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“When you have eliminated all which is
impossible, then whatever remains, however
improbable, must be the truth.”

— Arthur Conan Doyle, The sign of the Four





1. Introduction

Accretion of matter onto black holes in one of the most efficient mechanisms in
the Universe in producing high-energy radiation, and for this reason it is consid-
ered to be the central engine that powers up a number of different astrophysical
sources. Accretion disks orbiting around a central compact object represent a fun-
damental ingredient in the current models explaining the high-energy emission
from such sources as active galactic nuclei (AGNs) (Rees, 1984; Marconi et al.,
2004; Reynolds, 2014), x-ray binaries (XRBs) (Narayan and Yi, 1995; Fender
et al., 2004; Remillard and McClintock, 2006) and gamma-ray bursts (GRBs)
(Woosley, 1993; Piran, 1999; Kumar and Zhang, 2015), just to cite a few.
To get an idea of how powerful an energy source accretion can be, consider a
body of mass M and radius R∗ on whose surface a mass m is accreted. Then the
gravitational potential energy of the mass m is

∆Eacc = GMm/R∗, (1.1)

where G is the gravitational constant. Considering the typical case of a neutron
star with radius R∗ ∼ 10 km and mass M ∼ M�, the solar mass, then the
released energy ∆Eacc is roughly 1020 erg per accreted gram. Let us compare it
to the energy produced by nuclear fusion reactions. In the most favorable case,
i.e. conversion (or burning) of hydrogen into helium, the energy release is

∆Enuc = 0.007mc2, (1.2)

where c is the speed of light. Hence we obtain 6 × 1018 erg g−1 from the most
energetic fusion reaction, which is about 20 times less than what accretion yields
in the case we considered. It is clear from Eq. (1.1), though, that the efficiency
of accretion as energy source strongly depends on the compactness of the central
object: the larger the ratio M/R∗, the greater the energy output.
The conservation of angular momentum commonly leads to the formation of ac-
cretion disks orbiting around a central object, whether it is a protoplanetary disk
around a young forming star or a thick torus surrounding a supermassive black
hole at the center of a galaxy. This means, however, that some physical mecha-
nism is required to transport angular momentum outwards, leading to sufficiently
high accretion rates that can ultimately explain the observed emission from high-
energy sources.
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1. Introduction

Figure 1.1.: Citation history of the seminal paper Shakura and Sunyaev (1973).
(http://adsabs.harvard.edu/)

Since black-hole-disk models were proposed as central engine for quasar by Lynden-
Bell (1969), there has been a continuous interest in the physics underlying ac-
cretion onto black holes. The seminal papers by Shakura and Sunyaev (1973)
and Lynden-Bell and Pringle (1974) first described what now is known as the
standard disk model : a geometrically thin, optically thick Keplerian disk where
the accretion process is driven by a local turbulent viscosity that is parametrized
by the quantity α. Given the great success of the standard disk model in provid-
ing a self-consistent and plausible way to enable accretion, the actual nature and
physical mechanism behind the parameter α (which essentially gives an estimate
of the efficiency of the angular momentum transport in the disk) has been the
object of numerous studies and is currently still under investigation. Fig. 1.1
gives a sense of how influential the standard disk model still is, as the number of
citations per year to the work by Shakura and Sunyaev (1973) increases steadily.
Hydrodynamic Keplerian disk models have always had significant problems in
explaining from first principles the nature of accretion. They are indeed stable to
local linear perturbations, since their distribution of specific angular momentum
increases with distance from the central object (this is the well-known Rayleigh
stability criterion), and in general, a small displacement of a fluid element will
lead to epicyclic oscillations. The non-linear stability of hydrodynamic disks is
to this date a matter of debate. In particular, at high enough Reynolds numbers
non-linear perturbations could lead to self-sustained turbulence (Lesur and Lon-
garetti, 2005), but it would be too weak to explain observed accretion rates.
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An important class of hydrodynamic disks often used in the context of accretion
onto black holes are accretion tori (Abramowicz et al., 1978), also referred to
as Polish doughnuts (Fig. 1.2). These thick disks have a large internal energy,
and they rely on pressure gradients to support the disk together with centrifugal
forces, resulting in a significant vertical thickening of the disk and a departure
from a Keplerian distribution of specific angular momentum. Despite their local
stability, Papaloizou and Pringle (1984) discovered that they are prone to develop
a global non-axisymmetric instability (known as Papaloizou-Pringle instability,
PPI) which is able to transport angular momentum outwards. Although capable
of triggering some accretion, the PPI could not explain in a satisfactory way the
ubiquity of accreting systems (since it mainly affects nearly constant angular mo-
mentum tori) and it did not fit well in the standard disk model (which requires
the onset of a turbulent environment to enable accretion).

The breakthrough in accretion theory was the realization that magnetic fields
are the key to explain how disks can get rid of their angular momentum. The dis-
covery of the magnetorotational instability (MRI) in astrophysics by Balbus and

Figure 1.2.: Volume rendering of the rest mass density of a thick accretion disk (model
T256r3s12 from Chapter 5, see Table 5.3 for the details). The lines are streamlines
of the fluid velocity colour-coded according to the strength of the magnetic field
(low for dark blue, high for light green).
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1. Introduction

Hawley (1991) provided a local mechanism, efficient for a wide range of magnetic
field strength, which leads to a growth on dynamical time-scales of linear pertur-
bations and naturally develops MHD turbulence. The only necessary condition
for its onset is the presence of a differentially rotating fluid threaded by a weak
magnetic field. Since its discovery, the properties of the MRI have been investi-
gated in great detail by both analytical and numerical studies. In the latter case,
one can find two major numerical tools that have been extensively employed in
the literature and differ by the typical length scale they focus on:

• Shearing box simulations : they consider a very thin slice of an accretion
disk, and allow for the simulation of the local development of the MRI and
the investigation of its growth, saturation and general statistical properties.

• Global simulations : they evolve an accretion disk in its entirety and can
study non-local dynamical phenomena (as the interaction with the disk’s
edges or the development of winds and jets).

Both approaches are of course important to reach a better understanding of the
MRI and accretion physics in general.
Ordered large-scale magnetic fields are expected in accretion disks around black
holes, as they represent a key ingredient in the launching mechanism and colli-
mation of relativistic jets from AGNs McKinney and Blandford (2009). They can
also affect the disk’s global stability. For instance, magnetic pressure dominated
thin disks are stable against the thermal instability that affects radiation dom-
inated disks (Sa̧dowski, 2016), while sufficiently strong (super-thermal) toroidal
fields seem to rapidly destabilize thick accretion tori (Fragile and Sadowski, 2017).

Despite the fundamental importance of magnetic fields in providing a general
and universal mechanism to enable accretion in astrophysical disks, the PPI is
still quite relevant as an agent of global non-axisymmetric instability, since thick
disks with sub-Keplerian angular momentum distributions are expected to form
in binary neutron stars (NS-NS) (Rezzolla et al., 2010; Kiuchi et al., 2010) or
black hole-neutron star (BH-NS) (Shibata and Uryū, 2006; Foucart et al., 2012)
mergers, and also after the rotational gravitational collapse of massive stars (Mac-
Fadyen and Woosley, 1999; Aloy et al., 1999). The stability of such wide tori has
been studied from both an analytical (Goldreich et al., 1986; Glatzel, 1987) and
numerical (Blaes and Hawley, 1988; Hawley, 1991; De Villiers and Hawley, 2002)
point of view. They have been proven to be quite generally unstable to some
non-axisymmetric mode induced by the PPI. In recent years there have been sev-
eral studies which included self-gravity of the disk (Kiuchi et al., 2011; ?). They
have shown how the non-axisymmetric structures that arise from the instability
can lead to a significant emission of gravitational waves.
Nevertheless, the relative importance of both MRI and PPI in the evolution and
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dynamics of an important class of accretion flows, such as thick disks around
black holes, has not yet been studied in detail. Though it is quite well known
how they individually operate in differentially rotating astrophysical flows, it is
still not completely clear how they interact with each other and whether one insta-
bility dominates the other (and if so, why and for which particular disk models
would that be). Fu and Lai (2011) tried to analytically establish the effect of
magnetic fields on the development of the PPI. Their analysis (which assumed
an incompressible fluid) suggested that sufficiently strong magnetic fields could
actually further destabilize the torus and reinvigorate the hydrodynamical insta-
bility. Wielgus et al. (2015) studied the stability of strongly magnetized tori,
showing the onset of the non-axisymmetric MRI for initial purely toroidal mag-
netic configurations. Their models, however, did only cover a limited azimuthal
range (φ ∈ {0, π/2}). Therefore they could only capture the dynamics of modes
with an azimuthal number m being a multiple of 4.
Our main goal is to investigate what is the interplay between PPI and MRI, how
these instabilities affect each other, and whether or not one dominates over the
other. The numerical tool we chose is the General Relativistic Magnetohydro-
dynamic (GRMHD) code ECHO (Del Zanna et al., 2007). This code has been
extended in the last 4 years from its original version to include non-ideal effects
such as turbulent resistivity and a mean-field dynamo mechanism. Both these
physical processes have been tested in the context of accretion disks through
kinematic simulations of αΩ-dynamo in magnetized tori (Bugli et al., 2014), but
the former is particularly interesting for the investigation of the PPI-MRI inter-
action. Resistivity can in fact deeply affect the onset of MHD turbulence, while
a hydrodynamic process such as PPI is not influenced by it. Therefore, a finite
conductivity is likely to have a significant impact on the system evolution.
In Chapter 2 we present the theoretical models of the two instabilities, their
main properties, and the fundamental aspects of turbulent mean-field dynamo
theory. Then we introduce the GRMHD formalism and the disk models used
in our simulations in Chapter 3, while Chapter 4 describes the structure of the
code ECHO and its recently developed parallelization scheme. In Chapter 5 we
first show the results of the study of the αΩ-dynamo in thick disks and then
discuss three-dimensional GRMHD simulations of magnetized tori with the goal
to establish the effect of the MRI on the PPI development. Finally, we present
some conclusions and perspectives in Chapter 6.
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2. Accretion disks theory

Accretion disks are complex systems where different physical mechanisms have
an active role in shaping their dynamics. There are dynamical processes (grav-
ity, pressure forces, rotation) that act on time-scales tdyn ∼ 1/Ω0, where Ω0 is
a typical value for the orbital angular velocity of the disk; there are then ther-
mal processes that develop on a typical time tth ∼ c2

s/(ν∗Ω
2
0), where cs is the

local sound speed and ν∗ is the disk kinematic viscosity; finally we have viscous
processes on the characteristic time-scale tvis ∼ r2/ν∗, with r the radial distance
from the central object. Since the dynamical phenomena are typically faster than
the thermal and viscous ones (and thus tdyn � tth � tvis) a first approximation
that is usually made is to consider only the dynamical structure of the disk.
Let us start by considering hydrodynamic disks, i.e. neglecting magnetic fields.
Depending then on the relative importance of the different forces considered (grav-
ity, pressure and rotation) it will be possible to have quite different disk models,
in particular with very different values for the accretion efficiency

ηacc ≡
L

Ṁc2
, (2.1)

where L is the source luminosity, Ṁ is the accretion rate and c is the speed of
light. The parameter ηacc represents a measure of how much of the accreted mass
has been radiated away as energy, and for accreting black holes it can reach values
of ηacc ∼ 0.1. If we neglect the disk self-gravity and consider the gravitational
background to be set by the central black hole, then we end up with a classification
of the possible accretion flows that is specified by the relative importance of
pressure gradients and rotational support (see Table 2.1). If the contribution
of the latter is not dominant, and there are significant pressure gradients we
obtain the so-called Advection Dominated Accretion Flows (ADAFs) or, when the
pressure support is negligible, a free-falling flow onto the black hole (the Bondi
solution). If, on the other hand, the flow exhibits fast rotation, the accreting
matter has significant angular momentum and forms a disk-like structure. In this
case the possible solutions may be divided into the following classes (in order of
increasing vertical sizes):

• Thin disk: their rotational profile are fundamentally Keplerian, that is ro-
tation fully supports the disk, with negligible contribution from the pressure
gradients in the radial direction. As a consequence, the typical vertical scale
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2. Accretion disks theory

height H required by hydrostatic equilibrium conditions is small compared
to the disk’s radial extent R, i.e. H/R � 1, and the local orbital velocity
(which approaches the Keplerian value) is highly supersonic

rΩK � cs, (2.2)

where ΩK is the Keplerian angular velocity. Transport of energy by ad-
vection with the flow is very inefficient, meaning that the radial velocities
involved are quite small (vr � cs � rΩ), and there is essentially local
equilibrium between viscous heating and radiative cooling. The resulting
accretion rates Ṁ are small in the sense of

ṁ ≡ 0.1Ṁc2

LEdd

=
L

LEdd

0.1

ηacc

< 1, (2.3)

where LEdd is the Eddington luminosity, that is the maximum value of an
accreting source’s luminosity beyond which the outgoing radiation pressure
is strong enough to counteract the gravitational pull and push the infalling
material further away from the central object. For these systems ηacc ∼ 0.1.

• Slim disk: in this case the radial velocities involved and the thickness of
the disk are high enough to make advection another efficient cooling mech-
anism, besides radiation. This means higher accretion rates (ṁ & 1) ,
H/R ∼ 1 and a typical efficiency η < 0.1. It may be considered a more
general realization of an accretion disk with radiative cooling, as it reduces
to a thin disk in the limit of weak advection.

• Thick disk: when the radial pressure gradients are no longer negligible they
contribute significantly to the disk support and therefore the vertical size
of the disk increases significantly, i.e. H/R & 1 (for this reason they are
also referred to as accreting tori). Contrary to the former models, these
disks are radiatively inefficient, that is they lack an efficient radiative cool-
ing mechanism. Accretion rates can be very high in this case (ṁ� 1), but
the efficiency drops accordingly to very low values ηacc � 1.

In the following sections we will focus mainly on some aspects regarding thin
and thick accretion disks, having in mind the goal of investigating the dynamical
stability of magnetized tori. For more details on accretion flows and disk models,
the interested reader can also consult the excellent review on accretion onto black
holes by Abramowicz and Fragile (2013) and the authoritative book Accretion
Power in Astrophysics by Frank et al. (2002).
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Table 2.1.: Simple classification of the most important accretion flows.

Fast rotation (disks) Slow rotation (Bondi-like)

Large pressure forces Thick, Slim ADAFs
Small pressure forces Thin Free-fall

2.0.1. Stability of hydrodynamic Keplerian disks

Following the exposition offered by Balbus and Hawley (1998), let us introduce
the fundamental equations that regulate the dynamics of a non-relativistic hydro-
dynamic accretion disk, assuming it to be composed of an ideal gas of adiabatic
index Υ = 5/3. The first ingredient we need is the mass conservation equation

∂ρ

∂t
+∇ · (ρv) = 0, (2.4)

where ρ is the mass density and v is the fluid velocity. The equation of motion
is given instead by the conservation of momentum

ρ
∂v

∂t
+ (ρv ·∇)v = −∇p− ρ∇Φ + ηV

(
∇2v +

1

3
∇(∇ · v)

)
, (2.5)

where p denotes the thermal pressure, Φ the gravitational potential, ηV the mi-
croscopic kinematic shear viscosity and the three terms on the right-hand side
represent respectively the pressure, gravitational and viscous forces acting on the
fluid. If we now take the dot product of Eq. (2.5) with v and use the mass
conservation in Eq. (2.4) we obtain

∂

∂t

(
1

2
ρv2 + ρΦ

)
+∇ ·

[
v

(
1

2
ρv2 + ρΦ + p

)
+ Fvis

]
= p∇ · v −Ψ, (2.6)

which describes the evolution of the system’s mechanical energy, that can be
either transported by a dynamic flux (in the square brackets) or modified by
doing work on the fluid (the p∇ · v term) and heat losses (the Ψ term). The
viscous flux

Fvis = −ηV
(
∇v

2

2
+
v

3
∇ · v

)
, (2.7)

does not usually contribute significantly to the transport and can generally be
neglected, while the heat loss source term (−Ψ) on the right-hand side is defined
as

Ψ = ηV

[
1

2
(∂ivj)(∂ivj) +

1

3
(∇ · v)2

]
. (2.8)

The internal energy density of the system ρε = p/(Υ − 1) evolves on the other
hand according to

ρ

(
∂

∂t
+ v ·∇

)
3p

2ρ
= −p∇ · v −∇ · Frad + Ψ, (2.9)

9



2. Accretion disks theory

where Frad is the radiative flux and Ψ takes into account the heating rate due to
viscous dissipation. Combining Eq. (2.6) and Eq. (2.9) leads to

∂

∂t

(
1

2
ρv2 +

3

2
p+ ρΦ

)
+∇ ·

[
v

(
1

2
ρv2 + ρΦ +

5

2
p

)]
= −∇ · Frad, (2.10)

which shows how energy is lost from an isolated disk only through radiation, while
there is no explicit contribution from the viscous source terms. This result simply
means that any dissipation of mechanical energy leads to a corresponding increase
of internal energy, with no net energy loss from the global system. Another
important phenomenon is the conservation of angular momentum, which can
be easily obtained by considering the azimuthal component of Eq. (2.5). If we
introduce a cylindrical coordinate system (R, φ, z) with origin at the central black
hole and multiply by R the φ-component equation, we get

∂

∂t
(ρRvφ) +∇ ·R (ρvφv + pêφ)−∇ ·

[
RηV

3
(∇ · v)êφ + ηVR

2∇vφ
R

]
= 0, (2.11)

where êφ is the unit vector in the azimuthal direction and, as for the mechani-
cal energy equation (2.6), the viscous transport term due to ηV can usually be
neglected. Eq. (2.11) shows clearly that the angular momentum is, as expected,
a locally conserved quantity that can be transported across the disk (as it is re-
quired in order to have accretion) but can never be destroyed.
Let us now specialize these findings for the case of flows orbiting around a central
point mass M on circular orbits with Keplerian angular velocity

Ω(R) =

√
GM

R3
. (2.12)

We separate the large-scale properties of the flow from the small-scale fluctuations
by introducing the fluctuation velocity u as

u ≡ v − (RΩ)êφ = (vR, vφ −RΩ, vz), (2.13)

and we make use of the local approximation, meaning that we neglect the effect
of curvature on the fluctuations’ local behavior, and therefore we assume that
u � RΩ. Moreover, in the limit of subsonic turbulence (i.e. for u � cs) the
velocity field is nearly incompressible, and therefore we can adopt the so-called
Boussinesq approximation: instead of naively setting∇·v = 0 everywhere (which
is in general incompatible with Eq. (2.6)), we just assume the characteristic time-
scale tchar ≡ (∇ · v)−1 = (∇ · u)−1 to be much longer than the characteristic
turbulent turnover time tturn ∼ (∂u/∂x)−1, but not necessarily longer than other
time-scales involved in the system (such as the ones related to rotation, thermal
processes, etc.).
If we now define the derivation operator

D

Dt
≡ ∂

∂t
+ u ·∇+ Ω

∂

∂φ
, (2.14)

10



we can rewrite Eq. (2.5) by components as

ρ

(
Dur
Dt
− 2Ωuφ

)
= − ∂p

∂R
+ ηV∇2uR, (2.15)

ρ
Duz
Dt

= −∂p
∂z
− ρ∂Φ

∂z
+ ηV∇2uz, (2.16)

ρ

(
Duφ
Dt

+
κ2

2Ω
uR

)
= − 1

R

∂p

∂φ
+ ηV∇2uφ, (2.17)

where κ is the so-called epicyclic frequency, defined by

κ2 ≡ 1

R3

d(R4Ω2)

dR
. (2.18)

Linearizing the former equations allows one to retrieve a dispersion relation that
characterizes the local stability of the system once we look for a solution for
general modes in the form

u(R, φ, z, t) = u0(R, z) exp[i(mφ− ωt)], (2.19)

where ω is the mode frequency and m ≡ kφR is the mode’s azimuthal number.
To show the most interesting feature of Keplerian disks, let us restrict ourself
to the case of a disk for which the orbital velocity RΩ exceeds the isothermal
sound speed cs =

√
p/ρ by far. Then the disk’s vertical structure is governed by

hydrostatic balance
∂p

∂z
= −GMρ

R3
z = −ρΩ2z, (2.20)

and the vertical density profile is given by

ρ = ρ0 exp(−Ω2z2/2c2
s) = ρ0 exp(−z2/H2), (2.21)

where ρ0 is the density at the equatorial plane and H =
√

2cs/Ω is the charac-
teristic scale height. Since we assumed RΩ� cs we also have H/R� 1, i.e. the
disk is geometrically thin. Under these assumptions it is possible to show that
the dispersion relation for a perturbation of frequency ω and wave number k is
given by (Kato, 2016)

ω2 = κ2, (2.22)

showing that the response to a radial displacement of a fluid element is in fact an
oscillation at frequency κ. In the most general case of compressible perturbations,
Eq. (2.22) is slightly modified to

ω2 = c2
sk

2 + κ2, (2.23)

and describes the so-called inertial-acoustic modes. From Eq. (2.22) it is clear
that the disk is stable whenever κ2 > 0, in other words

dl

dR
> 0 (2.24)

11



2. Accretion disks theory

where l = R2Ω is the fluid’s specific angular momentum. This stability condition,
known as the Rayleigh criterion, is practically always satisfied by astrophysically
relevant accretion disks, and therefore represents the main reason why hydrody-
namic accretion disks are in fact extremely stable. When on the contrary κ2 < 0,
then for sufficiently large scales (k2 < k2

th = −κ2/c2
s) the flow is linearly unstable:

an outwardly (inwardly) displaced fluid element will have a higher (lower) angular
momentum than its surroundings, and therefore it will travel even further to the
disk exterior (interior) setting in motion the Rayleigh instability.
Finally, it is interesting to calculate the behavior of the energy contained in the
fluctuations. To do so we multiply Eq. (2.15),Eq. (2.16) and Eq. (2.17) respec-
tively by uR, uz and uφ, then we volume average, and by summing the three
components we obtain

∂

∂t
〈E〉+∇ · 〈uE + up+ Frad〉 = − dΩ

d lnR
〈ρuRuφ〉, (2.25)

where

E =
1

2
ρu2 +

3

2
p+ ρΦ. (2.26)

The operator 〈〉 performs a global azimuthal average and a local average along
the z and R directions, i.e. along the full azimuthal range but on vertical and
radial scales much smaller than the disk’s thickness and radial extent. In contrast
with the evolution of the total energy content in the disk given by Eq. (2.10),
which exhibits no source term, the fluctuations can exchange energy with the
mean-flow. The ultimate reason for the stability of differentially rotating disks
with epicyclic motions lies in the azimuthal contribution of Eq. (2.25)

∂

∂t

〈
ρu2

φ

2

〉
+∇ ·

〈
1

2
ρu2

φu

〉
= − κ

2

2Ω
〈ρuRuφ〉 −

〈
uφ
R

∂p

∂φ

〉
− ηV 〈|∇uφ|2〉. (2.27)

The mixing term (first on the right-hand side) couples the fluctuations to the
mean flow’s angular momentum distribution, leading to the linear stability rep-
resented by the Rayleigh criterion. It is though still a matter of debate whether
non-linear perturbations can lead to self-sustained hydrodynamic turbulence, and
hence angular momentum transport (Lesur and Longaretti, 2005).

2.1. Papaloizou-Pringle instability

Although hydrodynamic astrophysical disks prove to be locally very stable, the
same cannot be said in general from a global point of view. Once the perturba-
tion modes involve motions of the whole system and not just localized regions,
then completely new dynamical responses may arise. This is the case for the

12



2.1. Papaloizou-Pringle instability

Papaloizou-Pringle instability (PPI, Papaloizou and Pringle (1984)), a mecha-
nism that leads to the development of global non-axisymmetric modes in hydro-
dynamic thick tori.
Accretion disks belonging to this particular class are characterized by high inter-
nal temperatures and well-defined inner and outer boundaries. The main conse-
quence is that pressure gradients can provide support against the gravitational
force comparable to the centrifugal force, and therefore these disks are not purely
rotationally supported as in the case of the thin disk model we considered in the
previous section. As a result of this extra support the disk rotational profile will
inevitably differ significantly from the Keplerian case, and thus its orbital velocity
distribution will be said to be sub-Keplerian.

2.1.1. Slender incompressible tori

We now analyze in more detail the steps necessary to compute the fundamental
characteristics of the PPI. We will first consider the case of a slender torus, i.e. a
torus that extends from radius R0 − a to R0 + a, with a� R0. The equilibrium
structure of the torus is such that in correspondence of the center R0 the pressure
reaches its maximum (Papaloizou and Pringle, 1984). The angular velocity is
parametrized as

Ω(R) = Ω0

(
R

R0

)−q
, (2.28)

where the parameter q can range from 3/2, corresponding to a Keplerian disk, to
2, which represents the case of a constant specific angular momentum distribution.
This parameter relates also directly to the local linear stability of the disk, as we
can plug Eq. (2.28) into the definition of the epicyclic frequency Eq. (2.18) to
obtain

κ2 = 2Ω2(2− q), (2.29)

from which it is evident that for q > 2 the disk is Rayleigh unstable, while the
case q = 2 corresponds to a marginally stable accretion disk. It can be also
shown (Papaloizou and Pringle, 1984) that the half-thickness of the torus can be
expressed as H = a

√
2q − 3, ranging therefore from 0 for a Keplerian disk to a

(circular cross-section) for the case q = 2.
To solve the problem of the evolution of the velocity (u), density (ρ′) and pressure
(p′) perturbations we need to specify an equation of state (EoS), which we will
write in polytropic form

p = Kρ1+ 1
n , (2.30)

where the polytropic index n is a measure of the compressibility of the fluid; for
instance n = 0 describes an incompressible fluid, while n = ∞ corresponds to
an isothermal one. Instead of developing the calculations necessary to fully solve
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2. Accretion disks theory

Figure 2.1.: Dispersion relation for an isentropic, incompressible (n = 0), constant angular
momentum (q = 2) torus, where k = m/R0, Ω0 = Ω(R0) is the disk local orbital
velocity and the horizontal axis Re(ω/kaΩ) equals qξc. The solid curves represent
neutral modes, while the dashed curves can be shown to represent unstable modes.
(Goldreich et al., 1986)

the analytical problem in detail, we will only outline the overall strategy, the
consequent findings, and comment on their physical meaning.
After linearizing the three components of the Euler equation, the continuity equa-
tion, and the EoS, and imposing a solution of the form given in Eq. (2.19), we end
up with a partial differential equation in (R, z) with eigenvalue ω whose solution
requires the selection of appropriate boundary conditions (which in this case is
the vanishing of the Lagrangian pressure perturbation at the disk’s edges). This
is the main difference with the local analysis that produced the Rayleigh criterion
in Eq. (2.24). It allows one to capture the effect of global motions across the disk
and interactions with the edges of the system. A generic mode of frequency ω will
represent a pattern of fluid rotating (in the inertial frame) with angular velocity
Ωp and growing exponentially in time as exp(st), where

Ωp = Re(ω)/m, (2.31)

s = Im(ω). (2.32)

For a given value of Ωp we may calculate at which radius Rc the pattern or-

14



2.1. Papaloizou-Pringle instability

bital velocity matches the local disk one, i.e. the corotation radius. Using the
approximation of slender torus, we can express the velocity of the mean flow as

vφ = RΩ(R) ' RΩ0 − qΩ0(R−R0), (2.33)

where Ω0 = Ω(R0) is the angular velocity at the torus center. Corotation be-
tween mean flow and perturbation requires that the latter’s phase velocity has to
match the mean flow velocity in a frame rotating with angular velocity Ω0, i.e.
Re(ω)/k = −qΩ0(Rc−R0). This can be expressed in a convenient way using the
parameter

ξc ≡
Rc −R0

a
= − 1

qka

Re(ω)

Ω0

, (2.34)

where k ≡ kφ and the parameter ξ can assume values within the range [−1,+1]
(assuming the corotation radius lies within the disk). From the dispersion relation
in Fig. 2.1 we can identify two main branches for the unstable modes (dashed
lines):

• Principal branch: this class is present for values of ka < 0.59 and has a
corotation radius at the torus pressure maximum, i.e. Rc = R0. Its modes
are essentially independent of z and therefore two-dimensional, and the
fastest-growing one occurs for ka = 0.38 with growth rate s = 0.29Ω0.

• Higher-oder modes: these modes occurring at higher values of ka are in-
trinsically three-dimensional and have lower growth rates. The corotation
radius does not necessarily coincide with the pressure maximum, but lies
however within the torus boundaries.

We now discuss the physical mechanism responsible for the onset of the PPI.
The starting point is the role of the corotation radius Rc. A wave propagating in
the region where R > Rc will in general move faster than its surroundings, and
therefore it will carry and transport positive energy, i.e. at its passage the energy
of the medium will locally increase. The opposite will instead apply for a pertur-
bation that propagates in the region contained within Rc. If the total energy is
conserved (which is when there is no resonance at corotation that absorbs energy
from incoming waves) a growing mode must have positive and negative energy in
equal amounts and thus will require the corotation radius to be within the disk.
It can be shown (Goldreich et al., 1986) that there is a forbidden zone around Rc

where the radial part of the mode’s eigenfunction is evanescent, surrounded by
two permitted regions where the wave can propagate radially. This wave barrier
at the corotation radius can be tunneled through by an incoming wave-packet,
leading to a transmitted and reflected component. For a wave that reaches the
exterior of the disk from the inner region the transmitted packet will have positive
energy, but then the reflected one will end up having even more negative energy
than the original wave-packet to compensate for this gain. Since an analogous
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2. Accretion disks theory

Figure 2.2.: Sketch of the fundamental physical mechanism responsible for the PPI development.
The red and green waves represent respectively negative and positive energy waves,
which interact at the corotation radius (dashed circle) and are over-reflected back.
The gray area represents the forbidden zone nearby the corotation radius (dashed
circle), where the waves become evanescent.

process will happen for waves propagating in the opposite direction (towards the
disk’s inner edge) the corotation radius acts effectively as an amplifier that allows
the removal of energy (and angular momentum) from the region with R < Rc

and its deposition at radii R > Rc (see Fig. 2.2).
In order for this process to be self-sustained some sort of positive feedback is
required. This role is covered by the disk’s edges that act as reflective boundaries
and enable a continuous amplification of the energy transport at Rc. However,
for this to be effective a phase condition has to be satisfied, that is there must
be an integral number of wavelengths between boundary and corotation. For
this reason the nature of the modes will, in general, depend significantly on the
specific position of the inner and outer boundaries, and on whether the disk has
just one or two edges: in the latter case there can be growing modes if both edges
can satisfy the phase condition, but also neutral ones if only one side achieves
the positive feedback.
Finally, we briefly focus on the modes belonging to the principal branch, since
they differ from the others because they are nodeless in the radial direction. Ac-
cording to a physical picture first described by Blaes and Glatzel (1986) and
Goldreich et al. (1986) the principal branch may be viewed as a superposition of
incompressible surface waves (also called edge waves) traveling along the inner
and outer edge of the slender torus. As a consequence of the disk shear due to the

16



2.1. Papaloizou-Pringle instability

Figure 2.3.: PPI maximum linear growth rates as a function of the disk’s width for the m = 1
mode. The horizontal axis gives the ratio Rin/R0, while the vertical one shows
Ωp/Ω0. (Blaes and Hawley, 1988)

differential rotation, they are advected with respect to the pressure maximum at
R0 with velocity

Vs = qΩ0a. (2.35)

If the phase velocity of each edge wave is high enough to effectively counteract
the shear, then the edge waves will interact at the corotation radius Rc and will
constitute a growing mode. This is the reason why the very existence of these
modes relies entirely on the dynamics of the system boundaries, which provides
both the perturbations and the reflective mechanism.

2.1.2. Wide compressible tori

Let us now try to understand what is the response of the torus to linear per-
turbations once we relax the slender and incompressible assumptions we used
so far. There is first of all a certain range of torus sizes ∆R = Rout − Rin for
which the principal branch of the instability can efficiently develop (Blaes and
Glatzel, 1986). Increasingly slender tori are unstable to all modes with m 6= 0,
although the growth rate of any given mode decreases proportionally with ∆R
because the shear across the corotation radius is also becoming smaller, and with
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2. Accretion disks theory

it the energy reservoir tapped by the instability. However, as ∆R gets smaller,
the highest growth rate will appear at higher m and will tend to a constant value.
Increasing the size of the torus leads at first to an enhancement of the growth
rates, but then the system becomes stable to the principal branch. This is due to
the fact that the larger is the radial extension of the torus, the larger is the shear
between the corotation radius and the external edge, and therefore the faster the
edge wave is advected with respect to the corotation radius.
Very wide tori seem therefore stable to large-scale (low-order) perturbations.
However, once we consider compressible perturbations, low-order modes can de-
velop in wide tori but instead of being the superposition of two nodeless edge
waves they result from the interaction between an internal surface wave and an
external acoustic wave. This is illustrated in Fig. 2.3, where the first maximum
from the right represents the principal branch, while the following maxima de-
scribe the interaction between a surface wave advected by the shear for R < Rc

and an acoustic wave propagating along the radial direction. The second maxi-
mum results from an acoustic wave with one radial node, the next one to the left
from a wave with two nodes and so on. The more the disk becomes stable to the
principal branch, the less important is the outer edge. The only boundary that
really matters is therefore the inner one as the torus size increases, leading to the
inner standing wave being reflected back and forth between Rin and Rc. These
kind of modes are the ones of interest for our study, as it will become clear in
Chapter 5.

2.2. Magnetorotational instability

After discussing the stability and dynamical properties of hydrodynamic disks
we now study the effect of magnetic fields which, compared to the unmagnetized
case, will give rise to qualitative differences because of the onset of the magnetoro-
tational instability (MRI), a mechanism first studied by Chandrasekhar (1960) in
plasma physics but rediscovered in the context of accretion disks only 30 years
later by Balbus and Hawley (1991). Magnetic fields represent the fundamental
ingredient that allowed accretion disk theory to make a giant leap forward during
the last 25 years. It is therefore of great importance to elucidate their role in the
stability of accretion disks.
Let us consider a magnetized plasma of ions and electrons permeated by an elec-
tric field E and a magnetic field B, whose evolution is governed by Faraday’s
and Ampere’s law

∇×E = −1

c

∂B

∂t
, (2.36)

∇×B =
1

c

(
4πJ +

∂E

∂t

)
, (2.37)
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2.2. Magnetorotational instability

where the current J is related to the electromagnetic field by Ohm’s law

J = σ
(
E +

v

c
×B

)
, (2.38)

with σ being the plasma conductivity. Since we restrict ourselves to non-relativistic
motions, we can neglect the displacement current term in Eq. (2.37). Inserting
the latter expression, i.e. J = c/4π∇ ×B, into Eq. (2.38), solving for E, and
substituting the result into Eq. (2.36) provides us with the so-called induction
equation

∂B

∂t
=∇× (v ×B − ηB∇×B), (2.39)

which describes the evolution of the magnetic field in a conducting fluid of velocity
v, and where we defined the microscopic resistivity ηB = c2/(4πσ). The presence
ofB directly affects the fluid through the action of the Lorentz force FL = J×B/c
on the electrical charges. By using once again Eq. (2.37) to eliminate J from the
force expression and adding it to Eq. (2.5), we obtain

ρ
∂v

∂t
+ (ρv ·∇)v = −∇p− ρ∇Φ +

1

4π
(∇×B)×B + ηV

(
∇2v +

1

3
∇(∇ · v)

)
.

(2.40)
This expression can be written in a more useful form as

ρ
∂v

∂t
+(ρv·∇)v = −∇

(
p+

B2

8π

)
−ρ∇Φ+

(
B

4π
·∇
)
B+ηV

(
∇2v +

1

3
∇(∇ · v)

)
,

(2.41)
where we have used the vector identity

∇(B2) = 2[(B ·∇)B +B × (∇×B)]. (2.42)

According to Eq. (2.41) two new ingredients regulate the flow when a magnetic
field is present:

• Magnetic pressure: the thermal pressure is enhanced by the term B2/8π,
which takes into account the extra support that the magnetic field provides
to the system.

• Magnetic tension: the other term containingB represents a dynamical force
that acts whenever the field exhibits some curvature and tends to unbend
the field-lines back to a straight orientation.

To understand now what is the response of a magnetized fluid to a small per-
turbation, let us consider first the case of a non-rotating medium threaded by a
magnetic fieldB and perturbed by a local disturbance of the form exp[i(k·r−ωt)],
with kr � 1. By linearizing the continuity equation (2.4), the equation of motion
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2. Accretion disks theory

(2.41), the induction equation (2.39), and in the adiabatic limit, it can be shown
that the resulting dispersion relation is (Balbus and Hawley, 1998)

[ω2 − (k · uA)2][ω4 − k2ω2(c2
s + u2

A) + (k · uA)2k2c2
s] = 0, (2.43)

where we introduced the Alfvén velocity uA = B/
√

4πρ. Naming θ the angle
between B and k, we can write one obvious solution to Eq. (2.43)

ω2
A = k2u2

Acos
2θ, (2.44)

which corresponds to the so-called Alfvén waves. These modes are compres-
sionless disturbances which propagate along the magnetic field with velocity
uA and effective wave number kcosθ. Since the restoring force that defines
these modes is the magnetic tension, there is no hydrodynamic analog to them.
Alfvén waves can be imagined to be similar to the vibrations of a pulled string
(represented in this case by the magnetic field lines). The remaining roots of
Eq. (2.43) correspond to the fast and slow modes, whose phase velocity is re-
spectively higher and lower than that of the Alfvén wave. Their physics is
more clearly explained if at least one of the following three conditions is ful-
filled: (1)cs � uA; (2)uA � cs; (3)cosθ � 1. Then the relations for the fast and
slow modes become respectively

ω2
+ = k2(u2

A + c2
s), (2.45)

ω2
− =

k2u2
Ac

2
scos

2θ

u2
A + c2

s

, (2.46)

showing clearly that ω+ > ωA > ω−. From Eq. (2.45) we see that the fast mode
is the result of the simultaneous action of magnetic and thermal pressures. In the
limit of a vanishing magnetic field the fast mode becomes a simple sound wave,
reason why it is sometimes referred to as magnetosonic wave. The slow mode re-
sults instead from the opposition between magnetic tension and gas compression.
When B is strong the slow mode becomes a sound wave that propagates along
the magnetic field lines, while it becomes degenerate with the Alfvén wave when
the field is weak.
If Keplerian rotation is introduced into the previous analysis, the situation is sig-
nificantly modified. Particularly if we consider the case of a weak magnetic field,
the Alfvén wave and the slow wave are non-degenerate for Ω = 0 due to a finite
value of the fluid compressibility, but their frequencies start diverging once the
rotation rate increases (Fig. 2.4). Eventually the slow mode becomes unstable
(ω2
− < 0) for a sufficiently high rotation rate (in the case of a Keplerian disk this

occurs for Ω2 > 1/3 ω2
−). This transition of the slow mode to instability in the

case of rotation is in fact at the very core of the onset of the magnetorotational
instability.

To better understand the physics of the MRI, let us now consider the simple
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Figure 2.4.: Plot of the mode frequency ω2 vs the rotation rate Ω2 for a Keplerian disk. All
frequencies are given in units of k · uA = 1. The numerical values correspond to
the case kuAφ = 2, kcs = 5. The expanded scale on the left shows the almost
degenerate Alfvén and slow mode. (Balbus and Hawley, 1998)

case of an axisymmetric accretion disk threaded by a weak vertical magnetic field
B = Bêz, ignoring the effects of kinematic viscosity and magnetic resistivity. If
we perturb a fluid element by a small amount ξ with spatial dependence eikz,
then from the induction equation (2.39) one can derive

δB = ikBξ, δBz = ξz = 0, (2.47)

where δB is the magnetic field fluctuation vector. Using Eq. (2.47) we can com-
pute the following expression for the magnetic tension term

ikB

4πρ
δB = −(k · uA)2ξ. (2.48)

Since we are considering incompressible planar motions we can neglect the pres-
sure contribution and rewrite the equations of motion in a simple and convenient
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form

ξ̈R − 2Ωξ̇φ = −
(
dΩ2

d lnR
+ (k · uA)2

)
ξR, (2.49)

ξ̈φ + 2Ωξ̇R = −(k · uA)2ξφ. (2.50)

These equations provide a simple and suggestive physical interpretation for the
effects of a weak magnetic field in accretion disks, as they describe the motion of
two orbiting point masses connected by a spring with spring constant (k · uA)2.
Let us call these two point masses m+ and m− and displace them from the same
circular orbit to respectively an outer radius R+ and an inner radius R− (see
Fig. 2.5). The point m− will be orbiting faster than m+ and their relative dis-
tance will increase accordingly, but since they are connected by a massless spring
(i.e. the magnetic field with its tension) the inner mass will be pulled backwards
and the outer one will be pushed forward. Thus, m− will not remain on a stable
orbit but instead it will fall even further towards the center (since it is losing
angular momentum), and on the opposite the point m+ will gain angular mo-
mentum and will be driven even further towards a more distant orbit. Therefore,
the separation between m− and m+ widens and the whole process runs away.
The efficiency of this mechanism relies on the assumption that the spring con-
stant is sufficiently weak to prevent oscillations during an orbital period. If this
is not the case, the magnetic tension is strong enough to stabilize any radial
displacement. Eq. (2.49) suggests the stability criterion

(k · uA)2 > − dΩ2

d lnR
, (2.51)

from which we see that for sufficiently small k the disk will always be unstable,
unless

dΩ2

d lnR
> 0. (2.52)

But since Eq. (2.52) is a condition that is almost never encountered in astrophys-
ical disks, there will be a lower limit for the wavenumber below which the system
will be unstable. In this simplified problem we considered only the coupling of
the modes with a vertical field, therefore to have stable mode the wavelength will
have to exceed twice the scale height H, thus

u2
A > −

1

k2

dΩ2

d lnR
∼ H2

π2

dΩ2

d lnR
∼ 6

π2
c2
s. (2.53)

The Alfvén velocity has therefore to exceed the sound velocity for the magnetic
field to be too strong and hence have a stabilizing effect. It is interesting to note
that there is no such constraint regarding the smallest value for the magnetic
field. In the ideal MHD regime, where effects related to magnetic diffusivity are
neglected, there is no limit to how weak B can be and still destabilize the system.
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2.2. Magnetorotational instability

Figure 2.5.: Sketch of the physical mechanism responsible for the onset of the MRI. The mag-
netic tension T that acts on both masses m+ and m− leads to a run away instability
and outward transport of angular momentum.

Its pure presence is sufficient to qualitatively change the dynamics of the disk.
In this sense the MRI is also referred to as a weak field instability. As long as a
sufficiently weak magnetic field is present in the disk there will always be unstable
modes on sufficiently small scales.
From Eq. (2.49) and Eq. (2.50) we can derive the following dispersion relation

ω4 − ω2[κ2 + 2(k · uA)2] + (k · uA)2

(
(k · uA)2 +

dΩ2

d lnR

)
= 0, (2.54)

from which the stability condition Eq. (2.51) follows directly. After some calcu-
lations we get the growth rate of the fastest growing mode

|ωmax| =
1

2

∣∣∣∣ dΩ2

d lnR

∣∣∣∣ , (2.55)

which corresponds to

(k · uA)2
max = −

(
1

4
+

κ2

16Ω2

)
dΩ2

d lnR
. (2.56)

For a Keplerian disk these relations reduce respectively to

|ωmax| =
3

4
Ω, (k · uA)2

max =

√
15

4
Ω, (2.57)
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2. Accretion disks theory

from which it is clear that the instability can develop on dynamical time-scales.
Its onset can lead to extremely high amounts of energy tapped from the shear
reservoir (and ultimately from the gravitational reservoir if the disk is Keplerian)
which are injected in the MRI unstable modes. Moreover, the magnetic field
strength sets the absolute scale for the fastest growing wavenumber kmax, but has
no effect in determining |ωmax|. The MRI growth rate is in general independent
of the actual fluid magnetization. It just relies on its presence and its sufficient
weakness.

2.2.1. Non-axisymmetric perturbations

We consider now a few aspects of the MRI which are related to the presence
of an azimuthal magnetic field and φ-dependent disturbances. This interest is
motivated by the fact that the PPI is an inherently non-axisymmetric instability.
A full local analysis for non-axisymmetric perturbation was conducted by Balbus
and Hawley (1992), from which we will just take the main results and general
considerations.
One first point that has to be taken into account is that the interpretation of
the system’s local behavior gets more complicated in presence of shear and plane
waves of the form exp i(k ·r−ωt) with k having a φ component. The radial wave
number will, in fact, show a time dependence given by the relation

kR(t) = kR(0)−mtdΩ

dR
, (2.58)

where kR(0) is the initial value of kR and m = kφR is the usual azimuthal number.
From Eq. (2.58) is evident that only in the case of axisymmetric disturbances
(m = 0) or absence of shear, the radial wave number is fixed, while in the more
general case of a differentially rotating disk (with a finite value for m ) the wave is
first unwound by the shear (with |kR| decreasing to zero), and then is wrapped up
as kR increases linearly with time. Another consequence of the shear is that when
a radial magnetic field is present, it gets stretched by the differential rotation and
leads to a linear increase in time of the azimuthal field according to

Bφ(t) = Bφ(0) + tBR
dΩ

d lnR
, (2.59)

where Bφ(0) is the initial value of the azimuthal magnetic field component. This
is the so-called Ω-effect. It represents a dynamo mechanism that converts the
energy stored in the shear into magnetic energy by amplifying Bφ at the expense
of dΩ/d lnR. Despite these complications, the time evolution of kR and Bφ have
the nice property of proceeding in such a way as to maintain the Alfvén coupling
parameter k ·B constant

k ·B = kR(t)BR + kφBφ(t) = (k ·B)t=0, (2.60)
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2.2. Magnetorotational instability

Figure 2.6.: ((k · uA)2, k/kZ) plane. The shaded area represent the region of instability, while
the path of a leading disturbance is represented by the arrows. (Balbus and Hawley,
1998)

because the shear terms cancel each other and the magnetic tension stays the
same. Assuming that the winding time of kR is longer compared to the disk orbital
period, m/R� kZ , and that the vertical structure of the disk can be ignored we
can derive a relatively simple evolution equation for the radial disturbance of the
magnetic field [

k2

k2
Z

D4 + κ2D2 − 4Ω2(k · uA)2

]
δBR = 0, (2.61)

where we defined

D2 =
d2

dt2
+ (k · uA)2, k2 = kR(t)2 +

m2

R2
+ k2

Z . (2.62)

It is interesting to note that Eq. (2.61) gives exactly Eq. (2.54) in the limit of
vanishing m, once it is solved using standard WKB methods. Its physical mean-
ing may be more easily understood once we consider the plane (k/kZ , (k · uA)2)
in Fig. 2.6. Starting from a disturbance of coordinate (k/kZ ,k · uA), the shear
will cause the ratio k/kZ to decrease with time, reach a value near unity and then
increase again. If (k · uA)2 < −dΩ2/d lnR, a finite portion of time is spent by
the system in an unstable region, and substantial growth can occur.
The maximum growth rate for a weak azimuthal field turns out to be 1/2|dΩ/d lnR|,
which is precisely the value corresponding to the instability in presence of a weak
vertical field. The difference is that it is reached at much higher vertical wave
numbers, in particular only if the following scaling holds

m� RkR � RkZ . (2.63)

This relation essentially makes Eq. (2.61) approach an axisymmetric form, and
the role of m is just to provide a coupling between the perturbation and the
azimuthal field.
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2. Accretion disks theory

2.3. Mean-field dynamo in accretion disks

In the last part of this chapter devoted to the exploration of some of the most
important physical phenomena relevant to the dynamics of an accretion disk, we
briefly introduce the classical theory of mean-field dynamo. This topic has become
quite important in the last decades, since its goal is to try to ultimately explain
the origin and amplification of magnetic fields in differentially rotating fluids. We
will discuss the core mechanism, which is at the base of this theory, in the non-
relativistic regime and show its importance in an astrophysical context, following
the description of Moffatt (1978a) and leaving the generalization to a general
relativistic frame to Chapter 3. Finally, we discuss the recent implementation
of this new ingredient in our numerical code and the results from a preliminary
application in magnetized thick disks in Chapter 4.

2.3.1. Classical laminar dynamo theory

Let us consider a non-relativistic resistive plasma, whose e.m. fields evolve accord-
ing to the induction equation and Ohm’s law described respectively by Eq. (2.39)
and Eq. (2.38), and let us define the magnetic energy contained in a fixed volume
V as

M(t) =
1

2

∫
V
B2dV . (2.64)

The time evolution of M is set by

d

dt

∫
V

B2

2
dV = −

∫
V
v · (J ×B)dV −

∫
V
ηBJ

2dV −
∫
S
(E ×B) · dS, (2.65)

where S is the surface that contains the volume V . Eq. (2.65) shows that the
magnetic energy of a system can increase if work against the Lorentz force (first
term on the right-hand side) is made, so to counteract the losses by ohmic dissi-
pation (second term) and radiation through the system boudnaries (third term).
To understand the source of the first term, we take Eq. (2.41) (neglecting the
external gravity field and the viscosity terms), multiply it by v and obtain (after
some manipulations)

d

dt

∫
V

1

2
ρv2dV =

∫
V
p∇ · vdV +

∫
V
v · (J ×B)dV , (2.66)

from which it becomes clear that the amplification of magnetic energy is sus-
tained by a decrease of kinetic energy, with no net energy loss for the whole
system. Without such a mechanism, the magnetic field will still be affected by
ohmic dissipation, which will lead to a magnetic decay on a time scale τd = L2/ηB,
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2.3. Mean-field dynamo in accretion disks

where L is the characteristic macroscopic length scale of the volume V . The ve-
locity field is instead said to be acting as a dynamo if M(t) 6→ 0 for t→∞, i.e.
if it is capable of efficiently converting kinetic energy into magnetic energy. In
accretion disks the ultimate source of energy is of course the gravitational poten-
tial, which is then converted into orbital and turbulent kinetic energy.
One of the problems encountered in the search for an efficient dynamo mechanism
is described by the Cowling anti-dynamo theorem (Cowling, 1976):

No axisymmetric magnetic field can be maintained stationarily through the dy-
namo action of axisymmetric currents.

This theorem precludes the possibility of self-sustaining axisymmetric dynamos,
and it was elegantly illustrated by Boyd and Sanderson (2003) in the following
way. Consider a fluid with velocity v and magnetic field B whose field lines
are contained in a meridional plane that intersects the rotational axis. In any
of the possible planes they will be closed lines containing at least a point where
the magnetic field vanishes. We denote with C the curve that goes through all
meridional planes and connects all points where B vanishes. If we integrate
Ohm’s law along this curve we get

η

∮
C
J · dl =

∮
C
E · dl +

∮
C
(v ×B) · dl

=

∫
SC

(∇×E) · dS = −
∫
SC

∂B

∂t
· dS = 0,

(2.67)

where SC is an arbitrary open surface based on C. The integral of the convective
term turns out to be zero due to the vanishing magnetic field on C, while the
last equality comes from the assumption of stationarity. Eq. (2.67) tells us that
there cannot be azimuthal currents, in clear contradiction with Ampere’s law
J = ∇ × B. If we also consider the presence of azimuthal fields, then we will
still have no contribution from the convective term, since this time B and dl will
be parallel. Hence the theorem’s thesis is demonstrated.
To better visualize what prevents the onset of a stable axisymmetric dynamo,
let us decompose the fields in their poloidal and toroidal components (which
respectively correspond to the meridional and azimuthal components in the case
of a rotating system)

v = vP + vT , (2.68)

B = BP +BT , (2.69)

and let us also introduce the vector potential A likewise decomposed as A =
AP +AT , so that

BP =∇×AT . (2.70)

27



2. Accretion disks theory

Using the fact that vT ×BT = 0, we can rewrite the poloidal component of the
induction equation as

∂BP/∂t =∇× (vP ×BP ) + ηB∇2BP , (2.71)

and with the help of Eq. (2.70) we can express it in terms of the toroidal compo-
nent of the vector potential

∂AT/∂t = vP × (∇×AT ) + ηB∇2AT . (2.72)

In a similar way we can obtain an expression for the evolution of the toroidal
magnetic field

∂BT/∂t =∇× (vP ×BT + vT ×BP ) + ηB∇2BT . (2.73)

We now introduce standard cylindrical coordinates (R, φ, z) and set (in axisym-
metry)

AT = A(R, z)iφ, (2.74)

BT = B(R, z)iφ, (2.75)

vT = v(R, z)iφ, (2.76)

from which we obtain with some vector identities

∇2AT = iφ(∇2 −R−2)A, (2.77)

vP × (∇×AT ) = −R−1(vP ·∇)RA. (2.78)

If we insert these relations into Eq. (2.72) and Eq. (2.73) we finally get

∂A/∂t+R−1(UP ·∇)RA = ηB(∇2 −R−2)A, (2.79)

∂B/∂t+R(UP ·∇)(R−1B) = R(BP ·∇)Ω + ηB(∇2 −R−2)B, (2.80)

where Ω(R, z) = R−1U(R, z) is the fluid angular velocity. The first term on the
right-hand side of Eq. (2.80) shows that a variation of Ω along a flux line of BP

leads, by distortion of the field lines, to the generation of a toroidal field: this
is the so-called Ω-effect. It represents a fundamental ingredient of the dynamics
of differentially rotating magnetized plasmas. On the other hand we notice that
Eq. (2.79) does not present an analogous source term: AT is just damped by the
diffusive term on the right-hand side, and consequently the poloidal magnetic field
can do nothing but eventually vanish due to ohmic diffusion. But if the ultimate
destiny of BP is to disappear, then BT shares the same fate, since the Ω-effect
relies on a steady reservoir of poloidal field to generate a toroidal one through
shearing. To have a steady dynamo it is necessary to provide a mechanism that
can close the so-called dynamo cycle, i.e. that can assure amplification of both
toroidal and poloidal magnetic field against the action of diffusive processes.
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2.3. Mean-field dynamo in accretion disks

2.3.2. Turbulent mean-field dynamo theory

Instead of assuming v to be a known function of time and space, let us consider
the case where the velocity field has a stochastic component, whose instantaneous
properties are just too complex to be appropriately captured. This describes for
instance the case of turbulent motions triggered by instabilities in astrophysical
plasmas.
We call l0 and L respectively the typical length-scale of the stochastic motions
and the global scale we are interested in, so that on an intermediate scale a

l0 � a� L, (2.81)

the properly averaged global variables can be considered constant. The averages
can be defined for instance as a mean over a sphere of radius a, leading for any
arbitrary quantity ψ(x, t) to the expression

〈ψ(x, t)〉a =
3

4πa3

∫
|ξ|<a

ψ(x+ ξ, t)dξ, (2.82)

where this mean value is not expected to depend on the particular value of a.
We can now decompose the velocity field and magnetic field into their mean and
variable (on small-scales) components

v(x, t) = U0(x, t) + u(x, t), (2.83)

B(x, t) = B0(x, t) + b(x, t), (2.84)

where both u and b have a vanishing mean by definition. If we substitute these
expressions in the induction equation we obtain two evolution equations, for the
mean magnetic field and its stochastic component respectively

∂B0/∂t =∇× (U0 ×B0) +∇× E + ηB∇2B0, (2.85)

∂b/∂t =∇× (U0 × b) +∇× (u×B0) +∇× G + ηB∇2b, (2.86)

where we defined

E = 〈u× b〉, (2.87)

G = u× b− 〈u× b〉. (2.88)

It is clear from Eq. (2.85) that small-scale fluctuations can contribute to the
evolution of B0, since they introduce a large-scale electromotive force E that can
in general deeply affect the behavior of the mean large-scale magnetic field.
To proceed further in the study of a mean-field dynamo, it is necessary to express
E in terms of known quantities, i.e. the mean fields B0, and U0 and the statistical
properties of the fluctuations (which will be assumed). If we consider Eq. (2.86)
and assume b(x, 0) = 0, the field b is linear in B0 through the source term
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2. Accretion disks theory

∇× (u×B0), while B0 is linear in b through the e.m.f. term ∇× E . Since we
assumed that the mean fields vary on length-scales much larger than the one on
which averages are calculated, it is possible to express E in terms of B0 with the
series expansion

Ei = αijB0j + βijk
∂B0j

∂xk
+ γijkl

∂2B0j

∂xk∂xl
+ . . . . (2.89)

The coefficients αij, βijk, . . . will in general depend on the mean field U0, the
resistivity η, and the statistical properties of u(x, t), since b depends also on the
coefficients via Eq. (2.86). However, in the limit of L/l0 →∞, the coefficients will
reduce to strictly uniform quantities, sinceU0 becomes uniform and u statistically
homogeneous.
Let us consider the dominant term in Eq. (2.89), i.e.

E (0)
i = αijB0j. (2.90)

Tensor αij, which is uniform as long as u is homogeneous, can be decomposed in

its symmetric and antisymmetric part as αij = α
(s)
ij −εijkak, where ak = −1

2
εijkαij

and εijk is the Levi-Civita antisymmetric symbol. If we insert this expression for
αij into Eq. (2.89) we obtain

E (0)
i = α

(s)
ij B0j + (a×B0)i. (2.91)

The effect of the antisymmetric component a is to introduce a correction to the
mean flow velocity U0 and lead to an effective velocity U0 + a. However, this
contribution can usually be neglected in the situations of interest for us. To
better understand the role of the symmetric component α

(s)
ij , let us assume u to

be isotropic and homogeneous. In this case also αij is isotropic, hence we can set

αij = αδij, (2.92)

a = 0, (2.93)

where the scalar α derives from the statistical properties of the velocity fluctua-
tions. Inserting Eq. (2.92) into Eq. (2.90) we obtain the simple relation

E (0) = αB0, (2.94)

which inserted into Ohm’s law (2.38) leads to a contribution to the current density
equal to

J (0) =
1

η
E (0) =

α

η
B0. (2.95)

The presence of α introduces an electric current parallel to the mean magnetic
field, which is in strong contrast with the usual situation where the induction
current (U ×B)/η is perpendicular to the magnetic field.
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2.3. Mean-field dynamo in accretion disks

This phenomenon, known in the literature as α-effect, is at the core of the mean-
field dynamo theory. It provides a way to close a dynamo cycle by generating
poloidal magnetic fields starting from a toroidal field BT . In fact, such a field
would lead, according to Eq. (2.95), to a toroidal current, which consequently
would generate a poloidal magnetic component BT . The latter then allows the
amplification of BT through the Ω-effect, i.e. in presence of differential rotation.
In such a system, called α − Ω dynamo, the cycle BP � BT is closed and it is
possible to have a steady amplification of magnetic field. The individual efficiency
of the α-effect and the Ω-effect in generating magnetic field against dissipation
can be estimated a priori by their relative dynamo numbers. This parameters
(widely used in the literature) are defined as (Brandenburg and Subramanian,
2005)

Cα =
αL

η
, (2.96)

CΩ =
∆ΩL2

η
. (2.97)

They represent an estimate of the ratio between the source terms that result
from the α-effect and the differential rotation and the dissipation due to a finite
resistivity η.
It can be shown (Priest, 2014) that by neglecting the non-linear terms in Eq. (2.86)
we can retrieve an analytical expression for α in terms of the velocity fluctuations,
i.e.

α = −1

3
τ〈u ·∇× u〉, (2.98)

where τ is the correlation time of the turbulent motions and 〈u · ∇ × u〉 is
the kinetic helicity of the fluid. Since the latter is essentially a measure of how
entangled the turbulent flow is, Eq. (2.98) shows that the α-effect relies on the
presence of asymmetries in the turbulent motions, and in particular it implies
that the sign of α changes when crossing the equatorial plane of a rotating fluid.
We consider now the second term of Eq. (2.89)

E (1)
i = βijk∂B0j/∂xk. (2.99)

Assuming an isotropic field u, the coefficient βijk is also isotropic, i.e.

βijk = βεijk, (2.100)

where β is a scalar. Inserting this expression into Eq. (2.99) we obtain for the
induced e.m.f.

E (1) = −β∇×B0 = −βJ0, (2.101)

where βJ0 is the mean current density. This result leads to a contribution in the
induction equation for the mean magnetic field equal to

∇× E (1) = β∇2B0, (2.102)
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where it is evident from a comparison with Eq. (2.85) that the effect of the
induced e.m.f E (1) is to enhance the effective value of the magnetic resistivity ηB
to η̃ = ηB+β. This phenomenon describes the turbulent resistivity : magnetic field
lines with opposite polarities are entangled by turbulent motions, which leads to
their diffusion and consequently to a decrease of the mean field.
The final form of the induction equation with the inclusion of the α-effect and
turbulent resistivity reads

∂B0/∂t =∇× (U0 ×B0) +∇× E + ηB∇2B0, (2.103)

where
E = αB − β∇×B. (2.104)

Eq. (2.103) can be also reformulated in terms of an effective large scale electric
field E0 as

∂B0/∂t = −c∇×E0, (2.105)

once we replace the standard Ohm’s law for a resistive plasma

E0 = −U0

c
×B0 +

4π

c2
ηBJ0, (2.106)

with

E0 = −U0

c
×B0 +

4π

c2
η̃J0 − αB0, (2.107)

where J0 = c/4π∇ × B0. Eq. (2.107) will be an essential ingredient for the
inclusion in the ideal GRMHD framework of resistivity and mean-field dynamo
effects, as explained in detail in Chapter 3.
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Since our goal is to describe the evolution of a magnetized plasma in a spacetime
deeply warped by the gravity of a massive black hole, it is necessary to introduce
the magnetohydrodynamics equations in covariant form. Once the fundamental
GRMHD equations are known, we will use them to construct the disk model
considered in our simulations as initial condition, i.e. a stationary magnetized
torus orbiting around a black hole. In the following we will assume a spacetime
metric with signature (−,+,+,+) and we will use the greek letters µ, ν, λ,
. . . (which run from 0 to 3) for the tensor and vector components in the 4D
spacetime, while the latin letters i, j, k, . . . (which run from 1 to 3) will label
the tensor and vector components in the 3D space. Moreover, we will set c =
G = 1 and make use of the Lorentz-Heaviside notation for the electromagnetic
quantities, i.e. absorbing the factor

√
4π within the definition of the electric and

magnetic field.

3.1. Covariant formalism

Following the treatment of Del Zanna et al. (2007) we consider an ideal fluid
interacting with an electromagnetic field. The equations for conservation of mass
and momentum-energy are respectively

∇µ(ρuµ) = 0, (3.1)

∇µT
µν = 0, (3.2)

where ∇µ is the spacetime covariant derivative, ρ is the rest mass density mea-
sured in the Lagrangian frame comoving with the fluid four-velocity uµ, and T µν

is the stress-energy tensor. The latter is composed of two terms T µν = T µνm +T µνem
due respectively to the matter distribution

T µνm = ρhuµuν + pgµν , (3.3)

and the electromagnetic field

T µνem = F µ
λF

νλ − 1

4
(F λκFλκ)g

µν . (3.4)
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In the previous expressions we find the spacetime metric tensor gµν , the specific
enthalpy h = 1 + ε + p/ρ, the specific internal energy ε, the thermal pressure p
and the electromagnetic field (or Faraday’s) tensor F µν . It is interesting to notice
that the individual components are not conserved in general

∇µT
µν
m = −∇µT

µν
em = −IµF µν , (3.5)

where Iµ is the four-current density and the last term is the electromagnetic force
acting on the conducting fluid. Concerning the electromagnetic field, Maxwell
equations in covariant form are given by

∇µF
µν = −Iν , (3.6)

∇µF
∗µν = 0, (3.7)

where F ∗µν = 1
2
εµνλκFλκ is the dual of the Faraday tensor, εµνλκ = (−g)−1/2[µνλκ]

is the Levi-Civita tensorial density, g = det{gµν}, and [µνλκ] is the completely
antisymmetric symbol with convention [0123] = +1.
Once an equation of state p = p(ρ, ε) is chosen the system of GRMHD equations
can be closed by selecting an appropriate form for Ohm’s law, i.e. a relation
between the four-current and the electromagnetic fields.

3.2. 3+1 Formalism

Despite its elegance and compactness, the covariant formalism is not well suited
for a straightforward implementation in numerical codes. The main reason is the
equal treatment of spatial and temporal variables, while standard computations
in MHD require a separate time-integration along with a discretization of the spa-
tial derivatives. It is therefore necessary to explicitly express the time-derivatives
by adopting the so-called 3+1 decomposition of the GRMHD equations (for a
detailed and more complete derivation see Alcubierre (2008)).
In this formalism the 4-dimensional spacetime is foliated in time-like, non-intersecting
hyper-surfaces Σt, defined as the iso-surfaces of a time scalar function t. We de-
note as

nµ = −α∇µt, (3.8)

the time-like four-vector normal to the hyper-surface Σt pointing in direction of
the future, where α is called lapse function. The observer moving with four-
velocity nµ is called Eulerian and all the quantities can be expressed in the
corresponding frame of reference. If we consider any given vector (or tensor) V µ,
we can always decompose it in its temporal and spatial components

V n̂ = −nµV µ, (3.9)

⊥ V µ = (gµν + nµnν)V
ν , (3.10)
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where we introduced the spatial projection operator ⊥≡ gµν + nµnν . If we apply
⊥ to the metric tensor gµν we obtain the spatial metric γµν induced on Σt by the
4-dimensional metric

γµν =⊥ gµν = gµν + nµnν , (3.11)

and we can identify the projection operator also as ⊥≡⊥µν= γµν .
We now introduce a coordinate system xµ = (t, xi) which adapts to the foliation
Σt. Then it is possible to express the line element in the so-called ADM form
(Arnowitt et al., 1962)

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (3.12)

where βµ is referred to as shift-vector, which is an arbitrary spatial vector. In
this coordinate system the components of the unit vector are

nµ = (−α, 0i), (3.13)

nµ = (1/α,−βi/α), (3.14)

and any purely spatial vector (or tensor) V µ will necessarily have a vanishing
contravariant time component, i.e. V t = 0, while the covariant time component
will be given by Vt = gµtV

µ = βiV
i, and will in general be different from zero. Also

the gradient of the unit vector can be decomposed in time and space components

∇µnν = −Kµν − nµaν , (3.15)

where Kµν is extrinsic curvature of the metric (a symmetric spatial tensor), and
aν is the acceleration of the Eulerian observer (also a spatial vector). It is then
possible to demonstrate that (York, 1979)

aν = nµ∇µnν =⊥ ∇ν lnα, (3.16)

which will be a useful relation we will use in short.
We can now decompose all the quantities in the GRMHD equations into their
time and space components

uµ = Γnµ + Γvµ, (3.17)

T µν = W µν + Sµnν + nµSν + Unµnν , (3.18)

F µν = nµEν − Eµnν + εµνλκBλnκ, (3.19)

F ∗µν = nµBν −Bµnν − εµνλκEλnκ, (3.20)

Iµ = qnµ + Jµ, (3.21)

where all the newly introduced vectors and tensors are purely spatial and cor-
respond to the usual observables measurable in the 3-dimensional space by the
Eulerian observer. In fact vµ is the fluid velocity with Lorentz factor Γ = un̂, so
that

vi = ui/Γ + βi/α, (3.22)

Γ = αut = (1− v2)−1/2, (3.23)
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3. GRMHD

with v2 = viv
i and where we used the normalization condition uµu

µ = −1. The
decomposition of the stress-energy tensor instead provides the energy density
U = T n̂n̂, the momentum density Sµ =⊥ T n̂µ, and the spatial stress tensor of the
plasma W µν =⊥ T µν . The electric and magnetic field spatial vectors are defined
as Eµ = F n̂µ and Bµ = F ∗n̂µ, so that their components are given by

Ei = αF ti, (3.24)

Bi = αF ∗ti. (3.25)

Finally we denote the electric charge density with q and the spatial conduction
current with Jµ, measured once again in the frame of the Eulerian observer.
By applying the usual covariant derivation rules and splitting the time and space
components of Eq. (3.1), Eq. (3.2), Eq. (3.6), and Eq. (3.7) we obtain the GRMHD
equations in the following form

(−g)−1/2∂µ
[
(−g)1/2ρuµ

]
= 0, (3.26a)

(−g)−1/2∂µ
[
(−g)1/2T µi

]
= 1

2
T µν∂igµν , (3.26b)

(−g)−1/2∂µ
[
(−g)1/2T µνnν

]
= T µν∇µnν , (3.26c)

(−g)−1/2∂µ
[
(−g)1/2F ∗µi

]
= 0, (3.26d)

(−g)−1/2∂µ
[
(−g)1/2F µi

]
= qβi/α− J i, (3.26e)

(−g)−1/2∂µ
[
(−g)1/2F ∗µt

]
= 0, (3.26f)

(−g)−1/2∂µ
[
(−g)1/2F µt

]
= −q/α. (3.26g)

To reformulate them in terms of purely 3D spatial quantities we have to use all
the previous relations and decompose the source terms on the right-hand sides of
Eq. (3.26b) and Eq. (3.26c) as

1
2
T µν∂jgµν = 1

2
W ik∂jγik + α−1Si∂jβ

i − U∂j lnα, (3.27)

T µν∇µnν = −KijW
ij + Sj∂j lnα. (3.28)

We finally introduce the bold notation to indicate 3D spatial vectors and define
∇ =⊥ ∇ as the 3D covariant derivate operator for the metric γij. The final form
of the GRMHD equations reads

γ−1/2∂t
(
γ1/2D

)
+∇ · (αvD − βD) = 0, (3.29a)

γ−1/2∂t
(
γ1/2S

)
+∇ · (αW− βS) = (∇β) · S − U∇α, (3.29b)

γ−1/2∂t
(
γ1/2U

)
+∇ · (αS − βU) = αK : W− S ·∇α, (3.29c)

γ−1/2∂t
(
γ1/2B

)
+∇× (αE + β ×B) = 0, (3.29d)

γ−1/2∂t
(
γ1/2E

)
+∇× (−αB + β ×E) = −(αJ − qβ), (3.29e)

∇ ·B = 0, (3.29f)

∇ ·E = q, (3.29g)
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where K and W denote respectively the extrinsic curvature and the stress tensor,
while γ = det{γij} is the determinant of the spatial metric tensor, related to the
four-dimensional one by (−g)1/2 = αγ1/2.
Eq. (3.29a) describes the continuity equation for D = ρΓ, i.e. the mass density
measured by the Eulerian observer. Eq. (3.29b) is the momentum equation,
containing the divergence of the stress tensor W. Its last term with the lapse
function gradient reduces to the usual gravitational force in the Newtonian limit.
Eq. (3.29c) is the energy equation, where the extrinsic curvature can be expressed
(assuming a stationary metric) in terms of the covariant derivatives of the shift
vector components βi (Alcubierre, 2008)

αK : W = 1
2
W ikβj∂jγik +W j

i ∂jβ
i. (3.30)

Eq. (3.29d) is the general relativistic extension of the induction equation, where
the components of the curl operator are defined as

(a× b)i = εijkajbk. (3.31)

It is important to notice that the 3D Levi-Civita tensorial density is given by
εijk = εn̂µνλ, so that εijk = γ−1/2[ijk] and εijk = γ1/2[ijk] are implicitly defined
through the induction equation. Similarly Eq. (3.29e) is the GR generalization
of Ampere’s law, containing additional contributions due to the curved metric in
both the hyperbolic and the source terms. Finally, Eq. (3.29f) and Eq. (3.29g)
are the usual constraints on the fields B and E.
In absence of gravity the quantities related to the metric reduce to

α = 1, (3.32)

β = 0, (3.33)

K = 0, (3.34)

∂tγ = 0, (3.35)

and the system Eq. (3.29) will therefore describe the evolution of a plasma in a
Minkowski spacetime.
The stress tensor, the momentum density, and the energy density can be expressed
in terms of the fluid and electromagnetic quantities respectively as

W ij = ρhΓ2vivj − EiEj −BiBj +
[
p+ 1

2

(
E2 +B2

)]
γij, (3.36)

Si = ρhΓ2vi + εijkEjBk, (3.37)

U = ρhΓ2 − p+ 1
2

(
E2 +B2

)
. (3.38)

Finally, it is important to remember that Eq. (3.29) describe the evolution in
time of the contravariant components of the vectorial quantities. Whenever is
necessary to recover information on the components of a spatial vector with con-
travariant components V i projected on an orthonormal set of axis, assuming a
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3. GRMHD

diagonal spatial metric, we can easily compute the orthonormal components de-
fined as

V1̂ =
√
γ11 V

1, (3.39)

V2̂ =
√
γ22 V

2, (3.40)

V3̂ =
√
γ33 V

3. (3.41)

3.2.1. General relativistic Ohm’s law

So far we computed the GRMHD equations without assuming any specific form
for Ohm’s law, which essentially encodes the information on how the conducting
fluid reacts to the presence of an electric field (we will neglect possible effects
due to polarization). Depending on the particular choice we will end up with
a different relation between the electric field and other quantities such as the
current density, the magnetic field, and the fluid velocity, which will be necessary
to close the GRMHD system (once an EoS is also specified).
In order to achieve a covariant formulation of Ohm’s law, it is convenient to
consider the comoving frame of the fluid, where the intuition and interpretation
of a generalization from the non-relativistic case should be easier (see Bucciantini
et al. (2012)).
Let us consider the Faraday tensor and the four-current, and decompose both
quantities in the frame comoving with the fluid four-velocity uµ

F µν = uµeν − eµuν + εµνλκbλuκ, (3.42)

F ∗µν = uµbν − bµuν − εµνλκeλuκ, (3.43)

Iµ = q0u
µ + jµ, (3.44)

where eµ = F µνuν , b
µ = F ∗µνuν , q0 = −Iµuµ, and jµ are respectively the electric

field, the magnetic field, the electric charge density, and the conducting current
in this frame. We now further decompose the vectors in the comoving frame in
the 3 + 1 Eulerian foliation of spacetime

eµ = Γ(E · v)nµ + Γ(Eµ + εµνλvνBλ), (3.45)

bµ = Γ(B · v)nµ + Γ(Bµ − εµνλvνEλ), (3.46)

jµ = (q − q0Γ)nµ + Jµ − q0Γvµ, (3.47)

where q0 = Γ(q−J ·v). At this point we are ready to choose a specific expression
for Ohm’s law among the following alternatives

1. Ideal GRMHD. For a perfectly conducting plasma the electric field in
the comoving frame has to vanish, i.e. eµ = 0. Plugging this condition in
Eq. (3.45) and projecting on the 3D space provides the well known relation

E + v ×B = 0. (3.48)
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3.2. 3+1 Formalism

The physical meaning of Eq. (3.48) is that free charges in the plasma can
effectively shield any electric field that may rise locally, while its mathemat-
ical consequence is to make Eq. (3.29e) redundant as dynamical equation,
and reduce it to a simple relation between the magnetic field B and the
current J , just as in the non-relativistic case.

2. Resistive GRMHD. For a plasma with a finite conductivity the electric
field in the comoving frame will be proportional to the conduction current,
hence (Palenzuela et al., 2009)

eµ = ηjµ, (3.49)

where η represents the magnetic resistivity (assumed to be isotropic) mea-
sured in the comoving frame. Substituting once again this relation in
Eq. (3.45), whose time projection will be

Γ(E ·B) = η(q − q0Γ). (3.50)

We then use Eq. (3.50) to express q0 and eliminate it from the spatial
projection of Eq. (3.45), obtaining

Γ[E + v ×B − (E · v)v] = η(J − qv). (3.51)

For η = 0 we obtain the result for the ideal case, while for |v| � 1 Eq. (3.51)
reduces to the non-relativistic limit

E + v ×B = ηJ . (3.52)

3. Resistive GRMHD + Dynamo. The natural extension of Ohm’s law
when including a mean-field dynamo effect (as introduced in Chapter 2), is
to add a term proportional to the magnetic field (Bucciantini et al., 2012)

eµ = ηjµ + ξbµ. (3.53)

The parameter ξ is defined as

ξ ≡ −αdyn, (3.54)

where αdyn represents the mean-field coefficient present in Eq. (2.104). This
definition has been introduced to avoid ambiguity with the lapse function
α, and the magnetic resistivity η now takes into account the turbulent
resistivity introduced by the small-scale fluctuations (see Eq. (2.102)). As
in the previous case we substitute Eq. (3.53) in Eq. (3.45), whose time
projection gives

Γ(E · v) = η(q − q0Γ) + ξΓ(B · v). (3.55)
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3. GRMHD

From this relation we compute q0, and eliminate it from the space projection
of Eq. (3.45), which then reads

Γ[E + v×B − (E · v)v] = η(J − qv) + ξΓ[B − v×E − (B · v)v]. (3.56)

This relation reduces to the resistive formulation in Eq. (3.51) when ξ = 0,
and in the limit of small velocities it becomes

E + v ×B = ηJ + ξB. (3.57)

It is interesting to note how all the examples we considered depend on the presence
of a curved metric only through the scalar and vector products that involve
the spatial metric γij, while there is no explicit term involving α or βi. In the
non-relativistic regime of resistive MHD the displacement current can always be
neglected, as the electrical charge density. This means that Ampere’s law can be
written as J =∇×B, which represents a relation to compute the current from
the magnetic field.
In the relativistic regime the displacement current ∂E/∂t is in general no longer
negligible, therefore it becomes necessary to use Eq. (3.29e) to evolve the electric
field under the constrained given by Eq. (3.29g). Ohm’s law provides a way to
express the spatial current density J , while q is derived from Gauss theorem
q =∇ ·E.
In the most general case of a resistive plasma with mean-field dynamo effects, the
electric field will evolve in time according to

γ−1/2∂t
(
γ1/2E

)
−∇× (αB − β ×E) + (αv − β)q =

−αΓ[E + v ×B − (E · v)v]/η + ξαΓ[B − v ×E − (B · v)v]/η.
(3.58)

When η = 0, the left-hand side of the equation can be neglected, i.e. no time-
integration is required to retrieve the electric field at any given time (as it should
be in the ideal GRMHD case), while for ξ = η = 0 we obtain, as expected, Ohm’s
law for an ideal plasma (E = −v ×B).

3.3. Thick magnetized disks

We now present in more detail the analytical stationary solution for Eq. (3.29)
which describes the model used in our simulations, i.e. a thick disk of magnetized
plasma orbiting around a black hole (see Font and Daigne (2002); Komissarov
(2006)). We will neither include in the analysis the self-gravity of the disk nor
contributions due to viscous and radiative effects, but will focus on the external
gravitational potential generated by the black hole and the support provided by
both thermal and magnetic pressure in the disk.
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3.3. Thick magnetized disks

3.3.1. Kerr spacetime

Let us consider a rotating black hole of mass M and angular momentum per
unit of mass a = J/M , assuming both to be constant. In the Boyer-Lindquist
coordinates (t, r, θ, φ) and in the ADM formalism, the spacetime line element can
be expressed as

ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ2 + grrdr

2 + gθθdθ
2, (3.59)

where the metric coefficients are given by

gtt = −
(

1− 2Mr

%2

)
, (3.60)

gtφ = −2Mar sin2 θ

%2
, (3.61)

grr =
%2

∆
, (3.62)

gθθ = %2, (3.63)

gφφ =
Σ2

%2
sin2 θ, (3.64)

with the following definitions

∆ ≡ r2 − 2Mr + a2, (3.65)

%2 ≡ r2 + a2 cos2 θ, (3.66)

Σ2 ≡ (r2 + a2)2 − a2∆ sin2 θ. (3.67)

In these equations it is important not to confuse the geometric factor % with the
mass density ρ. This solution of the Einstein field equations due to Kerr (1963)
shows that the metric retains the stationary and axisymmetric character of the
mass distribution that generates it, i.e. a rotating black hole with constant mass
and spin.
It is interesting to note that when setting c = G = 1, M and a have both the
dimension of a length. Furthermore, for the black hole spin we have 0 ≤ a ≤M .
When a = 0, the stationary and spherically symmetric Schwarzschild metric of a
non-rotating black hole results

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2, (3.68)

while a = M corresponds to the case of a maximally rotating black hole. When
∆ = 0 the Kerr metric has two singularities given by the roots of Eq. (3.65)

r± = M ± (M2 − a2)1/2, (3.69)
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where r+ corresponds to the proper black hole event horizon rh, that ranges
between M and 2M depending on the value of a.
Let us now consider an external observer orbiting around the black hole with
four-velocity uµ = (ut, 0, 0, uφ) and constant angular velocity

Ω =
uφ

ut
. (3.70)

Exploiting the normalization constraint uµu
µ = −1 we get

gtt + 2Ωgtφ + Ω2gφφ < 0, (3.71)

i.e. the value of the observer’s angular velocity lies within the interval [Ω−,Ω+],
where

Ω± =
−gtφ ± (g2

tφ − gttgφφ)1/2

gφφ
= ω ±

(
ω2 − gtt

gφφ

)1/2

, (3.72)

and where we defined ω ≡ −gtφ/gφφ. In those regions where gtt < 0 the observer’s
angular velocity can be zero (since Ω− < 0), but where gtt > 0 there will be a
minimum value Ω− > 0 below which ω cannot drop. The observer that in other
circumstances would be at rest will be dragged by the rotating spacetime with
an angular velocity ω. Such a region is referred to as the ergosphere. It is limited
by the surfaces where the coefficient gtt is zero, i.e. at a distance from the black
hole given by

r0(θ) = M + (M2 − a2 cos2 θ)1/2, (3.73)

which turns out to be external to the black hole event horizon rh. In this region
where gtt > 0 it is possible to have particles with negative energy measured at
infinity, since the latter is a motion constant defined by Ē = −pt = −gtµpµ, with
pµ the four-momentum of the particle. Because of this property of the ergosphere
and the existence of particle trajectories that can fall into the black hole with
negative energy, it is in principle possible to extract energy from a Kerr black hole
tapping its rotational energy through the Penrose mechanism (Penrose, 1969).
The most plausible way to realize such a process is currently thought to be the
Blandford-Znajek machanism (Blandford and Znajek, 1977), where the black hole
rotational energy is extracted by the torques due to magnetic fields treading the
ergosphere.
Considering the 3+1 decomposition and comparing Eq. (3.59) with Eq. (3.12) we
can represent the corresponding 3D spatial metric tensor γij as a diagonal matrix
with coefficients

γrr =
%2

∆
, γθθ = %2, γφφ =

Σ2

%2
sin2 θ, (3.74)

while the shift vector and the lapse function are respectively given by

β =

(
0, 0,−2Mar

Σ2

)
, α =

(
%2∆

Σ2

)1/2

. (3.75)
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Finally we introduce the relativistic generalization of the distance from the black
hole rotational axis

L(r, θ) = g2
tφ − gttgφφ = ∆ sin2 θ, (3.76)

which in the Newtonian limit simply gives L = r2 sin2 θ.

3.3.2. Stationary magnetized models

We study now an analytical stationary solution of the GRMHD equations that
describes the disk model we will use in our simulations. Consider a magnetized
perfect fluid orbing around a Kerr black hole with four-velocity uµ = (ut, 0, 0, uφ)
in the positive φ-direction (corotating with the black hole) with positive angular
momentum and rotation axis aligned with the black hole’s spin. To calculate the
plasma stress-energy tensor we need to consider both the hydrodynamic contri-
bution Eq. (3.3) and the electromagnetic one Eq. (3.4). Limiting ourselves to the
case of an ideal plasma, we set eµ = 0 in Eq. (3.43)) and obtain

F ∗µν = uµbν − bµuν , (3.77)

where bµ = (bt, 0, 0, bφ) is the four-vector of the magnetic field assumed to be
spatially toroidal. We will see however in Chapter 5 that the general equilibrium
structure of the disk in this case will be essentially the same as that of unmag-
netized configurations (Abramowicz et al., 1978; Kozlowski et al., 1978).
Using Eq. (3.77) in Eq. (3.4) we get the final form of the total stress-energy tensor

T µν = (w + b2)uµuν +

(
p+

b2

2

)
gµν − bµbν , (3.78)

where w = ρh is the fluid enthalphy density. We now define the specific angular
momentum of the fluid as l = −uφ/ut, while its orbital velocity is given by
Eq. (3.70). It is important to note that these quantities are consistent with their
definitions in the Newtonian limit, respectively l = r2 sin2 θ Ω and Ω = dφ/dt.
Using the normalization constraint for the four-velocity uµ and the fact that
uµ = gµνu

ν we can also express l and Ω in terms of each other

l = −gtφ + gφφΩ

gtt + gtφΩ
, (3.79)

Ω = − gtφ + gttl

gφφ + gtφl
. (3.80)

Using Eq. (3.2) and contracting it with the projection operator P µ
ν = gµν + uµuν

we obtain

(w + b2)uν∇iu
ν +∇i

(
p+

b2

2

)
− bν∇ib

ν = 0. (3.81)
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Exploiting the definitions of l and Ω, we finally derive the GRMHD generalization
of the Euler equation

∇i(ln |ut|)−
Ω

1− Ωl
∇il +

∇ip

w
+
∇i(Lb2)

2Lw
= 0, (3.82)

which determines the equilibrium of our stationary, axisymmetric system with
uµ and bµ having purely toroidal spatial components, and where the index i
represents either r or θ. In the limit of b2 → 0 we get

∇i(ln |ut|)−
Ω

1− Ωl
∇il +

∇ip

w
= 0, (3.83)

which describes the equilibrium state of an unmagnetized plasma.
Assuming a barotropic equation of state w = w(p) we can rewrite Eq. (3.82) as

d

(
ln(|ut|+

∫ p

o

dp

w

)
=

Ω

1− Ωl
dl − d(Lb2)

2Lw
. (3.84)

In the case of an unmagnetized torus this equation implies that Ω = Ω(l), which
means that the surfaces of constant l and Ω coincide. They are called von Zeipel
cylinders (Kozlowski et al., 1978). For a given spatial metric we can construct
such surfaces for a certain value of angular velocity Ω0 and angular momentum
l0 by the roots of

gttl0 + gtφ(1 + Ω0l0) + gφφΩ0 = 0. (3.85)

Moreover, if the distribution of angular momentum is known in the equatorial
plane l(r, θ = π/2) ≡ leq(r), the corresponding profile of the angular velocity is

Ω(r, π/2) ≡ Ωeq(r) = − gtφ(r, π/2) + gtt(r, π/2)leq(r)

gφφ(r, π/2) + gtφ(r, π/2)leq(r)
. (3.86)

Substituting this expression into Eq. (3.85) we obtain an equation for the von
Zeipel cylinder that crosses the equatorial plane at a given radial distance r0

l2(r0)[gtt(r, θ)gtφ(r0, π/2)− gtφ(r, θ)gtt(r0, π/2)]

+l(r0)[gtt(r, θ)gφφ(r0, π/2)− gφφ(r, θ)gtt(r0, π/2)]

+[gtφ(r, θ)gφφ(r0, π/2)− gφφ(r, θ)gtφ(r0, π/2)] = 0.

(3.87)

In the more general case of a magnetized plasma, we get (by assuming Ω = Ω(l))

d

(
ln(|ut|+

∫ p

0

dp

w
−
∫ l

0

Ωdl

1− Ωl

)
= −d(Lb2)

2Lw
. (3.88)

where the right-hand side is now a total differential. We define then w̃ = Lw and
p̃m = Lpm (with pm = b2/2 the magnetic pressure) and integrate Eq. (3.88)

ln |ut|+
∫ p

0

dp

w
−
∫ l

0

Ωdl

1− Ωl
+

∫ p̃m

0

dp̃m
w̃

= KD, (3.89)
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where the integration constant KD is computed by assuming a vanishing thermal
and magnetic pressure at the disk’s inner edge, i.e. at r = rin

KD = ln |utin| −
∫ lin

0

Ωdl

1− Ωl
. (3.90)

with utin = ut(rin) and lin = l(rin). Using Eq. (3.90) in Eq. (3.89)) we get

ln |ut| − ln |utin| −
∫ l

lin

Ωdl

1− Ωl
+

∫ p

0

dp

w
+

∫ p̃m

0

dp̃m
w̃

= 0. (3.91)

It is convenient to introduce the total potential W defined as

W = ln |ut|+
∫ l∞

l

Ωdl

1− Ωl
, (3.92)

where l∞ is the limiting value of the angular momentum for r → ∞, which is
supposed to be finite. Hence, ut∞ = −1 and W∞ = 0. In the Newtonianlimit, W
reduces to the sum of gravitational and centrifugal potential.
With these definitions we can finally express Eq. (3.91) as

W −Win +

∫ p

o

dp

w
+

∫ p̃m

0

dp̃m
w̃

= 0. (3.93)

Let us now consider the case of a barotropic disk with constant angular momen-
tum, i.e.

l = l0, (3.94)

p = Kwκ, (3.95)

p̃m = Kmw̃
ζ , (3.96)

which allows us to rewrite Eq. (3.93) as

W −Win +
κ

κ − 1

p

w
+

ζ

ζ − 1

pm
w

= 0, (3.97)

where
W = ln |ut|. (3.98)

Using the normalization condition of uµ, we can express ut in terms of l0

− ut =

√
L

gttl20 + 2gtφl0 + gφφ
≡
√
L
A
, (3.99)

with A ≡ l20gtt+2l0gtφ+gφφ. Inserting Eq. (3.99) into Eq. (3.98) we finally express
the potential as a simple function of the metric coefficients and l0 only

W (r, θ) =
1

2
ln

∣∣∣∣LA
∣∣∣∣ . (3.100)
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Figure 3.1.: Radial profiles of the Keplerian angular momentum lK and the potential W on the
equatorial plane θ = π/2. (Font and Daigne, 2002)

This relation allows us to compute the total potential at any point of space for
a given value of the angular momentum, while Eq. (3.97) represents the funda-
mental equation through which we will construct the whole magnetized disk. In
the hydrodynamic case and for a non-constant distribution of angular momen-
tum, once leq is known (and hence the von Zeipel cylinders specify l and Ω in the
whole disk) it is possible to calculate the equipotential surfaces of W (r, θ) from
Eq. (3.92).

Besides the parameters that so far characterize the model (κ, ζ, l0,Win) two
more are needed, namely the enthalpy wc and the magnetization σc ≡ pm/p in
a specific point of the disk that for symmetry reasons we take in the equatorial
plane at a distance r = rc.
From Eq. (3.97) we obtain the thermal pressure in the disk at the reference point

pc = wc(Win −Wc)

(
κ

κ − 1
+

ζ

ζ − 1
σc

)−1

, (3.101)

and the magnetic pressure

pmc = σcpc, (3.102)
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3.3. Thick magnetized disks

Figure 3.2.: Topology of the disk’s equipotential surfaces for different values of l0. (Abramowicz
et al., 1978)

which we will use to calculate the proportionality constants of the barotropic
relations

K = pc/w
κ
c , (3.103)

Km = p̃c/w̃
ζ
c = pc/(Lζ−1wζc ). (3.104)

Following Abramowicz et al. (1978) we choose the so-called disk’s center as
reference point, i.e. the outer of the two points in the equatorial plane where l0
equals the Keplerian angular momentum lK (Fig. 3.1). To compute its value we
replace into Eq. (3.79) the expression for the Keplerian angular velocity (Bardeen
et al., 1972))

ΩK = ± M1/2

(r3/2 ± aM1/2)
, (3.105)

where the positive (negative) sign refers to prograde (retrograde) orbits. We get

lK =
±(r2 ∓ 2ar1/2 + a2)

r3/2 − 2r1/2 ± a
, (3.106)

which we will use to infer the specific angular momentum of a disk with center
at r = rc. The other point where l = lK is referred to as the disk’s cusp. It is
located at a distance rcusp < rc from the black hole.
The disk’s surface, under the assumption of a barotropic EoS, is completely deter-
mined by the value of Win. It is also possible to demonstrate that the disk will be
disconnected from the event horizon only if |l0| > |lms| (Abramowicz et al., 1978),
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3. GRMHD

where lms is the specific angular momentum at the marginally stable Keplerian
orbit rms (Bardeen et al., 1972). Indicating with lmb the angular momentum at
the marginally bound Keplerian orbit, the disk will have a finite radial extension
only if Win < 0 for |l0| ≥ |lmb|, while for |lms| < |l0| < |lmb| the disk will be discon-
nected from the black hole only if Win < Wcusp, where Wcusp is the value of the
potential at the cusp (Abramowicz et al., 1978). Fig. 3.2 shows some examples of
possible disk configurations for different values of its specific angular momentum.
Once the potential W is known in all space, we can calculate the enthalpy density
from Eq. (3.97), and the pressures p and pm from the corresponding equations of
state Eq. (3.95) and Eq. (3.96), while the four-velocity components will be given
by

ut = − 1

ut(1− Ω0l0)
, uφ = Ω0u

t, (3.107)

where Ω0 = Ω(l0) is computed from Eq. (3.80). The components of the magnetic
field four-vector are

bφ = ±
√

2pm
A

, bt = l0b
φ. (3.108)

Finally, although not necessary, we adopt in our study for simplicity the same
value for the barotropic exponents κ and ζ. Both quantities are set equal to the
specific heat ratio for a relativistic fluid Υ = 4/3, i.e. we can rewrite Eq. (3.97)
as

W −Win + 4
p+ pm
w

= 0. (3.109)
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4. Numerical methods

In this chapter we describe the numerical methods and algorithms used to con-
struct and evolve our disk models. Our study main tool is the ECHO code (Eulerian
Conservative High Order scheme) (Del Zanna and Bucciantini, 2002; Del Zanna
et al., 2003, 2007), specifically developed to treat magnetohydrodynamics prob-
lems in a general relativistic framework.
We first introduce the original scheme used to solve the ideal GRMHD equations
as presented in the original papers. Then we analyze the modifications necessary
to include non-ideal effects such as turbulent resistivity and mean-field dynamo
action (introduced in Chapter 2) and the corresponding numerical schemes re-
quired to solve the hyperbolic system. Finally, we present the main improvements
on the parallelization scheme that allowed us to perform the highly expensive 3-
dimensional computations that our studies required.

4.1. The code’s original version

The goal of the code is to time-integrate the set of GRMHD equations described
in Chapter 3, following the evolution of the fluid and electromagnetic quantities
that determine the state of an astrophysical plasma.
Let us first consider the first five equations from set (3.29), postponing a discus-
sion of the remaining ones to the sections concerned with the treatment of electric
and magnetic fields. Assuming a stationary metric and expanding the covariant
derivation operators, it is possible to rewrite them as (Del Zanna et al., 2007)

∂u

∂t
+

d∑
i=1

∂f i(u)

∂xi
= s, (4.1)
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where d is the dimensionality of the problem and the vectors u, f i, and s are
given by

u = γ1/2


D
Sj
U
Ej

Bj

 , (4.2)

f i = γ1/2


αviD − βiD
αW i

j − βiSj
αSi − βiU

[jik](−γ−1/2αBk + [klm]βlEm)
[jik](γ−1/2αEk + [klm]βlBm)

 , (4.3)

s = γ1/2


0

1
2
αW ik∂jγik + Si∂jβ

i − U∂jα
1
2
W ikβj∂jγik +W j

i ∂jβ
i − Sj∂jα

qβj − αJ j
0

 , (4.4)

Eq. (4.1) is a set of hyperbolic partial differential equations (PDEs) where the
elements of the vector u are referred to as the conservative variables, since their
time evolution is controlled by a conservation law with fluxes f i and source terms
s. The importance of the 3+1 decomposition of the covariant GRMHD equations
(3.26) introduced in Chapter 3 is now evident, because the covariant formalism is
not compatible with the traditional numerical schemes used to solve the classical
MHD equations.

4.1.1. Discretization and time integration

Let us consider, for the sake of simplicity, the unidimensional case of (4.1) with
d = 1 and divide the domain defined by the interval [a, b] in N cells Ii =
[xi−1/2, xi+1/2]. Let us assume that the intervalls have equal length ∆x = (b−a)/N
and are each centered at the grid point

xi = a+ (i− 1/2)∆x with i = 1, . . . , N. (4.5)

Calling r the spatial accuracy order, the point value of a generic quantity g(x)
at a given time t is gi = g(xi) + O((∆x)r) and its interface values are gi±1/2 =
g(xi±1/2) +O((∆x)r).
We are now looking for a spatial discretization of (4.1) on this grid. For the
moment we neglect the source terms, since they will not need to be discretized
but they are computed at the cell centers xi.
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4.1. The code’s original version

The discretization scheme implemented in ECHO is a so-called finite difference one.
To calculate spatial derivatives of a flux we expand it into a Taylor series

∂f

∂t
(xi) =

fi+1/2 − fi−1/2

∆x
+O((∆x)2), (4.6)

and express Eq. (4.1) as

∂ui
∂t

= −
f̂i+1/2 − f̂i−1/2

∆x
, (4.7)

where f̂i±1/2 represents an approximation of the primitive of physical flux function
f(x) at the right (left) interface of the i-th cell. This means that the cell averages
of f̂ must concide with the point value fi of the flux f(x), to the given accuracy.
This simple discretization provides a scheme of 2nd order accuracy. To achieve
higher orders it is necessary to consider further terms in the expansion in Eq. (4.6).
Once the quantities f̂i±1/2 are known, it is possible to perform the time integration
as described in Eq. (4.7), but it is clear from Eq. (4.3) that to compute the fluxes
it is necessary to calculate the so-called primitive variables

p = {ρ, vj, p, Ej, Bj}, (4.8)

where ρ, v and p are respectively the rest mass density, the velocity, and the
pressure of the fluid, while E and B are the usual electric and magnetic fields.
Since the code evolves the conservative variables u, one has first to invert the
relation between u and p by using Eq. (3.36).
The interface value of the primitive variables can be retrieved by means of poly-
nomial interpolation during the reconstruction phase of the algorithm. As a
consequence there will be in general two different states at both sides of each cell
interface (as the fluid equations allow for discontinuous solutions) and at the low-
est order we can identify them with pLi+1/2 = pi and pRi+1/2 = pi+1. To achieve a
higher accuracy it is necessary to compute the left and right states using stencils
of grid points centered respectively at xi and xi+1. In this way the interface values
are computed with high order accuracy in the sufficiently smooth regions of the
computational domain, while in the presence of strong gradients the algorithm
has to limit the interpolation to 1st order to ensure stability and avoid spurious
oscillations. The ECHO code (in the original implementation of Del Zanna et al.
(2007)) allows for a large number of different reconstruction schemes to be used,
such as 2nd order TVD (Total Variation Diminishing, Harten (1983)), 3rd order
CENO (Convex Essentially Non-Oscillatory, Liu and Osher (1998)), 3rd order
PPM (Piece-wise Parabolic Method, Colella and Woodward (1984)) and 5th order
MPE (Minimal Polynomial Extrapolation, Suresh and Huynh (1997)).
The discontinuities at the cell interfaces define a set of local Riemann problems.
To better describe the structure of this problem, let us consider (4.1) rewritten
as

∂u

∂t
+
∂f

∂u

∂u

∂x
= 0, (4.9)
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which is a hyperbolic system of n PDEs (where n coincides with the number
of conservative variables) whose solution requires the computation of n real and
distinct eigenvalues of the Jacobian ∂f/∂u (which in general depends on both
the primitive and conservative variables). The eigenvalues are referred to as the
characteristic velocities of the system, as they represent the speeds at which the
information is transported by the fluid fluxes through the characteristic waves of
the system, i.e. the eigenvectors.
Although there are algorithms that provide a numerically exact solution to this
problem, their computational cost makes them unsuitable for the GRMHD con-
text. A far more appropriate and affordable choice is the approximate Riemann
solver HLL (Harten and van Leer, 1983) implemented in ECHO, since it only cal-
culates the fastest and slowest characteristic velocity (respectively a+ and a−). It
is still necessary though to ensure that the information propagates in the correct
direction, a property that makes a scheme to be called upwind. The application
of the HLL solver finally provides with the value of the flux at the cell interface
(Londrillo and del Zanna, 2004)

fHLL =
a+fL + a−fR − a+a−

(
uR − uL

)
a+ + a−

. (4.10)

Finally we are ready to perform the time-integration of the conservative quanti-
ties, for instance with a 3rd order explicit Runge-Kutta scheme

u(1) = un + ∆tL[un], (4.11)

u(2) = 3
4
un + 1

4
u(1) + 1

4
∆tL[u(1)], (4.12)

un+1 = 1
3
un + 2

3
u(2) + 2

3
∆tL[u(2)], (4.13)

where the n index denotes the time step iteration, u(1) and u(2) are intermediate
states, and L[u] is the member on the right-hand side of Eq. (4.7) plus the proper
source term s.

4.1.2. Magnetic field treatment

Contrary to the other variables evolved in time, the magnetic field B has also to
fulfill at all times the constraint given by Eq. (3.29f), which formally could be re-
garded as an initial condition: the structure of the induction equation guarantees
the analytical null divergence of B. From a numerical perspective this is in gen-
eral not true, since for upwind schemes the derivations in different directions are
no longer commutable, so that spurious magnetic monopoles can appear during
the computation. To properly deal with this problem the Upwind Constrained
Transport scheme (UCT, presented by Londrillo and del Zanna (2004)) was im-
plemented in ECHO.

52



4.1. The code’s original version

For this method it is convenient to introduce the quantities

Bi = γ1/2Bi, (4.14)

Ei = αEi + εijkβ
jBk, (4.15)

to rewrite (3.29d) and (3.29f) as

∂tBi + [ijk]∂jEk = 0, (4.16)

∂iBi = 0. (4.17)

We now integrate over the cell Ii,j,k with center at the point Pi,j,k ≡ (xi, yj, zk),
apply Stoke’s theorem and assume for simplicity a 2nd order accuracy, obtaining
for the x-component of B

dBx
dt

= −∆yEz
∆y

+
∆zEy
∆z

, (4.18)

where Bx is evaluated at the middle of the interface between cell Ii,j,k and Ii+1,j,k

(i.e. at Pi+1/2,j,k), while Ez and Ey are evaluated respectively at Pi+1/2,j+1/2,k and
Pi+1/2,j,k+1/2. The operator ∆x centered at Pi,j,k is defined by

[∆xf ]i,j,k = fi+1/2,j,k − fi−1/2,j,k. (4.19)

Extending this calculation to the remaining two components of B and considering
the time derivative of the spatially discretized solenoidal constraint, we obtain

d

dt

(
∆xBx
∆x

+
∆yBy
∆y

+
∆zBz
∆z

)
= 0, (4.20)

which guarantees Eq. (4.17) to be algebraically satisfied for all times, assuming
B(t = 0) to be divergence free. For this reason the quantities evolved in time
with the CT method (Constrained Transport) are the staggered components

[Bx]i+1/2,j,k, [By]i,j+1/2,k, [Bz]i,j,k+1/2, (4.21)

which represent the point values of the components of B evaluated respectively
at Pi+1/2,j,k, Pi,j+1/2,k and Pi,j,k+1/2, i.e. the centers of the interfaces orthogonal
to the corresponding magnetic field component.
It can be shown (Londrillo and del Zanna, 2004) that the staggered components
have the important property of being continuous along the normal to the interface
on which they are defined. Hence, the left and right states coincide and need not
to be reconstructed as the other variables for the fluxes calculation. The obvious
drawback is that when the values of the magnetic field components are required
at the cell center Pi,j,k (for instance, when the data are written into an output
file) they can be retrieved only by an interpolation step.
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4.2. Electric field treatment

We now describe one of the main modifications applied to the original version of
ECHO, which allows one to include a finite value of resistivity in the description of
the astrophysical plasma.
In the original version of the code an explicit 3rd order Runge-Kutta algorithm, as
described by Eq. (4.11)), (4.12) and (4.13), is used to perform the time integration
of the spatially discretized GRMHD equations, which are therefore translated
from the original system of hyperbolic PDEs to one of ODEs. Despite being a
method commonly used in the solution of problems involving perfectly conducting
plasmas, it is not suitable to deal with the introduction of magnetic resistivity
in the GRMHD equations. In fact, if we consider Eq. (3.58), the evolution time
scales in regions of high and low conductivity can significantly differ. The terms
which are proportional to the inverse of η, in general, can be orders of magnitude
larger than the flux term αB − β × E or the source term (αv − β)q in those
regions where the resistivity is sufficiently small, with negative consequences for
the integration stability.
In order to provide stability and efficiency to the solution of the resistive GRMHD
equations we introduce the IMEX Runge-Kutta schemes (Pareschi and Russo,
2005) (IMplicit EXplicit) in ECHO. These schemes were explicitly developed for
the integration of stiff ODE, i.e. differential equations with terms that can evolve
on very different time scales and hence lead to numerical instability.

4.2.1. Hyperbolic systems with stiff terms

A typical stiff differential equation may be written as

∂tU = Q(U) +R(U), (4.22)

where Q depends linearly on the first derivative of U , while R does not include
derivatives of U and is proportional to the reciprocal of the so-called relaxation
time τrel. In the case of the resistive GRMHD equations, τrel can be regarded as
the resistivity η, U as the vector of conservative variables, Q as the sum of the
divergence and the non-stiff source terms, while R represents the remaining stiff
source terms proportional to the reciprocal of η.
For a perfectly non-conducting plasma (i.e. in the limit τrel →∞) the system is
hyperbolic, and information propagation is limited by a characteristic speed ch.
Calling L the length-scale of the system, there will be a corresponding relaxation
time defined by τ ≡ L/ch. On the contrary in the limit τrel → 0 the system will
be stiff, since the time scale of the term R is in general much smaller that the
hyperbolic time scale τh. To provide numerical stability for an explicit integration
scheme it will be necessary to set ∆t ≤ τrel, where ∆t is the integration time step.
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4.2. Electric field treatment

However, such a constraint can be far more restrictive than the usual Courant-
Friederichs-Lewy (CFL) stability condition ∆t ≤ ∆x/ch used in the non resistive
case, since the minimum time step that allows for a stable integration will be
reduced by up to a few orders of magnitude for sufficiently small values of η.

4.2.2. IMEX schemes

To integrate the stiff equations of resistive GRMHD without numerical insta-
bilities with reasonable computing resources, we substitute the original explicit
3rd order Runge-Kutta algorithm with the IMEX scheme (Rezzolla and Zanotti,
2013).
Let us separate the conservative variables U into subgroups {X,Y }, where X
represents variables whose evolution is governed by a stiff differential equation
(in our case the vector γ1/2E ), and Y stands for all other variables. We rewrite
Eq. (4.22) for these two variables in the form

∂tY = QY (X,Y ), (4.23)

∂tX = QX(X,Y ) +RX(X,Y ), (4.24)

where the operators QY and QX contain spatial derivatives of the fluxes and
the non-stiff source terms respectively of Y and X, while RX contains the stiff
source terms which regulateX. In the most general case of a resistive plasma with
mean-field dynamo action, a comparison with Eq. (3.58) provides the following
form for the latter operator

RX ≡ −γ1/2αΓ{E + v ×B − (E · v)v − ξ[B − v ×E − (B · v)v]}/η. (4.25)

Each intermediate step of the IMEX Runge-Kutta method can now be divided
in two parts:

1. First we explicitly calculate the intermediate values {X(i)
∗ ,Y

(i)
∗ } for each

intermediate step i according to

Y (i)
∗ = Y n + ∆t

i−1∑
j=1

ãijQY [U (j)], (4.26)

X(i)
∗ = Xn + ∆t

i−1∑
j=1

ãijQX [U (j)] + ∆t
i−1∑
j=1

aijRX [U (j)]. (4.27)

The summation up to the (i−1)-th term guarantees the absence of implicit
terms, while Ã ≡ (ãij) and A ≡ (aij) are ν × ν matrices whose dimensions
and coefficients will depend on the specific accuracy of the scheme and the
number of intermediate steps.
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2. Then we perform the implicit integration. The non-stiff variables can be
regarded as completely evolved (as far as the intermediate step is concerned)
and having the same status as those on the left-hand side of Eq. (4.11) and
Eq. (4.12)

Y (i) = Y (i)
∗ . (4.28)

The stiff variables have to be integrated further

X(i) = X(i)
∗ + aii∆tRX(X(i),Y (i)

∗ ). (4.29)

Since the vector X(i) appears in the operator RX it will be necessary at
each intermediate step to invert this system to retrieve the value of the
evolved stiff variable.

After computing in each intermediate step i the two vectors {X(i),Y (i)}, the final
value of the conservative variable U at the time t+ ∆t is given by

Un+1 = Un + ∆t
ν∑
i=1

ω̃iQ(U (i)) + ∆t
ν∑
i=1

ωiR(U (i)), (4.30)

where ωi and ω̃i are constant coefficients that along with the matrices A and Ã
completely define the specific numerical scheme.
There are a large number of possible IMEX schemes in the literature, which
differ in the number of intermediate steps, and their spatial and temporal order
of accuracy. In the case of ECHO we implemented three different IMEX schemes of
SSP type (Strong Stability Preserving, see Spiteri and Ruuth (2003)), which are
high-order schemes for the integration of semi-discretized hyperbolic differential
equations that preserve strong stability and avoid spurious oscillations. Each
scheme is identified by the standard notation SSPk(s, σ, p), where k represents
the order of the SSP scheme, s is the number of implicit steps, σ is the number of
explicit steps and p is the order of the IMEX scheme (Pareschi and Russo, 2005).
To display all the coefficients that define a particular scheme we use the following
notation (which is a modified version of the standard notation by Butcher (2000))

SSPk(s,σ,p):
Ã A

ω̃ ω
.
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SSP2(2,2,2):

0 0 µ 0
1 0 1-2µ µ

1/2 1/2 1/2 1/2

SSP3(3,3,2):

0 0 0 µ 0 0
1 0 0 1-2µ µ 0

1/4 1/4 0 1/2-µ 0 µ

1/6 1/6 2/3 1/6 1/6 2/3

SSP3(4,3,3):

0 0 0 0 δ 0 0 0
0 0 0 0 −δ δ 0 0
0 1 0 0 0 1-δ δ 0
0 1/4 1/4 0 ζ λ 1/2− ζ − λ− δ δ

0 1/6 1/6 2/3 0 1/6 1/6 2/3

µ ≡ 1− 1/
√

2

δ ≡ 0.24169426078821

ζ ≡ 0.06042356519705

λ ≡ 0.12915286960590

Figure 4.1.: Coefficient tables for the three IMEX schemes implemented in ECHO.

If we, for instance, choose the IMEX SSP2(2,2,2) scheme (see Fig. 4.1), the se-
quence of integration steps is

Y (1) = Y n, (4.31)

X(1) = Xn + ∆tµRX(Y (1),X(1)), (4.32)

Y (2) = Y n + ∆tQY (Y (1),X(1)), (4.33)

X(2) = Xn + ∆tQX(Y (1),X(1)), (4.34)

+∆t
[
(1− 2µ)RX(Y (1),X(1)) + µRX(Y (2),X(2))

]
, (4.35)

Y n+1 = Y n + ∆t
2

[
QY (Y (1),X(1)) +QY (Y (2),X(2))

]
, (4.36)

Xn+1 = Xn + ∆t
2

[
QX(Y (1),X(1)) +QX(Y (2),X(2))

]
, (4.37)

+∆t
2

[
RX(Y (1),X(1)) +RX(Y (2),X(2))

]
. (4.38)

If we finally consider the IMEX-SSP3(4,3,3) scheme, it is interesting to verify
how its explicit integration phase coincides with the traditional explicit 3rd or-
der Runge-Kutta scheme adopted in the original version of ECHO. The explicit
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intermediate steps of this IMEX scheme are given by

U (1) = Un, (4.39)

U (2) = Un, (4.40)

U (3) = Un + ∆tQU(U (1)), (4.41)

U (4) = Un + ∆t
[

1
4
QU(U (2)) + 1

4
QU(U (3))

]
, (4.42)

U (n+1) = Un + ∆t
[

1
6
QU(U (2)) + 1

6
QU(U (3)) + 2

3
QU(U (4))

]
, (4.43)

and from Eq. Eq. (4.42) we get

1
6
∆tQU(U (3)) = 2

3
U (4) − 2

3
Un − 1

6
∆tQU(U (2)). (4.44)

If we replace Eq. (4.44) into Eq. (4.43) we obtain

U (n+1) = 1
3
Un + 2

3
U (4) + 2

3
∆tQU(U (4)), (4.45)

which exactly corresponds to Eq. Eq. (4.13) once we rename U (3) → U (1) and
U (4) → U (2).

4.2.3. Implicit step

We now analyze in detail the implicit integration performed in the IMEX schemes
to compute the evolution of the electric field E.
First we perform a 1st order discretization of the time derivative in Eq. (3.58).
We evaluate the non-stiff terms at the initial time t of the integration procedure
(explicit discretization) using the index (0). The quantities in the stiff terms
are calculated at the time t + ∆t (implicit discretization) and labeled with (1).
Expanding in components we get

Ei(1) = Qi(0)

−
[
Γ(1)Ei(1) + εijkṽ

(1)
j B

(1)
k −

(
Ek(1)ṽ

(1)
k

)
ṽi(1)/Γ(1)

]
/η̃

+ξ
[
Γ(1)Bi(1) − εijkṽ(1)

j E
(1)
k −

(
Bk(1)ṽ

(1)
k

)
ṽi(1)/Γ(1)

]
/η̃,

(4.46)

where we should actually write η̃ = η̃(1) and ξ̃ = ξ̃(1), since these coefficients may
depend on quantities such as temperature, density, or magnetic field. The other
quantities in Eq. (4.46) are

ṽi = Γvi, (4.47)

ṽi = Γvi, (4.48)

Γ2 = 1 + ṽiṽ
i, (4.49)

Qi = Ei + ∆t
[
−(αvi − βi)q + εijk∂j

(
αBk − εklmβlEm

)]
, (4.50)

q = γ−1/2∂k(γ
1/2Ek), (4.51)

1/η̃ = ∆tα/η. (4.52)
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Solving Eq. (4.46) for Ei, we obtain after some lengthy algebraic calculation

Ei[Γ + η̃+ξ2(Γ2 − 1)/(Γ + η̃)] =

−εijkṽjBk + η̃
[
Qi +

(
Qkṽk

)
ṽi/(1 + η̃Γ)

]
+ξ
[
ΓBi − η̃

(
Bkṽk

)
ṽi/(1 + η̃Γ)

]
−ξ
[
(Γ2 − 1)Bi −

(
Bkṽk

)
ṽi + η̃εijkṽjQk

]
/(Γ + η̃)

−ξ2
[
ΓεijkṽjBk

]
/(Γ + η̃)

+ξ2
[
η̃Γ
(
Qkṽk

)
+ ξ

(
Bkṽk

)]
ṽi/[(1 + η̃Γ)(Γ + η̃)],

(4.53)

where we renamed Qi(0) → Qi and dropped the (0) and (1) labels for simplicity.
In the case of pure resistive GRMHD (ξ = 0) many terms can be neglected, and
Eq. (4.53) reduces to

Ei(Γ + η̃) = −εijkṽjBk + η̃
[
Qi +

(
Qkṽk

)
ṽi/(1 + η̃Γ)

]
, (4.54)

and if we consider a perfectly conducting plasma (η = 0) we are left with the
usual relation Ei = −εijkṽjBk.
With the aid of Eq. (4.53) we can finally perform the implicit integration Eq. (4.29).
Since the primitive variables appear in the expression for the computation of the
electric field but are available only at the end of the intermediate integration
step, Eq. (4.53) will need to be solved at the same time as the inversion from
conservative to primitive variables is performed:

{D,Si, U, Ei, Bi} ⇒ {ρ, vi, p, Ei, Bi}. (4.55)

For this reason it will be necessary to adopt an iterative numerical procedure
(Palenzuela et al., 2009; Bucciantini et al., 2012):

• First we choose as a guess for the velocity the value from the previous step,
i.e. v0 = vn.

• Next we retrieve its current value by inversion of the relation defining the
momentum density in Eq. (3.37), i.e. we need to find the zeros of the
functions

fi(v) = ρhΓ2vi + εijkE
jBk − Si, (4.56)

where the index i runs from 1 to 3. We select as equation of state a standard
polytropic law for a perfect gas

p(ρ, ε) = (Υ− 1)ρε, (4.57)

where we set the adiabatic index Υ = 4/3, as it is appropriate for a rela-
tivistic fluid. This allows us to express the specific enthalpy solely in terms
of density and pressure

h = 1 +
Υ

Υ− 1

p

ρ
. (4.58)
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Considering now the definition of relativistic energy density from Eq. (3.38),
after some algebra we can express Eq. (4.56) in terms of the velocity com-
ponents and the conservatives variables only, that is

fi(x) =
Γ[U − 1

2
(E2 +B2)]− Υ−1

Υ
D

Γ2 − Υ−1
Υ

xi + εijkE
jBk − Si, (4.59)

where we introduced the variables xi = (1 − v2)1/2vi, since their value can
range from −∞ to +∞ providing a numerically more stable procedure.

• To find the roots of Eq. (4.59) we use a multidimensional Newton-Raphson
scheme. After computing the Jacobian matrix Jik = ∂fi/∂xi we perform a
LU decomposition to invert it, and we calculate a new guess by

x′i = x0i + J−1
ik fk(x0). (4.60)

• For each new guess of xi we compute the electric field according to Eq. (4.53).
The iteration is stopped when a tolerance of |δx| < 10−10 is reached.

• From the converged value of the velocity v, we compute the final values for
density and pressure

ρ =
D

Γ
, (4.61)

p =
U − 1

2
(E2 +B2)− Γ2ρ

Γ2Υ
Υ−1
− 1

. (4.62)

The inversion from conservative to primitive variables is usually the most delicate
and computationally expensive part of a standard GRMHD code. During this
procedure it is possible for the numerical algorithm to fail in providing physically
acceptable values for the gas pressure, i.e. non-negative ones. As we can see from
Eq. (4.62), this may happen whenever the magnetization value in the grid cell is
so high that the magnetic energy density Uem = 1

2
(E2 + B2) almost matches the

total energy density U . In these cases there could be a numerical overshooting
in the evaluation of the quantity U −Uem that could lead to a negative pressure.
To avoid this, ECHO evolves along with the standard GRMHD equations also the
conservation law for the entropy density:

∇µ(ρsuµ) = 0 (4.63)

where s = p/ρΥ. The adiabatic condition Eq. (4.63) is equivalent to the total
energy conservation in absence of shocks or other sources of dissipation, and
hence it is used whenever the use of the energy equation fails. We found that
this procedure solved the vast majority of numerical issues related to this part of
the algorithm. In the very few cases when this solution does not work either, we
simply reset the primitives to their values at the previous time step.
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4.3. Parallelization scheme

The latest development of the numerical algorithms in ECHO concerns a significant
upgrade of its parallelization scheme, whose design and implementation has been
worked out in collaboration with Dr. Fabio Baruffa and Dr. Markus Rampp at
the Max Planck Computing and Data Facility (MPCDF) and the AstroLab group
at the Leibniz Rechenzentrum (LRZ), Garching.
The main motivation behind this improvement were the computational costs of
three-dimensional simulations, which are required to investigate non-axisymmetric
modes in magnetized thick tori around black holes. The original version of ECHO
included only the possibility to parallelize along one axis of the numerical do-
main (along x for Cartesian grids, along r for cylindrical and spherical ones),
since most of the simulations performed with the code were restricted to two-
dimensional domains. This choice allows for a maximum number of MPI tasks
which is limited by the grid resolution along the direction to be parallelized, and
proved to be unsuitable for our study because of the following reason.
The minimum resolution required by properly resolved magnetized models is
∼ 2563 grid points. A one-dimensional MPI decomposition, as in the original
version of ECHO, would allow for a maximum number of MPI tasks given by

NMPI
max =

Nx

ng

, (4.64)

where Nx is the number of grid points along x (including ghost zones), and ng

is the number of ghost cells required by the interpolation and reconstruction
routines. In practice, Eq. (4.64) gives an overestimate, since a significant amount
of time is spent by the code communicating the boundaries between MPI tasks,
making the effective maximum number of MPI tasks quite small. In the case of
a 2563 grid, NMPI

max ∼ 20, which proves to be inadequate to perform a series of
sufficiently long 3D GRMHD simulations, especially when a resistive plasma is
considered.

4.3.1. Multidimensional MPI domain-decomposition

The main improvement introduced in ECHO’s parallelization scheme is the im-
plementation of a multidimensional MPI domain-decomposition. This allows us
to increase the maximum number of MPI tasks that can efficiently be used for
a given grid resolution and to reduce the time spent during the communication
between neightbouring cells. Finally, this provided a mean to greatly reduce the
total runtime of a production run, i.e. it made it possible to perform a significant
number of tests and actual simulations.
The starting point of the parallelization scheme is the definition of the topology
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of the Cartesian grid of MPI tasks, whose dimensionality can range from 1 to
3. Via standard MPI Fortran routines each processor is given a specific rank
and coordinates in such a grid along with a portion of the numerical domain (or
sub-domain) to work on.
As long as the code does local calculations (e.g. Runge-Kutta integration, inver-
sion from conservative to primitive variables, etc.) each processor does not need
to interact with the others. When the primitives need to be reconstructed at the
cell interfaces or the staggered magnetic field components need to be interpolated,
the calculations require appropriate boundary informations from the ghost cells.
The ghost zones that lay at the borders of the numerical domain represent the
real physical boundaries, and they are filled with different values depending on
the particular physical condition required.
For example, let us consider a generic quantity Q = Q(xi) ≡ Qi and the problem
of selecting the correct values at the inner boundary along the x axis (i = 1). The
ghost zones will correspond then to the grid points x1−i (where i = 1, . . . , ng),
and we may apply one of the following different prescriptions:

• Positive reflecting boundary:

Q1−i = Qi. (4.65)

Example: the velocity component parallel to a reflective wall.

• Negative reflecting boundary:

Q1−i = −Qi. (4.66)

Example: the velocity component perpendicular to a reflective wall.

• Fixed boundary:

Q1−i = Q̃. (4.67)

Example: the pressure at the surface of a star (which would have Q̃ = 0).

• Open boundary (with different accuracy):

Q1−i =


Q1 (constant extrapolation)

2Q1−i −Q2−i (linear extrapolation)
3(Q1−i −Q2−i) +Q3−i (quadratic extrapolation)

(4.68)

Example: every quantity that is allowed to flow outside the boundary.

If the ghost zones are within the numerical domain due to the domain decom-
position (or in the special case of periodic boundaries), then each MPI task will
have to communicate with all its neighbors to send the values needed by the
others MPI tasks for their ghost zones, and in return receive the values to fill its
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own boundaries. This communication phase is performed along all axis of the
numerical domain for each MPI task anytime the boundary values are required.
This can take a non-negligible amount of computing time (with respect of the
total run-time of the application). Although a multidimensional decomposition
allows for a larger maximum number of MPI tasks, it is still recommended to
check how computationally expensive (in term of CPU time) the communication
phase is. A reasonable metric to evaluate a priori whether or not a particular
MPI decomposition is of advantage can be obtained by computing the ratio be-
tween the volume of data that need to be communicated and the volume of data
that form the local sub-domain. Let us consider a grid resolution N3, ng ghost
cells per boundary, and an MPI domain decomposition into N total tasks. Let
us call nx, ny and nz, respectively, the number of MPI tasks along the x, y, and
z direction, which may differ one from each other, and is equal to 1 in case that
direction is not split by the decomposition. The total data-volume that each MPI
task will need to communicate for a given dimensionality d is

Vghost = 2ngN
2 ×


1 for d = 1(

1
ny

+ 1
nz

)
for d = 2(

1
nxny

+ 1
nxnz

+ 1
nynz

)
for d = 3

(4.69)

where we assumed a 1-dimensional decomposition done along the z axis and the
2-dimensional one along the y and z axis 1. If we now divide Vghost by the data-
volume of the local domain Vdom = N3/N we obtain

χ ≡ Vghost

Vdom

=
2ng

N
×


nz for d = 1

(ny + nz) for d = 2
(nx + ny + nz) for d = 3

≡ 2ng

N

d∑
i=1

ni (4.70)

The volume of all communicated ghost zones for a given local domain can equal
at most the volume of the domain times twice the dimensionality of the decom-
position. If the domain size is shrunk even further, there would not be enough
grid points to communicate to the nearest neighbors. Therefore, we define the
quantity

χ̃ =
ng
Nd

d∑
i=1

ni, (4.71)

which is normalized to 1 for any decomposition dimensionality. For the paral-
lelization setup to be effective, the value of χ̃ has to be sufficiently small, otherwise
the code will start being communication dominated instead of computation domi-
nated, i.e. a large fraction of the run-time will be used to exchange the boundary
conditions between MPI tasks instead of performing actual computations.

1This choice is suggested by the way the Fortran language stores arrays in the computer
memory.
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4.3.2. Parallel I/O

Another bottleneck that has to be considered when performing 3D MHD simu-
lations is the handling of data output. For a typical non-ideal GRMHD run on
a 2563 grid a single output file has to contain 11 variables defined on the whole
domain (ρ,v, p,E,B), which for a single precision floating-point accuracy means
a file-size of ∼ 740 MB. An attempt to write the whole file in a serial fashion
using a single master MPI task that collects all the data and outputs them into
a file will lead to two major practical problems:

• The local memory accessible by the processor may not be large enough to
store all the data, since at the same time the code has a large number of
quantities that need to be kept in memory for the next computation steps.

• Writing on file such an amount of data with a single processor may consid-
erably affect the performance of the code, requiring first a communication
phase between all the MPI tasks to collect the data and then the actual
writing phase.

For these reasons we decided to fully take advantage of the parallelization scheme
used during the code’s computation and let each MPI task individually write out
its data on the same file. To achieve this goal we adopted the HDF52 standard to
write our output files (instead of the original plain unformatted binary files) and
made use of the HDF5-MPI library. The HDF5 standard is a tool that allows storing
data in structured binary files, i.e. files that are compact as binary files but whose
content is organized in groups and datasets that can be easily accessed by simple
terminal commands. Such an approach allows each MPI task to write its own
data on a particular slab of the output file in parallel, significantly decreasing
the amount of time that the code spends dealing with the output phase of the
simulation.

4.3.3. Scaling

To quantify the performance of the parallelization scheme, we ran a scaling test
with increasing number of MPI tasks, also increasing the grid resolution.
There are two important characteristics of a well-behaved parallel code that we
are interested in:

• Strong scaling : ideally the value of run-time per iteration should be inversely
proportional to the number of cores used. Deviations from this trend can
be due to a non-optimal implementation of the communication routines.

2https://www.hdfgroup.org
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We note that there is always a saturation point beyond which the code
becomes communication-dominated, which we mentioned when introducing
the χ̃ parameter.

• Weak scaling : ideally the value of run-time per iteration should stay con-
stant for the same ratio of number of grid zones N3 over number of cores N .
This statement represents the expectation that when the volume of work-
load is increased by a certain factor, increasing accordingly the number of
MPI tasks working on it should compensate for it. Deviations from this
behavior are usually a good indicator for margins of improvement in the
scheme.

We run two different tests, the first on the Hydra3 cluster hosted by the Max
Planck Computing and Data Facility (MPDCF), and the second one on Super-
Muc4 at the Leibniz Rechenzentrum (LRZ). Both tests involved the solution of
a standard MHD problem, i.e. the propagation of an Alfvèn wave through a
3-dimensional domain.
On Hydra we used two different resolutions (2563 and 5123 grid points) running
on a number of cores that ranged from 20 (corresponding to a single node) up
to 5120 (hence 256 nodes) using a 2D MPI domain decomposition. Concerning
the numerical algorithms, we opted for a 3rd order Runge-Kutta scheme coupled
to an MPE5 reconstruction (requiring three ghost cells) and an HLL Riemann
solver. The results for the test on the Hydra cluster are shown in Fig. 4.2. For the
lower resolution run the code proved to have a perfect strong scaling up to 160
cores, but started to be communication dominated for larger numbers of cores.
The same sort of saturation is exhibited by the high-resolution run, although for
a smaller relative number of cores. Overall we obtained a good weak scaling for
a ratio of grid points to number of cores down to N3/N = 2563/160 ' 105, then
the high-resolution run started to be communication dominated.
On SuperMuc we performed the same physical test but with a few differences.

To match the setup of the productions runs involving the evolution of magnetized
disks, we used a 2nd order Runge-Kutta scheme coupled to a PPM reconstruction
(still requiring 3 ghost cells). Furthermore, in addition to the two-dimensional
domain decomposition (2DD) tested on Hydra we also checked the performance
of the more recent three-dimensional one (3DD). The number of cores ranged
from 128 (8 nodes) to 8196 (512 nodes, corresponding to one full island). As we
can see from Fig. 4.3, the 3DD provides overall faster computation than the 2DD,
allowing a nearly perfect weak scaling up to 4096 cores. The runs on the 2563

3The main part of the cluster, which was used for our tests, consists in ∼ 3500 nodes with
20 Intel Ivy Bridge cores @ 2.8 GHz and 64 GB memory each. Visit www.mpcdf.mpg.de/

services/computing/hydra/ for more details.
4The tests were launched on the Phase 1 Thin nodes of the cluster. Each node mounts

16 Intel Sandy Bridge cores @ 2.7 GHz and 32 GB of memory. More info on https:

//www.lrz.de/services/compute/supermuc/systemdescription/.
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Figure 4.2.: Scaling plot on the Hydra cluster for the Alfvèn wave test with a 2D MPI domain
decomposition. The blue curve refers to a 2563 grid and the red curve to a 5123

grid. The dashed lines represent the ideal strong scaling, while the dotted ones
correspond to the ideal weak scaling.

grid show very little saturation up to 2048 cores, beyond which the χ̃ parameter
reaches values greater than ∼ 0.25 for the 2DD and leads to a significant devia-
tion from the strong scaling limit.
As further metric for the good behavior of the code, we computed for each run

the quantity

ε =
IN3

N t
, (4.72)

where I is the number of iterations and t is the runtime of the simulation. Ide-
ally, the ratio between the number of zone cycles (IN3) and the CPU-time (N t)
should be a constant of the code, independent of the particular problem or paral-
lelization scheme. For this reason the parameter ε can be referred to as the code
efficiency. As shown in Fig. 4.4, the value of ε for the 3DD varies much less than
in the 2DD case. Apart from the lat run at 8196 cores, the 3DD provided a mean
value of ε ∼ 3.7× 104 with variations on at most δε ∼ 5%.
It is important to notice that with a one-dimensional MPI domain decomposition
the maximum number of cores at disposal would have been at most 85 and 170
respectively (for the two resolutions considered). In addition to this, the perfor-
mance would be extremely poor for such a configuration, since each task would
have to communicate the whole domain of the neighbour; this clearly shows how
important the improvement of the parallelization scheme has been, and in gen-
eral how a higher dimensionality in the domain decomposition leads to systematic
better performances of the code.
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Figure 4.3.: Scaling plot on the SuperMuc cluster for the Alfvèn wave problem with both a 2D
(circles) and 3D (squares) MPI domain decomposition. The blue curves refer to a
2563 grid and the red curves to a 5123 grid. The dashed lines represent the ideal
strong scaling, while the dotted ones correspond to the ideal weak scaling.

Figure 4.4.: Plot of the code’s efficiency ε vs the number of cores for a 2D (circles) and 3D
(squares) MPI domain decomposition. The blue curves refer to a 2563 grid and the
red curves to a 5123 grid.
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We finally present the results from two different sets of numerical simulations,
which employed respectively the non-ideal covariant Ohm’s closure described in
Chapter 3 and the novel parallelization scheme mentioned in Chapter 4. The for-
mer study tackles the problem of magnetic field amplification in accretion disks
and was conducted in the kinematic regime in axisymmetry. The goal of the
latter is instead to analyze the fully dynamical non-axisymmetric behavior of
thick magnetized accretion disks in absence of non-ideal effects, in order to as-
sess the mutual interaction between PPI and MRI. Although addressing different
problems, they both consider the same thick magnetized disk models that we con-
structed in Chapter 3, and therefore they can be considered as complementary
to each other.

5.1. Kinematic αΩ-dynamo in thick disks

The first application of the covariant non-ideal Ohm’s law closure (3.56) in the
context of accretion disks is a study of the kinematic αΩ-dynamo in thick disks
in axisymmetry. This work has been published during the course of my doctoral
studies:
M. Bugli, L. Del Zanna, and N. Bucciantini. ”Dynamo action in thick discs
around Kerr black holes: high-order resistive GRMHD simulations”. MNRAS,
440:L41–L45, may 2014.
The restriction to the kinematic regime means that we keep the fluid quantities
ρ, v, and p fixed in time, and we neglect the back-reaction of the evolution of
the e.m. fields on them. Hence, we only integrate Maxwell equations and focus
on the linear growth phase of the magnetic field. For this study we used the
high-order SSP3(4, 3, 3) IMEX scheme, coupled to the HLL Riemann solver and
the MPE5 reconstruction algorithm. The simulations performed for this study
had an extremely low computational cost (in fact, they were carried out on a
personal laptop with dual-core processor).
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Table 5.1.: Setups of the αΩ-dynamo models.

Initial B ηdisk ξdisk

Model 1 BT 10−3 10−3

Model 2 BT 10−3 −10−3

Model 3 BT 10−3 5× 10−3

Model 4 BT 10−3 2× 10−4

Model 5 BT 5× 10−3 5× 10−3

Model 6 BT 2× 10−4 2× 10−4

Model 7 BP 10−3 10−3

Model 8 BP 10−3 5× 10−3

Model 9 BP 10−3 2× 10−4

Model 10 BP 10−3 −10−3

5.1.1. Initial setup

The initial model is a magnetized thick torus, as described in Chapter 3, orbiting
around a Kerr black hole of mass M and spin a = 0.99. The disk’s inner edge
and center are at rin = 3 M and rc = 5 M , respectively. Since we are adopting
the Cowling approximation, i.e. neglecting the self gravity of the disk, we are
also disregarding any change in the central black hole mass due to accretion and
hence we can freely rescale the density to an arbitrary value. To avoid numerical
underflows we set the central density of the disk to ρc = 1, while the atmosphere
is initialized as an isentropic stationary gas of density ρatm = 10−5.
We use Boyer-Lindquist spherical coordinates and a two-dimensional computa-
tional domain that extends in the radial direction r ∈ [rh + 1.5, 25]M and polar
direction θ ∈ [π/4− 0.2, 3π/4 + 0.2]. A modest resolution of 1202 grid points was
enough to capture the dynamics of the system with sufficient accuracy. Further
runs at higher resolution (2002 grid points) delivered the same qualitative and
quantitative results. The numerical grid is uniform along θ but refined along
r, that is we used a finer grid close to the black hole and coarser one towards
the outer radial edge of the domain. This was achieved by defining the radial
coordinates ri of the grid points as

ri = rmin +
(rmax − rmin)

ψ
tan (mi arctanψ) , (5.1)

where

mi =
xi − rmin
rmax − rmin

. (5.2)
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Figure 5.1.: Initial profile of Bφ̂ for the models initialized with a purely toroidal magnetic field,

normalized by the maximum of |BT | ≡ |Bφ̂|. The solid semi-circle represents the
black hole event horizon r+ = 1 M , while the dashed curves are the boundaries of
the numerical domain. Finally, the dotted line represents the disk’s edge, identified
as the region beyond which the density decreases below a value ρ∗ = 10−4ρc.

In these expressions rmin = r+ + 1.5, rmax = 25, xi are the values of the cell
centers for a uniform grid and ψ is a stretching factor whose value is set to 10.

We used two different magnetic configurations. Some disks were initialized
according to the model by Komissarov (2006) with a purely toroidal field BT

with central magnetization σc = 1 (Fig. 5.1). This choice for σc was made to
ensure a better numerical stability required by the high-order schemes we used,
but it is clearly in contrast with the assumption of kinematic regime. In fact
it leads to a magnetic pressure equal to the thermal one. However, since we
only integrate Maxwell’s equations, σc only sets the initial value of the magnetic
field and our results, appropriately normalized, provide an accurate estimate of
the behavior of the magnetic field. Some models were instead initialized with
a poloidal magnetic field. To construct it we considered an azimuthal vector
potential of the form A = Aêφ, with A ∝ p2 and p as the fluid pressure (Fig. 5.2).
The magnitude of the toroidal and poloidal magnetic fields can be expressed in
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Figure 5.2.: Initial profiles of Br̂ and Bθ̂ for the models initialized with a purely poloidal mag-

netic field, normalized by the maximum of |BP | ≡
√
B2
r̂ +B2

θ̂
.

terms of the orthonormal components as

BT = Bφ̂, (5.3)

BP =
√
B2
r̂ +B2

θ̂
, (5.4)

while the initial electric field E is set for all models to the ideal MHD value, i.e.
E = −v ×B.
Concerning the resistivity η, instead of imposing a constant value across the whole
domain, we decided to modulate it so concentrate the diffusion within the disk
and let the atmosphere behave as an ideal conducting fluid. For a given value of
resistivity ηdisk at the density maximum ρmax, we defined

η(r, θ) = ηdiskSη(r, θ), (5.5)

where

Sη(r, θ) =

√
ρ(r, θ)−√ρmin√
ρmax −

√
ρmin

, (5.6)

ρ is the disk rest mass density, and ρmin is the density minimum reached in the
atmosphere. The use of the IMEX schemes prevents us from explicitly imposing
a vanishing resistivity in the atmosphere, since η appears in the denominator in
Eq. (3.58). For this reason we imposed a constant value ηatmo = 10−5 in the
atmosphere, which was low enough to match the code’s numerical diffusion (for
the given numerical setup) and hence provide the same results as in the ideal
GRMHD case.
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We now consider the spatial dependence of the dynamo parameter ξ. Eq. (2.98)
requires that the sign of α changes at the passage through the equatorial plane, i.e.
ξ(r, π/2 + θ) = −ξ(r, π/2− θ). Hence, given the value of the dynamo parameter
at the density maximum ξdisk, we set

ξ(r, θ) = ξdiskSξ(r, θ), (5.7)

where

Sξ(r, θ) =
ρ(r, θ) cos θ

(ρ cos θ)max
, (5.8)

and (ρ cos θ)max is the maximum of the quantity ρ cos θ in the computational do-
main. Once again, we want to confine the action of the mean-field dynamo within
the disk. Therefore, we set ξatmo = 0 in the atmosphere (since a vanishing ξ is
compatible with Eq. (3.58)).

5.1.2. Results

Table 5.1 shows the models considered in this study and their parameters (initial
magnetic field topology, resistivity and dynamo parameter).
Let us focus in detail on Model 1, which presents an initial toroidal field BT ,
ηdisk = 10−3 and ξdisk = 10−3. Fig. 5.3, Fig. 5.4 and Fig. 5.5 show the profiles at
different times of the orthonormal components Bφ̂, Br̂, and Bθ̂. After an initial
transient, all three components present an oscillatory pattern that drifts from the
equatorial plane towards higher latitudes, i.e. an eigenmode of the system. We
note that Br̂ and Bθ̂ start from a vanishing value and grow due to the α-effect.
In Fig. 5.6 is displayed the evolution in time of the magnitude of the toroidal
and poloidal components of B. Both BT and BP increase exponentially with
time at the same growth rate γαΩ ' 0.39 P−1

c . It is interesting to note that the
toroidal field first decreases slightly before its exponential growth. This is due to
the effect of the resistivity which diffuses BT , while the system starts to select
the dominant eigenmode.
To quantify the periodicity and length-scale of the eigenmodes selected by the
system, we construct so-called butterfly diagrams. We first parametrize the tra-
jectory along which the fields drift, which are essentially half lines with origin at
a point P0 in the equatorial plane and inclined with respect to the equator by an
angle χ0. In terms of the horizontal and vertical coordinates (x, z) introduced in
Figs. 5.3-5.5, we have

x = P0 + |s| cosχ0, (5.9)

z = s sinχ0, (5.10)
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where the parameter s has positive (negative) values for θ < π/2 (θ > π/2).
We select values of P0 and χ0 for which the half lines cut the wave pattern in
correspondence of the toroidal magnetic field peaks, and store the value of BT

as a function of s. We finally constructed the diagram by normalizing each one
of these slices by the instantaneous maximum of the toroidal component and
displaying them in chronological order. The result of this procedure is reported
in Fig. 5.7. The migration of the toroidal field from the equatorial plane towards
higher latitudes is self-evident, with a well-defined periodicity of PαΩ ' 9 Pc and a
regular inversion of the magnetic field polarity with time. Model 2, which shares
the same parameters with Model 1 but has a reversed sign for ξdisk < 0, presents
a different scenario (right panel of Fig. 5.7): the direction of migration of the
patterns is opposite, since they form off the equator and drift towards it. This
is consistent with the work of Roberts (1972), which relates the direction of the
drift with the sign of the quantity αdΩ/dr, where Ω is the disk’s angular velocity.
Model 3 and 4 have the same value of η as Model 1, but a larger and smaller value
for ξdisk respectively. Hence, they have a different Cξ than the original Model 1 we
analyzed. The resulting butterfly diagrams show that for a more (less) effective
mean-field dynamo action, the dynamo waves have a shorter (longer) period and
develop on a smaller (larger) scale (see top row panels of Fig. 5.8).
In Model 5 and 6 (second row in Fig. 5.8) we varied CΩ but kept Cξ fixed, therefore
modifying only the efficiency of the Ω-effect. For a higher (lower) value of ηdisk the
resulting eigenmode has a faster (slower) phase velocity, but it also diffuses more
(less) across the disk. We initialized another four Models with a purely poloidal
field BP , the same value ηdisk = 10−3 as in Model 1 and different values for the
dynamo parameter ξdisk (see last four panels of Fig. 5.8). Differently from the pre-
vious models, they show an equatorial antisymmetry of the azimuthal magnetic
field. The toroidal component produced by the initial dipolar BP shows itself a
dipolar symmetry, which is retained throughout the whole simulation. The same
goes for the previous models: the initial symmetry of the magnetic field is left
unchanged by the system.
These results show that, once the values of η and ξ are chosen, the system selects
an eigenmode that conserves the initial parity of the magnetic field: from a field
with dipolar symmetry (BP in Fig. 5.2) we obtain a mode with symmetric com-
ponents Br̂, and Bθ̂ and an antisymmetric component Bφ̂, while a quadrupolar
field (BT in Fig. 5.1) leads to the opposite.
The overall dependence on the magnitude and sign of ξdisk is consistent with that
of Models 1 to 4: higher ξ lead to faster waves on smaller scales, and viceversa.
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Figure 5.3.: Evolution of the Bφ̂ component in Model 1.
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Figure 5.4.: Evolution of the Br̂ component in Model 1.
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Figure 5.5.: Evolution of the Bθ̂ component in Model 1.
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Figure 5.6.: Growth of the maximum values of BT and BP in Model 1. Both values are nor-
malized to the maximum of the initial toroidal field BT , while time is reported in
units of the disk’s center orbital period Pc.
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Figure 5.7.: Butterfly diagrams for Models 1 and 2, where is reported the value of Bφ̂ in cor-

rispondence of the curve defined by Eq. (5.9), and normalized by its maximum at
every time. Time is measured in units of Pc, while s is defined by Eq. (5.9).
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Figure 5.8.: Butterfly diagrams of Models 3 to 10, showing the value of Bφ̂ along s, implicitly

defined by Eq. (5.9). The field is normalized by its maximum at every time, while
time is measured in units of Pc.
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Table 5.2.: Results from the αΩ-dynamo study.

Cξ CΩ γαΩ PαΩ smax (BP )max/(BT )max

Model 1 5 400 0.39 8.43 2.41 0.13

Model 2 -5 400 0.21 8.17 0.04 0.13

Model 3 25 400 1.58 2.77 2.05 0.42

Model 4 1 400 0.07 26.38 2.63 0.04

Model 5 5 80 0.39 5.79 3.35 0.22

Model 6 5 2000 0.22 16.46 1.82 0.06

Model 7 5 400 0.36 8.43 2.18 0.13

Model 8 25 400 1.48 2.77 1.83 0.37

Model 9 1 400 0.07 29.50 2.63 0.04

Model 10 -5 400 0.31 7.90 0.70 0.13
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5.2. Three-dimensional magnetized tori

We describe now the results from a different set of simulations, which consid-
ered the same type of thick disk models as in the previous section. The main
difference is that we used again an ideal Ohm’s law (Eq. (3.48)) for a perfectly
conducting plasma in absence of mean-field dynamo action, but evolved the full
set of GRMHD equations (3.29) in a three-dimensional domain. This allows one
to compare the dynamics of the PPI (inherently dynamic and non-axisymmetric)
and the MRI (which is also a non-kinematic phenomenon). We first analyze the
behavior of an unmagnetized disk to characterize the standard development of
the hydrodynamic instability. We then add to the initial equilibrium a toroidal
magnetic field of different strength and study the growth of non-axisymmetric
global modes.

5.2.1. Disk model and numerical setup

In the following simulations we consider a Schwarzschild black hole of mass M and
spin a = 0 in a spherical coordinate system (r, θ, φ), surrounded by a thick torus
whose inner edge and center are located at rin = 6.16 M and rc = 10.17 M , re-
spectively. This choice sets the specific angular momentum of the disk to l = 3.97.
The orbital period at the disk center is Pc ∼ 207 M . As for the previous models,
we set the density at rc to ρc = 1 to avoid numerical underflows.
For the magnetized tori we initialize our simulations with the stationary solution
provided by Komissarov (2006), keeping the same parameters as in the hydro-
dynamical models for black hole spin, disk inner edge and center location and
density normalization. We vary the value of the central magnetization σc to in-
vestigate the role of the magnetic field strength on the system stability.
The atmosphere is initialized as a Michel’s radial inflow (Michel, 1972), a sta-
tionary solution in the Schwarzschild metric determined by the adiabatic index
Υ = 4/3 and the value of the atmospheric density at distance rc, which we set to
a value ρatm = 10−6. To provide stability for the integration, we set a numerical
floor value for the density equal to ρfl = 10−9.
We adopt Kerr-Schild coordinates (McKinney and Gammie, 2004) to allow for
an inner radial boundary inside the black hole event horizon located at a radius
rh = 2 M , thus preventing numerical artifacts due to boundary effects that could
otherwise propagate through the domain and affect the simulation at r > rh. In
radial direction the numerical domain ranges from rmin = 0.97rh to rmax = 100 M ,
with outflow boundary conditions applied at both radial extrema. The radial
mesh is refined to increase the resolution towards the black hole event horizon as
described by Eq. (5.1) with ψ = 10.
The polar domain extends from θmin = 0.001 to θmax = π − 0.001 with imposed
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reflecting boundaries. We made this choice because we are now considering a
dynamical problem: we can no longer restrict our domain to a small box con-
taining the whole disk and excluding a large fraction of the atmosphere as in
the kinematic simulations. To better resolve the disk, the polar mesh is refined
towards the equatorial midplane by relating the variable yi evenly spaced in the
range [0, 1] and the actual polar grid points θi as

θi =
π

2
[1 + (1− ζ)(2yi − 1) + ζ(2yi − 1)n], (5.11)

where ζ = 0.6 and n = 29. This gives a roughly constant and fine grid spacing
across the disk and a rapidly decreasing resolution towards the rotational axis
(Noble et al., 2010).
Finally, we consider the full azimuthal range φ ∈ [0, 2π] with uniformly distributed
cells and periodic boundaries to be able to resolve global azimuthal modes with
mode number m = kφr = 1, which are expected to develop and to be also the
fastest growing modes for the PPI in our disk model.
To trigger the growth of non-axisymmetric modes we introduce a small pertur-

bation δvφ̂ of the equilibrium azimuthal velocity vφ̂0 , with either random noise or
cosine waves of the form:

δvφ̂ = Avφ̂0 cos(mφ), (5.12)

with m = 1, ..., 5 and amplitudes A ranging from 10−6 to 10−2 depending on the
simulation.
To perform the computationally very expensive 3D simulations we make use of
the three-dimensional MPI domain-decomposition scheme introduced in Chapter
4. The batch jobs were run in parallel on (up to) 1728 cores, which leads to sub-
domains of ∼ 203 grid points for a grid resolution of 2563. For these simulations
we employed both the Hydra and SuperMuc clusters, using the HLL Riemann
solver coupled to a PPM reconstruction algorithm and a 2nd order explicit Runge-
Kutta integration scheme. The overall lower accuracy order (with respect to the
kinematic simulations) proved to be necessary in order to complete a sufficient
number of runs for a sufficiently long integration time.

5.2.2. Diagnostics

We now introduce the quantities that we calculate from each simulation to probe
the dynamical evolution of the models and determine the relative importance of
the PPI and MRI in these models.
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Table 5.3.: List of the models considered in our study, where Nφ is the number of grid points in

azimuthal direction, A(vφ̂) is the amplitude of the initial perturbations in vφ̂, and
σc is the initial value of the magnetization at the center of the disk. The last four
models are at the center of the discussion in Section 5.

Nφ A(vφ̂) Excitation σc/10−2

H64r3 64 10−3 Random 0
H256r4 256 10−4 Random 0
H32m14 32 10−4 m=1 0
H64m14 64 10−4 m=1 0
H128m14 128 10−4 m=1 0
H256m14 256 10−4 m=1 0
H64m22 64 10−2 m=2 0

H64m32 8 64 10−2 m=3 0
H64m42 9 64 10−2 m=4 0
H64m52 10 64 10−2 m=5 0

H256r3 256 10−3 Random 0
T256r3s12 256 10−3 Random 1
T256r3s32 256 10−3 Random 3
T256r3s11 256 10−3 Random 10

Power of azimuthal modes

For any given azimuthal number m we calculate the power contained in an az-
imuthal mode for a general quantity Q as

Pm,Q(r, θ, t) =

∣∣∣∣ 1

2π

∫ 2π

0

Qeimφdφ

∣∣∣∣2 , (5.13)

We then average the power over both the polar angle θ and the radial direction
across the whole computational domain:

Pm,Q(t) = 〈〈Pm,Q〉θ〉r. (5.14)

We weigh these averages by the rest mass density ρ for Q ∈ {uφ̂, uφ̂A}, to avoid
overestimating the contribution of the rarefied atmosphere enveloping the disk
and at the same time computing quantities that relate respectively to the az-
imuthal components of kinetic energy and magnetic energy. We use different
normalizations depending on the specific quantity considered. For Q = ρ we nor-
malize by 〈P0,ρ〉(t = 0), i.e. the initial power in the axisymmetric density mode,

while for Q ∈ {uφ̂, uφ̂A} we use 〈P0,cs〉(t = 0), where

cs =
Υp

ρh
(5.15)
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is the relativistic sound speed. This represents a more natural unit for both the
fluid and the Alfvén velocity than their initial values.
With these diagnostics we estimate growth rates and saturation levels. To vi-
sualize the time evolution of the relative importance of the various length-scales
resolved by the numerical simulations we also construct spectrograms. At any
given time t, we consider the power (Eq. (5.14)) of modes with azimuthal number
up to m = 50 by plotting it in a m vs. time diagram. By averaging over the full
duration of the simulations, we also compute Fourier spectra to characterize the
power distribution.
To collect information on the frequency components present in the fastest growing
PPI mode we also construct frequency-radius diagrams. We consider the complex
amplitude of the m = 1 mode of the density in the equatorial plane (since most
of the dynamics takes place in this region). For each radius r we compute the
Fourier transform in the frequency domain, obtaining the ω − r diagrams shown
in Fig. 5.17.

Turbulence and accretion

To keep track of the development of turbulence in the system we consider the
evolution of the turbulent kinetic energy density, defined as the difference between
the total kinetic energy density and the component due to the mean orbital
motion of the fluid. Integrating this quantity over the computational volume V
we obtain:

Kturb =

∫
V

ρ(u− 〈uφ̂〉φ)2 dV, (5.16)

where the operator 〈〉φ represents an average over the azimuthal angle φ and
dV =

√
γ dr dθ dφ is the covariant volume element.

Another set of quantities useful to probe the dynamical evolution of the system
are the r − φ components of the Reynolds and Maxwell stress tensors, defined
respectively as:

W r̂φ̂
Re = ρ δur̂ δuφ̂, (5.17)

W r̂φ̂
Ma = B r̂ Bφ̂. (5.18)

We compute their volume averages by considering only those regions of the com-
putational domain where the rest mass density ρ exceeds a threshold value set to
ρth =

√
ρc ρatm to track the dynamics of the disk and exclude that of the atmo-

sphere.
Still related to the stresses, we compute the disk α parameter (not to be confused
with the lapse function) as the ratio of the volume average of the total stress

84



5.2. Three-dimensional magnetized tori

W r̂φ̂
tot = W r̂φ̂

Re +W r̂φ̂
Ma and the volume average of the thermal pressure:

α =
〈W r̂φ̂

tot〉V
〈p〉V

. (5.19)

As a further diagnostics of the efficiency of angular momentum transport in the
disk, and thus of the overall accretion process, we also monitor the evolution of the
radial distribution of the disk orbital angular velocity Ω. The radial dependence
of Ω is usually described with a power-law:

Ω ∝ r−q, (5.20)

where the parameter q can range from 3/2 (for a Keplerian disc) to 2 (constant
specific angular momentum). However, in the relativistic case and for a non-
rotating black hole Ω = −lgtt/gφφ = l(r − 2)/r3, and the value q = 2 can be
assumed only if the disk extends sufficiently far from the black hole. Since our
disk model extends from rin = 6.16 M to rout = 21.6 M , the initial local value of
the slope ranges from q(rin) = −1.52 to q(rout) = −1.90. For this reason, instead
of q we monitor the evolution of the quantity:

q̃ = 2−
∣∣∣∣ d log l

d log r

∣∣∣∣ , (5.21)

which is evaluated performing a least-squares fit of the power law describing the
radial dependence of the specific angular momentum l.

Convergence

An important aspect to consider in any numerical experiment is its convergence,
i.e. whether or not the results depend on the grid resolution.
For a simulation involving magnetized accretion flows the key aspect that needs
to be properly resolved is the MRI turbulence that appears whenever a differen-
tially rotating fluid is threaded by a magnetic field of any topology. Following
Hawley et al. (2011) we define two quality metrics as ratios of the characteristic
wavelength of the MRI mode λMRI = 2π|uA|/Ω (which corresponds to the dis-
tance traveled by an Alfvén wave during an orbital period) and the grid zone size,
that is:

Qθ =
λMRI

∆xθ̂
=

2π|uAz|
Ω∆θ

√
γθθ

, (5.22)

Qφ =
λMRI

∆xφ̂
=

2π|uAφ|
Ω∆φ

√
γφφ

, (5.23)

where uA = B/ρh is the Alfvénspeed. Hawley et al. (2011) suggest that Qθ & 10
and Qφ & 20 should provide a sufficiently good description of the non-linear
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Figure 5.9.: Time evolution of the power in density for the m = 1 (solid curves) and m =
2 (dashed curves) modes, as computed from Eq. (5.14) for models H32m14 to
H128m14.

phase of MHD turbulence. Since we use the Harten-Lax-van Leer Riemann-
solver instead of the more dissipative Lax-Friedrichs scheme, we expect to have
good convergence behavior even for those simulations that marginally fulfill these
above criteria. Note, however, that the recent stratified shearing box simulations
of Ryan et al. (2017) suggest that none of the current simulations may actually
be converged, even at much higher resolution than achievable in a global model.

5.2.3. Results and discussion

Hydrodynamic disk

We first focus on the development and saturation of the PPI in absence of mag-
netic fields to have an initial benchmark for a later comparison with the results
from magnetized models. As shown in Table 5.3, we performed a set of simu-
lations that differ by resolution in the azimuthal direction, and amplitude and
spectrum of the initial perturbation. We followed the evolution of these models
up to 20 orbital periods at the disk center, which was enough time for the hydro-
dynamical instability to reach saturation in terms of azimuthal mode power.
Our results show that the m = 1 azimuthal mode is the fastest growing one.
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Therefore it was selected by the system independently of the initial perturbation
spectrum. Whether we started by exciting a specific mode (m = 1, 2, 3, 4, 5) or
with a random perturbation, the m = 1 mode always ended up being the fastest
growing one and having the highest saturation level.
We ran a series of simulations with the same monochromatic m = 1 perturba-
tion but with different resolutions in the azimuthal direction (model H32m14 to
H256m14). Fig. 5.9 shows the time-evolution of the azimuthal power in density
for the m = 1 and m = 2 modes. Even with a modest resolution of 32 points,
ECHO is capable of capturing the dynamical evolution of the PPI, since the most
unstable mode has a quite large wavelength. Fig. 5.9 also shows the linear phase
of the instability during the first ten orbital periods, and the different growth
rates and saturation levels for the two modes. Particularly evident is the large
ratio of the final powers in the m = 1 and m = 2 modes.
The minimum resolution required to properly resolve the fastest growing mode

Figure 5.10.: Equatorial (top) and meridional (bottom) cuts of the rest mass density ρ for
model H256r3 (left) and T256r3s12 (right) at t = 3000 ' 15 Pc. The value of ρ is
normalized to 1 in each plot.
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Figure 5.11.: Rest mass density spectrograms of the azimuthal mode power, color-coded in
logarithmic scale. The upper panel refers to model H256r3 , the middle one to
model T256r3s12 , and the bottom one to model T256r3s11 .

of the PPI turns out to be much higher in radial direction than in azimuthal
direction (i.e. higher than 32 points), because the m = 1 mode developing from
our wide torus model is not (as in the case of slender tori) the principal mode.
It is instead the outcome of the interaction between a pressure wave in the outer
part of the disk and an edge wave from the interior, i.e. it is a compressible mode.
As a consequence, this mode presents multiple nodes in radial direction which re-
quire an adequate radial resolution. If one does not have sufficient resolution, one
systematically underestimates the instability growth rates (see Blaes and Hawley
(1988) for a detailed discussion).
Fig. 5.10 (top left panel) shows an equatorial slice of the rest mass density for
model H256r3 after about 15 orbital periods. The dominant m = 1 mode is
clearly visible as an overdensity that corotates with the disk, while the flow still
maintains overall a smooth profile. The region in between the black hole horizon
and the disk’s inner edge is relatively depleted of mass, apart from an inspiraling
flow that detached from the main body of the disk.
From the spectrogram in Fig. 5.11 (first panel) it is clear that the m = 1 mode
dominates over the others since very early times, and no other small-scale per-
turbation grows as much during the linear phase of the instability. After 10
orbital periods, a further deposition of energy on smaller scales occurs presum-
ably because of a non-linear interaction, but the m = 1 mode remains the most
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Figure 5.12.: Time-averaged equatorial rest mass density (left panel) and azimuthal Alfvén
velocity (right panel) spectra as a function of azimuthal number m.

important one. This interpretation is confirmed by the density power spectrum
in the left panel of Fig. 5.12, which shows also a clear excess of power in low order
modes, peaking at m=1.

Magnetized discs

We now consider the effect of a weak toroidal magnetic field. In order to avoid
transients, we chose the analytical solution provided by Komissarov (2006) in-
stead of superimposing a magnetic field to the hydrodynamical solution. The
drawback of such an approach is that the profile of gas density and pressure de-
pends on the strength of the initial magnetic field. We checked that differences
in these quantities between initially magnetized models and unmagnetized ones
never exceeded a few percents in gas density and pressure for all our models.
Therefore we consider the differences to be dynamically insignificant.
As illustrated by the right panels of Fig. 5.10, the distribution of rest mass density
in the magnetized models is much less smooth than in the hydrodynamic models,
and it does not show a self-evident type overdensity. The flow consists of much
smaller scales in the magnetic models, and both the equatorial and meridional
slices indicate MHD turbulence triggered by the MRI.
The time-evolution of the azimuthal mode power (Fig. 5.13) in the magnetized

models (green, red and cyan curves with increasing magnetic field strength) re-
veals an earlier growth of low order modes, without a clear distinction between
the m = 1 and m = 2 modes as in the hydrodynamic case. This behavior is
confirmed by the spectrograms in Fig. 5.11, that show a much broader range of
excited large-scales modes in the magnetized case.

The time-averaged density spectra shown in the left panel of Fig. 5.12 pro-
vide a more quantitative confirmation of this trend. The hydrodynamic model
H256r3 develops predominantly large-scale modes, with a steep power-law decline
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Figure 5.13.: Power in density for the m = 1 (solid curves) and m = 2 (dashed curves) modes
for models H256r3 (blue), T256r3s12 (green) and T256r3s11 (red).

from the m = 1 mode to m ≈ 5, followed by a shallower decline up to m = 10
and again a steep drop. The magnetized models have no strong excess of power
at large scales, but they also show a fall for m & 10. Only in the model with a
magnetization of σc = 10−2 there is still a small excess of power in the m = 1
mode, but otherwise the spectrum behaves quite similarly to the ones of the other
magnetized discs. The spectra computed from the orbital Alfvén velocity show
instead no appreciable difference in their shape for different values of the mag-
netization (right panel of Fig. 5.12), but they display a systematic shift of the
curves with the magnetic field strength.
All the models we considered produce accretion onto the central black hole, but
at different times and in different ways. In the hydrodynamic disk the develop-
ment of the PPI is the sole responsible for angular momentum transport, hence
accretion. After 10 orbital periods, when the m = 1 mode approaches its max-
imum amplitude, the kinetic energy and stresses are large (Fig. 5.14), which
consequently leads to a significant redistribution of angular momentum (see the
evolution of the parameter q in Fig. 5.15) and mass loss (almost 30% of the disk
initial mass). A space-time diagram of the radial profile of the specific angular
momentum l at the equator (top panel in Fig. 5.16) clearly shows that the waves
that constitute the unstable mode are increasing l outside the corotation radius
and decreasing it in the inner region of the disk, in a non-local fashion.

The situation is quite different in the magnetized models. The accretion is
triggered at much earlier times (after only 2 orbital periods for the highly mag-
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netized model) with a steeper increase of turbulent kinetic energy and stresses.
In model T256r3s12 the Reynolds and Maxwell stresses are at the beginning of
their rise quite similar, but then the magnetic component takes over. For model
T256r3s11 Maxwell stresses dominate from the very beginning and during the
whole simulation. Consequently, accretion is enhanced and a higher mass loss

Figure 5.14.: Turbulent kinetic energy (top panel) and stresses (bottom panel, Reynolds in
solid curve, Maxwell in dashed curve) for models H256r3 , T256r3s12 and
T256r3s11 (blue, green, and red as in the previous figure).
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Figure 5.15.: Slope parameter q̃ in the equatorial plane for models H256r3 , T256r3s12 and
T256r3s11 .

results, leading in the highly magnetized model to a dramatic decrease of the
disk mass down to 30% of its initial value. This strong mass loss is responsible
for the drop in power of the azimuthal modes in density shown in Fig. 5.13 (red
curves).
Concerning the angular momentum distribution, Fig. 5.15 validates these find-
ings by showing a faster and earlier decrease of q̃ (see Eq. (5.21)) and also a
lower saturation value with respect to the hydrodynamic case. Space-time dia-
grams (middle and bottom panels of Fig. 5.16) show how angular momentum is
transported outwards from the inner regions of the disk much faster than in the
absence of a magnetic field. There is no substantial trace of a global deposition
of angular momentum starting from the outer region of the disk and proceeding
inwardly (apart once again for the low magnetization model T256r3s12 , where
after 7 orbital periods there in a small increase of l starting at the outer edge of
the disc).

Mode frequency

As we have seen in Chapter 2, the mode selected by the PPI as the fastest grow-
ing one is characterized not just by the azimuthal number m = 1, but also by a
specific angular frequency ω, which we can measure and directly compare with
the disk rotation rate Ω.
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Figure 5.16.: Space-time diagrams of the azimuthally averaged equatorial radial distribution of
the specific angular momentum l for models H256r3 (top), T256r3s12 (middle)
and T256r3s11 (bottom).
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Figure 5.17.: Amplitude of the m = 1 mode frequency components in a ω vs. radius dia-
gram calculated from the rest mass density ρ. The white curve represents the
azimuthally and time averaged equatorial orbital frequency profile. All quantities
are computed from the last nine orbital periods of the disk.

The first panel of Fig. 5.17 shows clearly the presence of a specific spectral com-
ponent at ω0 ' 0.03 P−1

c in the hydrodynamic model, which represents the m = 1
mode selected by the PPI. Both positive and negative energy waves are present,
and they interact through the corotational radius rc ' 12, identifiable as the
intersection between the mode frequency and the disk’s orbital frequency (drawn
as the white curve across the diagram). As expected, the two waves cannot prop-
agate through a narrow forbidden region nearby the corotation radius, but they
can still be transmitted by tunneling.
In the magnetized case, the diagrams show a broader range of excited frequencies
instead of the narrow selection of the hydrodynamic model, and in the highly
magnetized disk there seems to be a lack of positive energy waves across the disk.
Only the region of the diagram with ω < Ω is populated, and the fundamental
mechanism responsible for the onset of the PPI does not appear to be in action.
In the weakly magnetized model there are some positive energy components, but
their amplitudes are still significantly smaller than in the hydrodynamic case.
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Interaction between the two instabilities

From the previous analysis it seems clear that the inclusion of a toroidal mag-
netic field deeply affects the development of the PPI, even when the field is highly
sub-thermal. The low magnetization model proved to be quite interesting, since
it provides a sort of conjunction between the hydrodynamic one, where the PPI
dominates the disk dynamics and leads to fast growth and saturation of the m = 1
mode, and the highly magnetized disk, where instead there are no clear signs of
PPI development.
Considering both azimuthal and frequency spectra for σ = 10−2, we noted a small
excess of power in the m = 1 mode and the presence of positive energy perturba-
tion outside the corotation radius that are absent for higher values of σ. These
results suggest that for low magnetizations the PPI may still undergo a phase of
linear growth, which then is stopped by the onset of the MRI. In particular, early
accretion triggered by MHD turbulence leads to a faster redistribution of angular
momentum across the disk. The free energy stored in the shearing flow decreases
and the edge waves that should reach the corotation radius and transport energy
are not efficient enough to sustain the unstable m = 1 mode. The signature of a
depressed growth of this mode is nevertheless imprinted in the flow. It may be
that for even lower values of the magnetic field strength the final excess of power
in the m = 1 mode could continuously approach the hydrodynamic value.
Although the redistribution on angular momentum represents a possible explana-
tion for the PPI suppression, another possible cause may be the MHD turbulence
itself that, providing a turbulent viscosity, could damp the waves that constitute
the PPI mode and lead to a less effective growth. Finally, the possible loss of the
inner reflective boundary (once again due to accretion) may also inhibit the PPI
growth (Hawley, 1991), while the study by Dwarkadas and Balbus (1996) argues
that the stabilizing effect of an accretion flow is due more to the dynamics of the
corotation point that changes in the presence of a radial velocity.
To confirm that for strong enough magnetic fields the disk dynamics is completely
dominated by the MRI, we performed a run with the exact setup used in model
T256r3s11 but reduced the azimuthal range to [0, π] (model T256r3s11pi ). The
resulting dynamics was essentially equivalent to that when considering the full
azimuthal range [0, 2π]. Since the artificial exclusion of the m = 1 mode did not
significantly affect the results, we conclude that at least for a high enough mag-
netization value the PPI is effectively damped and cannot develop significantly
because of the early influence of the MRI on the local environment.
This results may seem to be in disagreement with what was reported by Fu and
Lai (2011), who performed an analytical study on the influence of magnetic fields
(in both toroidal and poloidal configurations) on the stability on accretion tori.
They found that a sufficiently strong toroidal magnetic field can further destabi-
lize the disk and enhance PPI development. However, they assumed incompress-
ibility in their analysis, and therefore they excluded all those modes that instead
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of being the outcome of the interaction between two surface gravity waves (i.e.
the principal branch of the instability) are instead the result of a pressure wave
outside the corotation radius coupled to an internal edge wave. The nature of
the mode and the measured growth rate in the hydrodynamic case are consistent
with the analysis by Blaes and Hawley (1988).

5.3. Resistive models

We finally present some preliminary results involving models with a finite value
of the magnetic resistivity η (see Table 5.4). We selected models T256r3s12 , and
T256r3s11 and evolved them in a non-ideal framework, i.e. setting the plasma
resistivity in the disk’s center to ηdisk = 10−3 and modulating it according to
Eq. (5.5). This value of ηdisk is well above the code’s numerical dissipation (esti-
mated to be ∼ 10−6), and represents therefore the action of a physical turbulent
resistivity which damps the magnetic field but not the fluid velocity field.

As we saw in Section 5.2.3, compared to the hydrodynamic results the mag-
netized models deeply reshape the disk’s structure and the distribution of power
in non-axisymmetric modes. The m = 1 mode is suppressed, the overdensity
that characterizes Model H256r3 does not develop, and the overall distribution of
power among azimuthal modes appears more homogeneous. The only difference
between models T256r3s12 and T256r3s11 is that the former exhibits a residual
excess of power in the m = 1 mode, suggesting that the PPI can still undergo
some growth for sufficiently small magnetic fields.
Fig. 5.18 shows the evolution in time of the power in the m = 1 and m = 2 modes
of models H256r3 , T256r3s12 and T256r3s12e3. The introduction of the turbu-
lent resistivity leads to a linear growth of the m = 1 mode that closely resembles
that of the unmagnetized model, although the power saturates at a lower value.
The m = 2 mode, on the other hand, exhibits a similar growth and saturation
level to the magnetized model without resistivity. If we look at the spectra as
a function of m (Fig. 5.19) we can clearly see how the lowly magnetized model
is deeply affected by the turbulent resistivity, as the average density spectrum

Nφ A(vφ̂) Excitation σc/10−2 ηdisk

T256r3s12e3 256 10−3 Random 1 10−3

T256r3s11e3 256 10−3 Random 10 10−3

Table 5.4.: List of the resistive models considered in our study, where Nφ is the number of grid

points in azimuthal direction, A(vφ̂) is the amplitude of the initial perturbations in

vφ̂, σc is the initial value of the magnetization at the center of the disk, and ηdisk is
the maximum resistivity.
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Figure 5.18.: Power in density for the m = 1 (solid curves) and m = 2 (dashed curves) modes
for models H256r3 (blue), T256r3s12 (green) and T256r3s12e3 (red).

Figure 5.19.: Time-averaged equatorial rest mass density spectra as a function of azimuthal
number m, comparing Model H256r3 (in blue) with models T256r3s12 (green)
and T256r3s12e3 (red).
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Figure 5.20.: Power in density for the m = 1 (solid curves) and m = 2 (dashed curves) modes
for models H256r3 (blue), T256r3s11 (green) and T256r3s11e3 (red).

matches very well the one for the hydrodynamic case. The shapes of the spectra
of models H256r3 (in blue) and T256r3s12e3 (in red) show the same behavior for
m < 3 and m > 10, with a shallower slope at intermediate scales due to some
residual action of the MRI.
The highly magnetized model (σc = 0.1) has a different response to the addition
of resistivity. The initial growth of the m = 1 and m = 2 modes is delayed
with respect to Model T256r3s11 (red curve in Fig. 5.20), but the later evolution
matches quite well the ideal GRMHD case, with no clear separation between the
two modes, and showing similar peak values. The fact that the power does not
decrease as in the ideal case results from the finite dissipation of the field due
to resistivity, which leads to less efficient accretion and less severe mass loss for
the disk. A comparison of the spectra (Fig. 5.21) shows that resistivity does not
drastically change the spectrum’s shape. The power contained in the m = 1
mode is unaffected by a finite value of η, while dissipation significantly reduces
the power in higher order modes.

Overall these results suggest that if the magnetic field is dissipated at a suf-
ficiently high rate (because the field is weak enough or because the resistivity
is high enough), the suppression of the PPI by the MRI becomes less effective.
Hence, the hydrodynamic global instability has a chance to significantly develop
and ultimately lead to the growth of a dominant m = 1 mode. Moreover, the
whole power spectrum approaches the shape of the hydrodynamic case for Model
T256r3s12e3, where the increased power of modes with m > 2 is due to a residual
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Figure 5.21.: Time-averaged equatorial rest mass density spectra as a function of azimuthal
number m, comparing Model H256r3 (in blue) with models T256r3s11 (green)
and T256r3s11e3 (red).

action of the MRI. Magnetic dissipation can not only restore the conditions for
the onset of the PPI, but it also affects the power distribution throughout all
scales, in particular reducing the excitation of higher order modes due to MRI.
The set of resistive simulations performed by us is very limited. We only consid-
ered two different magnetized models and applied the same turbulent resistivity
to see how they would be affected by it. To better understand the response of
the system to magnetic dissipation, it will be necessary to simulate the same
magnetized models we considered so far for a significantly large range of values
of η. Considering that the code’s numerical dissipation (for the setup we used)
is estimated to be ∼ 10−6, it will be important to adequately sample the range
η ∈ {10−6, 10−3} to check whether there is a smooth transition between the ideal
GRMHD regime and the limit where the hydrodynamic results are recovered.
Different spatial profiles for the magnetic resistivity need to be investigated too.
Eq. (5.5) implies that most dissipation occurs at the disk’s density maximum,
hence close to the equatorial plane. However, this naive prescription appears to
be incompatible with local measurements of turbulent transport coefficients in lo-
cal shearing box simulations (Gressel, 2010), which on the contrary suggest that
turbulent viscosity has a minimum in the equatorial plane and reaches a maxi-
mum at higher latitudes. We intend to investigate these effects in a forthcoming
work.
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6. Conclusions

We have presented a series of numerical simulations that investigate some of the
fundamental physical mechanisms that take place in thick disks accreting onto
black holes. The numerical tool used for this work is the GRMHD code ECHO (Del
Zanna et al., 2007) in its most recent version developed during the last 4 years.
Besides providing a fully covariant Ohm’s law closure which allows one to evolve
resistive astrophysical plasmas subjected to a mean-field dynamo mechanism,
the code was also improved concerning its parallelization. The novel multidimen-
sional MPI domain-decomposition made it possible to carry out computationally
expensive three-dimensional GRMHD simulations, which were required by our
goal to study the onset of non-axisymmetric instabilities in thick accretion disks.

As a test of the implementation of the non-ideal Ohm’s closure (Bucciantini et al.,
2012) we presented a kinematic study of an axisymmetric αΩ-dynamo in thick
tori (Bugli et al., 2014). The classical mean-field theory (Moffatt, 1978b) provides
a simple way to include the effect of unresolved small-scale turbulent motions to
the evolution of large-scale quantities. The two most important phenomena that
this formalism describes are the dissipation of magnetic field by turbulent resis-
tivity and its amplification through the α-effect.
In the context of accretion disks, the inclusion of such non-ideal effects allows
one to overcome the magnetic dissipation and close a dynamo cycle: poloidal
magnetic field is produced by the mean-field dynamo (α-effect), while toroidal
magnetic field is amplified by the flow’s shear (Ω-effect).
In our study we show that the combined action of turbulent resistivity and α-
effect produces regular patterns (i.e. dynamo waves) that drift through the disk
(towards the equator or higher latitudes, depending on the sign of the dynamo
parameter ξ) and ultimately dissipate. In the kinematic regime the values of
resistivity η and ξ define the characteristics of the fastest growing mode selected
by the system. Butterfly diagrams characterize the pattern’s period and length-
scale, which for higher values of ξ prove to be shorter and smaller respectively
(and vice versa). The eigenmode’s parity is determined by the initial magnetic
field and remains unchanged during the system’s evolution.
In a subsequent study we intend to investigate the evolution of the system be-
yond the linear phase, i.e. when the growth of the magnetic field is such that
the dynamical effect of Lorentz force on the charged particles that constitute the
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plasma can no longer be neglected. Therefore, to study the dynamics of an αΩ-
dynamo it is necessary to integrate the full set of GRMHD equations, i.e. relax
the kinematic approximation that we adopted. However, the α-effect as imple-
mented in our scheme is not sensitive to the strength of the magnetic field, and
a naive model coupling the plasma dynamics to an ever-growing dynamo mecha-
nism would lead to unphysical results. In fact, the mean-field dynamo is expected
to be quenched by the back-reaction of the disk’s dynamics on the magnetic field.
Although it is still a matter of debate how effective such a quenching mechanism
would be (Brandenburg and Subramanian, 2005), one simple way to implement
this effect is to assume that the dynamo parameter ξdisk decreases as the magnetic
energy B2/2 reaches equipartition with the flow’s kinetic energy ρv2/2, that is

ξdisk =
ξ0

1 +B2/ρv2
, (6.1)

where ξ0 is the value of the dynamo parameter in the linear phase of the growth.
As the magnetic field gets stronger, the efficiency of the dynamo decreases and
the system does not reach unphysically high magnetic energy values.
It would be important to further improve the modeling of the spatial dependence
of the turbulent resistivity η and the parameter ξ on the local state of the plasma.
The profiles that we used in our study, given by Eq. (5.6) and Eq. (5.8), are sim-
ple approximations based on our assumptions that the non-ideal effects should
be confined within the disk and be more efficient in the high-density regions of
the disk. As we mentioned in the last section of Chapter 5, these assumptions
are in contrast with recent results of local shearing box simulations, which show
that turbulent transport coefficients actually increase far from the equator as the
density drops (Gressel, 2010). Taking into account a more accurate spatial profile
for η and ξ would represent therefore a significant step forward in filling the gap
between local and global simulations of accretion disks.

The main results of this thesis have been produced by performing a series of
three-dimensional GRMHD simulations of magnetized thick accretion disks to
estimate the interaction between two important instabilities that develop in these
systems: the Papaloizou-Pringle instability (PPI) and the Magnetorotational in-
stability (MRI). Both dynamical processes have been studied in great detail in
the last 30 years, but to this date it is unclear how they interact and whether one
dominates over the other. It is well known that wide unmagnetized tori are PPI
unstable. This instability leads generally to the fast growth and dominance of a
characteristic m = 1 azimuthal mode, which can leave an observable signature
in the gravitational wave emission from all those sources that consist of a black-
hole-torus system.
We find that in the presence of a weak toroidal field the growth of the non-
axisymmetric m = 1 mode is significantly damped. While in the hydrody-
namic case a large-scale smooth overdensity formation (sometimes referred to
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as a planet) quickly forms after a few orbital periods of the disk, such a structure
is mostly absent in our magnetized models, and the mass distribution appears
more turbulent.
The inclusion of toroidal magnetic fields excites higher order modes, thus smaller
length-scales, in contrast of the strong dominance of the m = 1 mode in the
purely hydrodynamic case. A small excess of power in the m = 1 mode is still
noticeable for our model with the lowest magnetization (σc = 10−2) but not for
stronger magnetic fields, suggesting therefore that the mode growth has been
suppressed by the action of MRI. Our magnetized models show a significant in-
crease in turbulent kinetic energy at stages earlier than the hydrodynamic one,
and the significant Maxwell stresses introduced by the magnetic field trigger the
accretion process faster than the PPI. Starting from a constant specific angular
momentum profile (that represents the most PPI unstable configuration for an
accretion disk), the unmagnetized disk is subject to angular momentum trans-
port due to the PPI, which takes place in a non-local fashion across the disk and
involving the inner and the outer regions at the same time. The introduction of
MRI leads to a stronger and faster redistribution of angular momentum across
the disk, consistently with the higher values of stresses and accretion rates found
in the magnetized models.
A wave that drifts in the azimuthal direction with a particular frequency can in
general either move faster or slower with respect to the surrounding medium. In
the former case the wave is said to carry positive energy, otherwise it carries neg-
ative energy. The fundamental mechanism responsible for the growth of the PPI
is the interaction of positive and negative energy waves at the corotation radius,
i.e. where the angular velocity of the pattern matches the local orbital frequency
of the disk. When magnetic fields are included, we find almost no trace of waves
beyond the corotation radius, suggesting that the PPI has been suppressed. This
could be due to a redistribution of angular momentum driven by MRI that drives
the disk to a PPI stable configuration, or it could be the effect of MHD turbulence
that damps the waves taking part in the process.

Our results suggest that for sufficiently strong magnetic fields the dominance of
the m = 1 mode (with respect to higher order ones) due to PPI should not be
present in thick tori, but there are some caveats that need to be addressed. First,
we have neglected the self-gravity of the disk. This is expected to be a good
approximation for example in X-ray binaries, but not in the case of the remnant
of a NS-NS merger that produces a black-hole-torus system. It has been shown
by ? that the gravitational interaction between the disk and the central black
hole can excite the m = 1 mode, hence leading to a different outcome than the
one we find in our analysis by including a magnetic field.
Another important aspect is the role of turbulent resistivity. We performed a
limited number of simulations with a finite value of η for the magnetized models

103



6. Conclusions

with lowest and highest magnetization. In the former model, the m = 1 mode
is dominant throughout the whole simulation, resembling quite closely the hy-
drodynamic case and in strong contrast to the ideal GRMHD model. On the
other hand, the highly magnetized model did not exhibit such a behavior, and
the overall structure of its disk and power spectra remained quite similar to the
case of an ideally conducting plasma. These findings suggest that when magnetic
fields are sufficiently dissipated, the suppression of the PPI by the MRI becomes
less effective and the hydrodynamic scenario of a dominant m = 1 mode can
develop once again. To draw more definitive conclusions on this matter, though,
it will be necessary to perform a larger number of simulations. In particular, it
would be important to assess whether, for a given magnetized model, there is a
threshold value of resistivity beyond which the PPI can still develop or instead
there is a continuous transition between the two regimes.
As for the αΩ-dynamo study, a more accurate prescription of the spatial profile
of resistivity could be crucial. In our study the regions of high magnetization
coincide with those of high density, hence the magnetic field dissipation was par-
ticularly effective. Implementing a more physical profile that implies stronger
turbulent motions away from the equator could lead to a very different damping
of the MRI action and maybe even to a revival of PPI suppression, which was
almost completely eliminated in our resistive low magnetization model.
It remains also to be seen what happens for even weaker magnetic fields than the
ones we considered; our findings suggest that there may be a smooth transition
between the m = 1 dominated hydrodynamic case and the turbulent scenario
produced by MRI activity, so that for higher values of β the excess in the m = 1
mode power could approach the one produced by the PPI. Alternatively, for
weaker initial fields the MRI could tend toward a state independent of the initial
field that is able to suppress the action of the PPI. To answer this question higher
resolution simulations are required, since the characteristic length of the fastest
growing MRI mode shrinks with the strength of the magnetic field.
Furthermore, we considered only the presence of a toroidal magnetic field, while
a more complete analysis should include a poloidal magnetic field component as
well. This component would excite so-called channel modes (Balbus and Hawley,
1998) and possibly lead to significantly different results. The size of the torus
may also play a role, as the stability to the PPI of a thick disk depends quite
strongly to the location of the inner and outer boundaries.
Ultimately, we cannot draw conclusive statements on the faith of the PPI in mag-
netized disks, as the number of decisive factors involved in the problem appears
to be significantly high. What we could do was to identify the role played by
non-axisymmetric MRI modes, and formulate some general statements on the
influence of magnetic fields once a particular disk model and field topology were
selected. Forthcoming studies should be able to give a better understanding of
magnetized disk’s stability and the underlying fundamental physical mechanisms.
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A. Appendix

A.1. Coordinate transformation

The gravitational background of our simulations is shaped by a central black hole
of mass M and spin a. To avoid any spurious numerical artifact that could arise
from the inner radial boundary, we decided to adopt the so-called Kerr-Schild co-
ordinates (KS), that allow one to remove the unphysical singularity at the black
hole event horizon and place the domain’s inner boundary beyond it.
To exploit the regularity property of these coordinates, we perform a transfor-
mation of all the primitive variables computed for a stationary torus in Boyer-
Lindquist (BL) coordinates. In the following, the labels KS and BL indicate quan-
tities measured by KS and BL Eulerian observer respectively, while unprimed and
primed indices refer to quantities expressed in KS and BL coordinates.
We start by considering the linear transformation that relates the two coordinate
systems:

Aµµ′ =


1 G 0 0
0 1 0 0
0 0 1 0
0 H 0 1

 with

{
G = −2r

∆

H = − a
∆

(A.1)

where ∆ = r2 − 2Mr + a2, r is the radial coordinate and a is in general non
vanishing. This transformation relates vectors and tensors respectively:

xµµ′ = Aµµ′x
µ′ , (A.2)

T µν = Aµµ′A
ν
ν′T

µ′ν′ . (A.3)

We also have to consider that Eulerian observers in the two coordinate systems
are not identical in general, i.e. we cannot simply apply the transformation in
Eq. (A.1) to the vectorial primitive variables (v,B,E), which represent quan-
tities measured in an Eulerian frame of reference. For quantities like the fluid
four-velocity uµ and the Faraday tensor F µν , on the other hand, one must only
apply Eq. (A.1) to fully take into account the change of frame of reference (e.g.,

Aµµ′u
µ′

BL = uµKS). The goal is then to obtain for v, E, and B the correct relation
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between KS components measured by the KS Eulerian observer and BL compo-
nents measured by the BL Eulerian observer.
We first write the spatial velocity, magnetic field, and electric field in terms of
four-velocity and Faraday tensor in KS coordinates as measured by the KS Eu-
lerian observer:

viKS =
1

α

(
ui

ut
+ βi

)
, (A.4)

Bi
KS = αKSF

∗ti
KS , (A.5)

Ei
KS = αKSF

ti
KS. (A.6)

Then we use Eq. (A.1) to transform the components of uiKS, F
∗ti
KS and F ti

KS in BL
coordinates. Finally, using Eq. (3.17), Eq. (3.19) and Eq. (3.20) we rewrite them
in terms of vi

′
BL, Ei′

BL and Bi′
BL. The result gives the correct transformation rules:

viKS =
1

αKS

[
Aij′(αBLv

j′

BL − βj
′

BL)

1−A0
r′αBLvr

′
BL

+ βiKS

]
, (A.7)

Bi
KS =

αKS

αBL

{
Bi

BL −A0
r′

[
Br′

BLβ
i
BL +

αBL

γ
1/2
BL

(
δiφ′E

BL

θ′ − δiθ′EBL

φ′

)]}
, (A.8)

Ei
KS =

αKS

αBL

{
Ei

BL −A0
r′

[
Er′

BLβ
i
BL −

αBL

γ
1/2
BL

(
δiφ′B

BL

θ′ − δiθ′BBL

φ′

)]}
. (A.9)
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