR, building the grid
hierarchy needs to be done differently. Also the amount of physical data that each core now
needs to store is less than CRASH-AMR. We explain it in detail below.

To do RT on multiple cores, we need to decompose the domain across them. In Section 4.2.1
we mentioned the steps taken by the LB routine to distribute the boxes among cores. Boxes
that belong to a core are said to be ‘local’, while those lying in other cores are said to be
‘non-local’. All cores can access the properties of all boxes, i.e. the start and end coordinates,
the refinement level the box belongs to etc. However, the core can access the physical data
stored in a box only if it is local, via the FArrayBox class. The data in a non-local box is not
accessible implicitly and needs explicit MPI calls.

During the RT simulation, it is enough if the core can access local data. To simulate radiation-
matter interaction, we solve the relevant equations using the data in only one cell, belonging
to a local box, at any given instance. Thus, we do not need any access to the physical data of
a non-local box. If the ray travels to a box that belongs to another core, we need to find the
new box and the core that contains this box. Then the ray has to be communicated to the
corresponding core for further propagation. Hence, in addition to the complete local data,
we need to keep a list of non-local boxes as well.

Our approach was to create two maps in each core, ‘local’ and ‘global’. The local map
contains all the boxes that are local to a core, and has a data structure similar to the one
we build in 3.2.2; the global map, on the other hand, contains all those boxes that are not
local to a core. Figure 4.3 shows the data representation in CHOMBO on the left-hand side.
The CRASH equivalent on the right-hand side now has two maps, local and global. The local
boxes, B(0, 0), B(0, 1) and B(1, 4) are shown with bold lines whereas the boxes in the global
map B(1, 2) and B(0, 3) are shown with dotted lines. Both these maps are built across all
cores, for their respective local and non-local boxes.

We now discuss how these maps are built. The DataIterator class in CHOMBO gives a list of
all local boxes at all refinement levels. The LayoutIterator class, on the other hand, provides
access to the properties of all boxes, both local and non-local at all levels. Each core loops
through all the boxes in the LayoutIterator and compares its MPI rank with the MPI rank of
the box containing the core. If it is non-local, we add the box properties and the corresponding
MPI rank to the global map. If it is local, it is added to the local map along with its list of
local neighbor(s) and parent(s). The physical data contained in the corresponding FArrayBox
class is also returned via Fortran pointers. Additionally, for the local boxes, we determine
if its child(ren) are local or not. If the child is local, we store its globalID as done in 3.2.2
for easier ray traversal. If not then we assign a globalBoxID of −1 to indicate that it should
be searched in the global map. While building the maps, we ensure that the unique pair of
localID and globalID of a box is the same across all cores. This makes it easier to locate the
right box during ray propagation across cores.

84 4. Parallelisation of Radiative Transfer in CRASH

CHOMBO

 Level 0

(base grid)

Figure 4.3 Interface between CRASH and CHOMBO, the grid hierarchy in CHOMBO being reflected
through the data structure built in CRASH. The AMR grids, stored as an array of boxes in
CHOMBO, are now stored in two maps, local and global. The local map contains the boxes
belonging to a core (solid lines). The non-local boxes belonging to other cores are stored in
the global map (dotted lines).

4.2 Parallelising CRASH-AMR 85

The global map built as mentioned above contains all the non-local boxes. This is similar
to the approach followed in [32, 198] where each core stores information related to all the
patches in the AMR hierarchy. In principle, for RT simulations, it is not at all necessary to
store all this information since the ray will only ever travel to a surrounding box. To get a
list of these boxes, we only need to store in the global map the following information

(a) Non-local neighbor(s), child(ren) and parent(s) of local boxes

(b) Neighbor(s) of non-local child(ren) and parent(s)

(c) Child(ren) and parent(s) of non-local neighbors

This in effect gives a complete list of the non-local boxes that surround the boxes local to a
core. During ray-tracing, the cells crossed are either in the local boxes, or in the boxes that
satisfy the criteria mentioned above.

Finding the information mentioned in (a) is simple enough and can be done as follows

1. The NeighborIterator class gives access to both local and non-local neighboring boxes.
The properties of a non-local box can be found using the LayoutIterator class.

2. To find the non-local child(ren) and parent(s), we loop through the disjoint set of boxes
in the levels above and below. The coarsen, refine and isEmpty routines in the Box class
then help find the relevant child or parent boxes. The MPI rank of the core containing
the box indicates if it is local or not.

Finding the information mentioned in (b) and (c), however, proves to be non-trivial since it
requires determining the neighbors of non-local boxes, while the NeighborIterator class can
determine the neighbors of only local boxes. We also require careful additional checks and
MPI communications among cores to set up this information. For now we have created the
global map with all non-local cores. Setting up this map is straightforward as the required
information is readily available in CHOMBO. The downside is that it will require superfluous
searches to find the right non-local box to propagate the ray through. We intend to opti-
mise the global map, by storing only the neighboring patch information, as it is evidently
more optimal. Once we have the maps set up, we next look at how these maps are used in
PCRASH-AMR.

4.2.3 Changes in PCRASH-AMR

Now that we have mentioned the load balancing technique and the changes required for the
interface between PCRASH-AMR and CHOMBO, we describe the changes done in PCRASH-AMR with
respect to the ray-tracing algorithm.

4.2.3.1 Point sources

During the setting up of ICs for a simulation, the file containing the point source coordinates
is loaded and stored as a linked list for easy traversal. In PCRASH-AMR, since the boxes are

86 4. Parallelisation of Radiative Transfer in CRASH

distributed, each core only needs to propagate the sources that lie in its local boxes. So,
at the beginning of the simulation, each core finds the sources that lie in its local map and
updates the linked list to reflect this.

4.2.3.2 Multiple photon-packets per time step

In Section 3.1.1 we had discussed about the time resolution in CRASH-AMR, which is decided
by Ns and Np. This impacts the cell crossing times and, consequently, the equations that
evaluate the radiation-matter interaction. The ray-tracing algorithm works by emitting a
photon-packet from a source in a random direction, and following it till it exits the grid. In
the case of multiple point sources a photon-packet is emitted successively by all the sources
at time tj = j dt, where dt is the time step as defined in Section 3.1.1. Each packet, from
each source, is followed till it satisfies the conditions mentioned in Section 3.1.1.

When we have introduced multiple refinement levels, we have assured that the algorithm
correctly follows the packets across all the levels. In PCRASH-AMR we have the additional com-
plication that boxes at different levels might lie in different cores, and thus, during one time
step, the ray can traverse multiple levels lying across multiple cores. Having to communicate
a single ray every time it crosses domains can severely impact the code. Not only do we need
frequent communication among cores, which is in itself very inefficient, but the size of the
data required to communicate a single packet is also very small. Given that there is a fixed
overhead of setting up a communication among cores, this will result in a scenario where this
overhead is larger than communicating the data itself. In order to get around this problem,
we have adopted a new scheme, similar to that in [144]. According to this, at each dt, we
emit not one but multiple photon-packets, NP , from each source. To set the value of NP ,
the value of Nt is set explicitly as a user-defined value while setting up the ICs. This is
different to the scheme in CRASH-AMR where Nt was set implicitly, (Section 3.1.1 has more
details). The value of NP is now given by Np · Ns/Nt. With this new scheme, we emit and
consequently propagate a larger number of photon-packets per time step. This reduces the
number of communications required per tj . Nt is typically set to 105 for a simulation with
Np = 108, then 1000 packets are emitted from each source per tj .

4.2.3.3 Improvement to the ray-tracing routine in PCRASH-AMR

In CRASH-AMR, the ray-tracing algorithm has to check for a neighbor, child or parent for
each cell that is traversed. We mentioned some of the criteria that have to be taken care
of in Section 3.2.2. Since in PCRASH-AMR the boxes are distributed across cores, the ray
propagation is much more complex. The ray can cross multiple domains in the same time
step which requires multiple communication events per dt. To resolve this problem, we have
tried to make some improvements to the ray-tracing algorithm by exploiting the nesting
criteria mentioned in Section 2.2.1.2.1. This restricts the ray propagation to the same level
or to a finer/coarser level.

As in the serial case, we follow a ray till

(a) It reaches the end of a box.

4.2 Parallelising CRASH-AMR 87

L2

L1

L0

L2

L1

L0

S1

S2

P
1

P
0

Figure 4.4 Illustration to show ray propagation across different refinement levels, distributed
across cores P0 and P1. The different levels L0, L1 and L2 are indicated by black, blue and
red boxes respectively. Local boxes are shown with solid lines and non-local boxes in dotted
lines. Two sources S1 and S2 emit rays that travel through multiple levels.

(b) It enters/exits a particular refinement level.

(c) It is completely absorbed - this requires no further discussions.

Cases (a) and (b) need further checks which we discuss below. We also show a flowchart in
Figure 4.5 that outlines the steps required. We refer to the flowchart as and when required.

(1) Neighbor search: If the ray exits a box, use the cell coordinates to check if it has
entered any of the local neighbors. If so, we move the ray to the local neighbor and check
if the new cell is refined or not. If so, we need to move the ray to a finer level. Here
two scenarios can apply, i.e. the box containing the child cell with the ray is local or
non-local.

(i) If the child is non-local, we add the photon-packet corresponding to the ray to a
linked list for now.

(ii) If the child is local, we move the ray to a finer level and continue propagation as
before.

The steps above are shown in red boxes in Figure 4.5. The violet colored boxes show the
conditions checked to determine a local or non-local child.

(2) Parent search: If the box has no local neighbors, we check the level below (i.e. less
refined) for any local parent. If found, the coordinates of the ray are scaled to the parent
level, and we again check if the cell where the ray now lies is refined. If so, we need to
move the ray to a finer level. Here again two scenarios can apply, i.e. the box containing
the child cell with the ray is local or non-local.

(i) If the child is non-local, we need not look in the local map any further, since we
already looked at this level in step (1). We add the photon-packet corresponding to
the ray to a linked list.

88 4. Parallelisation of Radiative Transfer in CRASH

(ii) If the child is local, we move the ray to a finer level and continue propagation as
before.

The green boxes in Figure 4.5 show the steps taken.

(3) Local map: If the new box is not found in the neighbors or parents, then we search the
local map. The “proper-nesting” criteria of the boxes, Section 2.2.1.2.1 has more details,
allows us to improve this search. We keep a track of the refinement levels pertaining to
the boxes checked in steps 1 and 2. Then it is enough if the local map is searched only
among these levels, as the ray can either move to a child, neighbor or a parent level. This
reduces the need to look through the whole local map to find the right box. If the box is
not found within these levels, it can be assumed that the right box must be in the global
map.

The blue boxes in Figure 4.5 show the steps taken.

Figure 4.4 now shows ray tracing across multiple levels, with the boxes distributed across
cores P0 and P1. Boxes at level L0, L1 and L2 are shown as black, blue and red boxes
respectively. The local boxes are shown in bold lines, non-local boxes are shown with
dotted lines. One of the rays emitted from source S1 travels to a neighboring box which
is local and so the ray can be moved to it. The second ray travels to a box at level L1
which lies in P1, we search the global map only at level L1 to find the right box. Similarly
for the ray emitted by source S2, it travels to a box at L1 which is local and then again
to a box at L2. The box at L1 does not have any neighbors, so we look in the global map
at level L2 to find the right box and communicate the packet.

(4) Global map: If the ray is not found in the local map, we add the photon-packet to a
linked list for now and search it in the global map later. The orange boxes in Figure 4.5
show the relevant checks.

(5) At the end of a loop over all photon-packets, when all the packets have been propagated
till the end of the core domain, we traverse the linked list containing the packets that
need to be communicated. Each node in the linked list has the following information

(i) The new cell coordinates that the ray goes to next.

(ii) The refinement level the ray was in when it exited the box.

(iii) The data structure PHOTON PACKET as mentioned in Section 3.1.2.

We do not need the source information as once the packet has been emitted in a random
direction along a ray, its direction is unchanged.

(6) We now search through the global map, for all the packets in the list, to find the right
core to communicate the packets to. Here as well, we search the map only among the
levels necessary. If the packet was last traversing through a refinement level, say Li, then
we need to search only the levels Li−1, Li and Li+1 to find the right box. Once found,
we know the core it belongs to and add the packet to a linked list corresponding to this
core. Once all the packets have been put in the right lists, the data in the linked list is
packed and communicated.

4.2 Parallelising CRASH-AMR 89

Solve RT equations for current cell

Compute next cell crossing

Has the ray exited the box?

Figure 4.5 Flowchart to show the various steps now taken in the ray-tracing algorithm over
multiple cores, as mentioned in Section 4.2.3.3. The boxes are colored according to the steps
followed for a neighbor search (red), parent search (green), local map search (blue), checks
common to all the three steps (violet) and linked list for global map (orange).

90 4. Parallelisation of Radiative Transfer in CRASH

Communicating linked lists can be done in two ways. The first method is to create an
MPI datatype, for example the MPI Type create struct, which requires determining the
displacement in addresses of the nodes in the linked list and committing the datatype. This
can be efficient only when the size of data being sent remains constant, which does not
apply to our case. In fact, we might have a different number of photon-packets that require
communicating in each time step, which implies that the number of nodes in the linked list
is also not constant. The second approach, which we have adopted, is to pack the list data
into arrays and communicate them. In order to prevent frequent allocation and deallocation
of the arrays being communicated, we follow a simple heuristic of allocating enough space for
communicating 100 packets. If the number of packets being communicated, Ncomm, becomes
larger than 100, we deallocate the arrays and allocate enough space for data in 2Ncomm

packets and so on. Since the number of nodes being sent/received is known, the send/receive
arrays can be indexed into appropriately to get the right data.

Once the packets have been received, they are propagated further till they reach the end of
the core domain. If so, then we follow the steps outlined earlier and repeat this till all the
photon-packets emitted in one time step have been propagated. At the end of each dt, we
check if tj coincides with the time at which an output file has to be written out using the I/O
routines in CHOMBO. If not then we proceed to the next time step. If so then the output files
are written out, we next discuss the changes done in the I/O routines for PCRASH-AMR.

4.2.4 CHOMBO I/O

We mentioned in Section 3.2.3 that CHOMBO uses the HDF5 library to write output files. When
in parallel mode, CHOMBO makes use of the collective mode, i.e. H5FD MPIO COLLECTIVE,
as the “data transfer property list” to write files. In this case the local boxes at each level are
accessed by each core, using the DataIterator class, and written out. This works well as long
as all the cores contain an equal number of boxes at each refinement level. However, there
is no guarantee that it would hold true for all cases, and in fact when using the criteria of
ray density as load balancing, we encountered a situation where the cores did not contain an
equal number of boxes, resulting in a deadlock. We then changed the I/O routines to use the
H5FD MPIO INDEPENDENT mode instead, which resolved the issue.

This completes our discussion of the changes done to the ray-tracing routine and the other
CHOMBO related changes in PCRASH-AMR. We next look at the changes done with respect to
RNGs which are important for our MCRT simulation.

4.2.5 Parallel RNGs

The main algorithm in PCRASH-AMR works on the principles of MC sampling. For a parallel MC
code, it is important to employ good quality PRNGs that can generate independent streams
of RNs. CRASH-AMR uses a simple PRNG, ran2 for generating rays in random directions. This
is not sufficient when the code is parallelised, as we need to generate independent random
numbers (RN) among the cores. We have enabled PCRASH-AMR to use two parallel PRNGs
(PPRNGs), the Scalable Parallel RNG library (SPRNG) [121] and the RngStream library by
L’Ecuyer [108], due to their availability as a complete PPRNG library.

4.3 Test scenarios 91

SPRNG provides six different PPRNGs that the user can specify while initialising the library.
The library has been found to pass a number of empirical tests [121] and provides good quality
RNs. The RngStream library supports multiple independent streams of RNs and has also
been proven to pass many statistical tests suggested by [100] and [120].

To interface these libraries with PCRASH-AMR we have modified the SYS RANDOM module of the
code to accept the two libraries as an option. Using SPRNG in a parallel mode is simple and
only requires defining the USE MPI variable along with the same seed being used to initialise
the PPRNG. RNGStream, on the other hand, needs some slight modifications to be able to
generate parallel streams.

The RngStream library creates a new stream on each core from the call to the function
RngStream CreateStream(). The library does not encourage the use of the same seed on
different cores and hence we had to adopt a different strategy to generate new seeds. [94]
suggest to use a subroutine within the RngStream library itself to advance the seeds to the
next state. The library has a subroutine MatVecModM() which advances the seed array
to the next state after creating a stream and is useful if multiple streams are created by
the same process. It also ensures independent streams of RNs among cores. We have used
this subroutine to get new seed values to ensure that independent streams are generated on
multiple cores.

Before concluding this Section we briefly describe the software architecture of the code. The
development of PCRASH-AMR also follows the methodologies used in developing CRASH-AMR. We
provide the user with options to enable or disable the parallel part of the code during compile
and run time. The changes to the SYS RANDOM module have already been extensively discussed
in Section subsection:PRNG. Similar to the AMR PARAM datatype, we define PAMR PARAM for
the parallel modules that contains information regarding the MPI communicator, the load
balancing criteria to be used and the number of packets being sent/received every time step.
This completes the description of the new code PCRASH-AMR. We have tested this code with
different test scenarios to study its performance, these are discussed in the next Section.

4.3 Test scenarios

In this section we show the results of some of the tests we have done to study the performance
of the code on two different machines, Odin and Hydra at RZG, Garching. Odin has 156
execution hosts with each node containing two Intel E5-2670 processors (8 cores per processor)
with 2.6 GHz CPUs. Hydra on the other hand has two parts, the first is the Sandy Bridge
part containing 628 compute nodes with two Intel ES-2670 processors per node. The second
is the Ivy Bridge part that has 3690 compute nodes with 20 cores in each node operating at
2.8 GHz. Our tests done on Hydra use the Ivy Bridge part of the machine where ever the
number of cores being used is 64 or more. Odin provides Intel MPI whereas on Hydra IBM
MPI is available by default.

We have set-up test cases similar to the ones discussed in Section 3.3. We begin with a
standard test case to verify the correctness of the code when multiple cores are being used.
Then we perform test cases with realistic density fields, and we look at the performance of

92 4. Parallelisation of Radiative Transfer in CRASH

the code when AMR grids with 3 and 4 refinement levels (r.l.) are used. Note that for all
test cases, the following criteria apply

1. The scaling tests have been run on 1, 16, 32, 64 and 128 cores, unless specified.

2. The results with the RD calculation disabled and enabled are presented for 16 cores
and above, as this is not applicable for a serial case. When RD is disabled or switched
off, the default LB routine of CHOMBO is used.

3. Np is set to 108 and t is set to 500 Myr for all cases, unless specified.

4. To generate RNs the Multiplicative Lagged Fibonacci Generator (MLFG) of the SPRNG

library has been used. We ran some sample tests to study the efficiency of the different
PPRNGs provided by the two libraries mentioned in Section 4.2.5, by generating 1012

RNs and comparing the run times. The MLFG was found to be the most efficient, along
with the Combined Multiple Recursive Generator (CMRG) of SPRNG.

5. Nt has been set to 105 in all cases. Nt is inversely proportional to the time resolution of
the simulation, mentioned in Section 3.1.1, and also decides the value of NP . The value
of Nt chosen is high enough to ensure that the time resolution remains fine enough for
the RT equations to be solved correctly. The value is also low enough to ensure that a
sufficient number of photon-packets is communicated at each time step, which is 1000
in our case.

Before we discuss the tests, we mention the naming convention followed for referring to the
tests in the rest of this Section. The tests are named with the following abbreviations

1. O (Odin) or H (Hydra)

2. 3 or 4 to denote the number of refinement levels

3. S (serial) or P (Parallel), to refer to CRASH-AMR or PCRASH-AMR, followed by the number
of PEs the test was run on.

For example, O3S1 refers to a test run on Odin for 3 r.l. with CRASH-AMR (1 core). H4P1
refers to a test run on Hydra for 4 r.l. with PCRASH-AMR (1 core).

Additionally, we use W or S to refer to weak or strong scaling tests on multiple cores. For
the weak scaling case, the problem size is increased together with the number of cores. For
strong scaling, the problem size is kept fixed on an increasing number of cores. For example,
WO3P16 refers to a weak scaling test case, run on Odin with 16 PEs. Similarly, SH4P128
refers to a strong scaling test case run on Hydra with 128 PEs.

4.3.1 Test 1: Strömgren sphere in a H medium

We have set up a test equivalent to Test 1 of the RTCCP, as discussed in Section 3.3.1. The
test simulates the evolution of an ionised region around a single point source located at the
grid origin (0,0,0) in a cosmological box of side length Lbox = 6.6 kpc (comoving). In order to

4.3 Test scenarios 93

10
-4

10
-3

10
-2

10
-1

10
0

x

xHII, CRASH-AMR

xHI, CRASH-AMR

xHII, 1d5, PCRASH-AMR

xHI, 1d5, PCRASH-AMR

10
-2

10
-1

10
0

 0 1 2 3 4 5 6 7

∆
 x

/x
 [

%
]

d [kpc]

(∆ x/x)HII, 1d5 ts

Figure 4.6 Spherically-averaged profile at time t = 500 Myr, at d [kpc], for Test 1. The colors
refer to CRASH-AMR (red) and PCRASH-AMR (dark-green). Top: Profiles of xHII (solid lines)
and xHI (dashed lines). Bottom: ∆ between the CRASH-AMR and PCRASH-AMR results.

be able to distribute the boxes among cores, this test case has been set-up on a uniform grid
of resolution 5123 cells. The domain has been split into 512 equal sized boxes with CHOMBO

routines, and the LB routines mentioned in Section 4.2.1 have been used to distribute the
load on multiple cores. This test has been run only on Odin for verifying the correctness of
the code.

To begin with, we compare the results of running PCRASH-AMR on one core to those from
CRASH-AMR. Note that in CRASH-AMR the RNs are generated with the ran2 function, while in
PCRASH-AMR the MLFG provides the RNs. This decides the random directions that the rays
travel in, and consequently the cells they ionise. Also, the time resolution for the serial and
parallel test case is different, in the former case we emit one photon-packet per dt. In the
latter case, we emit 1000 photon-packets per dt, hence the cell crossing times in both scenarios
are different. Since the test has an analytical solution we expect some, although minimal,
difference in the results. The outcome is shown in Figure 4.6, where the panel shows the
spherically-averaged physical quantities as a function of d [kpc], together with the ∆ values
calculated using Rref for results of CRASH-AMR, and Ri for results of PCRASH-AMR.

We find that the extent of the xHII region is the same for both codes, i.e. ∼5.4 kpc, as per
the analytical solution. In the partially ionised regions, beyond 5.4 kpc, ∆ is as high as 5 %
for xHII. As mentioned earlier, this is due to the different RNGs that have been used and the
time resolution for each test case.

The next step was to run the same set-up on multiple cores. Since, the test case requires only
one point source, the cores that are assigned boxes further away from the source will not have
any packets to process till the I-front reaches that portion of the domain. As a result, during
early times in the RT simulation, there will be some idle cores. Also, only one core contains
the box with the point source, and so the PPRNG does not have to generate independent

94 4. Parallelisation of Radiative Transfer in CRASH

10
-4

10
-3

10
-2

10
-1

10
0

x xHII, 1 PE

xHI, 1 PE

xHII, 16 PE

xHI, 16 PE

xHII, 32 PE

xHI, 32 PE

xHII, 64 PE

xHI, 64 PE

xHII, 128 PE

xHI, 128 PE

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0 1 2 3 4 5 6 7

∆
 x

/x
 [

%
]

d [kpc]

16 PE

32 PE

64 PE

128 PE

10
-4

10
-3

10
-2

10
-1

10
0

x xHII, 1 PE

xHI, 1 PE

xHII, 16 PE

xHI, 16 PE

xHII, 32 PE

xHI, 32 PE

xHII, 64 PE

xHI, 64 PE

xHII, 128 PE

xHI, 128 PE

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0 1 2 3 4 5 6 7

∆
 x

/x
 [

%
]

d [kpc]

16 PE

32 PE

64 PE

128 PE

Figure 4.7 Spherically-averaged profile at time t = 500 Myr, at d [kpc], for Test 1. The
colors refer to PCRASH-AMR run on 1 PE (dark-green), 16 PEs (blue), 32 PEs (orange), 64
PEs (brown) and 128 PEs (cyan). Left: Profiles of xHII (solid lines) and xHI (dashed lines)
with RD disabled. Right: Profiles of xHII (dash-dot lines) and xHI (dotted lines) with RD
enabled. Bottom sub-panels: ∆ between the PCRASH-AMR results.

streams of RNs. This essentially means that the cells crossed by the rays traveling in random
directions will be the same in all test cases and we don’t expect to see any differences in the
volume averaged xHII fractions at the end of the RT simulation.

Figure 4.7 shows the spherically-averaged physical quantities as a function of d [kpc], together
with the ∆ values. We show the results for cases when RD is disabled and enabled. The ∆
values in both cases are calculated using Rref for results of PCRASH-AMR run on one core or
processing element (PE), Ri refers to the results of PCRASH-AMR run on multiple cores.

We find that the results agree well among all the cores, for both settings of RD, with a
maximum ∆ value of only 0.001. Figure 4.8 shows the speed-up obtained for Test 1 when
RD is disabled (blue) and enabled (cyan). The speed-up has been calculated using the total
elapsed time till the end of the simulation at t = 500 Myr, with the serial case as the baseline.
As mentioned earlier, this test case has only a single point source, so the load imbalance
between the cores is very pronounced when RD is disabled. The maximum speed-up obtained
is only 1.72 on 128 cores. Even with RD enabled, the maximum speed-up obtained is 2.36 on
16 cores and increases to 2.43 at 128 cores.

4.3.2 Test 2: Realistic density field with one point source

The set-up for this test is similar to the test in Section 3.5.1 with the ionised region from a
single point source expanding into a realistic density field. The simulation was run on Odin
and Hydra with the ICs set on a grid with 3 r.l., and Np was set to 2 · 108 packets. Similar
to Test 1, we have only one point source in the whole domain. So only one core will emit
the photon-packets while the rest will be idle till the I-front reaches their domain. Also, we
have the additional complexity of propagating the ray through multiple levels. Overall, the

4.3 Test scenarios 95

 0.1

 1

 10

 100

 1 16 32 64 128

S
p
e
e
d
-
u
p

Num. PEs

Ideal

RD off

RD on

Figure 4.8 Speed-up obtained by running PCRASH-AMR for Test 1 on different number of PEs
on Odin. The colors refer to RD disabled (blue) and RD enabled (cyan).

test case is poorly load balanced due to the set-up used. Nevertheless, we need to verify that
with multiple r.l., and multiple cores, PCRASH-AMR is able to provide results consistent with
those of CRASH-AMR.

We begin by comparing the results obtained in Section 3.5.1 with the results from PCRASH-AMR.
Table 4.1 shows the volume averaged xHII values at time t = 200, 500 Myr when RD is disabled
and enabled, for Odin. Table 4.2 shows the corresponding results for Hydra. We show the
results, on both machines, for CRASH-AMR (O3S1, H3S1) and PCRASH-AMR run on 1 (O3P1,
H3P1), 16 (O3P16, H3P16), 32 (O3P32, H3P32), 64 (O3P64, H3P64) and 128 (O3P128,
H3P128) cores.

We find that the results agree well between all the test cases with only a maximum difference
of 0.14% and 0.05% for the volume averages at t = 200 and 500 Myr respectively. We next
look at the speed-up obtained with this test case. Figure 4.9 shows the speedup obtained by
running the test on multiple cores on Odin and Hydra. The speed-up has been calculated
similar to Section 4.3.1.

On Odin, when RD is disabled, the maximum speed-up is only 1.33 at 128 cores. Although the
boxes are distributed according to their loads, the set-up results in the cores containing the
boxes near the source doing most of the work while the others remaining idle. Hence we do not
see much of a speed-up with increasing number of cores. When RD is enabled, the maximum
speed-up is 1.34 at 32 cores and decreases to 1.26 at 128 cores. When the LB is done using
RD, the boxes near to the source have a higher load and are distributed among different cores
rather than being assigned to the same core. The rays, as a result, have to be communicated to
these cores for further propagation. However, intra-node MPI communication is not expensive
and so we see some speed-up on 16 cores, a factor of 1.32, when compared to running on one
core. With increasing number of cores, inter-node MPI communication dominates and the
cores spend a considerable amount of time in communication.

96 4. Parallelisation of Radiative Transfer in CRASH

Table 4.1. Volume averaged xHII values for Test 2, with ICs set on grids with 3 r.l., on
Odin. The results are from CRASH-AMR and PCRASH-AMR simulations at time

t = 200, 500 Myr. We compare the results between test cases that are at the same t.

Test case xHII (t = 200 Myr) xHII (t = 500 Myr)

RD off RD on RD off RD on

O3S1 0.0677 0.0677 0.1806 0.1806

O3P1 0.0677 0.0677 0.1806 0.1806

O3P16 0.0676 0.0677 0.1805 0.1805

O3P32 0.0677 0.0677 0.1805 0.1806

O3P64 0.0677 0.0677 0.1806 0.1806

O3P128 0.0677 0.0677 0.1805 0.1806

Table 4.2. Volume averaged xHII values for Test 2, with ICs set on grids with 3 r.l., on
Hydra.

Test case xHII (t = 200 Myr) xHII (t = 500 Myr)

RD off RD on RD off RD on

H3S1 0.0677 0.0677 0.1806 0.1806

H3P1 0.0677 0.0677 0.1806 0.1806

H3P16 0.0676 0.0677 0.1805 0.1805

H3P32 0.0677 0.0677 0.1805 0.1806

H3P64 0.0677 0.0677 0.1806 0.1806

H3P128 0.0677 0.0677 0.1805 0.1806

On Hydra, the speed-up on 128 cores is 1.71 with RD is disabled, and 1.66 with RD enabled.
The same argument, as for Odin, applies for the difference in speed-up factors obtained for
the two LB methods. Between the machines themselves, we find that Hydra has a 7% higher
run time than Odin on 128 cores. This can be attributed to the node configuration on the
Ivy Bridge part of Hydra which has 20 cores per node instead of 16 as on Odin. We need to
assign 8 cores to the first node before filling up the rest of the allocated nodes completely.
The additional inter-node communication required to propagate the rays contributes to the
higher run times.

4.3.3 Test 3: Realistic density field with multiple point sources

Our next tests have been to run PCRASH-AMR on multiple cores, with multiple point sources.
We use the outputs from the CHARM simulations and run the RT simulations on grids with

4.3 Test scenarios 97

 0.1

 1

 10

 100

 1 16 32 64 128

S
p
e
e
d
-
u
p

Num. PEs

Ideal

RD off, Odin

RD on, Odin

RD off, Hydra

RD on, Hydra

Figure 4.9 Speed-up obtained by running PCRASH-AMR for Test 2, on grids with 3 r.l., on
different number of PEs on Odin and Hydra. The colors refer to PCRASH-AMR run on Odin
with RD disabled (blue) and RD enabled (cyan), on Hydra with RD disabled (brown) and
RD enabled (green).

3 and 4 r.l. The set-up of these test cases is similar to that in Section 3.3.3.1, with the
difference that the luminosity of the sources, Ṅγ , is set to values between 8 ·1053 and 1.1 ·1054

photons s−1. Ideally, the luminosity of the source is proportional to ngas values at the source
location. Since the refinement criterion in CHARM is based on a density threshold we can, for
the purposes of our test case, assume that the ngas values are similar across all the boxes at
the highest refinement level. Hence the luminosities have been set to fairly equal values for
all sources.

We ran both weak and strong scaling tests for this set-up. In the case of weak scaling we
fix the number of point sources to be equivalent to the number of cores. For the strong
scaling tests, we fix the number of point sources and increase the number of cores. For the
strong scaling tests, with increasing number of cores, the distribution of boxes among the
cores cannot be decided a-priori. As a result, the point source locations cannot be selected
such that each core has at least one source for all cases. What we do ensure, for all weak and
strong scaling test cases, is that each box contains only one point source. Also the strong
scaling tests have been run on a maximum of 128 cores with 128 point-sources. So for the
test case with 128 cores, and RD disabled, each core has at least one point source assigned
to it.

4.3.3.1 Test 3a: Weak scaling results

The weak scaling results for both Odin and Hydra are discussed in this section. The tests
have been run on 16, 32, 64 and 128 cores, till time t = 500 Myr, with intermediate outputs
at 10, 50, 100 and 200 Myr. The weak scaling efficiency has been calculated using the total

98 4. Parallelisation of Radiative Transfer in CRASH

elapsed time till the end of the simulation at t = 500 Myr, with 16 cores as the baseline. It
is necessary to mention the following. When RD is disabled, the point sources can be set at
locations such that each core has at least one point source. When RD is enabled though, the
boxes get reassigned among the cores as per the load calculated using the scheme in Section
4.2.1. Hence, in this case it is not possible to ensure that each core contains at least one
source without changing the point source locations again. Due to the varying distribution of
sources between the two LB methods, the core can be allocated with one or multiple sources.
Consequently the RNs generated by the PPRNG will be different. Therefore, it is essential
that the results of using both LB methods are compared to ensure that PCRASH-AMR provides
consistent results for different set-ups run on the same number of cores.

Before we discuss the results, two important points need to be noted here

1. The number of point sources for each test case depends on the number of cores. So,
we compare the results only between relevant test cases. For example, WO3P16 has 16
sources and should not be compared with WO3P128 which has been set-up with 128
sources. The volume averaged fractions will obviously be different.

2. The location of the point sources for test cases at different refinement levels do not have
any correlation. This is different to the set-up in Section 3.3 where the point source
locations had been set such that when moving from higher to lower refinement levels,
the luminosities were added if two sources fell in the same box. The scenario for our
parallel tests is different, we would like to ensure that each box has only one point
source, in order to distribute the load accordingly. This can be properly ensured only if
we explicitly set the sources for different refinement levels. Hence, we do not compare
the volume averaged results between tests done with different refinement levels. For
example, we do not compare WH3P16 with WH4P16 even though both test cases have
16 sources.

Table 4.3 shows the volume averaged xHII values at time t = 200, 500 Myr when RD is disabled
and enabled, for tests with 3 r.l. on both machines. The results on Odin for 16 (WO3P16), 32
(WO3P32), 64 (WO3P64) and 128 (WO3P128) cores are shown. The corresponding results
on Hydra for 16 (WH3P16), 32 (WH3P32), 64 (WH3P64) and 128 (WH3P128) cores are
also shown. We compare the volume averaged values obtained for the same number of cores,
for the two LB methods. For example, the results of (WO3P16) at t = 200 Myr for both LB
methods are compared. Overall, we find a difference of less than 0.01% between the test cases
run on the same machine. Between Odin and Hydra as well the difference in results between
the corresponding test cases, for example WO3P16 and WH3P16, is less than 0.01%.

Table 4.4 shows the corresponding results with 4 r.l. The results on Odin for 16 (WO4P16),
32 (WO4P32), 64 (WO4P64) and 128 (WO4P128) cores are shown. The results on Hydra
for 16 (WH4P16), 32 (WH4P32), 64 (WH4P64) and 128 (WH4P128) cores are also shown.
The maximum difference in values between the test cases run on the same machine is 0.01%.
Between Odin and Hydra, the difference in results is about 0.1%. We then conclude that
PCRASH-AMR is able to provide consistent results for all the test cases run on different machines.

We now discuss the weak scaling results. Figure 4.10 shows the results for tests run with 3
and 4 r.l., till time t = 500 Myr for both Odin and Hydra when RD is disabled and enabled.

4.3 Test scenarios 99

Table 4.3. Volume averaged xHII values for Test 3a, with ICs set on grids with 3 r.l, on
Odin and Hydra. The results are from PCRASH-AMR simulations at time t = 200, 500 Myr.
The number of point sources increases with number of cores. We compare results between

test cases at same t, with RD off and on, for the same number of cores.

Test case xHII (t = 200 Myr) xHII (t = 500 Myr)

RD off RD on RD off RD on

WO3P16 0.4232 0.4231 0.7265 0.7264

WO3P32 0.5646 0.5646 0.8209 0.8208

WO3P64 0.7427 0.7427 0.9214 0.9214

WO3P128 0.8984 0.8984 0.9774 0.9774

WH3P16 0.4232 0.4231 0.7265 0.7264

WH3P32 0.5646 0.5646 0.8209 0.8208

WH3P64 0.7427 0.7427 0.9214 0.9214

WH3P128 0.8984 0.8984 0.9774 0.9774

Table 4.4. Volume averaged xHII values for Test 3a, with ICs set on grids with 4 r.l, on
Odin and Hydra. The results are from PCRASH-AMR simulations at time t = 200, 500 Myr.
The number of point sources increases with number of cores. We compare results between

test cases at same t, with RD off and on, for the same number of cores.

Test case xHII (t = 200 Myr) xHII (t = 500 Myr)

RD off RD on RD off RD on

WO4P16 0.1935 0.1935 0.5353 0.5353

WO4P32 0.4511 0.4512 0.7813 0.7813

WO4P64 0.7062 0.7062 0.9115 0.9115

WO4P128 0.8881 0.8881 0.9735 0.9735

WH4P16 0.1935 0.1934 0.5353 0.5353

WH4P32 0.4511 0.4511 0.7812 0.7812

WH4P64 0.7061 0.7061 0.9115 0.9115

WH4P128 0.8868 0.8868 0.9732 0.9732

100 4. Parallelisation of Radiative Transfer in CRASH

Table 4.5. Weak scaling run times (in minutes) for Test 3a, with ICs set on grids with 3
and 4 r.l., on Odin and Hydra. The timings are for the simulations run till t = 500 Myr.

Test case 3 r.l. Test case 4 r.l.

RD off RD on RD off RD on

WO3P16 420.76 383.22 WO4P16 345 419.4

WO3P32 408.76 542.3 WO4P32 517.4 660.25

WO3P64 542 735 WO4P64 756 840.28

WO3P128 790 915 WO4P128 960.2 1066

WH3P16 523 471 WH4P16 424.51 511.51

WH3P32 506 652 WH4P32 634.5 811.2

WH3P64 592 805 WH4P64 828 913.35

WH3P128 849 1062 WH4P128 1009.83 1164

For completeness, we also provide the total run times (in minutes) for all test cases in Table
4.5.

We first discuss the results for test cases run on grids with 3 r.l. When RD is disabled, on
Odin, the weak scaling efficiency is 77.6% for WO3P64 and drops to 53.2% for WO3P128.
The corresponding values on Hydra are 88.3% for WH3P64 and 61.6% for WH3P128. Even
though the load in this case is equal on all cores, photon-packets from multiple sources need
to be communicated multiple times per dt. This begins to affect the efficiency as we go to
a larger number of point-sources. When RD is enabled, the efficiency is 52.1% for WO3P64
and 41.9% for WO3P128. Hydra shows an efficiency of 58.5% for WH3P64 and 44.3% for
WH3P128. The efficiency when RD is disabled, is higher by a factor of 1.5 and 1.3 for
64 and 128 cores respectively, on both Odin and Hydra, compared to when RD is enabled.
This difference arises due to the fact that with RD enabled, the boxes near the source are
distributed among the cores requiring more communication to propagate the rays. Also, as
mentioned earlier, using RD does not ensure that each core has at least and at most one
point-source, hence the load is not distributed equally. Finally note that the total run time
on Hydra for 16 cores, where the Sandy Bridge part of the machine is used, is higher than
Odin by a factor of ∼ 1.25. At 128 cores, this run time is higher by a factor of 1.1. Note that
the MPI environment is different in the two machines, even though the same processors are
used in the test case with 16 cores. Additionally, the difference for 128 cores can be explained
using the same argument as in Section 4.3.2, i.e. the difference in node configuration.

Next, we look at the results for test cases run on grids with 4 r.l. When RD is disabled, the
weak scaling efficiency on Odin is 45.6% on 64 cores and drops down to 36% on 128 cores.
The corresponding values on Hydra are 51.2% for WH3P64 and 42% for WH3P128. With
RD enabled, the efficiency is 50% and 39.3% for 64 and 128 cores, respectively on Odin. The
corresponding values on Hydra are 56% and 44%. Although the scaling efficiency for all test
cases with RD on seems to be higher, in terms of run times it is a factor of ∼ 1.2 higher than
the test cases where RD is disabled. Here as well, we find that the run time on Hydra for 16

4.3 Test scenarios 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 32 64 128

E
f
f
ic

ie
n
c
y

Num. PEs

RD off, Odin, 3 r.l.

RD on, Odin, 3 r.l.

RD off, Hydra, 3 r.l.

RD on, Hydra, 3 r.l.
 0

 0.2

 0.4

 0.6

 0.8

 1

 16 32 64 128

E
f
f
ic

ie
n
c
y

Num. PEs

RD off, Odin, 4 r.l.
RD on, Odin, 4 r.l.

RD off, Hydra, 4 r.l.
RD on, Hydra, 4 r.l.

Figure 4.10 Weak scaling efficiency for Test 3a, with ICs set on grids with 3 and 4 r.l., on
Odin and Hydra. The efficiency is shown for simulations run till t = 500 Myr. The colors
refer to PCRASH-AMR run on Odin with RD disabled (blue) and RD enabled (cyan), on Hydra
with RD disabled (brown) and RD enabled (green). Left: Efficiency for tests run on grids
with 3 r.l (solid lines). Right: Efficiency for tests run on grids with 4 r.l (dotted lines).

cores is higher than Odin by a factor of ∼ 1.25. At 128 cores, this run time is higher by a
factor of 1.1.

We now discuss the efficiency of the code when the number of refinement levels are increased.
As mentioned earlier, this is not an ideal comparison, as the point source locations for the
test cases with 3 r.l. do not correspond to those with 4 r.l. since the placement is arbitrary.
We do not ensure that a source placed in a box at the 3rd r.l. is placed at the same location
in a box at the 4th r.l. What we can do, in general, is to look at the trend in these test cases.
From Table 4.5, for Odin, it is evident that the efficiency of the parallel code drops when the
number of levels is increased. With RD disabled, the run times for WO4P64 and WO4P128
is higher by a factor of 1.5 and 1.2 when compared to WO3P64 and WO3P128. When RD is
enabled, this factor is 1.2. The trend is the same for Hydra as well. The reason for this drop
is due to the fact that the rays now need to propagate through an additional level, where
again the neighboring, child or parent boxes can be local or non-local. This will again involve
communication among cores to propagate the ray further.

We next look at the results from our strong scaling tests.

4.3.3.2 Test 3b: Strong scaling results

We discuss the strong scaling results for both Odin and Hydra in this section. The tests have
been run on 16, 32, 64 and 128 cores till t = 100 Myr on both machines. The speed-up has
been calculated using the total elapsed time till the end of the simulation at t = 100 Myr,
with 16 cores as the baseline. All test cases have been run with 128 point sources set at the
highest refinement level. We apply the same arguments as given in Section 4.3.3.1 to compare
the results of the different test cases and verify the correctness of PCRASH-AMR.

102 4. Parallelisation of Radiative Transfer in CRASH

Table 4.6. Volume averaged xHII values for Test 3b, with ICs set on grids with 3 r.l, on
Odin and Hydra. The results are from PCRASH-AMR simulations at time t = 100 Myr. The
number of point sources is 128, and is fixed for all test cases. The placement of sources for
tests with 3 r.l. do not correspond to the tests with 4 r.l. We compare the results between

test cases run on grids with same number of r.l.

Test case xHII (t = 100 Myr, 3 r.l.)

RD off RD on

SO3P16 0.7528 0.7528

SO3P32 0.7529 0.7529

SO3P64 0.7529 0.7529

SO3P128 0.7528 0.7529

SH3P16 0.7528 0.7528

SH3P32 0.7529 0.7529

SH3P64 0.7529 0.7529

SH3P128 0.7528 0.7529

Table 4.6 shows the volume averaged xHII values at time t = 100 Myr when RD is disabled and
enabled, for tests with 3 r.l, the corresponding results for tests with 4 r.l are shown in Table
4.7. We compare the volume averaged values obtained on all cores for the same number of
refinement levels, for the two LB methods. For example we compare O3PE16 and O3PE128
with H3PE16 and H3PE128. For tests with 3 r.l., we find a difference of 0.01% between all
the test cases. The difference between the results with 4 r.l. is about 0.3% for all test cases
run on both the machines.

Overall, we find that the results agree well between all the test cases.

We next look at the speed-up obtained from these tests, shown in Figure 4.11, run with 3
and 4 r.l. on both machines. For clarity, we show the run times in Table 4.8.

For the case with 3 r.l., we find a speed-up of 1.6, 2.36 and 3.57 on Odin, for 32, 64 and 128
cores, with RD disabled. The corresponding values on Hydra are 1.64, 2.63 and 4.1. When
RD is enabled, the speed-up on Odin for 32, 64 and 128 cores are 1.13, 2.26 and 3.37. On
Hydra the corresponding speed-ups are 1.3, 2.8 and 4.05. From the graphs, it seems that the
test cases with RD enabled on Hydra perform as well as those with RD disabled. However, in
terms of total run time the former is still a factor of 1.2 higher than the latter. For example,
from Table 4.8, SH3P16 has a run time of 578 (RD disabled) and 697 (RD enabled) minutes.
The corresponding run times on 128 cores, SH3P128, are 141 and 172 minutes respectively.
Also, comparing both machines we find that tests on Hydra have longer run times, a factor
of ∼ 1.2 higher, than those on Odin.

For the case with 4 r.l., on Odin, we find a speed-up of 1.63, 2.53 and 3.74 on 32, 64 and 128
cores with RD disabled. The corresponding values on Hydra are 1.65, 2.87 and 4.4. For RD
enabled, we find a speed-up of 1.65, 2.72 and 3.92 on Odin for 32, 64 and 128 cores. The

4.3 Test scenarios 103

Table 4.7. Volume averaged xHII values for Test 3b, with ICs set on grids with 4 r.l, on
Odin and Hydra. The results are from PCRASH-AMR simulations at time t = 100 Myr. The
number of point sources is 128, and is fixed for all test cases. The placement of sources for
tests with 3 r.l. do not correspond to the tests with 4 r.l. We compare the results between

test cases run on grids with same number of r.l.

Test case xHII (t = 100 Myr, 4 r.l.)

RD off RD on

SO4P16 0.7247 0.7246

SO4P32 0.7248 0.7247

SO4P64 0.7248 0.7248

SO4P128 0.7248 0.7248

SH4P16 0.7222 0.7218

SH4P32 0.7221 0.7220

SH4P64 0.7221 0.7221

SH4P128 0.7221 0.7222

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 16 32 64 128

S
p

e
e
d

-
u

p

Num. PEs

Ideal

RD off, Odin, 3 r.l.

RD on, Odin, 3 r.l.

RD off, Hydra, 3 r.l.

RD on, Hydra, 3 r.l.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 16 32 64 128

S
p

e
e
d

-
u

p

Num. PEs

Ideal

RD off, Odin, 4 r.l.

RD on, Odin, 4 r.l.

RD on, Hydra, 4 r.l.

RD off, Hydra, 4 r.l.

Figure 4.11 Speed-up for Test 3b, with ICs set on grids with 3 and 4 r.l., on Odin and Hydra.
The speed-up is shown for simulations run till t = 100 Myr. The colors refer to PCRASH-AMR

run on Odin with RD disabled (blue) and RD enabled (cyan), on Hydra with RD disabled
(brown) and RD enabled (green). Left: Speed-up for tests run on grids with 3 r.l (solid
lines). Right: Speed-up for tests run on grids with 4 r.l (dotted lines).

104 4. Parallelisation of Radiative Transfer in CRASH

Table 4.8. Total run time (in minutes) for Test 3b, with ICs set on grids with 3 and 4 r.l.,
on Odin and Hydra. The timings are for simulations run till t = 100 Myr.

Test case 3 r.l. Test case 4 r.l.

RD off RD on RD off RD on

SO3P16 468 513 SO4P16 577 654

SO3P32 290 453 SO4P32 353 396

SO3P64 198 226 SO4P64 228 240

SO3P128 131 152 SO4P128 154 167

SH3P16 578 697 SH4P16 703 795

SH3P32 353 531 SH4P32 427 477

SH3P64 219 245 SH4P64 245 256

SH3P128 141 172 SH4P128 160 178

corresponding values on Hydra are 1.67, 3.1 and 4.47. In terms of run time, the case with
RD enabled performs less efficiently than that with RD disabled, and the total run time is
higher by a factor of ∼ 1.1. We find the same trend in run times between the two machines,
i.e. Odin performs better than Hydra.

Even though the speed-up factors for the test cases with 3 r.l. are comparable to those with 4
r.l., the total run times in the latter case are higher by a factor of 1.3, similar to our findings
in Section 4.3.3.1.

4.4 Conclusion

We have discussed the development of PCRASH-AMR, a parallel version of the CRASH-AMR code.
Parallelisation of a ray-tracing code in the presence of multiple refinement levels is rather
complex and requires several factors to be taken into account for good performance. We have
attempted to parallelise the code using distributed memory parallelism and have discussed in
detail the techniques used to do so. Two factors to determine the load on the cores have been
mentioned, the first being the default method in CHOMBO which uses the number of cells in a
box as the load and the second method of calculating the RD in each cell as the load. We
have devised methods to speed up the ray-tracing algorithm by exploiting the nesting criteria
followed in CHOMBO. Two PPRNGs have also been incorporated that provide independent
stream of RNs in PCRASH-AMR. The development of the code has been done following the
same principles applied for CRASH-AMR.

We have tested the code using the standard test prescribed in RTCCP and compared the
results with those described in Chapter 3. We have also looked at sample test cases using
outputs from a realistic hydrodynamic simulation with AMR refinement.

The standard test shows a good agreement with CRASH-AMR, confirming that the paralleli-

4.4 Conclusion 105

sation works correctly and is able to correctly carry out RT simulations when the domain
is distributed over multiple cores. The test on a realistic density field for one point source
also shows good agreement between CRASH-AMR and PCRASH-AMR simulations with the latter
being run on multiple cores. Regarding the scaling efficiency, we find that the code does not
show an optimal performance for both these scenarios where the load is highly imbalanced
to begin with. The core containing the single source needs to constantly emit and propa-
gate the photon-packets, the remaining cores will be idle till they have any photon-packets
to process. Also, the ray-tracing algorithm has an inherent randomness requiring frequent
communication among cores.

Regarding the test cases run on a realistic density field with multiple point sources, we looked
at both weak and strong scaling scenarios. The weak scaling tests show fairly good results.
On Odin, for test cases where the ICs have been set on grids with 3 r.l, we find a scaling
efficiency up to 77.6% and 53.2%, respectively, on 64 and 128 cores. This is with RD disabled
and keeping 16 cores as the baseline. Hydra seems to show a better scaling efficiency of 88.3
and 61.6% on 64 and 128 cores respectively. However, in terms of overall run times, Odin
performs better than Hydra, which can be attributed to the node configuration on Hydra.
When RD is enabled, the efficiency is 52.1% on Odin for 64 cores, which reduces to 41.9% on
128 cores. The corresponding values for Hydra are 58.5 and 44.3% respectively.

For the weak scaling tests, with 4 r.l., we find a similar trend. When RD is disabled, the
efficiency on Odin is 45.6% dropping down to 36% on 64 and 128 cores respectively. The
corresponding efficiency on Hydra is 51.2 and 42%. With RD enabled, the efficiency is 50 and
39.3% for 64 and 128 cores, respectively, on Odin. The corresponding values on Hydra are
56 and 44%. Although the scaling efficiency for test cases with RD on seems to be higher, in
terms of run times it is a factor of 1.2 higher than test cases with RD disabled. Here again,
Hydra has run times higher than Odin by a factor of 1.1 on 128 cores. Between test cases with
3 and 4 r.l., we find that the presence of an additional level of refinement causes an increase
in run times due to the additional work required to search for the right box and propagate
the rays across different levels.

The strong scaling tests also perform fairly well. For the test cases with ICs set on grids with
3 r.l., we find a speed-up of 2.36 and 3.57 on 64 and 128 cores, respectively, for Odin when
RD is disabled. This is calculated keeping 16 cores as a baseline. The speed-up on Hydra for
the same tests is 2.63 and 4.1. When RD is enabled, the speed-up on Odin is 2.26 and 3.37
for 64 and 128 cores respectively. The corresponding values on Hydra are 2.8 and 4.05.

For test cases with 4 r.l., we find a speed-up of 2.53 and 3.74 on 64 and 128 cores, respectively,
for Odin when RD is disabled. The speed-up on Hydra for the same tests is 2.87 and 4.44.
For RD enabled, we find a speed-up of 2.72 and 3.92 on Odin for 64 and 128 cores. The
corresponding values on Hydra are 3.1 and 4.47. In terms of run time, the case with RD
enabled performs less efficiently than that with RD disabled, and the total run time is higher
by a factor of 1.1.

To conclude, PCRASH-AMR can be used to run test cases with multiple sources, on grids with
multiple refinement levels, on multiple cores. The code also shows consistent results across
different architectures as confirmed by our tests. On the whole we find that the default
method of LB in CHOMBO performs better than using the RD for balancing the load. The
latter results in a more even distribution of load, but with the boxes spread across different

106 4. Parallelisation of Radiative Transfer in CRASH

cores. This results in more one-to-one communications among cores to propagate the rays
further. Between Odin and Hydra, we find Odin giving a better performance on a larger
number of cores. This could be due to our choice of core numbers, where the nodes on Hydra
are not filled completely. We find that the efficiency and speed-up starts to reduce while
moving on to 128 cores. We are considering a number of improvements to the code, that will
allow the code to scale up to 512 cores, these are mentioned below.

Further improvements

There are a number of improvements that can be done to the code. The ray-tracing code
as of now keeps two maps to search for the right box the ray should propagate to, local and
global. The global map as of now contains all the non-local boxes, but it is not necessary to
store all this information as we only require a list of boxes that surround a particular core. If
we use this information to build the global map, its size will be drastically reduced, thereby
reducing the time to search for the right box in the global map. We are currently working on
implementing this in PCRASH-AMR.

The LB criteria we have adopted as of now is a static one, done at the beginning of the
simulation. Currently, the load on a box does not change during the processing of one
snapshot of a cosmological simulation. With multiple snapshots, the density field and other
physical quantities will evolve with redshift. This introduces the possibility of additional
point sources being added to high density regions in the simulation. At this point, we will
require a dynamic LB scheme to redistribute the load among the cores.

Graph partitioning techniques can be looked at as another option to decompose the domain
among cores. This can be done, in principle, by assigning weights to boxes at each refinement
level depending on whether they are neighbor(s), child(ren) or parent(s) so that they are
assigned to the same core. However, as mentioned earlier, domain decomposition in this
manner will only work if the geometry of the density field is suitable for it.

Our algorithm for ray propagation does not introduce any delays in communicating the rays
when they reach the end of a core domain. This leads to multiple communication events in
the same time step, with additional synchronisation events to ensure that all cores are at the
same time step. We can consider the possibility of delaying propagation of the photon-packets
till the next time step. But it needs to be seen how this would work for refined grids, given
that the distance traveled by the ray is not the same at all levels, like in the case of a uniform
grid. The time resolution will then have to be adjusted according to the refinement level the
ray is traveling in.

All our RT simulations until now have been done in a post-processing mode, using the simula-
tion outputs of a hydro code as input. We would like to consider the possibility of introducing
adaptivity within the RT code itself. Doing so provides the advantage that we can refine the
domain according to the requirements of the RT simulation instead of the hydro code and
focus our computational efforts only where it is necessary. This can be useful in certain
situations, for example, predicting the temperature of the gas surrounding a quasar which
has important consequences for cosmological studies. We next look at the steps necessary to
introduce this adaptivity into CRASH-AMR using CHOMBO.

Chapter 5

Adaptive Radiative Transfer simula-
tions with CRASH

In our previous chapters, we have looked at the methodology adopted to enable RT simulations
on AMR grids in CRASH. From the test scenarios it is clear that CRASH-AMR will be able to
provide a much better picture of the growth of H II regions through the different spatial scales
involved in the reionisation process. Given that the code uses the AMR framework of CHOMBO,
which is widely used in the astrophysics community, we can run CRASH-AMR with the outputs
of different hydro codes for different setups.

The adaptivity in the AMR grids that we have used for our tests till now is decided by the
hydro code. CRASH-AMR uses these grids in a post-processing mode, i.e., we do not carry
out any refinements during the RT simulation. In this Chapter we look at the feasibility of
implementing an adaptive version of CRASH-AMR, that can refine the grids based on certain
criteria specific to RT simulations, using CHOMBO. We discuss the reasons such an adaptivity
will be useful in RT simulations. We then give an overview of how CHOMBO can be used to
implement adaptive refinement using its AMR framework; finally we look at a sample test
case to get more insight into the issues that we need to take into account for introducing
adaptivity into CRASH-AMR.

5.1 Adaptivity in Radiative Transfer codes

RT codes in general are used as post-processing tools along with hydro codes that adaptively
refine the grids based on various criteria, for example, the overdensity of baryon and dark
matter [198], a local density criterion [128] or the gradients of certain variables describing the
gas flow that are refined when they exceed a threshold value [184]. The RT code, by itself,
does not refine the grid during the simulation. For certain problems, however, it is useful
for the RT code to be able to specify certain refinement criteria and refine the grid based
on these. One important example would be tracking the I-front moving away from a bright
quasar [35]. Being able to resolve the I-front around a quasar allows us to better predict the

108 5. Adaptive Radiative Transfer simulations with CRASH

temperature of the gas surrounding it; this is important to understand the contribution of
quasars in driving the process of IGM reionisation [155, 202].

There are a few RT codes available that implement adaptivity in space and time; we mentioned
RADAMESH [35] that uses both the BSAMR and CBAMR framework to propagate the rays
across the simulation domain. The code makes use of a “cell by cell” approach, instead of
the “ray by ray” approach in CRASH. One important point to be mentioned here is that the
code ensures that the grids are strictly nested, i.e. a child grid lies completely within a parent
grid. This is different to the PBAMR framework we have used, where a child grid can lie over
multiple parent grids. Hence, the approach used in RADAMESH makes it amenable to using
a tree structure to store the grid hierarchy. The grids at different levels are connected to
the parents and neighbors through linked lists similar to the hierarchy discussed in Section
2.2.1.2.5. A second tree structure is also built, where for each cell that has been refined, it
has a pointer or link to the grid that contains its refined cells. The cell based tree allows the
code to efficiently determine the grid that the ray passes through while going through higher
refinement levels, and the grid based tree is used to find cells at coarser or same refinement
levels. The code keeps track of all active cells in the domain that represent the region that
needs to be refined in the current time step. The refinement criteria used include the cell
neutral fraction, the ionisation rate and the cell optical depth. Since the cells that lie within
the I-front have the highest ionisation rate they are always selected as being active.

FTTE [153] is another example that implements a scheme to do RT on adaptively refined grids.
The code solves for radiation transport by assuming a wavefront entering a grid in a direction
(φ, θ) and considering ray segments in the xy, xz or yz planes. It discretises the rays within
each cell, attributing certain properties to each ray within the cell, for example the optical
depth, its geometric length and orientation of the cell side that the ray touches first. Each cell
itself is part of a grid tree with pointers to all its neighbors in 3D. The intensity within each cell
is either set to the cosmic background intensity, or the outgoing intensity of the neighboring
cell from which the ray has exited. The code can also take into account ray-splitting, while
passing through different refinement levels, using the HEALPix library [1, 72].

The above code examples demonstrate some of the techniques used by RT codes to implement
adaptivity. In case of CRASH-AMR, the adaptivity has to be done within CHOMBO, in terms of
grid generation and data management, we take a look at how the library implements this
adaptivity in its framework.

5.2 Adaptive refinement in CHOMBO

The CHOMBO library, as mentioned in Section 2.2.6 implements the BSAMR framework through
a hierarchy of classes with a different functionality. Together these classes provide a framework
that can be used to set up adaptivity in a code. We have already looked at some of the classes
that are needed to set up the AMR grids in CRASH-AMR, we now look at the classes required
to do adaptive refinement.

The main class one has to use in CHOMBO to set up adaptive grids is the BRMeshRefine class.
This is based on the clustering algorithm developed in [20]. The user can select a set of points

5.3 Feasibility of adaptive refinement in CRASH-AMR 109

that need to be tagged, and these are used in setting up new grids at a new refinement level.
The grids can be defined by using the tagged cells in two different ways; the first is to select
the cells only at the base level and create a single set of tags using the IntVectSet class. The
BRMeshRefine class can then appropriately refine the tags at different refinement levels. The
second method involves creating an array of tags, consisting of a set of tags for at each level.
The class then uses all the tags to define the new grids.

One could also choose to add a new mesh level, or re-define the grids keeping the same number
of mesh levels. The new grids created satisfy the criteria for “ proper nesting” (Section 2.2.1.3)
and are disjoint. Once regridding has been done, a set of new grids are returned which then
have to be copied to the respective DisjointBoxLayout defined for each level in the AMRLevel
class. The FineInterp and CoarseAverage classes can then be used to carry out interpolation
or averaging operations between levels. Also the data at the same level is copied onto the
new grids using the inbuilt copy classes of CHOMBO.

Now that we know how CHOMBO implements adaptivity, we can look at the feasibility of using
this capability in CRASH-AMR.

5.3 Feasibility of adaptive refinement in CRASH-AMR

From the examples of adaptive RT codes mentioned in Section 5.1, we see that these codes
follow a cell based approach, whereas CRASH follows a ray based approach. We follow a ray
through the grid and at each cell crossing calculate the change in the properties of the medium,
for example, the ionisation fractions, T etc. We do not know, a priori, the number of rays
that will be crossing through each cell. What we do know is that each cell has to be crossed
by a ray a minimum number of times to achieve convergence (§ 3.1.1.1). Also CRASH does not
employ a ray splitting scheme, as adopted in codes such as [1, 72], which can be used to split
the rays according to the refinement level the ray is traversing through. Additionally, the
codes we have mentioned implement the AMR framework within their codes and as such are
tailored for their specific requirements. For the case of CRASH-AMR this does not apply. We
use CHOMBO to represent our AMR hierarchy, which is not tailored for use with an RT code
as such. One could argue that this is somewhat of a overkill in terms of using a library to set
up AMR grids in a static manner, but this is not the case.

Currently we use CHOMBO just to set up the AMR hierarchy, but we envisage coupling CRASH

with a hydro code in the future. CRASH-AMR is a step forward in providing a code that
implements the radiative feedback mechanism in AMR enabled hydro codes. We can readily
use the outputs of these hydro codes as input and provide the outputs of the RT simulation
back to the hydro code. Also, a number of pre- and post-processing tools that we have set up
in CRASH-AMR use the additional classes available in CHOMBO and greatly reduced the time for
development efforts. Finally, although we do not refine the grids within CRASH-AMR as of now,
we can look at the possibility of doing so, since the code is fully interfaced with the CHOMBO

library.

For CRASH-AMR to be able to adaptively refine grids and carry out RT simulations on them,
there are two major considerations that need to be taken into account. We need to be able

110 5. Adaptive Radiative Transfer simulations with CRASH

to decide, during the RT simulation, the cells that need to be refined and how often to refine
them. This has more to do with the algorithm used in CRASH. The size of the region selected
for refinement should not be so large that it removes any advantage that AMR provides. In
the case of CRASH-AMR we need to select the region around the I-front, which can be a few
cells thick. The decision of when to refine is also not trivial since the speed with which the
I-front propagates is not known a-priori, except for some standard test cases as discussed in
[88].

The other consideration has to do with rebuilding the AMR hierarchy itself. The process of
point clustering and grid generation during the process of regridding will be taken care of
by CHOMBO, but one has to consider the effect that Fr, the fill factor, can have during the
process of regridding. Section 2.2.1.2.3 provides more details on how this variable affects
the quality of the refined grids generated. The number of grids generated during regridding
cannot be so high that the ray tracing algorithm suffers due to having to find a new neighbor,
parent or child grid for each cell traversed. This can be the case if Fr is set to a high value.
If the value is set too low, we have a smaller number of grids but with cells being refined
unnecessarily resulting in large grids at higher resolution; this takes away any benefits of
having high resolution only where we need it.

To further understand the implications of doing adaptive RT simulations in CRASH-AMR using
CHOMBO, we look at a sample test case.

5.4 Sample test case with CRASH-AMR

In this Section we consider a sample test case, from the point of view of run time performance
of regenerating grids in CHOMBO and setting up the new hierarchy in CRASH-AMR. We look at
the quality of the grids generated by CHOMBO when we take into account different values for
Fr and size of the region being refined.

Consider the set up in Section 3.3.1 with a point source located at the origin of the box.
The I-front moving away from this source resembles a shell which is few cells thick. The
dynamic refinement has to consider only the cells that lie within this I-front, refine them as
the simulation proceeds. Hence, we set up a similar test case and simulate such an I-front
by creating a shell of growing size that moves away from the point source as the simulation
proceeds. All the cells that fall inside this shell are selected for refinement.

We provide a code snippet below that shows the sequence of operations being done, and at
each stage we mention the relevant CHOMBO class that is called.

Listing 5.1 Code snippet for tagging and regridding
1

2 !numAMRLevels − number of levels to begin with
3 !maxAMRLevels − maximum number of levels allowed
4

5 CALL setICsOnCHOMBOGrids(numAMRLevels, maxAMRLevels)
6

7 !numRefinements − number of refinements to be done

5.4 Sample test case with CRASH-AMR 111

8 !numCellsToBeRefined − number of cells to be refined in each loop
9

10 DO index=0, numRefinements − 1
11

12 sphereStartCoords = index ∗ numCellsToBeRefined
13 sphereEndCoords = index ∗ (numCellsToBeRefined + 1)
14

15 CALL simSelectCellsToBeTagged(index)
16

17 CALL simCopyExistingGrids
18

19 CALL simRunRegriddingInCHOMBO
20

21 CALL simSetAMRDataInCRASH
22

23 CALL simWriteOutputs
24

25 END DO

The routine setICsOnCHOMBOGrids sets up the ICs on the base grid, and calls the required
CHOMBO routines to set up the AMR framework. At the end of this call, we have the ChomboAMR
class set up along with pointers to all the refinement levels. Then, depending on the number
of times we want to refine the grid, we carry out the following operations.

(a) The routine simSelectCellsToBeTagged calls a CHOMBO class Sphere that selects and
tags all the cells that lie within the shell whose radius, Rs, is given by the variable
numCellsToBeRefined. The start and end coordinates of the sphere are calculated in the
variables sphereStartCoords and sphereEndCoords. We tag cells only at the base grid
level, these are then used by the BRMeshRefine class and refined where ever necessary to
create the new grid levels.

(b) Before the regrid can be done, the routine simCopyExistingGrids backs up the boxes in
DisjointBoxLayout and FArrayBox containing the data at each level.

(c) Then, the routine simRunRegriddingInCHOMBO calls the regrid routine within the
BRMeshRefine class that creates a new level as required. If a new refinement level is
created we set up the DisjointBoxLayout and the data in the FArrayBox for this level.

(d) The simSetAMRDataInCRASH clears the existing data structure in CRASH-AMR and sets up
the new AMR hierarchy. This includes determining the localID and globalID of each
box and whether each cell is refined or not. The neighbor, parent and child lists are
updated and copied to CRASH-AMR. In summary, the complete data structure as discussed
in Section 3.2.2 is set up.

(e) Finally, the routine simWriteOutputs writes out the data in HDF5 format.

We have run the above test case for different values of Rs and Fr. We start with a single grid
at the base level, and go up to a maximum of three refinements, i.e. four levels in the grid
hierarchy. The variable numRefinements is set to 10 and during each refinement the shell
being refined moves away from the grid origin. This essentially means that the number of
cells that are selected for refinement grows larger.

112 5. Adaptive Radiative Transfer simulations with CRASH

Figure 5.1 shows the total run time (in seconds) for carrying out the regridding (regrid) and
post-regridding (postRegrid) within CHOMBO and the rebuilding of the hierarchy in CRASH-AMR

(getGridInfo), for different values of Fr and Rs. The regrid phase consists of calling the
BRMeshRefine class, postRegrid sets up the relevant data that is passed back to CRASH-AMR.
Here we determine the neighbor(s), parent(s) and child(ren) of each box and assign its unique
localID and globalID. Finally, during getGridInfo we set up the Fortran data structure in
CRASH-AMR and get the pointers to the data from the FArrayBox.

From the graphs it is clear that the regrid operation takes longer for Rs > 5 cells and Fr > 0.75
and increases by a factor of 1.2 between Fr = 0.7 and 0.85. Regarding the number of cells
refined, the time taken to regrid increases by a factor of 8.5 when Rs = 10, when compared
to Rs = 5. For the postRegrid operation, we find that when Fr = 0.7, the time taken for the
test case where Rs = 10 cells is 23 times higher when compared to Rs = 5. However, as the
value of Fr reaches 0.8 or more, the run time for Rs = 10 cells is higher by a factor of 8 when
compared to Rs = 5. For the getGridInfo operation, when Fr = 0.7, the difference in run
times for different values of Rs is almost negligible. However, when Fr is set to 0.8 and 0.85,
the difference in run times between the test cases with Rs = 10 and Rs = 5 is a factor of 1.5
and 8, respectively.

Essentially, we find that the performance of the regrid and getGridInfo operations degrades
with an increase Rs and Fr. As we move away from the origin, the number of cells that fall
within a shell grows larger and results in a large number of boxes being created to cover the
tagged cells. The postRegrid operation seems to be able to carry out the copy operations
efficiently and does not show any reduction in performance unlike the other two operations.

Note that we have done 10 refinements in total, and during the last refinement stage, if
Rs = 10, then the values for sphereStartCoords and sphereEndCoords are 90 and 99. Given
that the base grid resolution in this case is 1283, we have covered only ∼ 46% in volume of the
box for refinement. From the standard test case in Section 3.3.1, for a box of size L = 6.6 kpc
and 1283 resolution, the Strömgren sphere extends up to 5.4 kpc, which covers about ∼ 53%
in volume of the box. So the time taken for refining the grid will be higher. The standard test
in Section 3.3.1 takes approximately 60 minutes to complete, however introducing adaptivity
could increase the run times since the code has to now solve the RT equations on a larger
number of cells that lie within the refined region and also carry out the relevant operations in
CHOMBO. Although the regrid operation that lasts ∼ 10 - 11 minutes will constitute a smaller
proportion of the run time when adaptivity is introduced, we still have to carefully set up the
refinement criteria, i.e. Rs, Fr and the number of times we want to do a refinement. This will
ensure that we can carry out the RT simulation in a feasible time frame and not get bogged
down by the time taken to dynamically refine the grid.

5.5 Conclusion

We have considered a sample test case to look at the feasibility of implementing adaptivity
in CRASH-AMR. Given that the framework necessary to carry out the tagging and regridding
operations is in place, we should be able to set this up in CRASH-AMR albeit with certain
careful considerations. Introducing adaptivity in CRASH-AMR will require many changes to the

5.5 Conclusion 113

0.7 0.75 0.8 0.85
F

r

100

200

300

400

500

600

700

R
un

 t
im

e
(s

)
-

re
gr

id

1 cell
2 cells
5 cells
10 cells

0.7 0.75 0.8 0.85
F

r

50

100

150

200

250

300

R
un

 t
im

e
(s

)
-

po
st

 R
eg

ri
d

1 cell
2 cells
5 cells
10 cells

0.7 0.75 0.8 0.85
F

r

10

20

30

40

50

60

R
un

 t
im

e
(s

)
-

ge
t

G
ri

d
In

fo

1 cell
2 cells
5 cells
10 cells

Figure 5.1 Run time (s) for different operations to regrid and rebuild the AMR hierarchy, for
different values of Fr in CRASH-AMR. The different colors refer to the number of cells in the
sphere radius selected for refinement, 1 cell (red), 2 cells (blue), 5 cells (green) and 10 cells
(black). Top: Run times for regrid and post regrid operations in CHOMBO. Bottom: Run
times for rebuilding the hierarchy in CRASH-AMR

.

code in terms of being able to decide, accurately, the region of interest and frequency with
which the grids should be refined. The code follows a “ray by ray” approach which makes it
non-trivial to decide a-priori where the I-front will be at a certain point. We could make some
assumptions about the speed of the I-front and refine the grid such that the I-front always
stays within this refined region, but this may not be the ideal scenario and could result in cells
being unnecessarily refined. The situation becomes more complex in a cosmological scenario,
with multiple point sources. The ionised bubble moving away from a point source might
merge with that from other point sources and require further refinements. However, to begin
with, being able to resolve the I-front around a single point source is of much importance in
the cosmological scenario and we plan to look at this in detail in future.

Chapter 6

Conclusion

High resolution simulations are a crucial requirement for understanding the various physical
processes involved in cosmology. The development of efficient algorithmic and numerical
methods is thus necessary to make judicious use of the computational resources available.
Radiative transfer (RT) simulations provide an important tool to understand the effects of
radiative feedback on structure formation and still present a unique set of computational
challenges.

In this thesis we have looked at improving the computational and algorithmic capabilities of
the RT code CRASH, thus enabling it to run RT simulations on static, refined grids thereby
focusing the computational efforts on regions of interest. For this purpose, the code has been
interfaced with the open-source AMR library CHOMBO, which provides the necessary framework
required to store and manage the grid hierarchy. The library is not originally intended for
a code like CRASH which requires calculations to be done on a cell-by-cell basis to simulate
radiation-matter interaction. Nevertheless, we have been successful in adopting the library
for our purposes and have implemented a complete and stable interface between CRASH and
CHOMBO. A detailed discussion of the new code and the development methodology, following
the software architecture of the baseline code CRASH3, has been done. We have also taken
advantage of the various tools available in the library to provide a number of pre- and post-
processing tools for use with CRASH-AMR. These enable a user to set-up simple, standard, test
cases and also to analyse the outputs of CRASH-AMR simulations.

We have then carried out a series of tests, both with the simplified set-up prescribed in
the RT Code Comparison Project (RTCCP) and a realistic hydrodynamic simulation with
AMR refinement. All the standard tests show a good agreement with the latest release
of CRASH, thus confirming that the interface between CRASH-AMR and CHOMBO is correct. It
also proves that CRASH-AMR is able to perform consistent RT simulations on a more accurate
representation of the gas distribution in the cosmological domain. Our tests done on a realistic
density field show a sharp difference in the ionised region patterns formed at different AMR
resolutions; this is due to the more accurate treatment of the radiation-matter interaction.

CRASH-AMR provides a number of computational and algorithmic improvements over CRASH.
The code is now able to perform RT simulations with the resolution of the density field

116

increased by a factor of 64, which was previously impossible on CRASH due to memory limita-
tions of a single compute core. When compared with RT simulations run on high-resolution
uniform grids, CRASH-AMR gives a 59% reduction in terms of the total run time.

Our next step has been to parallelise CRASH-AMR using distributed memory parallelism, this
has provided a new set of challenges due to the inherent nature of the ray-tracing algorithm in
the code. The rays emitted from point sources travel in random directions, requiring frequent
communication among cores. The presence of refined grids distributed across multiple cores
adds to the complexity of the code. We discuss the implementation of the parallel code
PCRASH-AMR in detail, providing an insight into the different techniques used to parallelise the
code. Two load balancing schemes have been discussed along with the methodology adopted
to map the distributed grid hierarchy available in CHOMBO back onto CRASH in an efficient
way. The improvements to the ray-tracing algorithm, that takes advantage of the SAMR
framework to optimise ray propagation to other cores, have been mentioned. PCRASH-AMR has
been tested with a standard test case prescribed in RTCCP and we find a good agreement
with CRASH-AMR. To study the performance of the code, weak and strong scaling tests have
been done, on two different machines, for grids with three and four refinement levels. We have
been able to get fairly good, if not perfect, scaling with 128 cores. A number of immediate
improvements has been suggested; we are currently working on some of them. This should
improve the scaling efficiency of the code to 256 - 512 cores. This development will now allow
us to carry out high-resolution cosmological simulations on larger problem sizes involving
thousands of point sources.

CRASH-AMR is as of now used as a post-processing tool for adaptive hydro codes; the RT
simulation does not carry out any refinements. Adaptivity within the RT code is extremely
useful for certain problems, for example resolving the temperature changes around a quasar.
This is of importance in cosmological scenarios, for example the IGM reionisation. The final
part of this thesis deals with the possibility of introducing adaptivity into CRASH-AMR using
the SAMR framework of CHOMBO. We discuss the necessary changes required to do so and
look at a simple test case to understand the various algorithmic issues involved. The interface
developed between CRASH-AMR and CHOMBO requires certain extensions for this; a number of
changes that need to be done to the RT algorithm in CRASH have been discussed.

The developments carried out as part of this thesis now make it possible to carry out high-
resolution RT simulations with CRASH; as a result of this work we can now look at the feasibility
of coupling the code with a cosmological hydrodynamic code thereby enabling self-consistent,
large scale simulations of structure formation.

Bibliography

[1] T. Abel and B. D. Wandelt. Adaptive ray tracing for radiative transfer around point
sources. MNRAS, 330:53–56, March 2002. 2.2.4, 5.1, 5.3

[2] M. Adams et al. CHOMBO Software Package for AMR Applications - Design Document.
Lawrence Berkeley National Laboratory Technical Report LBNL-6616E, 2011. 2.2.5,
2.18, 3

[3] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Anal-
ysis. John Wiley& Sons, 2000. 2.2.2.1, a

[4] A. S. Almgren et al. CASTRO: A New Compressible Astrophysical Solver. I. Hydrody-
namics and Self-gravity. ApJ, 715:1221–1238, June 2010. 2.2.1.3

[5] M. A. Alvarez, V. Bromm, and P. R. Shapiro. The H II Region of the First Star. ApJ,
639:621–632, March 2006. 2.2.4

[6] R. E. Angulo et al. Scaling relations for galaxy clusters in the Millennium-XXL simu-
lation. MNRAS, 426:2046–2062, November 2012. 1.3, 2.2.4

[7] Babuska, I. and Strouboulis, T. and Upadhyay, C.S. A model study of the quality of a
posteriori error estimators for linear elliptic problems. Error estimation in the interior
of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and
Engineering, 114(3-4):307 – 378, 1994. ISSN 0045-7825. 2.2.2.1

[8] M. Bader. Texts in computational science and engineering. In Space Filling Curves,
volume 9 of Texts in Computational Science and Engineering, 2013. 4.1.1

[9] E. Baensch. Local mesh refinement in 2 and 3 dimensions. {IMPACT} of Computing
in Science and Engineering, 3(3):181 – 191, 1991. ISSN 0899-8248. 2.2.2.2

[10] M. Baes, H. Dejonghe, and J. I. Davies. Efficient radiative transfer modelling with
SKIRT. In The Spectral Energy Distributions of Gas-Rich Galaxies: Confronting Models
with Data, volume 761 of American Institute of Physics Conference Series, pages 27–38,
April 2005. 2.2.4

[11] S. Balay et al. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.5,
Argonne National Laboratory, 2014. 2.2.5

[12] R. A. Bank, H. A. Sherman, and A. Weiser. Some Refinement Algorithms And Data
Structures For Regular Local Mesh Refinement, 1983. 2.2.2.2

118 Bibliography

[13] R. Barkana and A. Loeb. The physics and early history of the intergalactic medium.
Reports on Progress in Physics, 70:627–657, April 2007. 1.2

[14] T. J. Barth, A. S. Wiltberger, and A. S. Gandhi. Three-dimensional unstructured
grid generation via an incremental insertion and local optimization. NASA Conference
Publication, 3143:449–461, 1992. 2.1.2.2

[15] J. Bédorf, E. Gaburov, and S. Portegies Zwart. Bonsai: N-body GPU tree-code. As-
trophysics Source Code Library, December 2012. 1.3

[16] J. Bédorf et al. 24.77 Pflops on a Gravitational Tree-Code to Simulate the Milky Way
Galaxy with 18600 GPUs. ArXiv e-prints, December 2014. 1.3

[17] C. L. Bennett et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-
servations: Final Maps and Results. APJS, 208:20, October 2013. 1.2

[18] J. M Berger and J. R. Leveque. Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems. SIAM J. Numer. Anal, 35:2298–2316, 1998. 1.1,
2.2.5

[19] J. M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of Computational Physics, 53(3):484 – 512, 1984. ISSN 0021-9991.
1.1, 2.2, 2.2.1.2, 2.2.1.2, 2.2.6

[20] J. M. Berger and I. Rigoutsos. An algorithm for point clustering and grid generation.
IEEE Transactions on Systems, Man and Cybernetics, 21(5):1278–1286, sep/oct 1991.
ISSN 0018-9472. doi: 10.1109/21.120081. 2.2.1.2.3, 2.13, 5.2

[21] D. C. Black and P. Bodenheimer. Evolution of rotating interstellar clouds. II - The
collapse of protostars of 1, 2, and 5 solar masses. APJ, 206:138–149, May 1976. 1.3

[22] D. T. Blacker and J. R. Meyers. Seams and wedges in plastering: A 3-D hexahedral mesh
generation algorithm. Engineering with Computers, 9(2):83–93, 1993. ISSN 0177-0667.
2.1.2.1

[23] D. T. Blacker and B. M. Stephenson. Paving: A new approach to automated quadrilat-
eral mesh generation. ”International Journal for Numerical Methods in Engineering”,
32(4):811–847, 1991. ISSN 1097-0207. 2.1.2.1

[24] E. Blayo and L. Debreu. Adaptive mesh refinement for finite-difference ocean models:
first experiments. Journal of Physical Oceanography, 29(6):1239–1250, 1999. 2.2.1

[25] J. Bonet and J. Peraire. An alternating digital tree (ADT) algorithm for 3D geometric
searching and intersection problems. International Journal for Numerical Methods in
Engineering, 31(1):1–17, 1991. ISSN 1097-0207. 2.1.2.1

[26] K. Borne. Astroinformatics: A 21st Century Approach to Astronomy Research and
Education. In American Astronomical Society Meeting Abstracts, 215, volume 42 of
Bulletin of the American Astronomical Society, page 230.01, January 2010. 1.3

[27] A. Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24(2):162–166,
1981. 2.1.2.2

Bibliography 119

[28] M. Boylan-Kolchin, V. Springel, S. D. M. White, A. Jenkins, and G. Lemson. Resolving
cosmic structure formation with the Millennium-II Simulation. MNRAS, 398:1150–1164,
September 2009. 2.2.4

[29] C. Brinch and M. R. Hogerheijde. LIME - a flexible, non-LTE line excitation and
radiation transfer method for millimeter and far-infrared wavelengths. AAP, 523:A25,
November 2010. 2.2.4

[30] G. L. Bryan et al. Enzo: An Adaptive Mesh Refinement Code for Astrophysics. ArXiv
e-prints, July 2013. 1.3, 2.2.4

[31] Greg L. Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology. Com-
puting in Science and Engg., 1(2):46–53, March 1999. ISSN 1521-9615. 2.2.4

[32] L. Buntemeyer et al. Radiation Hydrodynamics using Characteristics on Adaptive
Decomposed Domains for Massively Parallel Star Formation Simulations. ArXiv e-
prints, January 2015. 4.1.1, 4.2.2.1

[33] C. Burstedde et al. Scalable adaptive mantle convection simulation on petascale su-
percomputers. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
page 62. IEEE Press, 2008. 2.2.3

[34] P. Camps, M. Baes, and W. Saftly. Using 3D Voronoi grids in radiative transfer simu-
lations. AAP, 560:A35, December 2013. 2.2.4

[35] S. Cantalupo and C. Porciani. RADAMESH: cosmological radiative transfer for Adap-
tive Mesh Refinement simulations. MNRAS, 411:1678–1694, March 2011. 2.2.1.3, 2.2.4,
5.1

[36] R. G. Carlberg and H. M. P. Couchman. Mergers and bias in a cold dark matter
cosmology. APJ, 340:47–68, May 1989. 1.3

[37] Q. Chen and M. Gunzburger. Goal-oriented a Posteriori Error Estimation for Finite
Volume Methods. J. Comput. Appl. Math., 265:69–82, August 2014. ISSN 0377-0427.
2.2.2.1

[38] B. Ciardi. Cosmic reionization and the LOFAR project. In Cosmic Radiation Fields:
Sources in the early Universe (CRF 2010), page 34, 2010. 1.2, 2.2.4

[39] B. Ciardi and A. Ferrara. The First Cosmic Structures and Their Effects. SSR, 116:
625–705, February 2005. 1.2

[40] B. Ciardi, A. Ferrara, S. Marri, and G. Raimondo. Cosmological reionization around
the first stars: Monte Carlo radiative transfer. MNRAS, 324:381–388, June 2001. aiii,
3.1

[41] B. Ciardi, A. Ferrara, and S. D. M. White. Early reionization by the first galaxies.
MNRAS, 344:L7–L11, September 2003. 3

[42] B. Ciardi, F. Stoehr, and S. D. M. White. Simulating intergalactic medium reionization.
MNRAS, 343:1101–1109, August 2003. 3

120 Bibliography

[43] B. Ciardi, J. S. Bolton, A. Maselli, and L. Graziani. The effect of intergalactic helium
on hydrogen reionization: implications for the sources of ionizing photons at z ¿ 6.
MNRAS, 423:558–574, June 2012. 3

[44] P. Colella and P. R. Woodward. The Piecewise Parabolic Method (PPM) for Gas-
Dynamical Simulations. Journal of Computational Physics, 54:174–201, September
1984. 1.1

[45] M. Compostella, S. Cantalupo, and C. Porciani. The imprint of inhomogeneous He II
reionization on the H I and He II Lyα forest. MNRAS, 435:3169–3190, November 2013.
1.2

[46] J. W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):pp. 297–301, 1965. ISSN 00255718.
1.1

[47] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of math-
ematical physics. IBM Journal of Research and Development, 11(2):215–234, march
1967. ISSN 0018-8646. doi: 10.1147/rd.112.0215. 2.2.1.1.2

[48] R. A. Crain et al. Galaxies-intergalactic medium interaction calculation - I. Galaxy
formation as a function of large-scale environment. MNRAS, 399:1773–1794, November
2009. 1.3

[49] A. J. Cunningham et al. Simulating Magnetohydrodynamical Flow with Constrained
Transport and Adaptive Mesh Refinement: Algorithms and Tests of the AstroBEAR
Code. ApJS, 182:519–542, June 2009. 2.2.5

[50] W. W. Dai. Issues in adaptive mesh refinement. In IEEE International Symposium on
Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW),, pages 1 –8,
april 2010. doi: 10.1109/IPDPSW.2010.5470758. 2.2.1.3

[51] R. Davé. Simulations of the Intergalactic Medium. In Maps of the Cosmos, volume 216
of IAU Symposium, page 251, January 2005. 1.2

[52] R. Deiterding. Construction and Application of an AMR Algorithm for Distributed
Memory Computers. In Tomasz Plewa, Timur Linde, and V. Gregory Weirs, editors,
Adaptive Mesh Refinement - Theory and Applications, volume 41 of Lecture Notes in
Computational Science and Engineering, pages 361–372. Springer Berlin Heidelberg,
2005. ISBN 978-3-540-21147-1. 4.1

[53] Ralf Deiterding. Detonation structure simulation with AMROC. In Performance Com-
puting and Communications,, pages 916–927. Springer, 2005. 2.2.5

[54] B. Delaunay. Sur la sphère vide. Bull. Acad. Science USSR VII: Class Sci. Mat. Nat.,
7:793, 1934. 2.1.2.2

[55] Demkowicz, L. and Devloo, Ph. and Oden, J.T. On an h-type mesh-refinement strategy
based on minimization of interpolation errors. Computer Methods in Applied Mechanics
and Engineering, 53(1):67 – 89, 1985. ISSN 0045-7825. 2.2.2.1

Bibliography 121

[56] Diaz, R. A. and Kikuchi, N. and Taylor, E. J. A method of grid optimization for finite
element methods. Computer Methods in Applied Mechanics and Engineering, 41(1):29
– 45, 1983. ISSN 0045-7825. d

[57] E. Dorfi. 3D models for self-gravitating, rotating magnetic interstellar clouds. AAP,
114:151–164, October 1982. 1.3

[58] P. C. Duffell and A. I. MacFadyen. TESS: A Relativistic Hydrodynamics Code on a
Moving Voronoi Mesh. APJS, 197:15, December 2011. 2.2.4

[59] G. Efstathiou and J. W. Eastwood. On the clustering of particles in an expanding
universe. MNRAS, 194:503–525, February 1981. 1.3

[60] L. Freitag, M. Jones, and P. Plassmann. Mesh component design and software integra-
tion within sumaa3d, 1999. 2.2.5

[61] C. S. Frenk et al. The Santa Barbara Cluster Comparison Project: A Comparison of
Cosmological Hydrodynamics Solutions. APJ, 525:554–582, November 1999. 3.3.3

[62] B. Fryxell et al. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling As-
trophysical Thermonuclear Flashes. ApJS, 131:273–334, November 2000. 1.3, 2.2.4,
2.2.6

[63] Alan J. G. Computer Implementation of the Finite Element Method. PhD thesis, PhD
Thesis, 1971, Stanford, CA, USA, 1971. AAI7205916. 2.1.2.1

[64] V. N. Gamezo et al. Thermonuclear supernovae: Simulations of the deflagration stage
and their implications. Science, 299(5603):77–81, 2003. 2.2.4

[65] C. W. Gear and R. D. Skeel. A history of scientific computing. chapter The Development
of ODE Methods: A Symbiosis Between Hardware and Numerical Analysis, pages 88–
105. ACM, New York, NY, USA, 1990. ISBN 0-201-50814-1. 1.1

[66] J. M. Gelb and E. Bertschinger. Cold dark matter. 1: The formation of dark halos.
APJ, 436:467–490, December 1994. 1.3

[67] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics - Theory and
application to non-spherical stars. MNRAS, 181:375–389, November 1977. 1.1

[68] M. Gittings et al. The RAGE radiation-hydrodynamic code. Computational Science
and Discovery, 1(1):015005, October 2008. 2.2.4

[69] N. Y. Gnedin and T. Abel. Multi-dimensional cosmological radiative transfer with a
Variable Eddington Tensor formalism. New Astronomy, 6:437–455, October 2001. b,
2.2.4

[70] N. Y. Gnedin and J. P. Ostriker. Reionization of the Universe and the Early Production
of Metals. APJ, 486:581–598, September 1997. 1.3.1

[71] N. Y. Gnedin, K. Tassis, and A. V. Kravtsov. Modeling Molecular Hydrogen and Star
Formation in Cosmological Simulations. APJ, 697:55–67, May 2009. 2.2.4

122 Bibliography

[72] K. M. Górski et al. HEALPix: A Framework for High-Resolution Discretization and
Fast Analysis of Data Distributed on the Sphere. ApJ, 622:759–771, April 2005. 2.2.4,
5.1, 5.3

[73] L. Graziani, A. Maselli, and B. Ciardi. crash3: cosmological radiative transfer through
metals. MNRAS, 431(1):722–740, 2013. 3.1, 4

[74] S. L. Grimm and J. G. Stadel. The GENGA Code: Gravitational Encounters in N-body
Simulations with GPU Acceleration. APJ, 796:23, November 2014. 1.3

[75] C.P.T. Groth et al. A parallel adaptive 3d mhd scheme for modeling coronal and solar
wind plasma flows. ”Space Science Reviews”, 87:193–198, 1999. ISSN 0038-6308. doi:
10.1023/A:1005136115563. 2.2.4

[76] E. J. Groth and P. J. E. Peebles. Statistical analysis of catalogs of extragalactic objects.
VII - Two- and three-point correlation functions for the high-resolution Shane-Wirtanen
catalog of galaxies. APJ, 217:385–405, October 1977. 1.3

[77] S. Habib et al. HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing
Architectures. ArXiv e-prints, October 2014. 1.3

[78] A. Hannukainen, S. Korotov, and M. Krizek. On global and local mesh refinements by
a generalized conforming bisection algorithm. Journal of Computational and Applied
Mathematics, 235(2):419 – 436, 2010. ISSN 0377-0427. Special Issue on Advanced
Computational Algorithms. 2.2.2.2

[79] J. Harnois-Déraps et al. High-performance P3M N-body code: CUBEP3M. MNRAS,
436:540–559, November 2013. 2.2.4

[80] K. Heng. The Nature of Scientific Proof in the Age of Simulations. ArXiv e-prints,
April 2014. 1.3

[81] M. Heroux, P. Raghavan, and H. Simon. Parallel Processing for Scientific Computing.
Society for Industrial and Applied Mathematics, 2006. doi: 10.1137/1.9780898718133.
2.2.3

[82] M. R. Hestenes. A history of scientific computing. chapter Conjugacy and Gradients,
pages 167–179. ACM, New York, NY, USA, 1990. ISBN 0-201-50814-1. 1.1

[83] P. Hut et al. Smooth Particle Hydrodynamics: Models, Applications, and Enabling
Technologies. ArXiv Astrophysics e-prints, October 1997. 1.3

[84] I. Iben, Jr. Stellar Evolution. I. The Approach to the Main Sequence. APJ, 141:993,
April 1965. 1.3

[85] I. Iben, Jr. Stellar Evolution. II. The Evolution of a 3 M {sun} Star from the Main
Sequence Through Core Helium Burning. APJ, 142:1447, November 1965. 1.3

[86] I. T. Iliev et al. Simulating cosmic reionization at large scales - I. The geometry of
reionization. MNRAS, 369:1625–1638, July 2006. 1.2

Bibliography 123

[87] I. T. Iliev et al. Cosmological radiative transfer codes comparison project - I. The static
density field tests. MNRAS, 371:1057–1086, September 2006. 1.3.1, 2.2.4, 3, 3.3.1,
3.3.1.1, 3.3.1.2, 3.3.2, 3.3.2.2

[88] I. T. Iliev et al. Cosmological radiative transfer comparison project - II. The radiation-
hydrodynamic tests. MNRAS, 400:1283–1316, December 2009. 2.2.4, 5.3

[89] T. Ishiyama, T. Fukushige, and J. Makino. GreeM: Massively Parallel TreePM Code
for Large Cosmological N -body Simulations. PASJ, 61:1319–, December 2009. 1.3

[90] Jasak, H. and Gosman, A.D. Element residual error estimate for the finite volume
method. Computers & Fluids, 32(2):223 – 248, 2003. ISSN 0045-7930. a

[91] H. Johansson. Design and implementation of a dynamic and adaptive meta-partitioner
for parallel SAMR grid hierarchies. 2008. 4.1

[92] H. Johansson and A. Vakili. A patch-based partitioner for parallel SAMR applications.
2008. 4.1

[93] T. M. Jones and E. P. Plassmann. Adaptive refinement of unstructured finite-element
meshes, 1997. 2.2.2.2, 2.17

[94] T. A. Karl et al. Using RngStreams for parallel random number generation in C++
and R. Computational Statistics, 29(5):1301–1320, 2014. ISSN 0943-4062. 4.2.5

[95] George Karypis and Vipin Kumar. A Parallel Algorithm for Multilevel Graph Parti-
tioning and Sparse Matrix Ordering. Journal of Parallel and Distributed Computing,
48(1):71 – 95, 1998. ISSN 0743-7315. 2.2.5

[96] A. Khokhlov. Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics
Simulations. Journal of Computational Physics, 143:519–543, July 1998. 2.1, 2.2,
2.2.1.1.1, 2.2.1.1.2, 2.2.1.1.2, 2.2.4

[97] J. Kim et al. The New Horizon Run Cosmological N-Body Simulations. Journal of
Korean Astronomical Society, 44:217–234, December 2011. 2.2.4

[98] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ Li-
brary for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering
with Computers, 22(3–4):237–254, 2006. 2.2.5

[99] R. I. Klein, R. T. Fisher, C. F. McKee, and M. R. Krumholz. Recent Advances in the
Collapse and Fragmentation of Turbulent Molecular Cloud Cores. In Star Formation
in the Interstellar Medium: In Honor of David Hollenbach, volume 323 of Astronomical
Society of the Pacific Conference Series, page 227, December 2004. 2.2.4

[100] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.
ISBN 0-201-89684-2. 4.2.5

[101] J. Kondo. Supercomputing applications, algorithms, and architectures for the future of
supercomputing. Springer-Verlag Tokyo, 1991. 1.1

124 Bibliography

[102] A. V. Kravtsov, A. A. Klypin, and A. M. Khokhlov. Adaptive Refinement Tree: A New
High-Resolution N-Body Code for Cosmological Simulations. ApJS, 111:73, July 1997.
2.2.4

[103] M. Kuhlen, M. Vogelsberger, and R. Angulo. Numerical simulations of the dark universe:
State of the art and the next decade. Physics of the Dark Universe, 1:50–93, November
2012. 2.2.4

[104] Z. Lan, V. E. Taylor, and G. Bryan. A novel dynamic load balancing scheme for parallel
systems. Journal of Parallel and Distributed Computing, 62(12):1763–1781, 2002. 4.1

[105] Z. Lan, V. E Taylor, and G. Bryan. A novel dynamic load balancing scheme for parallel
systems. Journal of Parallel and Distributed Computing, 62(12):1763–1781, 2002. 4.1

[106] B. Laney, C. Computational Gasdynamics. Cambridge University Press, 1998. 1.1

[107] A. M. C. Le Brun et al. Towards a realistic population of simulated galaxy groups and
clusters. MNRAS, 441:1270–1290, June 2014. 1.3

[108] P. L’Ecuyer et al. An object-oriented random-number package with many long streams
and substreams. Operations Research, 50:1073–1075, 2002. 4.2.5

[109] C. D. Levermore. Relating Eddington factors to flux limiters. JQSRT, 31:149–160,
February 1984. 2.2.4

[110] Li, X. and Shephard, S. M. and Beall, M. W. 3D anisotropic mesh adaptation by mesh
modification. Computer Methods in Applied Mechanics and Engineering, 194(48-49):
4915 – 4950, 2005. ISSN 0045-7825. Unstructured Mesh Generation. 2.2.3

[111] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2):498–516, 1973. 2.2.6.1

[112] Anwei Liu and Barry Joe. On the shape of tetrahedra from bisection. Mathematics of
Computation, 63(207):141–154, 1994. 2.2.2.2

[113] R. Loehner and P. Parikh. Generation of three-dimensional unstructured grids by the
advancing-front method. International Journal for Numerical Methods in Fluids, 8(10):
1135–1149, 1988. ISSN 1097-0363. 2.1.2.1

[114] J. Z. Lou et al. ”a robust and scalable library for parallel adaptive mesh refinement on
unstructured meshes”. In Solving Irregularly Structured Problems in Parallel, volume
1457 of Lecture Notes in Computer Science, pages 156–169. Springer Berlin Heidelberg,
1998. ISBN 978-3-540-64809-3. 2.2.5

[115] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. AJ, 82:
1013–1024, December 1977. 1.1

[116] T. Lunttila and M. Juvela. Radiative transfer on hierarchial grids. AAP, 544:A52,
August 2012. 2.2.4

[117] M. N. Machida et al. Collapse and fragmentation of rotating magnetized clouds - II.
Binary formation and fragmentation of first cores. MNRAS, 362:382–402, September
2005. 1.3

Bibliography 125

[118] J. Mackey, V. Bromm, and L. Hernquist. Three Epochs of Star Formation in the
High-Redshift Universe. APJ, 586:1–11, March 2003. 1.2

[119] P. MacNeice et al. Paramesh: A parallel adaptive mesh refinement community toolkit.
Computer Physics Communications, 126(3):330 – 354, 2000. ISSN 0010-4655. 2.2.5

[120] G. Marsaglia. The Marsaglia random number CDROM including the DIEHARD battery
of tests of randomness, 1995. http://www.stat.fsu.edu/pub/diehard, 2008. 4.2.5

[121] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: A scalable library for pseu-
dorandom number generation. ACM Transactions on Mathematical Software (TOMS),
26(3):436–461, 2000. 4.2.5

[122] A. Maselli and A. Ferrara. Radiative transfer effects on the Lyα forest. MNRAS, 364:
1429–1440, December 2005. 3, 3.1

[123] A. Maselli, B. Ciardi, and A. Kanekar. CRASH2: coloured packets and other updates.
MNRAS, 393:171–178, February 2009. 3.1

[124] A. Maselli et al. CRASH: a radiative transfer scheme. MNRAS, 345:379–394, October
2003. 3.1, 3.1.1, 3.1.1.1

[125] D. J. Mavriplis. Unstructured grid techniques. Annual Review of Fluid Mechanics, 29
(1):473–514, 1997. 2.1

[126] A. A. Meiksin. The physics of the intergalactic medium. Reviews of Modern Physics,
81:1405–1469, October 2009. 1.2

[127] A. Mignone et al. The PLUTO Code for Adaptive Mesh Computations in Astrophysical
Fluid Dynamics. ApJS, 198:7, January 2012. 1.3, 2.2.4, 2.2.6

[128] F. Miniati and P. Colella. Block structured adaptive mesh and time refinement for
hybrid, hyperbolic + N-body systems. Journal of Computational Physics, 227:400–430,
November 2007. 1.3, 2.2, 2.2.4, 2.2.6, 2.2.6.2, 3.3, 3.3.3, 5.1

[129] K. Miyoshi and T. Kihara. Development of the correlation of galaxies in an expanding
universe. PASJ, 27:333–346, 1975. 1.3

[130] A. Moore. Dynamical Simulations of Extrasolar Planetary Systems with Debris Disks
Using a GPU Accelerated N-Body Code. PhD thesis, University of Rochester, 2013. 1.3

[131] G. M. Morton. A computer Oriented Geodetic Data Base; and a New Technique in File
Sequencing. Technical Report, Ottawa, Canada: IBM Ltd, 1966. 2.2.6.1

[132] S. G. Nash, editor. A History of Scientific Computing. ACM, New York, NY, USA,
1990. ISBN 0-201-50814-1. 1.1

[133] C. J. J. Nellenback et al. Efficient parallelization for {AMR} {MHD} multiphysics
calculations; implementation in astrobear. Journal of Computational Physics, 236(0):
461 – 476, 2013. ISSN 0021-9991. 4.1

126 Bibliography

[134] Nordstroem, J., Forsberg, K., Adamsson, C. Eliasson, P. Finite volume methods, un-
structured meshes and strict stability for hyperbolic problems. Applied Numerical Math-
ematics, 45(4):453 – 473, 2003. ISSN 0168-9274. 2.1

[135] M. L. Norman. Historical perspective on astrophysical MHD simulations. In Com-
putational Star Formation, volume 270 of IAU Symposium, pages 7–17, April 2011.
1.3

[136] C.D. Norton, J.Z. Lou, and T. Cwik. Status and directions for the pyramid parallel un-
structured amr library. In Parallel and Distributed Processing Symposium., Proceedings
15th International, pages 1224–1231, April 2001. 2.2.5

[137] J. T. Oden. Historical comments on finite elements. In A history of scientific computing,
pages 152–166. ACM, 1990. 1.1

[138] E. C. Olson et al. Electronic computations of astrophysical interest. AJ, 63:52, February
1958. 1.3

[139] Steven J. Owen, Matthew L. Staten, Scott A. Canann, and Sunil Saigal. ”advancing
front quadrilateral meshing using triangle transformations”, 1998. 2.1.2.1

[140] J.-P. Paardekooper, V. Icke, and J. Ritzerveld. Radiation Hydrodynamics of First Stars
with SimpleX Radiative Transfer. In First Stars III, volume 990 of American Institute
of Physics Conference Series, pages 453–455, March 2008. 2.2.4

[141] J.-P. Paardekooper, C. J. H. Kruip, and V. Icke. SimpleX2: radiative transfer on an
unstructured, dynamic grid. AAP, 515:A79, June 2010. 2.2.4

[142] M. Parashar and J. C. Browne. An infrastructure for parallel adaptive mesh refinement
techniques. Technical report, University of Texas, Austin, 1995. a, 4.1

[143] M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In
System Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Confer-
ence on,, volume 1, pages 604–613. IEEE, 1996. 4.1

[144] A. M. Partl, A. Maselli, B. Ciardi, A. Ferrara, and V. Müller. Enabling parallel com-
puting in CRASH. MNRAS, 414:428–444, June 2011. 1.3.1, 3.1, 4, 4.1.1, 4.2.1, 4.2.3.2

[145] P. J. E. Peebles. The Nature of the Distribution of Galaxies. AAP, 32:197, May 1974.
1.3

[146] M. Pierleoni, A. Maselli, and B. Ciardi. CRASHα: coupling continuum and line radia-
tive transfer. MNRAS, 393:872–884, March 2009. 3.1

[147] Planck Collaboration. Planck 2015 results. I. Overview of products and scientific results.
ArXiv e-prints, February 2015. 1.2

[148] C. S. Plesko et al. Hydrocode Modeling of Asteroid Impacts into a Volatile-Rich Martian
Surface: Initial Results,. In AAS/Division for Planetary Sciences Meeting Abstracts,
volume 37 of Bulletin of the American Astronomical Society, page 691, August 2005.
2.2.4

Bibliography 127

[149] T. Plewa, L. Timur, and V. W. Gregory. AMR - Theory and Applications. In Pro-
ceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, volume 41 of
Lecture Notes in Computational Science and Engineering, September 2003. 2.2.1.2.1,
2.2.4

[150] D. Price. Smoothed Particle Hydrodynamics. PhD thesis, PhD Thesis, 2005, July 2005.
2.2.4

[151] J. Rantakokko. Partitioning strategies for structured multiblock grids. Parallel Com-
puting, 26(12):1661–1680, 2000. 4.1

[152] J. Rantakokko and M. Thuné. Parallel structured adaptive mesh refinement. In Parallel
computing, pages 147–173. Springer, 2009. 4.1

[153] A. O. Razoumov and C. Y. Cardall. Fully threaded transport engine: new method for
multi-scale radiative transfer. MNRAS, 362:1413–1417, October 2005. 2.2.4, 5.1

[154] E.-J. Rijkhorst et al. Hybrid characteristics: 3d radiative transfer for parallel adaptive
mesh refinement hydrodynamics. A&A, 452:907–920, June 2006. ai, aii, 2.2.1.3, 4.1.1

[155] E. Ripamonti, M. Mapelli, and S. Zaroubi. Radiation from early black holes - I. Effects
on the neutral intergalactic medium. MNRAS, 387:158–172, June 2008. 5.1

[156] C. M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Sim-
plices. SIAM Journal on Numerical Analysis, 21(3):604–613, 1984. 2.17, 2.2.2.2, 2.2.2.2

[157] C. M. Rivara. Selective refinement/derefinement algorithms for sequences of nested
triangulations. International Journal for Numerical Methods in Engineering, 28:2889–
2906, 1989. 2.2.2.2

[158] C. M. Rivara and C. Levin. A 3-D refinement algorithm suitable for adaptive and
multi-grid techniques. Communications in Applied Numerical Methods, 8(5):281–290,
1992. ISSN 1555-2047. 2.2.2.2

[159] J. Rosdahl, J. Blaizot, D. Aubert, T. Stranex, and R. Teyssier. RAMSES-RT: radiation
hydrodynamics in the cosmological context. MNRAS, 436:2188–2231, December 2013.
1.3, 2.2.4

[160] H. Samet. Neighbour finding in images represented by octrees. In Computer Vision,
Graphics and Image Processing, pages 367–386, 1989. 2.2.1.1.1

[161] E. Scannapieco, R. J. Thacker, and M. Davis. High-Redshift Galaxy Outflows and the
Formation of Dwarf Galaxies. APJ, 557:605–615, August 2001. 1.2

[162] M. Schaefer. Computational Engineering - Introduction to Numerical methods. Springer,
2006. ISBN 3-540-30685-4. 2.1, 2.1.1.2

[163] J. Schaye et al. The physics driving the cosmic star formation history. MNRAS, 402:
1536–1560, March 2010. 1.3

[164] J. Schaye et al. The EAGLE project: Simulating the evolution and assembly of galaxies
and their environments. ArXiv e-prints, July 2014. 1.3, 2.2.4

128 Bibliography

[165] R. Schneider et al. Low-mass relics of early star formation. Nature, 422:869–871, April
2003. 1.2

[166] L. D. Shaw et al. Statistics of Physical Properties of Dark Matter Clusters. ApJ, 646:
815–833, August 2006. 2.2.4

[167] M. Shee, S. Bhavsar, and M. Parashar. Characterizing the performance of dynamic
distribution and load-balancing techniques for adaptive grid hierarchies. In Proceedings
IASTED International conference of parallel and distributed computing and systems,
1999. 4.1

[168] S. Shweta and M. Parashar. Adaptive Runtime Partitioning of AMR Applications on
Heterogeneous Clusters, 2001. 4.1

[169] C. M. Simpson et al. The Effect of Feedback and Reionization on Star Formation in
Low-mass Dwarf Galaxy Halos. In American Astronomical Society Meeting Abstracts,
volume 221 of American Astronomical Society Meeting Abstracts, page 107.05, January
2013. 2.2.4

[170] Smith, E. R. and Eriksson, E. L. Algebraic grid generation. Computer Methods in
Applied Mechanics and Engineering, 64(1-3):285 – 300, 1987. ISSN 0045-7825. 2.1.1.1

[171] V. Springel. Smoothed particle hydrodynamics in astrophysics. A&A, 48(1):391–430,
2010. 2.2.4

[172] V. Springel. Moving-mesh hydrodynamics with the AREPO code. In Computational
Star Formation, volume 270 of IAU Symposium, pages 203–206, April 2011. 2.2.4

[173] V. Springel and L. Hernquist. Cosmological smoothed particle hydrodynamics simula-
tions: a hybrid multiphase model for star formation. MNRAS, 339:289–311, February
2003. 1.2

[174] V. Springel, C. S. Frenk, and S. D. M. White. The large-scale structure of the Universe.
Nature, 440:1137–1144, April 2006. 1.2

[175] R. Spurzem et al. Supermassive Black Hole Binaries in High Performance Massively
Parallel Direct N-body Simulations on Large GPU Clusters. In R. Capuzzo-Dolcetta,
M. Limongi, and A. Tornambè, editors, Advances in Computational Astrophysics: Meth-
ods, Tools, and Outcome, volume 453 of Astronomical Society of the Pacific Conference
Series, page 223, July 2012. 1.3

[176] J. Steensland. Dynamic structured grid hierarchy partitioners using inverse space-filling
curves. Technical Report200, pages 1–00, 2001. 4.1

[177] J. Steensland, S. Chandra, and M. Parashar. An application-centric characterization of
domain-based SFC partitioners for parallel SAMR. Parallel and Distributed Systems,
IEEE Transactions on, 13(12):1275–1289, 2002. 4.1

[178] J. Steensland et al. Towards an adaptive meta-partitioner for parallel SAMR appli-
cations. In Proceedings of the IASTED International Conference on Parallel and Dis-
tributed Computing Systems, Las Vegas, pages 425–430, 2000. 4.1

Bibliography 129

[179] Johan Steensland. Efficient partitioning of dynamic structured grid hierarchies. 2002.
4.1

[180] T. Suginohara et al. Cosmological N-body simulations with a tree code - Fluctuations
in the linear and nonlinear regimes. APJS, 75:631–643, March 1991. 1.3

[181] Y. Suto. Simulations of Large-Scale Structure in the New Millennium. In M. Colless,
L. Staveley-Smith, and R. A. Stathakis, editors, Maps of the Cosmos, volume 216 of
IAU Symposium, page 105, January 2005. 1.3

[182] A. B. Szabo. Mesh design for the p-version of the finite element method. Computer
Methods in Applied Mechanics and Engineering, 55(1-2):181 – 197, 1986. ISSN 0045-
7825. c

[183] Masaharu Tanemura, Tohru Ogawa, and Naofumi Ogita. A new algorithm for three-
dimensional voronoi tessellation. Journal of Computational Physics, 51(2):191 – 207,
1983. ISSN 0021-9991. 2.1.2.2

[184] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement. A new high
resolution code called RAMSES. A&A, 385:337–364, April 2002. 1.3, 2.2, 2.2.1.3, 5.1

[185] The Planck Collaboration. The Scientific Programme of Planck. ArXiv Astrophysics
e-prints, April 2006. 1.2

[186] F. J. Thompson, K. B. Soni, and P. N. Weatherill. Handbook of Grid Generation. CRC
Press, 1999. ISBN 0849326877. 2.1.1.1, 2.1.1.1.1

[187] Michael Thuné. Partitioning strategies for composite grids. Parallel Algorithms and
Applications, 11(3-4):325–348, 1997. 4.1

[188] H. Trac and R. Cen. Radiative Transfer Simulations of Cosmic Reionization With
Pop II and III Stars. In First Stars III, volume 990 of American Institute of Physics
Conference Series, pages 445–449, March 2008. 2.2.4

[189] B. van Straalen et al. Scalability challenges for massively parallel AMR applications. In
IEEE International Symposium on Parallel Distributed Processing, IPDPS 2009,, pages
1–12, may 2009. 2.2.6.1

[190] B. van Straalen et al. Petascale block-structured AMR applications without distributed
meta-data. In Proceedings of the 17th international conference on Parallel processing -
Volume Part II,, Euro-Par’11, pages 377–386, Berlin, Heidelberg, 2011. Springer-Verlag.
ISBN 978-3-642-23396-8. 2.2.6.1

[191] M. Vestias and H. Neto. Trends of cpu, gpu and fpga for high-performance computing. In
Field Programmable Logic and Applications (FPL), 2014 24th International Conference
on, pages 1–6, Sept 2014. 1.1

[192] M. Vogelsberger et al. Introducing the Illustris Project: simulating the coevolution of
dark and visible matter in the Universe. MNRAS, 444:1518–1547, October 2014. 1.3

[193] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. Premier mémoire: Sur quelques proprieteés des formes quadratiques pos-
itives parfaites. J. Reine Angew. Math., 134:198, 1908. 2.1.2.2

130 Bibliography

[194] M. S. Warren. 2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for
Cosmological Simulation. ArXiv e-prints, October 2013. 1.3

[195] D. F. Watson. Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes. The Computer Journal, 24(2):167–172, 1981. 2.1.2.2, 2.1.2.2

[196] S. D. M. White et al. Clusters, filaments, and voids in a universe dominated by cold
dark matter. APJ, 313:505–516, February 1987. doi: 10.1086/164990. 1.3

[197] B. H. Wilde et al. ”Three-dimensional RAGE Simulations of Strong Shocks Interacting
with Sapphire Balls”. In APS Meeting Abstracts,, page 8096P, November 2007. 2.2.4

[198] J. H. Wise and T. Abel. ENZO+MORAY: radiation hydrodynamics adaptive mesh
refinement simulations with adaptive ray tracing. MNRAS, 414:3458–3491, July 2011.
1.3, 1.3.1, 1.3.1, 2.2, 2.2.4, 4.1.1, 4.2.1, 4.2.2.1, 5.1

[199] M. A. Wissink et al. Large scale parallel structured AMR calculations using the SAM-
RAI framework. In SC01 Conference on High Performance Networking and Computing,,
2001. 2.2.5

[200] G. Worseck et al. The End of Helium Reionization at z ˜= 2.7 Inferred from Cosmic
Variance in HST/COS He II Lyα Absorption Spectra. APJL, 733:L24, June 2011. 1.2

[201] K. K. S. Wu, O. Lahav, and M. J. Rees. The large-scale smoothness of the Universe.
Nature, 397:225–230, January 1999. 1.2

[202] J. S. B. Wyithe and A. Loeb. Reionization of Hydrogen and Helium by Early Stars and
Quasars. APJ, 586:693–708, April 2003. 5.1

[203] Z. Xu, J. Glimm, and X. Li. Front tracking algorithm using adaptively refined meshes.
In Adaptive Mesh Refinement - Theory and Applications, volume 41 of Lecture Notes
in Computational Science and Engineering, pages 83–89. Springer Berlin Heidelberg,
2005. ISBN 978-3-540-21147-1. 2.2

[204] P. D. Young et al. ”a locally refined rectangular grid finite element method: Application
to computational fluid dynamics and computational physics”. Journal of Computational
Physics, 92(1):1–66, 1991. ISSN 0021-9991. 2.2.1.1

[205] J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, and J. Wu. A new approach to the develop-
ment of automatic quadrilateral mesh generation. ”International Journal for Numerical
Methods in Engineering”, 32(4):849–866, 1991. ISSN 1097-0207. 2.1.2.1

[206] U. Ziegler and H. W. Yorke. A nested grid refinement technique for magnetohydrody-
namical flows. Computer Physics Communications, 101:54–74, April 1997. 1.3

[207] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for
practical engineerng analysis. International Journal for Numerical Methods in Engi-
neering, 24(2):337–357, 1987. ISSN 1097-0207. b

[208] D. Zuzio and J. L. Estivalezes. An efficient block parallel AMR method for two phase
interfacial flow simulations. ”Computers & Fluids”, 44(1):339–357, 2011. ISSN 0045-
7930. 2.2.1.2

	Title Page
	1 Introduction
	1.1 Advances in computing
	1.2 Large scale structure formation
	1.3 Role of simulations in astrophysics
	1.3.1 Radiative Transfer

	1.4 Thesis outline

	2 Adaptive Mesh Refinement
	2.1 Grid generation
	2.1.1 Structured grid generation
	2.1.2 Unstructured grid generation

	2.2 AMR schemes
	2.2.1 Structured AMR
	2.2.2 Unstructured AMR
	2.2.3 Pros and cons of SAMR and UAMR
	2.2.4 AMR based applications
	2.2.5 AMR libraries
	2.2.6 CHOMBO Library

	2.3 Summary

	3 Radiative Transfer on static, nested grids in CRASH
	3.1 Radiative Transfer code CRASH
	3.1.1 CRASH RT scheme
	3.1.2 CRASH software architecture

	3.2 Enhancing CRASH RT simulations using CHOMBO AMR
	3.2.1 Interoperability between CRASH and CHOMBO
	3.2.2 Setting up CHOMBO based AMR hierarchy in CRASH
	3.2.3 Other technical considerations
	3.2.4 Software architecture of CRASH-AMR

	3.3 Test scenarios and Results
	3.3.1 Test 1: Strömgren sphere in a H medium
	3.3.2 Test 2: Strömgren sphere in a H+He medium
	3.3.3 Test 3: a realistic density field

	3.4 Dependence on grid resolution
	3.4.1 Test 2 with different grid resolutions
	3.4.2 Test 2 with different base grid resolution and refinement levels

	3.5 Run time performance
	3.5.1 Set up with single point source
	3.5.2 Set up with multiple point sources

	3.6 Conclusion

	4 Parallelisation of Radiative Transfer in CRASH
	4.1 Parallelising SAMR codes
	4.1.1 Parallel ray-tracing codes

	4.2 Parallelising CRASH-AMR
	4.2.1 Load balancing
	4.2.2 Changes to PCRASH-AMR and CHOMBO interface
	4.2.3 Changes in PCRASH-AMR
	4.2.4 CHOMBO I/O
	4.2.5 Parallel RNGs

	4.3 Test scenarios
	4.3.1 Test 1: Strömgren sphere in a H medium
	4.3.2 Test 2: Realistic density field with one point source
	4.3.3 Test 3: Realistic density field with multiple point sources

	4.4 Conclusion

	5 Adaptive Radiative Transfer simulations with CRASH
	5.1 Adaptivity in Radiative Transfer codes
	5.2 Adaptive refinement in CHOMBO
	5.3 Feasibility of adaptive refinement in CRASH-AMR
	5.4 Sample test case with CRASH-AMR
	5.5 Conclusion

	6 Conclusion
	Bibliography

