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Chapter 1

Introduction

I AM NOT YOUNG ENOUGH TO KNOW EVERYTHING.

J. M. Barrie, The Admirable Crichton

1.1 Explosion mechanisms of core-collapse supernovae

Core-collapse supernovae (CC-SNe) are one of the most fascinating and complex astrophysical
phenomena. Almost all branches of physics, from particle physics to general relativity, are relevant
for the explosion mechanism. Even though this very complex process has been studied for over
six decades, there are still many questions which remain open. Discussing all the subtleties of this
problem would be beyond the scope of this introduction. An excellent review by Bethe (1990)
already had 66 pages and in over 20 years since then, because of ever increasing computational
power and effort of many scientists, tremendous progress has been made. As a good introduction
to the topic, we recommend review articles by Woosley et al. (2002), Janka et al. (2007), Janka
(2012), Janka et al. (2012) and Burrows (2013). In this section, we are going to explain briefly
presently discussed CC-SN mechanisms.

Evolution of massive stars

The fate of a newly born star is mostly determined by its initial mass and chemical composition.
Massive stars (M & 8 M�, where M� = 1.989×1033g is the solar mass), as all stars, spend most
of their lifetime on the main sequence (MS) burning the central hydrogen. This process releases
energy and provides the necessary pressure gradient to balance the gravitational force and keep the
star in the hydrostatic equilibrium. After millions to tens of millions of years, the hydrogen in the
stellar core is exhausted (i.e. it is converted to helium) and the star leaves the main sequence. The
core contracts, the central temperature and density rise and the burning of innermost helium layers
sets in. Each time the star runs out of the central fuel, its core contracts again so that even heavier
nuclei (which were produced in the preceding stages) can be burned in the subsequent phases:
first carbon and then neon, oxygen and silicon.1 The fusion of heavier elements can sustain the

1 Not every star undergoes all these phases. Which nuclear burning stage will be reached for a given star, depends
on its initial mass and chemical composition. For example, the Sun, like other stars with an initial mass M . 8 M� will
not reach the carbon burning stage. For massive starts with an initial mass 8 M� . M . 11 M� the central neon ignition
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Figure 1.1: Chemical composition of a supernova progenitor shortly before core-collapse. The
figure is not in scale: the biggest, hydrogen, shell is of order 107 km, and the smallest, iron core,
has the radius of order of 103 km. The red square indicates the central region, whose zoom is
presented in Fig. 1.2. The figure is reproduced with permission from Janka et al. (2012).

hydrostatic equilibrium for a much shorter time (order of 106 years) for two reasons. Firstly,
it is energetically less efficient than hydrogen burning. Secondly, because of the higher central
temperature, neutrino-antineutrino pairs can be created, which carry away a part of the energy
from the star. Finally, as the end product of silicon fusion, an iron core2 is formed in the centre,
surrounded by concentric shells of ashes from the previous nuclear burning stages: the heavier
the element, the closer to the centre. This onion-like structure is schematically presented in Fig.
1.1. Iron, as the element with the lowest nuclear binding energy, is the final stage of the hydrotatic
nuclear burning, since a synthesis of any heavier elements would not release but rather consume
energy (an endothermic process).

Core collapse

The iron core, which is mostly stabilised by the quantum electron degeneracy pressure, contin-
ues to contract (to release further gravitational binding energy) and grow (because of the silicon
shell burning) until it reaches approximately the Chandrasekhar mass of≈ 1.44 M�. At this stage,
the core, which has a typical diameter of 3000 km, a central temperature around 1010K and a dens-
ity of several 109 g cm−3, becomes unstable. High energy photons start to disintegrate iron nuclei
to α particles and free nucleons. Hence, part of the thermal energy is lost in this endothermic
process. Moreover, the reaction rates of electron capture on heavy nuclei and on free protons in-
crease. In this process of deleptonisation, a neutron (bound or free) and a neutrino are created.
The latter can freely escape from the core carrying away some of its energy. Consequently, the
electron fraction, Ye, (the number of electrons to the number of all nucleons) drops from Ye ≈ 0.5

does not occur (yet, some off-centre neon burning is possible). The exact thresholds for carbon and neon burning are
not exactly known (for a detailed discussion, see, e.g. Woosley et al. (2002)).

2The progenitors with masses of 8–10 M� develop ONeMg (oxygen, neon, magnesium) cores, instead. However,
in order not to complicate the discussion, we will not consider this case. For the details, see, e.g. Janka et al. (2007).
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to Ye ≈ 0.3, the electron degeneracy pressure considerably decreases and it is no longer able to
balance the gravitational force.

The core starts to collapse - its matter almost freely falls onto the centre (upper left panel of
Fig. 1.2). After ≈ 100 ms, the central density reaches 1012 g cm−3 and, despite their tiny cross
sections, neutrinos created in the process of deleptonisation are trapped by the matter, i.e. their
diffusion timescale exceeds the free-fall time, and they can no longer escape draining the energy
from the centre. In spite of the neutrino trapping, the collapse cannot be halted until the matter
reaches nuclear saturation densities (ρ ≈ 2.7× 1014 g cm−3) within a fraction of a second (after
≈ 110 ms from the collapse onset). The proto-neutron star (PNS) is formed.

At this point, in the innermost regions, because of the repulsive contribution to the nucleon in-
teraction potential, the matter becomes almost incompressible. The subsonically collapsing matter
of the inner core decelerates and rebounds, at roughly 10 km, to the surrounding supersonically
infalling layers and a strong shock wave forms (upper right panel of Fig. 1.2). In the early days of
supernova research, it was speculated that the shock could be strong enough to stop the collapse
and to trigger the explosion (a so called “prompt explosion mechanism”). However, the shock’s
energy is insufficient and most of it is used to dissociate heavy nuclei into nucleons in the outer
regions of the core. After ≈ 200 ms (from the beginning of the core collapse), the shock stalls
approximately 200 km from the centre (middle left panel of Fig. 1.2). For a successful explosion,
some other mechanism, which would transfer a part of the binding energy released during the core
collapse to the stalled shock, is necessary. Colgate & White (1966) suggested that neutrinos could
be this missing agent.

After core bounce, the proto-neutron star rapidly accretes the infalling matter until the explosion
sets in. Depending on the initial mass of the progenitor, the PNS may transform into a neutron star
(NS) or a black hole (BH). It was thought that the former case would occur for stars with an initial
mass smaller than roughly 25 M�, and the latter case would happen for more massive progenitors
(see, e.g. Janka et al. (2007)). However, recent studies show that the formations of a BH from stars
whose mass is below 20 M� (in a failed explosion), and of a NS from progenitors with the mass
in the range 20–40 M� are also possible (Ugliano et al. 2012). In the nascent PNS, the matter is
so dense that neutrinos are trapped (their mean free path is significantly shorter than the neutron
star radius). It takes them seconds to diffuse out.

In the “delayed neutrino-heating explosion mechanism”, the stalled shock can be revived by the
outgoing neutrinos, which carry most of the gravitational energy binding released in the collapse.
On their way out, the neutrinos can provide additional pressure and deposit some of their energy
in the layers between the PNS and the stalled shock (middle right panel of Fig. 1.2). The shock
will start to expand and after a few 100 ms the explosion should set in. It is interesting to note
that only a small fraction of the energy carried by the neutrinos (of order 1053 erg) is sufficient
to trigger the explosion (whose energy is of order 1051 erg). However, in numerical simulations,
the delayed neutrino-heating not always produces a successful explosion and if it does, explosion
energies still are on the low side.

Consequently, some other processes, which would facilitate the explosion, like convection or
the standing accretion shock instability (SASI; Blondin et al. (2003)), are considered. The latter
introduces non-radial deformations of the accretion shock. In another so-called “magnetohydro-
dynamical (MHD) mechanism” (Meier et al. (1976)), for certain progenitors, the magnetic fields
could trigger by themselves or support neutrinos in triggering an explosion.

If the neutrinos, supported by convection, the SASI or magnetic fields, successfully initiate the
explosion, the shock starts to expand rapidly (bottom left panel of Fig. 1.2). During the expan-
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Figure 1.2: A schematic representation of core-collapse supernova evolution stages. Top left: the
iron core collapses. Top right: the matter in the core reaches nuclear densities and the proto-
neutron star (PNS) is formed. The core bounces and the shock wave is created. Middle left: the
shock stagnates and quasi-stationary accretion sets in. Middle right: the shock is revived by the
neutrinos streaming out from the PNS. Bottom left: the beginning of the re-expansion of the shock
wave, the explosion sets in. Bottom right: further nuclear processes take place in the expanding
shock wave. The figure is reproduced with permission from Janka et al. (2012).
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sion, among other nuclear reactions, the so-called r-process (rapid neutron capture) occurs, during
which elements heavier than iron are created (bottom right panel of Fig. 1.2). The matter in the
outer layers is expelled to the interstellar medium, and the compact remnant, the proto-neutron
star, either forms a neutron star or collapses to a black hole.

The study of core-collapse supernovae are extremely challenging, because the physics involved
in the explosion mechanisms is very complex and many “ingredients” have to be taken into
account: nuclear equation of state, nuclear reactions, radiative transport of neutrinos, magneto-
hydrodynamics and general relativity, to name a few. A 3D simulation, in which all these aspects
were included, would be beyond the capabilities of any supercomputer in the predictable future.3

Therefore, some approximations are necessary in the studies, e.g. in 2D simulations axial sym-
metry is assumed. In a simulation with a detailed equation of state (or neutrino transport), general
relativistic effects are often neglected, whereas in a simulation concentrating on these effects, a
simplified equation of state and neutrino transport are used.

In our studies, we investigate the magnetic field amplification in the nascent proto-neutron star
in the post-bounce phase. We use Newtonian MHD4 equations with a simplified equation of state.
The influence of neutrinos (and nuclear reactions) is neglected (which should be a fairly good
approximation, since at the considered time, the majority of the neutrinos are still trapped in the
PNS). The time for magnetic field amplification at this stage is constrained to a few 100 ms by
the interplay between neutrinos and the infalling matter. In the case of a successful supernova
explosion, after a few 100 ms, the outgoing neutrinos will revive the shock and the infalling matter
and a part of the progenitor’s magnetic field will be expelled from the surrounding of the PNS.
Further magnetic field amplification around the PNS can continue, but it will be irrelevant for the
explosion dynamics.
In the case of an unmagnetised progenitor for which a failed supernova occurs, the neutrinos will
not be able to revive the shock and after a few 100 ms, the matter outside the shock radius will
accrete onto the proto-neutron star. However, for the very same but magnetised progenitor, if its
magnetic field is strong enough at this moment, it might be able prevent the collapse and trigger
an explosion.

1.2 Magnetorotational instability in core-collapse supernovae

The amplification of the magnetic fields and their influence on the explosion mechanism is
one of the least explored aspects of core-collapse supernovae. There are two good reasons to
investigate this topic in more detail.

Firstly, it is known that only very strong magnetic fields, which are in equipartition with the
kinetic energy density, i.e. of the order of 1015 G, can play a dynamically important role (see,
e.g. Meier et al. (1976), Obergaulinger & Janka (2011)). However, according to state-of-the-art
stellar evolution theory, the strongest magnetic fields of typical supernova progenitors are unlikely
to exceed 109 G (Heger et al. 2005). Therefore, it is important to investigate whether and how
they could be amplified by six orders of magnitude during a supernova explosion. Ideally, we
would like to know for which initial conditions (i.e. types of progenitors) the magnetic fields can
achieve such high amplitudes. On the one hand, since MHD simulations are computationally more
expensive than purely hydrodynamical ones, it would be beneficial, from a purely practical point

3The closest to this goal so far is a recent 3D simulation of Hanke et al. (2013) with a detailed neutrino transport
and general relativistic corrections to a Newtonian gravitational potential.

4The MHD approximation is discussed in Chapter 2.
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of view, to know in advance whether magnetic fields can be neglected for a given progenitor. On
the other hand, in certain types of core-collapse supernovae, they could play a crucial role and not
taking them into account would be a mistake. For example, a fraction of the observed gamma ray
bursts (long GRBs) is thought to be the result of the collapse of a rapidly rotating core to a black
hole surrounded by a highly magnetised disc (Woosley et al. 1993).

There are several ways, in which the magnetic field could influence the dynamics of the sys-
tem. Firstly, magnetic stresses can provide additional pressure, which counteracts the gravitational
attraction and facilitates a supernova explosion. Secondly, magnetic field can extract differential
rotational energy, converting it to magnetic energy, and transport angular momentum outwards.
At some point, this energy could be transferred to kinetic and thermal energy in a violent process
called magnetic field reconnection (see, e.g. Biskamp (1997); Biskamp (2005); Goedbloed et al.
(2010)). One can speculate that this extra energy injection could play a crucial role in the explosion
dynamics. However, this phenomenon has not yet (properly) been studied in core-collapse super-
nova simulations.5 Even though the resistivity of the plasma is very small in this environment (i.e.
the magnetic diffusion timescale exceeds the explosion timescale by many orders of magnitude),
we cannot simply infer from this fact that the reconnection rates would be too small for this pro-
cess to play an important role in the explosion. It is well known that the reconnection rates of
the classical Sweet-Parker and Petschek models (i.e. in which the reconnection is driven only by
resistivity) are insufficient to explain phenomena observed in the Solar corona (see, e.g. Biskamp
(2005)). Similarly, the magnetic field diffusion rate in the Solar dynamo must be much higher
than the value expected from the classical (Spitzer & Härm 1953) resistivity (see, e.g. Goedbloed
& Poedts (2004)). Therefore, some turbulent reconnection models were proposed, in which the
reconnection rate does not depend on resistivity (see, e.g. Lazarian & Vishniac (1999)). Magnetic
field reconnection is a very complicated topic on its own, which is not yet fully understood. It is
hard to predict when it will be possible to investigate the relevance of this process for core-collapse
supernova explosions. Further advances from both the theoretical side and the computational side
(more powerful supercomputers, which would allow using higher resolutions) are necessary.

Secondly, magnetised neutron stars, pulsars and magnetars, which are created during core-
collapse supernova explosions, are known to have very strong magnetic fields of order 1012–1013 G
and 1014–1015 G (Kouveliotou et al. 1998), respectively. Whereas in current supernova simu-
lations, realistic initial magnetic fields can be amplified to the values observed in pulsars (i.e.
1012–1013 G; Obergaulinger & Janka (2011)), the origin of the magnetic fields encountered in
magnetars (1014–1015 G) remains a puzzle. Meier et al. (1976) estimated an upper-limit for mag-
netic field amplification during a core-collapse supernova explosion of a differentially rotating
progenitor. In their most optimistic scenario, amplitudes as high as a few times 1015 G could be
reached. A recent estimate of Spruit (2008), which is based on data from modern stellar evolution-
and supernova explosion-models, gives a similar result. However, since magnetic field amplific-
ation is a highly non-linear process, its details can be only studied numerically. It is also unclear
whether and how such strong fields could be successfully trapped in a nascent proto-neutron star
after the explosion (we will not investigate this issue in this thesis).

For non-rotating progenitors, the magnetic field can be amplified first by compression. The

5We can safely claim that results of any simulation in which reconnection was driven by numerical resistivity must
merely be misleading for the following reason. In (non-turbulent) reconnection models, the reconnection rate is propor-
tional to the (scalar) physical resistivity. Even in our local simulations from Chapter 2, which belong to the currently
best resolved CC-SN MHD simulations, the numerical resistivity is higher than the expected physical resistivity by
many orders of magnitude. This means that the rate of numerically driven reconnection (which is proportional to the
numerical resistivity), will be higher than any plausible non-turbulent reconnection rate by many orders of magnitude.
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degenerate stellar matter is highly conductive and the magnetic flux is frozen into it. During the
collapse to a proto-neutron star, the magnetic field following the infalling gas is compressed and
amplified by roughly two orders of magnitude. After the collapse, further amplification can be
provided by hydrodynamic instabilities such as convection or the SASI. However, it can be estim-
ated that these processes are insufficient to amplify the magnetic field by six orders of magnitude
on the supernova timescale (see, e.g. Spruit (2008)). Recent 2D MHD core-collapse supernova
simulations of Obergaulinger & Janka (2011) confirm this. These authors considered non-rotating
progenitors with initial magnetic fields in the range from 109 to 1012 G and found that, independ-
ent of the initial amplitude, the magnetic field was amplified by the above mentioned processes
by approximately three orders of magnitude. This means that unless unrealistically high initial
amplitudes are used (of order 1012G, which is three orders of magnitude higher than theoretically
expected; Heger et al. (2005)), the magnetic field cannot reach 1015 G in the post-bounce phase.
Obergaulinger & Janka (2011) reported that only such strong magnetic fields could significantly
affect the dynamics of the system.

For differentially rotating progenitors, apart from compression (and later also convection and the
SASI) there are two more known mechanism amplifying magnetic fields. One of them is linear
winding, which creates (winds up) a toroidal component (i.e. Bφ in spherical or cylindrical co-
ordinates) from the poloidal (i.e. the other) field components. This process increases the magnetic
field strength at the expense of the rotational energy and operates linearly with time. Compression
and linear winding were observed in several numerical simulations (see, e.g. Bisnovatyi-Kogan
et al. 1976; Meier et al. 1976; Müller & Hillebrandt 1979; Symbalisty 1984; Yamada & Sawai
2004; Kotake et al. 2004; Ardeljan et al. 2005; Obergaulinger et al. 2006b,a; Cerdá-Durán et al.
2007; Burrows et al. 2007). However, in none of these, the magnetic field was amplified to 1015 G
from theoretically expected initial values (of order 109 G). This negative result is in accordance
with the estimate of Spruit (2008).

Another amplification mechanism was proposed by Akiyama et al. (2003). These authors poin-
ted out that the matter of a differentially rotating nascent proto-neutron star can be unstable against
the magnetorotational instability (MRI) (Balbus & Hawley (1991); Hawley & Balbus (1991)). The
MRI amplifies the magnetic field exponentially with time, therefore even a weak seed field could
possibly increase to a dynamically relevant strength in the post-bounce phase.

Since the pioneering work of Balbus & Hawley (1991), the MRI has been intensively studied
in accretion discs (see, e.g. Balbus & Hawley (1998)), where it excites turbulence and enables the
outwards transport of angular momentum, which is necessary for gas to be able to accrete onto
the central object (star, neutron star or black hole). Numerical studies of this instability are chal-
lenging, since the scales on which it operates are much smaller than a typical accretion disc size.
Therefore, it is impossible for current generation supercomputers to resolve the MRI evolution in
global accretion disc simulations and a hybrid approach has to be used in these investigations. On
the one hand, in local simulations (see, e.g. Hawley & Balbus 1991, 1992; Hawley et al. 1995;
Brandenburg et al. 1995; Hawley et al. 1996; Stone et al. 1996; Sano et al. 2004; Fromang &
Papaloizou 2007; Fromang et al. 2007) of a small part of an accretion disc, high enough spatial
resolution can be used to follow the MRI evolution: the onset of the instability, the phase of ex-
ponential growth, its termination and the subsequent transition into the turbulent state. The main
drawback of such simulations is that they cannot answer the question how the MRI can affect the
global disc structure. Moreover, since they cover only a small fraction of an accretion disc, many
simulations have to be done to explore different physical regimes encountered within the disc.
Additionally, some simplified initial and boundary conditions have to be used. On the other hand,
global simulations (see, e.g. Hawley 2000; Stone & Pringle 2001; Arlt & Rüdiger 2001; Hawley
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et al. 2001; Hawley & Balbus 2002) allow testing of the influence of the MRI on the whole disc,
however they fail to resolve the MRI structures for realistic initial magnetic fields. Therefore, one
has to use artificially enhanced initial magnetic field amplitudes (the stronger the initial field, the
larger the MRI structures) or the information obtained from local simulations. This combination
of local and global simulations has been successful and gave a valuable insight into the accretion
disc physics. Nevertheless, the saturation level of the MRI is still not fully understood.

The MRI results obtained in accretion disc studies cannot be easily extrapolated to core collapse
supernovae, because the physical conditions in both systems are very different. The accretion discs
have a Keplerian rotational profile and their matter can be well described with an ideal gas equation
of state. In contrast, the hydrostatic equilibrium in the rotating supernova core is provided not only
by the centrifugal force but also (mostly) by pressure gradients. Moreover, the proto-neutron star
matter reaches nuclear densities and an equation of state that includes nuclear interactions has to
be used to describe its properties. It is not clear either how convective instabilities and neutrino
transport influence the growth and termination of the MRI. Therefore, there is a need to study the
MRI in core-collapse supernova simulations.

Obergaulinger et al. (2006b) and Obergaulinger et al. (2006a) identified the MRI in global MHD
core-collapse supernova simulations (for a more recent work, see also Sawai et al. (2013)). How-
ever, as it was pointed out by these authors, the fastest growing MRI modes have wavelengths of
order of (at most) a meter and because of the insufficient resolution it was impossible to resolve
them in these simulations. Consequently, Obergaulinger et al. (2009) performed local simulations
to study the development of the instability in more detail (see also Masada et al. (2012)). Their
results confirmed that the MRI growth-rates are high enough for the instability to present a viable
amplification mechanism in a proto-neutron star. However, because of limited computational re-
sources,these authors used artificially enhanced initial magnetic fields (so that the MRI structures
were larger) of order 1013 G, which were then amplified by the MRI to ≈ 1015 G within a few
tens of milliseconds. Therefore, it is still unclear whether much weaker, but realistic magnetic
fields can be amplified to the same (dynamically relevant) amplitudes. This uncertainty results
from two facts. Firstly, we lack an understanding of the MRI growth termination physics and of
the subsequent non-linear turbulent phase. Secondly, it is unclear to what degree the results of
Obergaulinger et al. (2009) are affected by numerical errors (numerical viscosity and resistivity6).
Being aware of this problem, these authors tried to estimate the influence of the numerical dissip-
ation of their code, but they did not give a reliable prescription how to extrapolate their results to
the parameter space regime that is relevant for core-collapse supernovae.

The early phase of the MRI is characterised by coherent laminar flows (channel modes) that
are unstable against secondary (or parasitic) instabilities (Goodman & Xu 1994) driven by the
flow (Kelvin-Helmholtz) or the current (tearing modes). When these parasites disrupt the channel
modes, the growth of the MRI terminates. Based on theoretical analysis, Pessah (2010) suggested
that the saturation level of MRI-driven turbulence and therefore the final magnetic field strength
can be estimated by a study of the parasitic instabilities.

The main goal of this thesis is to test this hypothesis in local three-dimensional resistive-viscous
magnetohydrodynamical (MHD) simulations of the MRI in core-collapse supernovae. Thereby,
we extend the studies of Obergaulinger et al. (2009), which were done in the ideal-MHD limit. We
also investigate the influence of the numerical dissipation on the simulation results. Moreover, we
plan to find a prescription, which will allow us to extrapolate them to the parameter space regime
that is relevant for the core-collapse supernovae. As a result, we want to give an upper limit for

6These notions are defined in Chapter 2.
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MRI-driven magnetic field amplification. We also note that the MRI can only play and important
role in core-collapse supernova explosions of progenitors, which are both strongly magnetised and
rapidly rotating. These conditions are met in less than 1% of all cases.

1.3 Plan of the thesis

Chapter 2 is a brief introduction to magnetohydrodynamics (MHD). We begin with a derivation
of non-ideal (i.e. containing resistive and viscous terms) MHD equations. Then, we discuss the
ideal MHD limit, which is an excellent approximation for many astrophysical phenomena. Next,
we describe numerical methods used to integrate MHD equations. We explain why any numer-
ical solution inevitably differs from the real solution, and we name standard ways of measuring
numerical errors. They are very useful when assessing or designing a numerical scheme, yet their
application is very limited when interpreting results of time-dependent simulations whose purpose
is to investigate (new) physical phenomena (and not merely to test numerical methods). We argue
that in the case of computational MHD, numerical errors can be often interpreted as numerical
resistivity and viscosity. Verifying this claim is the main goal of Chapter 3. First, we propose a
simple prescription, which, after calibrating it with some simulations, can be used to estimate the
numerical dissipation (i.e. resistivity and viscosity) of any grid-based MHD code for any initial
conditions. Then, we test this prescription with the help of wave damping- and tearing mode-
simulations. Chapter 4 deals with the main goal of this thesis: the magnetorotational instability in
core-collapse supernovae in the framework of non-ideal MHD. We investigate, whether the MRI is
able to amplify a progenitor’s initial magnetic field to dynamically relevant strengths (amplitudes
of order 1015 G), i.e. at which the magnetic field energy amounts to a considerable fraction of
the kinetic energy. Finally, in Chapter 5, we summarise our results and discuss their implications
for core-collapse supernovae. No matter how exhaustive one’s work is, there is always room for
improvements. Therefore, we conclude with an outlook on further research.





Chapter 2

Magnetohydrodynamics

2.1 Magnetohydrodynamics equations

Magnetohydrodynamics (MHD) equations describe the motion of a plasma1(later also called
fluid in this thesis) interacting with a magnetic field. They emerge from combining Maxwell’s
equations, which describe interactions of electromagnetic fields, with equations of fluid dynamics.
In this thesis, vectors and tensors are written in bold. We omit the tensor dot product symbol, ⊗.
According to this notation, in the equation D = AC≡A⊗C, D is a second rank tensor if A and C
are vectors. We use CGS units with a redefined magnetic field b≡ B/

√
4π,2 in which Maxwell’s

equations read

∇×E =−
√

4π

c
∂tb, (2.1)

∇×b =
1√
4πc

∂tE+

√
4π

c
j, (2.2)

∇ ·E = 4πρc, (2.3)

∇ ·b = 0, (2.4)

where E is the electric field, ρc and j denote the density of electric-charge and -current, respect-
ively, and c≈ 3×1010 cm s−1 is the speed of light.

The fluid dynamics equation consist of: (i) the conservation of mass

∂tρ +∇ · (ρv) = 0, , (2.5)

where ρ and v are fluid density and velocity, respectively, (ii) the conservation of energy, which
we discuss later, and (iii) the Navier-Stokes equations describing the motion of a fluid element

ρ (∂tv+v ·∇v) =−∇p+∇ ·T+ f, (2.6)

1 Plasma is an ionised gas.
2 There is no other area of physics but electrodynamics, where six different systems of units exist (see, e.g. Jackson

(1998)) and four of them (Gaussian, Heaviside-Lorentz, Planck and SI) are commonly used. Therefore, the reader may
question the reasonableness of introducing yet another system modification. The main advantage of the units used by
us is the elimination of many somewhat awkward 4π factors, which is beneficial for numerical calculations. The MHD
equations in this system look like SI equations with the magnetic permeability equal to one, i.e. µ0 = 1, e.g. the Alfvén
speed reads cA = b/

√
ρ , instead of cA = B/

√
4πρ.
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where T and f are the viscous stress tensor and the density of external forces, respectively. We
consider a scalar model for viscosity, which is valid for isotropic fluids. In this approximation, the
stress tensor reads

T = ρν
(
(∇v)+(∇v)T )+ρ(−2

3 ν +ξ )(∇ ·v)I, (2.7)

where ν and ξ are the (kinematic) shear and bulk viscosity,3 respectively, and I denotes the identity
matrix. In the presence of an electromagnetic field, the Lorentz force will act on the fluid element.
Additionally, in the external gravitational potential ϕ , the fluid will be attracted with the gravity
force density equal to −ρ∇ϕ . Hence,

f = ρcE+

√
4π

c
j×b−ρ∇ϕ. (2.8)

For non-relativistic motions, i.e. for v� c, the above equations can be simplified. The displace-
ment current (∂tE/

√
4πc) in Ampère’s law with Maxwell’s correction (2.2) is of order O(v2/c2)

and can be neglected. The electric current can be determined from the original Ampère’s law
instead:

j =
c√
4π

∇×b. (2.9)

Moreover, one can easily show that in the Newtonian limit, the electrostatic contribution to the
Lorentz force is negligible, i.e. ρc|E| � |(

√
4π/c)j×b|. Therefore, we no longer need Poisson’s

law (2.3) to determine the spatial distribution of the charge. The electric field becomes a secondary
quantity, which can be eliminated from Maxwell’s equation. By combining Ohm’s law:

E =−
√

4π

c
v×b+

4πη

c2 j, (2.10)

where η denotes resistivity,4 with Faraday’s law (2.1), we obtain the induction equation

∂tb = ∇× (v×b)−∇× (η∇×b). (2.11)

The gas’s specific internal energy, e, can be increased by Ohmic dissipation (4πη j2/c2) and
viscous heating (∇v : T):

ρ(∂te+v ·∇e)+(Γ−1)ρe∇ ·v = η(∇×b)2 +ρν(∇v) :
(
(∇v)+(∇v)T )+

ρ(−2
3 ν +ξ )(∇ ·v)2I, (2.12)

where the colon denotes the double-dot product, i.e.

∇v : T≡∑
i
∑

j

∂v j

∂xi T i j. (2.13)

From Eq. (2.12), a gas pressure, p, can be determined. For an ideal gas equation of state (EOS),
we have

p = (Γ−1)eρ, (2.14)

where Γ is the adiabatic index.
3In this thesis by viscosity we always mean the kinematic viscosity, which is related to the dynamic viscosity, µ , by

the relation µ = νρ .
4In MHD also called magnetic diffusivity.
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Eqs. (2.4), (2.5), (2.6), (2.11) and (2.12) constitute the final set of Newtonian resistive-viscous
MHD equations in an external gravitational field:

∂tρ +∇ · (ρv) = 0, (2.15)

ρ (∂tv+v ·∇v) =−∇p+ρ
(
ξ + ν

3

)
∇(∇ ·v)+ν(∇ρ) ·

(
(∇v)+(∇v)T )+(

ξ − 2
3 ν
)
(∇ ·v)∇ρ +ρν∇

2v+(∇×b)×b−ρ∇ϕ, (2.16)

ρ(∂te+v ·∇e)+(Γ−1)eρ∇ ·v = η(∇×b)2 +ρν(∇v) :
(
(∇v)+(∇v)T )+

ρ(−2
3 ν +ξ )(∇ ·v)2I, (2.17)

∂tb = ∇× (v×b)−∇× (η(∇×b)), (2.18)

∇ ·b = 0. (2.19)

Not in every physical system, the influence of resistivity or viscosity is equally important. The
measure for that are two very important dimensionless numbers. The hydrodynamic Reynolds
number, or just the Reynolds number, is a ratio of internal to viscous forces:

Re ≡
LV
ν

, (2.20)

where L and V respectively are the characteristic length and velocity of the system. The Reynolds
number determines the character of a flow. For Re . 2000, the flow is laminar (smooth and
orderly), for Re & 4000, the flow becomes turbulent (randomly fluctuating and disorderly). The
exact values of these numbers depend on the geometry of the system. In the limit of infinitely
large Reynolds number, the flow is inviscid. The magnetic Reynolds number is a ratio of magnetic
field advection to diffusion:

Rm ≡
LV
η

. (2.21)

For Rm � 1, the fluid motion can be neglected in the induction equation (2.18), which becomes
the magnetic diffusion equation

∂tb = η∇
2b. (2.22)

For Rm→ ∞, resistive effects become negligible and the induction equation can be approximated
as

∂tb = ∇× (v×b), (2.23)

which has two direct consequences: flux freezing and conservation of flux. The former one means
that magnetic field lines always co-move with the fluid (as if they were “frozen in” the plasma).
The latter one states that if there is no magnetic dissipation in the system, the magnetic flux is
conserved. Another dimensionless quantity, which can be constructed from the Reynolds numbers,
is the magnetic Prandtl number:

Pm ≡
Rm

Re
=

ν

η
. (2.24)

It is the ratio of kinetic to magnetic dissipation.

Many astrophysical flows are characterised by very large hydrodynamic and magnetic Reynolds
numbers of order Re,Rm ∼ 106–1016. For such systems, the resistive and viscous effects can be
neglected and the flow evolution can be very well approximated by ideal MHD equations. They are
obtained from Eqs. (2.15)–(2.19) by putting ν = ξ = η = 0. This simplification not only removes
some terms from the non-ideal MHD equations, but also changes their mathematical properties.
We will discuss this issue later in the text.
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Ideal MHD is described by a set of non-linear hyperbolic5 partial differential equations, which
can be written in a conservation form, i.e.

∂tU+∇ ·F(U) = 0, (2.25)

where U is a set of conserved quantities and F is a set of associated fluxes. We neglect the gravity
effects and after some algebra, we can cast the ideal MHD equations in their conservation form
(the details can be found in, e.g. Goedbloed & Poedts (2004)):

∂tρ +∇ · (ρv) = 0, (2.26)

∂t (ρv)+∇ ·
[
ρvv+

(
p+ 1

2 b2)I−bb
]
= 0, (2.27)

∂t
(1

2 ρv2 +ρe+ 1
2 b2)+∇ ·

[(1
2 ρv2 +ρe+ p+b2)v−v ·bb

]
= 0, (2.28)

∂tb+∇ · (vb−bv) = 0, (2.29)

∇ ·b = 0. (2.30)

The conserved quantities in ideal MHD are (in the brackets we write their densities): mass (ρ),
momentum (π = ρv) , total energy (etot =

1
2 ρv2 + ρe+ 1

2 b2) and magnetic flux (b). Their as-
sociated fluxes can be expressed as a combination of ρ,π,etot and b. From the mathematical
and physical point of view, both formulations of the ideal MHD equations, i.e. Eqs. (2.15)-(2.19)
expressed in the primitive (not conserved) variables v,b,ρ,e, (or a combination of any two ther-
modynamical variables) and Eqs. (2.26)-(2.30) expressed in the conserved variables π,b,ρ,etot,
are equivalent. However, as we will see in the next section, the latter formulation is much more
suitable for numerical integration.

The non-ideal MHD equations can also be cast into conservative form (2.25). After some cal-
culations, from Eqs. (2.15)-(2.19), we obtain

∂tρ +∇ · (ρv) = 0, (2.31)

∂t (ρv)+∇ ·
[
ρvv+

(
p+ 1

2 b2)I−bb−
ρν
(
(∇v)+(∇v)T )+ρ

(2
3 ν−ξ

)
(∇ ·v)I

]
= 0, (2.32)

∂t
(1

2 ρv2 +ρe+ 1
2 b2)+∇ ·

[( 1
2 ρv2 +ρe+ p+b2)v−v ·bb+

η(b·∇b− 1
2 ∇b2)−ρν(1

2 ∇v2 +v·∇v)−ρ(−2
3 ν +ξ )v(∇ ·v)

]
= 0, (2.33)

∂tb−∇× [v×b+η(∇×b)] = 0, (2.34)

∇ ·b = 0. (2.35)

We see a few differences with respect to the ideal MHD Eqs. (2.26)-(2.30). First of all, shear and
bulk viscosity enter the fluxes of momentum- and energy-density, giving rise to additional ways
of transporting these quantities. Shear and bulk viscosities are also sometimes called diffusion or
transport coefficients. Similarly, magnetic flux can be transported not only by the flow but also
by resistivity, which will try to remove (smooth out) magnetic field gradients. Because of this
feature, resistivity is also sometimes called magnetic diffusivity. A term proportional to resistivity
is also present in the flux of the energy density, because magnetic field energy can be converted to
internal or kinetic energy. Another difference can be noted in the induction Eq. (2.34), which we
wrote in a somewhat different conservation form, i.e.

∂tU+∇×F(U) = 0, (2.36)

5We explain this term in the next section.
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which is, in general, valid only for vector quantities (and in MHD only for a magnetic field).

MHD equations can be extended to take into account additional physical phenomena. One of
the most important of them for astrophysical applications is gravity. Including terms proportional
to the gravitational force density, −ρ∇ϕ , where ϕ is an external gravitational potential, in the
MHD Eqs. (2.31)-(2.35), leads to

∂tρ +∇ · (ρv) = 0, (2.37)

∂t (ρv)+∇ ·
[
ρvv+

(
p+ 1

2 b2)I−bb−
ρν
(
(∇v)+(∇v)T )+ρ

(2
3 ν−ξ

)
(∇ ·v)I

]
=−ρ∇ϕ, (2.38)

∂t
(1

2 ρv2 +ρe+ 1
2 b2)+∇ ·

[( 1
2 ρv2 +ρe+ p+b2)v−v ·bb+

η(b·∇b− 1
2 ∇b2)−ρν(1

2 ∇v2 +v·∇v)−ρ(−2
3 ν +ξ )v(∇ ·v)

]
=−ρv ·∇ϕ, (2.39)

∂tb−∇× [v×b+η(∇×b)] = 0, (2.40)

∇ ·b = 0. (2.41)

In the presence of an external gravitational potential, total momentum and energy are no longer
conserved.6 Note also that it is no longer possible to write Eqs. (2.37)-(2.41) in a homogeneous
conservative form (Eqs. (2.25) and (2.36)). The reason for this is that the terms proportional to the
gravitational force density cannot be written as a divergence but give rise to source terms. Eqs.
(2.37)-(2.41) are written in an inhomogeneous conservation form , i.e.

∂tU+∇ ·F(U) = S, (2.42)

∂tU+∇×F(U) = S, (2.43)

(2.44)

where S are source terms. Another example of a physical process leading to additional source
terms are nuclear reactions. They can cause energy release or consumption, giving rise to source
and sink terms, respectively, in the energy equation.

MHD is described by non-linear partial differential equations which for many physical sys-
tems are too complicated to be solved analytically. Therefore, computer simulations become an
indispensable tool for studying MHD phenomena. In this dissertation, we use an Eulerian finite-
volume MHD code, AENUS, developed by Obergaulinger (2008). In the next section, we briefly
discuss how to solve MHD equations numerically. Since it is a very broad topic (see the book by
Goedbloed et al. (2010)), we will mainly concentrate on the methods used in AENUS.

2.2 Numerical methods

In this section, we introduce methods of computational MHD. We begin with discussing general
problems of numerical analysis, in particularly, the origin of numerical errors. Then, we describe
the ideal MHD equations’ mathematical properties. They are exploited in constructing appropriate
numerical schemes for MHD. In general, we can say that they heavily rely on methods developed
for computational hydrodynamics (see, e.g. Toro (1997), Laney (1998), LeVeque (2002)). Next,
we show how inclusion of non-ideal effects, i.e. viscosity and resistivity, changes mathematical
features of the MHD equations. At the end of this section, we once again discuss numerical
errors of computational MHD, this time from a different perspective. We introduce the concept of
numerical viscosity and resistivity.

6By “total” momentum and energy, we mean the momentum and the energy of the considered plasma, which should
be treated as a subsystem of some global system, whose energy and momentum must be always conserved.



16 MAGNETOHYDRODYNAMICS

2.2.1 Numerical errors

Real functions cannot be exactly represented in computers for several reasons. Firstly, already
storing a single real number consisting of infinitely many digits would require an infinite computer
memory. Secondly, a function f (x) defined on an interval [a,b] should be represented for infinitely
many points. Not to mention the fact, that the set of real number is uncountable. Therefore, in
any computational approach, the function f (x) needs to be represented discretely, e.g. for a finite
number of points {x1, . . . ,xN} ∈ [a,b]. Such a discretised approximation of f (x) will be denoted
with f̂ N(x). We have just described a numerical representation of functions by points, which is
used in so-called finite difference methods. However, some other representations are possible. In
finite volume methods, functions are approximated (represented) by their cell averages. In finite
element methods, functions are approximated by basic functions, i.e. a finite set of local piecewise
polynomials. In this section, we will present equations for calculating numerical errors which
are only valid for finite difference methods. However, writing analogous equations for the other
representations is rather straightforward (yet the final form of these equations is somewhat longer).
We will discuss finite volume methods in Sec. 2.2.2.

Many computational problems consist in solving differential equations. For each of them, we
should choose a suitable numerical method, with which an approximate solution f̂ N(x) will be
found. We should be able to estimate how much this approximation differs from the exact solution
f (x). This can be done with the help of a norm function. Although one can define infinitely many
of them, only several norm functions are commonly used, e.g. the popular in functional analysis
L2-norm for quadratically integrable functions is given by

|| f −g||2 ≡

 b∫
a

[ f (x)−g(x)]2dx/(b−a)

1/2

. (2.45)

One can also define its counterpart in discrete analysis. In general, the Lp-norm for discrete func-
tions is defined as

|| f − f̂ N ||p ≡

(
1
N

N

∑
i=1
| f (xi)− f̂ N(xi)|p

)1/p

. (2.46)

The most popular ones are the L1- and the L2-norms. With one of these norms, say the L2, we
can measure the global truncation error, i.e. the difference between the approximate solution
{ f̂ N(x)} ≡ { f̂ N(x1), . . . , f̂ N(xN)} and the exact solution f (x). One of the basic requirements for
any sound numerical scheme is that for N→ ∞, the global truncation error vanishes, i.e

lim
N→∞
|| f − f̂ N ||2 = 0. (2.47)

We say then that the approximate solution converges to the exact solution in the norm L2.

Eq. (2.46) gives the difference between the functions in the whole domain. It is sometimes
useful to consider the local truncation error Ei:

Ei ≡ f (xi)− f̂ N(xi). (2.48)

It measures the difference between the exact and approximate solution at a given point, xi.

As we have already written before, real numbers have infinitely many decimals, whereas in
computer calculations, we can only use numbers with a finite number of significant digits (typically
≈ 10). This leads to the so-called round-off error Ri:

Ri ≡ f̂ N(xi)− f̂ N
num(xi), (2.49)
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where f̂ N(xi) is the theoretical value for the given numerical scheme, when operating on real
numbers and f̂ N

num(xi) is the actually calculated value by the computer. Note that the convergence
in the sense of Eq. (2.47) is only possible if working with real numbers.

Finally, we define the total error as | f (xi)− f̂ N
num(xi)|. It is elementary to show, that

| f (xi)− f̂ N
num(xi)| ≤ |Ei|+ |Ri|. (2.50)

The total error is limited by the sum of the absolute values of the truncation and round-off error.
Usually, the latter is much smaller than the former. Typically, in computational astrophysics we
deal with time dependent problems. Therefore, it is of crucial importance to use only methods for
which the truncation errors do not grow unboundedly with time.

2.2.2 Hyperbolic conservation laws

As we have already written in Sec. 2.1, MHD equations consist of a set of nonlinear conserva-
tion laws. In nonlinear dynamics, shocks, contact and tangential discontinuities can spontaneously
arise from continuous initial data. Across these discontinuities, the so-called Rankine-Hugoniot
(or jump) conditions must hold (see, e.g. Goedbloed & Poedts (2004)), i.e. fluxes of conserved
quantities must be continuous. It is very important that these conditions are also fulfilled in a
discretised version of MHD equations. Hou & Le Floch (1994) showed through a rigorous math-
ematical analysis that using any finite difference scheme in a non-conservative form to solve nu-
merically a scalar conservation law will lead to significant errors growing with time. This is why
the MHD Eqs. (2.15)–(2.19) are not suitable for a numerical integration and we transformed them
to an inhomogeneous conservation form (Eqs. (2.37)–(2.41)), which in general can be written as

∂tU+∇ ·F(U) = S, (2.51)

∂tU+∇×F(U) = S, (2.52)

where U is a set of conserved variables (which can be vectors or scalars for Eq. 2.52 and only
vectors for Eq. (2.52)), F(U) and S are fluxes and sources associated with them, respectively.
With the help of Gauss’s and Stokes’ theorems, we can cast the differential conservation laws
(2.51) and (2.52) into their integral form, i.e.∫

V
∂tUdV+

∫
∂V

F ·ndΣ =
∫
V

SdV, (2.53)∫
Σ

∂tUdΣ+
∫

∂Σ

F · ldL=
∫

Σ

SdΣ, (2.54)

where V, Σ and L are volume, surface and surface’s contour (boundary), respectively, n is a vector
normal to the surface and l is a vector tangent to the surface’s contour. Eq. (2.53) states that
the amount of conserved quantities U in a given volume can only change due to fluxes F passing
through its boundaries and due to sources S creating or destroying U within the volume. Eq. (2.54)
has an analogous interpretation for quantities conserved on a surface. In the absence of external
forces and sinks, MHD equations can be written in a homogeneous conservation form (see Eqs.
(2.26)-(2.30) or Eqs. (2.31)-(2.35)), i.e.

∂tU+∇ ·F(U) = 0, (2.55)

∂tU+∇×F(U) = 0. (2.56)
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For the sake of simplicity, we begin with a discussion of the conservation law (2.55) in one
spatial dimension, i.e.

∂tU+∇x ·F(U) = 0. (2.57)

This equation can be brought to a quasi-linear form,

∂tU+F∂xU = 0, (2.58)

where

Fi j ≡
∂Fi

∂U j (2.59)

is the Jacobian matrix of the transformation. System (2.57) is called hyperbolic if F is diagonal-
isable and all its eigenvalues, λi, i = 1, . . . ,n, are real. Moreover, if all of them are additionally
distinct, the system is called strictly hyperbolic. If none of the eigenvalues is real, the system is
called elliptic. Note that from the dimensional analysis of Eq. (2.58), we see that the eigenvalues
of F must have a dimension of velocity. For ideal MHD equations, which are hyperbolic, F is
diagonalisable and can be decomposed into

F= RΛR−1, (2.60)

where Λ= diag(λ1, . . . ,λn) is a diagonal matrix of eigenvalues and R = (r1| . . . |rn) is a matrix of
right eigenvectors, i.e.

Fri = λiri for i = 1, . . . ,n. (2.61)

After changing to characteristic variables

Q≡ R−1U, (2.62)

with the help of decomposition (2.60), we can cast Eq. (2.58) into its characteristic form, i.e.

∂tQ+Λ∂xQ = 0. (2.63)

Note that since Λ is diagonal, the original system of partial differential equations (PDEs; Eq.
(2.58)) decouples into n independent scalar equations. From the above equation, we see that
characteristic variables Qi remain constant on curves dx = λidt (called characteristics of PDEs),
in the (x, t) plane. Due to this fact, characteristic variables are also called Riemann invariants.
They propagate at the speed given by a corresponding eigenvalue λi. Therefore, λi are called
characteristic velocities of the system. Note that if all eigenvalues λi are constant, Eq. (2.63)
basically consists of n independent linear advection equations, where the advection velocity of
the i-th characteristic variable Qi is given by λi. In general, eigenvalues are only approximately
constant in the vicinity of a given point in the (x, t) plane. The method of characteristics can be
used to solve an initial value problem of PDEs (2.58). If we decompose conserved quantities into
Riemann invariants (with the help of transformations (2.62), we can locally compute the temporal
evolution by advecting the latter ones with their corresponding characteristic velocities λi. In a
system with n = 2 conserved quantities, it is always possible to find both Riemann invariants. For
n > 2, we may not always be able to find a full set of Riemann invariants obeying Eq. (2.63).

Unusual, but useful notation

Since the super- and sub-scripts will be quite “overloaded” in our discussion, it is very im-
portant at this point to set and use a consistent notation. In Sec. 2.2.2, we defined U as a set of
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conserved variables, which could be scalars or vectors (or in principle even tensors of a higher
rank). Hence, U can be imagined as a somehow ordered combination of these quantities, e.g.
U = (U j) = (a1,a2,a3,b,c1,c2,c3), where a is conserved vector quantity and a1,a2,a3 are its
components, b is a conserved scalar and c1,c2,c3 are components of another conserved quant-
ity. From now on, we will not perform calculations for any particularly chosen component of U,
therefore we will use neither super- nor sub-scripts to specify components of U, i.e. U j 6= (U j) and
U j 6= (U j). We just want to “free” these indices for other purposes. To reduce possible confusion
and simplify notation, we will use variable u in some equations, which should be understood as
representing any component of U. Hence, if we write an equation, which holds for u, it should
be understood that we have in mind a set of equations holding for every (U j). Analogically, we
introduce the variable s to represent the components of sources (S j) in a similar way. The set of
fluxes can be written as a two-dimensional matrix F (a representation of a second rank tensor).
Therefore, we need two indices to specify a component of F, i.e. F = (F i j), where the first index,
i ∈ {1,2,3}, refers to the spatial direction in which the flux of the conserved variable U j moves.
However, in a one dimensional system, we can “forget” about the tensorial nature of F, as i ≡ 1,
i.e. the flux can only move in one direction. Therefore, when limiting our considerations to one
spatial dimension, we will use the variable f to represent the components (F1 j).

To illustrate these newly introduced conventions, let us consider Eq. (2.51), i.e.

∂tU+∇ ·F(U) = S.

In the standard index notation (which we will not use, apart from this example), it can be written
as

∂tU j +∂xiF i j = S j, ∀ j (2.64)

where i = {1,2,3}, and the Einstein summation convention was used. In a one dimensional sys-
tem, the above equation simplifies to

∂tU+∇x ·F(U) = S, (2.65)

or equivalently in the index notation

∂tU j +∂xF1 j = S j, ∀ j (2.66)

According to our convention, this equation can be simply written as

∂tu+∂x f = s. (2.67)

Eq. (2.67) looks like a scalar conservation law, but in our notation, it is equivalent to Eq. (2.65).
We hope that these newly adapted convention will not lead to any confusion.

Spatial discretisation

To integrate hyperbolic equations numerically, we have to decompose their continuous do-
main (both in space in time) into discrete elements. In high-resolution shock-capturing (HRSC)
schemes,7 the physical domain is divided into a finite number of fixed in space zones Zi of volumes

7In shock capturing methods, as opposed to shock-fitting or (also sometimes called) shock-tracing-methods,
Rankine-Hugoniot are not explicitly enforced. Shock capturing methods must be conservative, since conservative
numerical methods automatically locate shocks correctly (see, e.g. Laney (1998)).
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Vi. In finite difference schemes,8 conserved variables U(x) are approximated by their values at the
zone centres, i.e.

Ui = U(xi), (2.68)

where xi is the centre of Zi. Note that in Ui, the subscript i does not refer to the i-th component
of U, but to the approximation of (the whole vector) U in the i-th zone (which is also a vector). In
the standard index notation, the above equation would read

(U j)i = (U j)(xi), ∀ j (2.69)

which according to our convention, can be simply written as9

ui = u(xi). (2.70)

In finite volume schemes, u(x) is approximated by its volume averages, i.e.

ui =
1
Vi

∫
Zi

u(x)dV, (2.71)

where
Vi =

∫
Zi

dV. (2.72)

Eq. (2.71) is equivalent to

Ui =
1
Vi

∫
Zi

U(x)dV. (2.73)

In the rest of this chapter, we will mainly focus on the finite volume methods.

The temporal evolution of u is determined from a discretised version of the integral conservation
law (2.53), i.e.

∂tUi +
1
Vi

∫
∂Zi

F ·ndΣ =
1
Vi

∫
Zi

SidV (2.74)

(we remind the reader that the subscript i enumerates zones and not vector components). After
neglecting source terms, we obtain the flux-conservative form of the above equation

∂tUi +
1
Vi

∫
∂Zi

F ·ndΣ = 0. (2.75)

For the sake of simplicity, we will consider the above equations in one spatial dimension. A
generalisation to multi-dimensional systems will be discussed later. Each zone Zi extends from
its left interface Ii− 1

2
(at xi− 1

2
) to its right interface Ii+ 1

2
(at xi+ 1

2
). The zone centre is located at

xi. The areas of zone surfaces at the left- and the right-interfaces are denoted as Ai− 1
2

and Ai+ 1
2
,

respectively. With the help of these definitions, for a one dimensional system, Eq. (2.75) can be
written as

∂tui +
1
Vi

(
Ai+ 1

2
f̄i+ 1

2
−Ai− 1

2
f̄i− 1

2

)
= 0, (2.76)

8Finite-difference schemes derived from a conservation form (e.g. MHD Eqs. (2.26)-(2.30)) tend to be conservative,
whereas finite-difference schemes derived from other differential forms (e.g. MHD Eqs. (2.15)-(2.19)) are usually not
conservative.

9Personally, out of Eqs. (2.68)–(2.70), we find the last one the most transparent, after one gets used to our convention.
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where f̄i± 1
2

are surface-averaged fluxes passing through the surfaces Ai± 1
2
. To integrate the above

equation numerically, we need to find discrete approximations of f̄i± 1
2
, which we will simply

denote as fi± 1
2
. Using this definition, we rewrite Eq. (2.77) as

∂tui(t)+
1
Vi

(
Ai+ 1

2
fi+ 1

2
(t)−Ai− 1

2
fi− 1

2
(t)
)
= 0, (2.77)

where we explicitly marked the time dependence of the conserved variables and their fluxes. We
obtained the above ordinary differential equation (ODE) by discretising original Eq. (2.53) only
in space, but not in time. Therefore, the form of Eq. (2.77) is called semi-discrete. Once the
averaged fluxes fi− 1

2
(t) and fi+ 1

2
(t) are determined, the above ODE can be integrated numerically

in time with, e.g. the Euler method or one of the Runge-Kutta (RK) schemes. Now, we will discuss
the time integration procedure in more detail. Later, we will show how to compute the surface-
averaged fluxes fi± 1

2
(t) from the volume averaged conserved variables {. . . ,ui−1,ui,ui+1, . . .}.

Time integration

Our goal it to integrate Eq. (2.77) numerically from some initial time t0 to some final time
t f . Obviously, ui(t) cannot be determined for every t ∈ [t0, tf], because the equation’s continuous
time domain consists of infinitely many points. Therefore, the domain has to be discretised, i.e.
represented by a finite number of points {t0, t1, . . . , tn, . . . , tN} ∈ [t0, tf], where t0 = t0, tn < tn+1,
and tN = tf. Given that at the initial time t0 = t0, the zone averages of the conserved variables,
ui(t0) (shortly denoted as u0

i ), and surfaces averages of their fluxes at the zone interfaces, fi± 1
2
(t0)

(shortly denoted as f 0
i± 1

2
), are known, we can compute the values of ui at the time t1 = t0+∆t with

the help of Eq. (2.77).

The value of the timestep ∆t cannot be arbitrarily large for stability reasons. To prevent nu-
merical instabilities, no information is allowed to propagate through more than one zone in one
timestep (see, e.g. Laney (1998)). As already discussed before, the information propagation speed
is determined by the eigenvalues λ j of the flux matrix’s Jacobian (see Eq. (2.59)). We denote the
modulus of the maximum (in absolute value) eigenvalue in the zone Zi as λ i

max and the zone width
as ∆xi (i.e. ∆xi = xi+ 1

2
−xi− 1

2
). Using these definitions, we can express the Courant-Friedrichs-Lewy

condition (CFL condition) for the allowed timestep, as

∆t ≤ (∆t)max = min
{
(∆xi)

λ i
max

}
, (2.78)

where the index i enumerates all zones in the physical domain. Additionally, we define the CFL
factor, which we use to set the maximum timestep in a given simulation, as

∆t =CCFL(∆t)max. (2.79)

Obviously, from condition (2.78), this factor must not exceed one, i.e.

CCFL ≤ 1. (2.80)

We rewrite Eq. (2.77) in a somewhat simpler semi-discrete form

dui

dt
= Ri(ui, t), (2.81)
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where Ri(ui, t) = −
(
Ai+ 1

2
fi+ 1

2
(t)−Ai− 1

2
fi− 1

2
(t)
)
/Vi (the fluxes fi± 1

2
are functions of ui). For

the sake of simplicity, in this paragraph, we drop the subscript i denoting that the variable u was
averaged in the zone Zi. Eq. (2.81) reads then

du
dt

= R(u, t). (2.82)

The value of u after n timesteps will be shortly denoted as

un ≡ u(tn). (2.83)

Hence, given un and Eq. (2.82), our task is to compute un+1 numerically.

The simplest and least accurate way of doing it, is by directly using the definition of the first
derivative, i.e.

dun

dt
≈ un+1−un

∆t
, (2.84)

hence,

un+1 ≈ un +∆t
dun

dt
= un +∆tR(un, tn). (2.85)

This is the so-called forward Euler integration scheme, which is only first order accurate. This
means that the error, i.e. the difference between the real value of un+1 and its approximation given
by the above equation, is proportional to (∆t)2. To show this, we use the Taylor expansion to
compute un+1 exactly,

un+1 = un +
∞

∑
i=1

diun

dt i
(∆t)i

i!
. (2.86)

We see that the terms of Eq. (2.85) are equal to the expansion up to the terms containing ∆t. The
Euler scheme has not only a low accuracy order, but is also often unstable.

Runge-Kutta methods One can do a much better job by integrating Eq. (2.82) using a more
sophisticated numerical scheme. The commonly used Runge-Kutta methods employ additional
trial steps in the interval [tn, tn+1], in which the values of R(u,t) are computed. With the help of
this information, the integration accuracy can be significantly improved. The Runge-Kutta method
of the first order is equivalent to the Euler method. The classical fourth order Runge-Kutta method
(RK4) uses four steps, i.e.

un+1 = un +∆t 1
6(k1 +2k2 +2k3 + k4)+O(∆t5), (2.87)

where

k1 = R(tn,un), (2.88)

k2 = R(tn +
1
2

∆t,un +
1
2

∆tk1), (2.89)

k3 = R(tn +
1
2

∆t,un +
1
2

∆tk2), (2.90)

k4 = R(tn +∆t,un +∆tk3). (2.91)

A Runge-Kutta method of the q-th order (RK-q) employs q steps

un+1 = un +∆tF(k1, . . . ,kq)+O(∆tq+1), (2.92)
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where F(k1, . . . ,kq) is a linear combination of k1, . . . ,kq. This scheme is equal to Taylor expansion
(2.86) up to the terms containing (∆t)q, i.e.

∆tF(k1, . . . ,kq) = ∆t
q

∑
i=1

diun

dt i
(∆t)i−1

i!
+∆t

∞

∑
i=q+1

ai
diun

dt i
(∆t)i−1

i!
, (2.93)

where the coefficients ai depend on the used scheme and, in principle, can be computed, e.g. for
the Euler scheme q = 1 and ∀i,ai = 0. In general, we say that an ODE integration scheme is of the
q-th order if it differs from the Taylor expansion by terms containing (∆t)q+1.

Interface fluxes

In the previous paragraphs, we showed how to integrate Eq. (2.77) in time numerically, once
the fluxes fi± 1

2
(t) are known. Now, we must discuss how to determine the surface-averaged fluxes

fi± 1
2
(t) at the zone interfaces Ii± 1

2
, from the zone averages ui. In the finite volume schemes, we

first reconstruct the values of the conserved variables at the zone interfaces, i.e. u(xi± 1
2
), from

the zone averaged values {. . . ,ui−1,ui,ui+1, . . .}. Next, we compute the interface fluxes from the
interface values of u. Finally, we apply a flux function to determine the fluxes.

Reconstruction Our task is to determine the value of the variable u at a given point x, i.e.
u(x), from the zone averages {ui−m1 , . . . ,ui−1,ui,ui+1, . . . ui+m2} (they are called the reconstruction
stencil, and the stencil width equals m1 +m2 + 1, where in general not necessarily m1 = m2). To
proceed with computing fluxes, we need to reconstruct the values of the conserved variables at the
zone interfaces Ii± 1

2
, i.e. u(xi± 1

2
). For each zone Zi, we will construct a function ûi(x),10 which will

locally approximate u in the vicinity of Zi. Note that with this procedure, we obtain two distinct
values for u(xi− 1

2
), i.e. ûi−1(xi− 1

2
) and ûi(xi− 1

2
) at the interface Ii− 1

2
, which we will call the left and

the right state, respectively, and denote as uL and uR. Hence, at each interface, a discontinuity in
the conserved variables arises and we have to solve a Riemann problem to compute the resulting
fluxes. We will come back to this problem later, after discussing how to construct functions ûi

approximating u.

There are three basic requirements, which the interpolating functions ûi have to fulfil. Firstly,
they have to be consistent, i.e. for each zone in the stencil, Z j (where j ∈ i−m1, . . . , i+m2), the
zone average of ûi(x) has to be equal to the original zone average u j, i.e.∫

Z j

ûi(x)dV= u j. (2.94)

Secondly, ûi have to approximate the true function u(x) accurately, i.e. the relative error |ûi(x)−
u(x)|/|u(x)| has to be small within the zone. Thirdly, the reconstruction has to be stable.

The simplest reconstruction scheme is a so called piecewise-constant (PM) method, which is the
least accurate, yet most stable. Its stencil consists of only one zone and the interpolating functions
are given by

ûi(x) = ui, for x ∈ [xi− 1
2
,xi+ 1

2
]. (2.95)

10The superscript i for functions ûi does not refer to the time dependence of these functions (as it was in the para-
graphs on the time integration), but simply enumerates them. We simply came across another quite common situation
in mathematics and physics, where in spite of using two different alphabets (i.e. latin and greek), super- and sub-scripts,
we could not introduce an unambiguous notation . . .
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This method is only first-order accurate, i.e. the truncation errors are proportional to the grid
width, ∆x. We will now demonstrate this rather elementary fact in detail, as this discussion will be
an introduction to yet another topic considered later in this chapter. From definition (2.71) of ui,
we have

ui ≡
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

u(x)dx, (2.96)

where ∆xi ≡ xi+ 1
2
− xi− 1

2
. With the help of the first integral mean value theorem, we can further

calculate
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

u(x)dx =
1

∆xi
u(xs)

∫ x
i+ 1

2

x
i− 1

2

dx = u(xs), (2.97)

where xi− 1
2
≤ xs ≤ xi+ 1

2
. Hence, we see that at least at one point, i.e. x = xs, the interpolation

function ûi defined in Eq. (2.95), gives an exact prediction for the conserved variable u, namely

ûi(xs) = u(xs). (2.98)

With the help of the Taylor expansion, we can easily estimate the “reconstruction error” (i.e.
|ûi−u|) at any other point x ∈ [xi− 1

2
,xi+ 1

2
], namely

|ûi(x)−u(x)|= |u(xs)−u(x)|= |(x−xs)∂xu(x)+O((x−xs)
2)| ≤ |(∆x)∂xu(x)+O((∆x)2)|, (2.99)

where we used the fact that for x ∈ [xi− 1
2
,xi+ 1

2
], |x− xs| ≤ ∆x. As we can see, the (maximum)

reconstruction error linearly scales with ∆x,

|ûi(x)−u(x)| ∝ ∆x. (2.100)

In general, we say that a reconstruction scheme is of the r-th order, when its errors are proportional
to (∆x)r. Note the difference with respect to the definition of ODE numerical integrators’ order.
We wrote that a given scheme was of the q-th order, when its errors scaled like (∆t)q+1 (see the
paragraphs on the time integration).

The PM reconstruction scheme belongs to the family of so-called piecewise-polynomial meth-
ods (the piecewise constant interpolants ûi can be treated as 0-th order polynomials). Schemes
which have a higher accuracy order are based on wider stencils and employ higher order poly-
nomials to reconstruct the function u. We will demonstrate this for the piecewise-linear (PL)
reconstruction, which is second-order accurate (i.e. its errors are proportional to (∆x)2). We begin
the reconstruction process by first constructing two auxiliary first order polynomials

ûi
+(x) =

ui+1−ui

xi+1− xi
(x− xi)+ui, (2.101)

ûi
−(x) =

ui−ui−1

xi− xi−1
(x− xi)+ui (2.102)

Both of them have the same value at the zone centre, i.e. ûi
+(xi) = ûi

−(xi) = ui. Away from extrema
or discontinuities, we could use either of the functions ûi

+(x), ûi
−(x) as an approximation (final

reconstruction) of u(x). However, a problem arises near a discontinuity. An approximation of u(x)
based on one-sided gradients can lead to a significant overshooting, creating additional extrema.
In a dynamic situation, this can trigger spurious oscillations around discontinuities, which can
eventually destabilise the whole system. Therefore, for stability reasons, we require that the total
variation, i.e.

TV [u]≡∑
i
|ui+1−ui| (2.103)
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does not increase with time. This total variation diminishing (TVD) constraint forbids the de-
velopment of new extrema. From the mathematical point of view, the TVD constraint is exactly
fulfilled for linear advection equations, however it may be violated for more general hyperbolic
systems. Still, it provides a valuable stability criterion for theses systems and therefore, we are
going to use it.

Note that to approximate u(x), we can not only use either ûi
+(x) or ûi

−(x), but also any norm-
alised linear combination of them. We denote the slopes of the interpolants ûi

± (i.e. the constant
coefficients multiplying x) with the symbols mi

±, i.e.

mi
+ =

ui+1−ui

xi+1− xi
, (2.104)

mi
− =

ui−ui−1

xi− xi−1
. (2.105)

Using these two slopes, we can construct a new slope mi for the interpolant ûi(x) with the help of
a so-called slope limiter SL,

mi = SL(mi
+,m

i
−). (2.106)

Hence, the final form of the interpolant ûi(x) will read

ûi(x) = ui +mi(x− xi). (2.107)

For the PL method to fulfil the TVD constraint, we have to construct an appropriate slope limiter.
There are many different ways in which it can be done, as an example we will only present the
so-called minmod slope limiter (see, e.g. Laney (1998)),

SL(mi
+,m

i
−) =

{
mi
++mi

−
2 , for sign(mi

+) = sign(mi
−),

0, for sign(mi
+) 6= sign(mi

−).
(2.108)

The slopes can have different signs in the vicinity of a discontinuity or a maximum. Hence, to
prevent spurious oscillations in the former case, the limiter returns 0, basically reverting from the
PL reconstruction to the more stable PC reconstruction. Unfortunately, based only on the first
derivatives, the TVD limiters cannot distinguish between a discontinuity and a maximum, which
leads to an undesired accuracy reduction in the latter case.

To improve this situation, more sophisticated reconstruction methods can be used. The highest
order reconstruction schemes implemented in AENUS, are the so-called monotonicity preserving
(MP) schemes of the 5-th, 7-th and 9-th order (later denoted as the MP5, the MP7 and the MP9
scheme, respectively), which are based on polynomials of the corresponding orders (Suresh &
Huynh 1997). In short, all monotonicity preserving methods do not allow for the development of
spurious oscillations from monotone initial conditions, which is a stabilising property (however,
see the discussion in Laney (1998) on drawback of low order MP schemes). The MP5, the MP7
and the MP9 schemes allow for a good reproduction of smooth extrema and at the same time
efficiently suppress spurious oscillations near discontinuities.

Once we construct appropriate interpolants ûi(x), we can finally use them to determine inter-
face values of the conserved quantities. In the finite volume approach, we have to compute their
averages (ui− 1

2
) in zones Zi− 1

2
(ranging from xi−1 to xi), which are staggered with respect to Zi.

Note that to do this, we can use either the interpolants ûi(x) or the interpolants ûi−1(x), which were
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obtained from the reconstruction centred at the zone Zi, or Zi−1, respectively. Both methods will
(usually) lead to two distinct interface values,

uR
i− 1

2
=

1
Vi− 1

2

∫
Z

i− 1
2

ûi(x)dV, (2.109)

uL
i− 1

2
=

1
Vi− 1

2

∫
Z

i− 1
2

ûi−1(x)dV, (2.110)

which we denoted as uR
i− 1

2
and uL

i− 1
2
, were R and L stand for the right and left state, respectively.

Flux functions After the reconstruction, we know the interface values of the conserved variables
from which we can compute the interface fluxes. At each interface Ii− 1

2
, we have a discontinuity

between the left (uL) and the right (uR) states, resulting from using the reconstruction centred at
zones Zi−1 and Zi, respectively. To compute the resulting fluxes, we have to solve a Riemann
problem at each interface. Using the upwind properties of hyperbolic systems, we can derive
methods to determine a final interface flux by following all waves within the so-called “Riemann
fan” explicitly.

In the case of linear advection equations, we can identify a well-defined upwind direction with
the help of the sign of the advection velocity v. The final flux should be equal to the upwind one,
i.e.

fi− 1
2
=

{
f R
i− 1

2
, for v≥ 0,

f L
i− 1

2
, for v < 0,

(2.111)

For more complicated non-linear systems, we should first locally transform the system to its
characteristic variables. As a result, we would obtain a system of decoupled linear advection
equations (see Eq. (2.63)). For each of them, we could use then prescription (2.111) to advect each
Riemann invariant with the corresponding eigenspeed (independently of the other eigenstates). We
just describe how to construct a so-called exact Riemann solver (RS). This procedure introduces a
small amount of numerical diffusion to the solution, which is required for a stable evolution.

The main drawback of the exact RSs, however, is that to construct them, we need to find all
characteristic variables, i.e. the eigenvectors of the flux Jacobian (defined in Eq. (2.59)). For
many systems, it may be complicated or even impossible to do it. Therefore, instead of an exact
RS, we may use an approximate Riemann solver, which is based on only a limited subset of the
characteristic velocities. Approximate RSs do not “open” the full Riemann fan, i.e. they do not
follow all waves (which propagate at different speeds) explicitly, but rather describe them by a few
representatives. The minimum required information for the simplest approximate RS is the fastest
(in absolute value) eigenspeed, λmax. The Lax-Friedrichs (LF) solver (see, e.g. Laney (1998)) uses
this information to compute the (LF) flux,

fi− 1
2
=

1
2

(
f R
i− 1

2
+ f L

i− 1
2

)
+

λmax

2∆x

(
uR

i− 1
2
−uL

i− 1
2

)
, (2.112)

where f L,R
i− 1

2
= f (uL,R

i− 1
2
) are the right and the left states of the fluxes. The term proportional to

λmax in the above expression acts like “numerical diffusion” damping possibly arising numerical
instabilities. It makes the LF solver rather diffusive but stable. The main advantage of this solver
is that it is very simple and therefore fast.
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The LF solver always computes the flux symmetrically, from the left and the right contributions.
This feature makes the solver quite inaccurate in a situation, when all characteristic velocities have
the same sign, i.e. all waves are moving to the left or to the right (which is the case for supersonic
flows in hydrodynamics and supermagnetosonic11 flows in magnetohydrodynamics). To improve
the accuracy when calculating the flux, we can use two eigenvalues, i.e. the maximum and the
minimum ones (λmax and λmin, respectively), rather than only the former. This is done in the
Harten-Lax-van Leer (HLL) Riemann solver (see, e.g. Laney (1998)), whose flux reads

fi− 1
2
=

λ
+
i− 1

2
f L
i− 1

2
−λ

−
i− 1

2
f R
i− 1

2
+λ

+
i− 1

2
λ
−
i− 1

2
(uR

i− 1
2
−uL

i− 1
2
)

λ
+
i− 1

2
−λ

−
i− 1

2

, (2.113a)

where λ
+,−
i− 1

2
are given by:

λ
+
i− 1

2
= max(0,λ L

i− 1
2 max,λ

R
i− 1

2 max), (2.113b)

λ
−
i− 1

2
= min(0,λ L

i− 1
2 min,λ

R
i− 1

2 min). (2.113c)

This solver opens the Riemann fan more accurately (i.e. represents it by more waves). The HLL
solver will be especially superior to the LF solver in the above described situation, namely the
HLL flux will be one-sided (coming only from one direction).

The most sophisticated approximate Riemann solver implemented in AENUS, is the so-called
HLLD solver (Miyoshi & Kusano 2005). It represents the Riemann fan with one more eigen-
value12 than the HLL solver.

Multidimensional problems

In multidimensional problems, AENUS uses the dimensional splitting technique. It successively
applies one-dimensional algorithms for every dimension using the method of lines (see, e.g. Shu
(1997)). For each one dimensional sweep, it uses the same initial data, i.e. values of conserved
variables, which were determined at the beginning of a timestep.

Constraint transport

One of additional challenges of the numerical MHD, in comparison with hydrodynamics, is the
constraint ∇ ·b = 0. Due to non-linearities of shock-capturing methods, ∇ ·b 6= 0 can be generated
from divergence free initial conditions. The transformation of the MHD Eqs. (2.15)-(2.19) to
conservation form (2.31)-(2.35) is done with the help of well known vector identities (we omitted
the details earlier in the text). They give rise to terms proportional to ∇ ·b, which identically are
equal to zero and do not enter the final equations. Therefore, ∇ · b 6= 0 would not only lead to
creation of artificial magnetic monopoles (sources), but also “modify” (spoil) the Lorenz force. It
can be correctly computed from Eq. (2.27) or (2.38),

∇ · (1
2 b2I−bb) =−(∇×b)×b−b(∇ ·b), (2.114)

11Magnetosonic waves will be introduced in Chapter 3.
12Hence, in total the HLLD solver employs 5 out of 7 MHD waves, namely two fast magnetosonic- , two Alfvén-

waves and a central entropy wave (thus neglecting two slow magnetosonic waves). We will discuss the MHD waves in
more detail in Chapter 3.
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only if ∇ ·b = 0. The non-vanishing magnetic divergence is not only physically undesirable, but
can also lead to numerical instabilities. For these reasons, it is crucial for any MHD code to
be able to keep the magnetic field divergence-free. There are several different techniques with
which it can be achieved (see, e.g. Goedbloed et al. (2010)). We only describe a method, which is
implemented in AENUS, i.e. the so-called constraint transport (CT). Originally, it was proposed
by Evans & Hawley (1988) for finite difference schemes. Its key idea is to insist on maintaining
∇ ·b = const. (up to round-off errors) in every timestep in a particular discretisation. One needs
to make sure then that the initial conditions fulfil the divergence free constraint, ∇ ·b = 0, in the
chosen discretisation. In CT schemes, the magnetic field is updated with the help of the induction
equation (2.1), which has the form of a conservation law (2.54). Hence, we need to formulate the
induction equation (2.1) in a semi-discrete form,
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where Lx
i, j− 1
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denotes the length of zone Zi, j,k’s edge at y = y j− 1
2

and z = zk− 1
2
, etc. After

introducing discretised magnetic fields, whose components are defined as a mean over the cell
surface orthogonal to the given component, e.g.
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we can write a discretised version of the divergence constraint as
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The divergence of the magnetic field is conserved if consistent electric field components are used
in Eqs. (2.115)–(2.117). Note that Eqs. (2.115)–(2.117) and (2.119) require a staggered grid,
which is typical (but not necessary) for CT schemes, i.e. thermodynamical variables are defined
as (volume) averages over cells, surface averages of magnetic field are localised at cell surfaces
and electric field components are localised at cell edges (see Fig. (2.1)). In CT schemes, there
is no unique way to compute line averages of electric field components and the Lorentz force
components. In Obergaulinger (2008), the interested reader will find an extended discussion on
this topic and a detailed description of the implementation of two different CT schemes to AENUS.
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Figure 2.1: A sketch of an MHD grid cell. Magnetic field components (i.e. zone surfaces) are
denoted with blue vectors. Electric field components are presented by green vectors. The figure is
reproduced with permission from Obergaulinger (2008).

Source and non-ideal MHD terms

Ideal MHD equations constitute a set of not strictly hyperbolic PDEs, i.e. some of their eigen-
values may be degenerate, which makes the design of an exact Riemann solver more complicated
than in hydrodynamics. However, this problem does not concern us, since we only use approxim-
ate RS that do not require the knowledge of all seven eigenvalues.

The presence of additional resistive and viscous terms in non-ideal MHD equations change
their mathematical character from hyperbolic to mixed hyperbolic-parabolic PDEs (in Newtonian
physics). However, as long as the (magnetic) diffusion timescale is much larger than the MHD
timescale, no special code modifications are required. Instead of ideal MHD fluxes (Eqs. (2.26)-
(2.30)), “non-ideal fluxes” (Eqs. (2.31)-(2.35)) should be used.

To the homogeneous MHD Eqs. (2.26)-(2.30) or (2.31)-(2.35), source terms, such as gravita-
tional force (or in coordinates other than Cartesian - geometric source terms) , can be added. We
discretise the source terms by integrating them over grid cells.

2.2.3 Numerical viscosity and resistivity

The numerical errors discussed in Sec. 2.2.1 have a limited applicability. They can be useful
for testing newly developed numerical schemes, or for debugging a new implementation of a
well known method. Their main disadvantage is, however, that we need to know the analytical
solution of a given problem in order to use them. This is almost never the case in computational
astrophysics.
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Numerical errors are one of the main problems and challenges of computational physics. They
are omnipresent in simulations, can manifest themselves in various ways, yet they are difficult
to measure. It often requires a profound understanding of both the simulated system’s physics
and the used numerical methods, to tell apart physical effects from numerical artefacts. One of the
standard techniques of investigating the influence of the numerical errors are so-called convergence
tests. They consist in running simulations with the same physical and numerical setup but higher
and higher resolutions. The first simulation is performed with a default resolution, which should
be high enough to capture the interesting physics, and another one with a higher (usually twice in
every spatial direction) resolution. If the results differ, numerical errors played an important role at
least in the first simulation. Hence, we need to run a third simulation with an even higher resolution
(usually four times higher than the default one) and compare its results with those of the second
simulation. And so on. This procedure should be repeated until two subsequent simulations give
(almost) the same results. We say that we obtained convergence. However, one should be careful
drawing conclusions from such convergence tests. First of all, it may turn out that both simulations
resolve equally well some part of the important physical phenomena, whereas other crucial effects
remain still underresolved. As an example, let us consider the following simple problem. Assume
that for a given system, there are two waves of very different wavelengths λ1 and λ2, say λ2 =
10−2λ1. If the “default resolution”, amounts to 30 zones per λ1, we will be able to resolve the
first wave very well, whereas the second one will be underresolved. In another simulation with
a twice higher resolution, there will be 60 zones per λ1, which should not lead to noticeable
improvements in resolving the first wave, but the second wave is still underresolved (i.e. less than
one zone per λ2). If we had no analytical solution of the considered problem (i.e. we did not know
about the existence of λ2, which could, say, play an important role in the system), we could draw
the conclusion at this point that we reached numerical convergence, hence we resolve “all relevant
phenomena” of the system. Second of all, numerical convergence does not necessarily imply
mathematical convergence. To illustrate this, consider a problem whose solution is influenced
by a ratio of two distinct numerical errors. Lowering the resolution could decrease the errors by
the same factor, but their ratio would remain constant. In such a situation, we would see that
the simulation results converge, yet they would differ from the mathematical solution. Let these
complications aside, the major drawback of convergence tests is often their high computational
cost. The goal of scientific super-computations is often to resolve physical phenomena better than
it was ever done before. This can be achieved by means of more sophisticated methods, which
usually are more time consuming, and higher resolutions. In practice, it means that we usually
run simulations with resolutions as high as possible to obtain results within a reasonable time.
Doubling the resolution in 2D and 3D simulations increases the computational cost at least 8 and
16 times,13 respectively. This means that the convergence tests are often out of the question. In
this subsection we introduce an alternative view of numerical errors in computational MHD. We
show that in some situations, they can be interpreted as numerical viscosity and resistivity.

Error analysis of an equation, method or approximation usually leads to more complicated (and
longer) expressions than the “original problem”. As a simple example of this statement, let us
consider a function h which depends on the variable a in the following way

h(a) = ca2√
1+a2, (2.120)

where c is a constant. Let us further assume that a was determined (or measured) with an error

13Doubling the resolution in each spatial direction, increases the computational cost by a factor of two. Moreover,
becasue the maximum allowed timestep reduces by half, twice more timesteps are required.
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δa. Then the error of h is given by

δh =

(
2a ln(c)ca2√

1+a2 +
aca2

√
1+a2

)
δa. (2.121)

The above equation is still not very complex, yet it is more complicated than the original expres-
sion (2.120) for the function h, whose error we wanted to estimate. Coming back to the main
discussion, we would like to perform some error analysis of the numerical schemes, which were
discussed in Sec. 2.2.2. Since these methods usually involve (or lead to) quite complicated ex-
pressions, a rigorous analysis of errors introduced by these schemes would be quite hopeless.
Therefore, we will consider only a few simplified problems, upon which we can gain some intuit-
ive understanding of numerical errors in computational MHD.

The Navier-Stokes equation (2.38) for a one dimensional system, with a constant shear viscosity
ν and without magnetic fields, bulk viscosity and any external forces reads

∂t(ρv)+∂x(ρv2 + p) = ∂x(
4
3 νρ∂xv), (2.122)

where v is the velocity in the x direction. Additionally, assuming a constant density, the above
equation can be written as

∂t(ρv)+∂x(ρv2 + p) = 4
3 ν∂

2
x (ρv), (2.123)

which after neglecting viscosity simply reads

∂t(ρv)+∂x(ρv2 + p) = 0. (2.124)

This is a one dimensional scalar conservation law (in this section, we abandon our “unusual, but
useful notation” introduced in Sec. 2.2.2), i.e.

∂tu+∂x f (u) = 0, (2.125)

where u = ρv is the conserved variable and f = ρv2 + p is the conserved flux. Our task now is to
investigate how spatial discretisation and numerical integration errors change the above equation.
Usually, in textbooks (see, e.g. Laney (1998)), it is written, that e.g. for Euler equation (2.124),
some spatial discretisation errors of velocity v will be proportional to ∂ 2

x v and hence they will
introduce additional terms proportional to ∂ 2

x v into the original Eq. (2.124). From a comparison
of this equation to Eq. (2.123), we see that these extra terms could be identified with terms pro-
portional to viscosity in the latter equation. Therefore, it is sometimes said that numerical errors
introduce numerical (or artificial) viscosity. As we will try to show briefly in this section, from
a mathematical point of view, this statement is wrong and cannot be well justified. However, in
hydrodynamical simulations it is often observed that numerical errors manifest themselves in a
similar way to physical viscosity, e.g. they can smooth out sharp velocity profiles and discontinu-
ities or damp propagating (e.g. sound) waves. Similarly, in ideal MHD simulations, numerical
errors can lead to magnetic field reconnection or diffusion, and these processes are only allowed
if physical resistivity is present in the system. These are commonly known facts in the numerical
(M)HD community. Moreover, we demonstrate and extensively investigate the above described
phenomena in Chapter 3. All in all, from the a purely pragmatical point of view, the notions of
numerical viscosity and numerical resistivity are useful, when interpreting simulation results.

Let us demonstrate now, in a naive way, with the help of Eqs. (2.123)–(2.125), how numerical
errors can give rise to numerical viscosity. We begin by rewriting Eq. (2.125) as

∂tu+
∂ f
∂u

∂xu = 0 (2.126)
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and “numerically integrating it”. In our “toy model discussion”, we assume that the terms ∂tu
and ∂u f can be computed “perfectly” (or that the errors related to them are negligible) and that
a given numerical scheme only introduces errors related to the last term ∂xu. Moreover, we will
“forget” about most “ingredients” and assumptions of HRSC schemes, i.e. zones, zone averages,
interfaces, computing fluxes, reconstruction etc. We will just selectively refer to some of these
“components”, to make our point. Hence, we say that a ‘numerical” version of Eq. (2.126) reads

(∂tu)num +

(
∂ f
∂u

)
num

(∂xu)num = 0, (2.127)

where the subscript num means that a given value was determined numerically. According to our
assumption, only the last term was computed “inaccurately” and for the other terms: (∂tu)num =
(∂tu) and (∂u f )num = (∂u f ). Thus, Eq. (2.127) reads

∂tu+∂u f (∂xu)num = 0. (2.128)

Now, we assume that errors in determining ∂xu were caused by a reconstruction scheme. For the
PM method, which is first order accurate, the difference between unum and u, keeping the lowest
order terms, could be estimated as (see Eq. (2.99))

u(x) = u(x)num +(∆x)∂xu(x). (2.129)

Already this equation is from a mathematical point of view not “well defined”(i.e. just incorrect),
but we will come back to this issue later. After plugging Eq. (2.129) into Eq. (2.128), we obtain a
“modified differential equation”

∂tu+(∂u f )∂x(u− (∆x)∂xu) = 0, (2.130)

which can be rewritten as
∂tu+(∂u f )∂xu = (∆x)(∂u f )∂ 2

x u. (2.131)

Hence, now we could identify the term on the RHS of the above equation with the viscous term
from Navier-Stokes equation (2.123), i.e.

(∆x)(∂u f )∂ 2
x u' 4

3 ν∂
2
x (ρv), (2.132)

where u = ρv and f = (ρv2 + p). Thus numerical viscosity, ν∗, would be given by

ν∗ =
3
4(∆x)∂u f . (2.133)

Already from this mathematically inconsistent derivation, we can draw two (correct) conclusions.
Firstly, the lower the resolution, the lower the numerical viscosity. Secondly, for a given resolution
(i.e. given (∆x)), numerical viscosity is not a constant scalar value, since it depends on ∂u f .

After these comments, we can start with criticising “our own derivation” (in fact, it is not “our
derivation”, but rather a typical argumentation (encountered in textbooks, lectures and talks) how
terms proportional to viscosity and resistivity appear in the process of numerical solving (M)HD
equations) and show where all mistakes were made. First of all, even if Eq. (2.129) were correct,
we could not simply plug it into Eq. (2.128) and later say that we obtained modified differential
equation (2.131). Note in Eq. (2.128), we substituted unum by u− (∆x)∂xu with the help of Eq.
(2.129) and in the end obtained Eq. (2.131). However, u from Eq. (2.129) is a solution of the
original equation (2.126). On the other hand, if we treat Eq. (2.131) as a differential equation,
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because it does look like a differential equation, then its solution will be a different function u.
Hence the only common feature of functions u from Eqs. (2.126) and (2.131) is that we denote
them with the same later “u”. To stress it explicitly, we could rewrite the latter equation using a
different symbol to denote the sought function, say ũ. Then Eq. (2.131) would read

∂t ũ+(∂ũ f̃ )∂xũ = (∆x)(∂ũ f̃ )∂ 2
x ũ. (2.134)

Now, the temptation to interchange freely functions u from Eq. (2.126) and ũ from the above differ-
ential equation should be weaker. At this point a natural question arises how Eq. (2.131), bearing
in mind its derivation, should be then interpreted. It is s not a “modified” differential equation,
but only “spoilt” by numerical errors differential equation (2.126). The problems starts with Eq.
(2.130), which in fact, is not a valid equation. From Eq. (2.126), we have ∂tu+(∂u f )∂xu = 0, and
therefore according to Eq. (2.130),

− (∂u f )(∆x)∂ 2
x u = 0 (2.135)

should hold which is in general not true, i.e. it is just a nonsense expression, because neither
∂u f = 0, nor ∂ 2

x u = 0 must hold. To make this statement even clearer, let us consider the following
example. Let us assume that we know that for a given system, a law (or a relation)

y+ z = 100, (2.136)

where y and z are scalars or scalar functions. However, from a numerical simulation (or a physical
experiment), we can only determine numerical (experimental) values of ynum and znum. Let us
further assume that real values of y and z equal 80 and 20, respectively and in the simulation
(experiment), we obtained ynum = 80 and znum = 21. Hence, we could perform the following
fallacious reasoning: since Eq. (2.136) holds, therefore also

ynum + znum = 100, (2.137)

must be true and consequently
80+21 = 100, (2.138)

and as a result
1 = 0. (2.139)

In these idealised example, Eqs. (2.136), (2.138) and (2.139) correspond to Eqs. (2.126), (2.130)
and (2.131), respectively, from the “original” scalar conservation law problem. There is no differ-
ence in saying that because of numerical viscosity, we obtained a “modified differential equation”
(2.131), and claiming that Eq. (2.139) is true. Both statements are simply incorrect. A correct
conclusion, which can be drawn from these examples is that in numerical simulations, not every
equation (like Eq. (2.126)) or law (2.136) will be strictly fulfilled, because numerical errors can
lead to their violation. And as long as this violation is not too big14, we can trust the results of a
given simulation. However, numerical errors should not be “over-interpreted” and we should not
look for their deeper (mathematical) meaning.

Alternatively, if we wanted to treat Eq. (2.130) as a “well defined’ differential equation, it would
have to be written as

∂t ū+(∂ū f̄ )(∂xu− (∆x)∂xu) = 0, (2.140)

14We do not specify how to measure this violation, since these are irrelevant (and possibly complicated) details for
the current discussion.
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which is a “hybrid” equation without an easy interpretation. The function u should be given by
original Eq. (2.130), and some different ū and f̄ must be found, so that Eq. (2.140) is fulfilled.
Or the other way round, ū and f̄ should fulfil Eq. (2.130) and some new u would need to be
determined. All in all, we can say that because of numerical errors, the functions unum and fnum
do fulfil some kind of a differential equation (which on the top of everything, can have a different
form after every timestep), but for sure it does not have form (2.131). In each timestep, the code
tries to solve Eq. (2.126), but fails to do it exactly.

Second of all, expressing reconstruction errors in neat mathematical form (2.129) is also incor-
rect. What we could show is that in the PM method, the “numerical function” unum(x) gave an
exact prediction for u(x) at least for one point in each zone (see Eq. (2.98)), which we denote with
xs, i.e.

u(xs)num = u(xs). (2.141)

The reconstruction error at any other point within this zone could be expressed with the help of
Taylor expansion. Since (keeping the lowest order terms)

u(x) = u(xs)+(x− xs)∂xu(x)|x=xs (2.142)

and
u(x)num = u(xs)num = u(xs), (2.143)

therefore
u(x) = u(x)num +(x− xs)∂xu(x)|x=xs , (2.144)

where |x− xs| ≤ ∆x. However, we do not know the real u(x) and its first derivative ∂xu(x).
Moreover, the first integral mean value theorem guarantees us that there is a point xs in each
zone for which Eq. (2.141) holds, but we do not even know where this point is exactly. Hence
Eq. (2.129) is wrong and we cannot use it for the following reasons. Firstly, we did the Taylor
expansion in one point x and not for two distinct points (x and xs). Secondly, we do not know
the location of xs. Thirdly, we do not have an “access” to ∂xu. Fourthly, the displacement ∆x in
the Taylor expansion should be replaced by ∆̃x ≡ x− xs, which is by definition different at every
point. Therefore, even though Eq. (2.129) looks as if it was ready to be used to obtain “modified
differential equation” (2.131), it is simply wrong.

Having criticised what there was to be criticised, we proceed with error analysis for higher order
reconstruction methods. Even though the derivation of Eq. (2.131) was mathematically inconsist-
ent, we will now repeat the same steps to obtain a similar expression for higher order schemes.
The reader may find this approach to error analysis quite dubious. However, our main goal is
neither to study rigorously how numerical errors change mathematical properties of differential
equations, nor to give exact prescriptions for estimating errors. We only want to obtain some ex-
pression, which could be helpful in numerical error studies, which will be performed Chapter 3.
Hence, on the one hand, we want to derive theoretically expected dependence of numerical errors
as a function of resolution. On the other hand, we want to stress that error assessing expressions
obtained in this and in the next chapter do not have a solid mathematical justification. We will
postulate and “derive” some prescriptions and later show that they work. Finally, we will argue
that they are useful because they do work. It is a purely pragmatical, yet useful approach.

In Sec. 2.2.2, we wrote that a reconstruction scheme is of the r-th order, when its errors are
proportional to (∆x)r. With the help of the Taylor expansion, analogically to Eq. (2.129), this
statement could be expressed as (keeping the lowest order terms)

u(x) = u(x)num +n(∆x)r
∂

r
x u(x), (2.145)
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where n is a constant factor. Similarly, to Eq. (2.129), the above equation is not fully correct (see
the discussion on Eq. (2.129) above). After plugging Eq. (2.145) to Eq. (2.128), we obtain another
“modified differential equation”

∂tu+(∂u f )∂xu = n(∆x)r(∂u f )∂ r+1
x u. (2.146)

Comparing it with Eq. (2.123), we can identify the therm on the RHS of the above equation with
numerical viscosity, i.e.

ν∗ =
3
4

n(∆x)r
∂u f

(
∂ r+1u
∂xr+1

)(
∂ 2u
∂ 2

x

)−1

. (2.147)

Hence, as we see, for r > 1, the argument that “numerical errors introduce terms proportional
to ∂ 2

x u and therefore they can be interpreted as numerical viscosity” is no longer valid. Terms
proportional to ∂ r+1

x u, for r > 1, do not have their physical counterparts. Still, we will identify
them with numerical viscosity.15

Now, we will repeat a similar analysis for time integration errors. In non-ideal MHD equations
(2.31)-(2.35), there are no terms which are proportional to higher than the first time derivative of
a conserved variable, i.e. ∂tu. However, we will once again try to identify terms proportional to
∂

q
t u, where q > 1, with numerical viscosity or resistivity. We come back to Euler equation (2.124),

which has a form of scalar conservation law (2.125), i.e.

∂tu+∂x f (u) = 0. (2.148)

This time, we will assume that errors related to reconstruction (and interpolation) of u(x) and
calculation of its flux f (u) are negligible and we will only consider time integration errors. Once
∂x f (u) is known at a given time, we want to advance the system by one timestep. We can rewrite
Eq. (2.148) as

∂tu =−∂x f (2.149)

and employ an RK-q (i.e. Runge-Kutta of the q-th order) scheme to perform numerical time integ-
ration, i.e.

un+1 = un +∆tF(k1, . . . ,kq)+O(∆tq+1), (2.150)

where F(k1, . . . ,kq) was defined in Eq. (2.92) and O(∆tq+1) is simply the scheme’s error in de-
termining un+1. We remind the reader that un ≡ u(tn), etc. Eq. (2.149) can be written with the help
of Taylor series as

un+1 = un +∆t

[
−∂x f +

∞

∑
i=2

∂ iun

∂ t i
(∆t)i−1

i!

]
. (2.151)

From the RK-q time integration, we obtain

un+1 ≈ un +∆t

[
−∂x f +

q

∑
i=2

∂ iun

∂ t i
(∆t)i−1

i!
+

∞

∑
i=q+1

ai
∂ iun

∂ t i
(∆t)i−1

i!

]
, (2.152)

where coefficients ai were defined in Eq. (2.93), which can be rewritten as

un+1 ≈ un +∆t

[
−∂x f +

∞

∑
i=2

∂ iun

∂ t i
(∆t)i−1

i!

]
+

∞

∑
i=q+1

(ai−1)
∂ iun

∂ t i
(∆t)i

i!
. (2.153)

15Terms proportional to ∂ r+1
x u, for even r+1 are sometimes called numerical dissipation, and for odd r+1 numerical

dispersion. However, we will not make this distinction in this thesis.
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Note that we cannot just say that because of the RK-q time integration, we obtain a different
prescription for un+1:

un+1 = un +∆t

[
−∂x f +

∞

∑
i=2

∂ iun

∂ t i
(∆t)i−1

i!

]
+

∞

∑
i=q+1

(ai−1)
∂ iun

∂ t i
(∆t)i

i!
, (2.154)

which corresponds to a “modified differential equation”

∂tu+∂x f =
∞

∑
i=r+1

(ai−1)
∂ iu
∂ t i

(∆t)i−1

i!
. (2.155)

Such an argumentation is fallacious for the following reason. The derivatives ∂x f and ∂ i
t un in

Eq. (2.154) are determined from original Eq. (2.125). They differ from derivatives ∂x f and ∂ i
t un

computed from Eq. (2.155), because functions u and f in Eqs. (2.125) and (2.155) are simply
distinct. Therefore, recovering Eq. (2.155) from Eq. (2.154) is mathematically incorrect. What we
can write, however, is that with the RK-q scheme, we can find ũn+1, which is an approximation of
un+1 given by Eq. (2.152). Instead of Eq. (2.153), we should write

ũn+1 = un +∆t

[
−∂x f +

∞

∑
i=2

∂ iun

∂ t i
(∆t)i−1

i!

]
+

∞

∑
i=q+1

(ai−1)
∂ iun

∂ t i
(∆t)i

i!
, (2.156)

or equivalently

ũn+1 = un+1 +
∞

∑
i=q+1

(ai−1)
∂ iun

∂ t i
(∆t)i

i!
. (2.157)

The function ũ depends on u. Ideally, we would like to find a modified Eq. (2.125) for ũ (some-
thing like Eq. (2.155)), from which the dependence on u would be removed (of course terms pro-
portional to u0 must be taken as initial conditions). We must remember about one fact, however.
The difference between ũn+1 and un+1 in Eq. (2.157) resulted from numerical errors introduced
only in the n+ 1-th timestep and not after n+ 1 timesteps. In fact, each of them would intro-
duce terms like ∑

∞
i=q+1(ai−1)∂ i

t u(∆t)i/(i!). From this brief discussion, we see that an attempt to
write a consistent partial differential equation for ũ, from which we could make use, is hopeless.
Obviously, we could write a formal equation containing many terms proportional to series like
∑

∞
i=q+1(ai−1)∂ i

t u0(∆t)i/(i!), but its practical application would be rather dubious.

At this point, to make further progress, we abandon this mathematically rigorous approach.
Similarly, like in the case of Eqs. (2.131) and (2.146), we identify the term on the RHS of “modi-
fied differential equation” (2.155) with the terms proportional to viscosity in Navier Stokes equa-
tion (2.123). From this comparison, we can determine numerical viscosity ν∗,

ν∗ =
3
4

(
∂ 2u
∂x2

)−1 ∞

∑
i=q+1

(ai−1)
∂ iu
∂ t i

(∆t)i−1

i!
(2.158)

Keeping only the lowest order terms in ∆t, we obtain

ν∗ =
3
4
(ar+1−1)

(
∂ 2u
∂x2

)−1
∂ q+1u
∂ tq+1

(∆t)q

(q+1)!
+O(∆tq+1). (2.159)

Numerical viscosity should scale like (∆t)q. However, if |∂ q+1
t u| � ∆t|∂ q+2

t u|, then it will scale
like ∆tq+1, because the first term on the RHS can be neglected.



2.2 NUMERICAL METHODS 37

Finally, we would like to point out an interesting relation between the orders of a reconstruction
and a time integration scheme. We say that a reconstruction method has an order r when its
errors scale like (∆x)r, whereas a time integration scheme has an order q when its errors scale
like (∆t)q+1. This may look like a somewhat inconsistent (not introduced by us, but commonly
used) definition of method orders. However, numerical viscosity introduced by these schemes is
(coincidentally) proportional to their orders, i.e. ν∗ ∝ (∆x)r and ν∗ ∝ (∆t)q, respectively (see Eqs.
(2.147) and (2.159)).

So far, we have only shown, that numerical errors could be maybe treated like numerical shear
viscosity. Similar analysis can be easily performed for numerical bulk viscosity and resistivity.
The latter appears as a result of discretisation and numerical integration of the induction equation
(2.18). The former, like shear viscosity, results from spatial and temporal errors of momenta.

The idea to treat any leading spatial and temporal discretisation errors as numerical dissipation
(viscosity or resistivity) seems heuristic and should be empirically verified. Therefore, in the next
chapter, we test this hypothesis with the help of various simulations.





Chapter 3

Numerical resistivity and viscosity

THE TRUTH IS RARELY PURE AND NEVER SIMPLE.

Oscar Wilde, The Importance of Being Earnest

3.1 Introduction

One could naively think, that a difference between an ideal and a non-ideal MHD simulation
is rather trivial. The latter merely needs to be run with the very same setup but with non-zero
resistivity or viscosity. However, the reality is far from being that simple. It is well known that
every Eulerian MHD code has a non-zero numerical resistivity and viscosity, which are a priori
unknown. Should one run a simulation with a physical resistivity, which is lower than the numer-
ical one, one can at best learn nothing new, or even arrive at wrong conclusions, e.g. by claiming
that resistivity has no influence on a particular system. Therefore, before we tackle the main goal
of this dissertation, i.e. the non-ideal effects in the magneto-rotational instability, we need to learn
more about the numerical resistivity and viscosity of numerical codes. It is a challenging task,
since they depend on many factors, e.g. resolution, numerical scheme and physical setup. Both
temporal and spatial discretisation errors contribute to the numerical dissipation and, ideally, one
would like to know which of the two errors dominantes in a given simulation. This would allow
one to decide, whether in order to reduce the numerical resistivity and viscosity, it suffices to re-
duce the time-step or to increase the grid resolution.1 One can determine the numerical resistivity
(or viscosity) of the code with the help of a physical system whose dependence on resistivity is
known. Unfortunately, there are only a few problems that can be solved analytically in resistive-
viscous MHD, yet under some approximations, which it are difficult or even impossible to fulfil in
a numerical experiment. Even after overcoming all these difficulties and successfully measuring
the numerical resistivity and viscosity for a given setup, one is faced with the problem of gener-
alising the results. For this purpose, we propose a simple prescription to estimate the numerical
dissipation of a code for any simulation. We do not claim that this prescription will always give
an exact prediction, but it is a first step towards a better understanding and estimate of numerical
errors in MHD simulations.

1Halving the time-step, increases the computational time twice, whereas doubling the resolution increases the com-
putational time by factor 2n+1, where n is the dimension of the simulation. This relation holds under perfect weak
scaling assumption. Should the weak scaling of the code be worse, the computational time will increase even more.
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3.2 Ansatz

In CGS units both resistivity and viscosity have dimension of [cm2s−1]. Therefore, any prescrip-
tion for their numerical counterparts has to have the same dimension. It seems the most natural to
use an ansatz for, say, the numerical shear viscosity of the form ν∗ ∝ V×L, where V and L are the
(still unknown) characteristic velocity and length of a simulated system, respectively. Numerical
errors come from the spatial (∆x) and temporal discretisation (∆t). Therefore terms proportional to
(∆x)r and (∆t)q, where r and q depend on the numerical schemes’ order, should enter the sought
equation. Since ∆x has a dimension [cm], (∆x)r should be additionally multiplied by L−r. The
resulting term (∆x/L)r has a simple interpretation: the more zones used to resolve the character-
istic length the lower numerical viscosity. The same argumentation holds for the time integration
errors, which should enter the prescription in the form (∆tV/L)q. Therefore, the final form of the
ansatz for the numerical shear viscosity ν∗ should read

ν∗ =N∆x
ν ×V×L×

(
∆x
L

)r
+N∆t

ν ×V×L×
(
V∆t
L

)q

, (3.1)

where N∆x
ν , N∆t

ν , r, and q are constant for a given numerical scheme, L and V are the character-
istic length and speed of the system, respectively. Using the CFL factor definition (2.79), for an
equidistant grid, the above equation can be rewritten as

ν∗ =N∆x
ν ×V×L×

(
∆x
L

)r
+N∆t

ν ×V×L×
(

CCFL∆x
L

)q

×
(

V

vmax

)q

, (3.2)

where vmax is the maximum velocity of the system limiting the timestep. If for a given system
V= vmax, the above equation simplifies to

ν∗ =N∆x
ν ×V×L×

(
∆x
L

)r
+N∆t

ν ×V×L×
(

CCFL∆x
L

)q

. (3.3)

The same ansatz should hold for the numerical bulk viscosity ξ∗ and the resistivity η∗, with the
coefficients N∆x

η , N∆t
η , N∆x

ξ
and N∆t

ξ
:

ξ∗ =N∆x
ξ
×V×L×

(
∆x
L

)r

+N∆t
ξ
×V×L×

(
V∆t
L

)q

, (3.4)

η∗ =N∆x
η ×V×L×

(
∆x
L

)r

+N∆t
η ×V×L×

(
V∆t
L

)q

, (3.5)

where we postuatle that r and q should have the same values in Eqs. (3.1)–(3.5). Once the unknown
coefficients N, r and q are determined, the above prescription can be used to estimate the numerical
resistivity and viscosity in any simulation performed with the same code. However, one also needs
to correctly identify the characteristic velocity and length of the system, which may be not trivial
and require a good understanding of the problem (see the tearing mode simulations in Section
3.4). Note, that once the numerical resistivity and viscosity are known, one can easily express
simulation results in terms of numerical Reynolds numbers.

In order to test the robustness of the above ansatzes 2 and determine the unknown coefficients,
we use four tests, which have analytically known solutions in resistive-viscous MHD: sound-,

2The author wishes to apologise the German native speakers reading this thesis for using the genitive of the noun
Ansatz in the function of its plural. We decided to follow Wiktionary’s recommendation, yet knowing that the “correct”
plural form should be Ansätze.
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Alfvén- and fast magnetosonic-wave damping, and the tearing mode instability. Since the slow
magnetosonic waves will not be discussed in the remaining part of this chapter, we will often write
magnetosonic-, having in mind fast magnetosonic-waves

We remind the reader that the equations are given in CGS units with a redefined magnetic field
b = B/

√
4π , in which the Alfvén speed reads: cA = b/

√
ρ . It is a common practice in numerical

simulations to work in dimensionless units. To achieve this one needs to set a certain scale for
MHD equations, e.g. for the magnetic field such a transformation would read

b̃ =
b
b0

, (3.6)

where b̃ is now dimensionless and b0 is an arbitrarily chosen scalar of dimension [G]. In all simu-
lations discussed in this chapter, we will make such a transformation without explicitly mentioning
it. We will also drop the tilde symbol above the dimensionless quantities. “We set bx = 1” should
be read as “we set b̃x = 1 (hence bx = 1× b0)”, etc. This simplifies the notation and should not
lead to any confusion.

3.3 Wave damping

There are four different types of waves, which are solutions of linearised MHD equations:
Alfvén, fast- and slow-magnetosonic, and entropy waves. In the absence of a magnetic field,
the magnetosonic waves reduce to the sound waves. In ideal MHD, these waves propagate with
constant speed and amplitude. Resistivity and viscosity will decrease their amplitude with time.
Unfortunately, none of these waves is damped just by one of the viscosities or resistivity, which
would allow us to measure them separately, but always by a linear combination of these. In the
following tests, we simulated sound waves, which are affected by shear and bulk viscosity, Alfvén
waves, influenced by shear viscosity and resistivity, and fast magnetosonic waves, which are sus-
ceptible to both viscosities and resistivity. These tests were done to determine the numerical
dissipation of our code and validate ansatzes (3.1), (3.4) and (3.5).

All wave simulations were performed in 1D and if not otherwise stated, the box length and the
wavevector were set to L = 1 and k = 2π , respectively. An ideal gas equation of state (EOS) with
the adiabatic index Γ = 5/3 was used.

3.3.1 Sound waves

In the following simulations, we measure the numerical shear and bulk viscosity of the code.
We set the background density and pressure to ρ0 = p0 = 1, and perturbed the system with a sound
wave

v1x(x, t = 0) = ε sin(kx), (3.7)

ρ1(x, t = 0) =
v1x(x,0)

cs
ρ0, (3.8)

p1(x, t = 0) =
v1x(x,0)

cs
Γp0, (3.9)
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where cs =
√

Γp0/ρ0 is the sound speed and the velocity amplitude3 was set to ε = 10−5.In
ideal hydrodynamics, the wave will propagate with a constant amplitude with the sound speed.
However, in the presence of viscosity, the wave will be damped with time. Inserting a plane
wave solution vx1(x, t) = v̂x1 exp[i(kx−ωt)] into the Navier-Stokes equations (Eqs. (2.15)–(2.17)
without magnetic field and gravity) , one finds from the dispersion relation

ω =
−i(4ν/3+ξ )k2

2
± kcs

√
1− k2ρ0(4ν/3+ξ )2

4Γp0
. (3.10)

In the weak damping approximation, i.e. if

k2ρ0(4ν/3+ξ )2

4Γp0
� 1, (3.11)

the phase velocity remains constant and the solution can be written as

vx(x, t) = v̂1x exp[−(k2/2)(4ν/3+ξ )t]exp[ik(x− cst)]. (3.12)

If we define the sound damping coefficient as

Ds =
k2

2

(
4
3

ν +ξ

)
, (3.13)

Eq. (3.12) can be rewritten as
vx(x, t) = v̂1xe−Dsteik(x−cst). (3.14)

The sound wave will propagate with a constant speed and its amplitude will decrease over time.

As a first step, we tested Eq. (3.14). We ran simulations with a very high resolution (128 zones
for one wavelength in x - direction) and a small time step (CCFL = 0.5), so that the numerical
dissipation was very low. The monotonicity preserving reconstruction scheme of the 9th order
(MP9), the HLL Riemann solver and the Runge-Kutta time integrator of the 3rd order (RK3) were
used. For different values of the wavevector, shear and bulk viscosity (from 10−6 to 10−3), we
measured the damping coefficient of the kinetic energy, which should be equal to 2Ds, and found
a perfect agreement between theory and numerical experiment (see Fig. 3.1).

Next, we determined the coefficients N∆x
ν and N∆x

ξ
(see Eqs. (3.1) and (3.4)) for four different

reconstruction schemes: the piecewise-linear (PL), the MP5, the MP7 and the MP9. We ran
several simulations with resolutions from 8 to 1024 zones4with the HLL Riemann solver and the
RK3 integrator. To keep the contribution of the time integration errors as small as possible, we
chose a very small time-step (CCFL = 0.01). For every simulation, we measured the kinetic energy
damping, from which we computed the numerical viscosity of the code:

4
3

ν∗+ξ∗ =
2
k2Ds∗. (3.15)

3Notice that the velocity amplitude should be much smaller than the sound speed, not only to fulfil the linearised
equations, but also to prevent wave steepening, see e.g. Shore (2007). We noticed that this effect was important for a
typical simulation time (of the order of 10 time units) for an initial velocity amplitude range ε & 10−4–10−3.

4Resolutions with ≤ 8 zones were achieved by simulating two wavelengths in a twice longer box. This simple trick
allowed us to overcome the stencil limitations (the number of zones used in the physical domain must be greater than
the number of ghost zones).
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Figure 3.1: Left: Velocity profile in a sound wave simulation with the shear viscosity set to ν =
10−4. The MP9 reconstruction scheme, the HLL Riemann solver and the RK3 time integrator with
CCFL = 0.5 are used. The grid resolution is 128 zones. The initial state is depicted with black plus
signs connected by a line. The blue plus signs show the evolved wave after 100 time units. The
analytical prediction for t = 100 is given by the red curve. The agreement between theory and
simulation is excellent. Right: The evolution of the kinetic energy. The black curve depicts the
simulation results. The analytical prediction is shown in red. Both curves are indistinguishable.

Note that in the case of sound waves one cannot determine ν∗ and ξ∗ separately, but only a linear
combination of both quantities. For every reconstruction scheme, we fitted the function

ln(
4
3

ν∗+ξ∗) = r ln(∆x)+d, (3.16)

where r is the measured scheme’s order of convergence and from the estimator of d one can
compute 4

3N
∆x
ν +N∆x

ξ
. The results are presented in Table 3.1 and Fig. 3.2. From the table, we see

that all schemes but the MP9 have at least their theoretical order. The piecewise-linear method,
theoretically of second-order, has a third accuracy order.

To compare the influence of the LF, the HLL and the HLLD Riemann solvers on the code’s
dissipation, we ran several simulations with the MP5 reconstruction scheme and the RK3 time

reconstruction scheme 4
3N

∆x
ν +N∆x

ξ
r

PL 14.26±0.71 3.049±0.009
MP5 43.4±2.5 4.961±0.014
MP7 302±20 6.897±0.021
MP9 830±340 8.42±0.15

Table 3.1: Comparison of the reconstruction scheme’s contribution to the numerical viscosity for
the sound wave simulations. For all schemes the HLL Riemann solver and the RK3 time integrator
are used. The CFL factor is set to 0.01, so that the time integration errors are negligible. For the
definition of N∆x

ν and N∆x
ξ

, see Eqs. (3.1) and (3.4).
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Figure 3.2: Numerical dissipation as a function of resolution for different reconstruction schemes:
the piecewise linear (PL - red pluses), the monotonicity preserving of the 5th order (MP5 - green
asterisks), the MP7 (blue diamonds) and the MP9 (black crosses). Straight lines of corresponding
colours are linear fits of the simulation results (see main text for more details). Grid resolutions
8 to 1024 zones are used. In order to keep the time integration errors negligible the 4th order
Runge-Kutta (RK4) method is used and the CFL factor is set to 0.01.

integrator with CCFL = 0.01. We chose resolutions ranging from 8 to 256 zones. The data analysis
was performed like in the previous paragraph. The results are presented in Table 3.2.

In order to determine N∆t
ν and N∆t

ξ
, we ran several simulations with either a fixed CFL factor

(CCFL = 0.5) and different resolutions, or with a constant resolution and a varying CCFL from 0.1
to 0.9. Because of Eq. (3.3), both approaches should be equivalent. To keep the contribution
of the spatial discretisation errors as low as possible, we used the MP9 scheme. The RK3 time
integrator and the HLL Riemann solver were used. The results are presented in Table 3.3 and Fig.
3.3. From the table, we see that in both cases the RK3 scheme has the third order of accuracy and
the estimators of 4

3N
∆t
ν +N∆t

ξ
are equal within the error limit. We also ran a few simulations with

the RK4 time integrator, but for these simulations the sound damping coefficient was negative,

Riemann solver 4
3N

∆x
ν +N∆x

ξ
r

LF 42.9±2.3 4.957±0.013
HLL 43.4±2.5 4.961±0.014
HLLD 42.7±2.2 4.956±0.013

Table 3.2: Comparison of the Riemann solvers’ contribution to the numerical shear and bulk
viscosity for the sound wave simulations. For all simulations the MP5 scheme and the RK3 time
integrator are used. The CFL factor is set to 0.01, so that the time integration errors are negligible.
For the definition of N∆x

ν and N∆x
ξ

see Eqs. (3.1) and (3.4).
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Figure 3.3: Numerical dissipation as a function of CFL factor (and hence effectively size of the
timestep) for the RK3 time integrator. The resolution is set to 32 zones. To keep the contribution
of the spatial discretisation errors at a negligible level, the MP9 reconstruction scheme is used.
Simulation results are marked with asterisks and the straight line is a linear fit of them.
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Figure 3.4: Dependence of the numerical dissipation on the characteristic speed, which is changed
by varying the background pressure (cs ∝

√
p). Simulation results are marked with asterisks and

the straight line is a linear fit of them. The resolution is set to 32 zones. the MP5 scheme and RK3
time integrator are used and the CFL factor is set to 0.01.
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Figure 3.5: Same as Fig. 3.4 with the difference that the characteristic speed is changed by varying
the background density (cs ∝ ρ(−1/2)).
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Figure 3.6: Dependence of the numerical dissipation on the characteristic length for the sound
wave simulations. The results are marked with asterisks and the straight line is a linear fit of
them (see main text for details). To simulate different wavelengths the box size has to be changed
accordingly. The resolution is set to 32 zones. MP5 scheme and RK4 time integrator are used, the
CFL factor is set to 0.01.
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varied quantity 4
3N

∆t
ν +N∆t

ξ
q

CFL factor 2.0±0.4 2.906±0.042
grid resolution 2.45±0.17 2.95±0.013

Table 3.3: Contribution of the RK3 time integrator to the numerical viscosity for the sound wave
simulations using the HLL Riemann solver and the MP9 reconstruction schemes. To determine the
integrator’s order either the CFL factor was changed for fixed resolution (first row in the table) or
the factor is set to CCFL = 0.5 and the resolution was changed (second row in the table). According
to Eqs. (3.1) and (3.3) both approaches are equivalent. For all simulations, the dissipation of the
reconstruction scheme is negligible. For the definition of N∆t

ν and N∆t
ξ

, see Eqs. (3.1) and (3.4).

varied quantity 4
3N

∆x
ν +N∆x

ξ
a

pressure 45.3±2.3 0.49935±0.00023
density 43.4±2.4 −0.4949±0.0026
wavelength 46.2±2.4 0.9899±0.0024

Table 3.4: The results of simulations aiming to identify the characteristic velocity and length
for the sound wave simulations (for more details see main text). For all simulations, the MP5
reconstruction scheme, the HLL Riemann solver and the RK3 time integrator are used. The CFL
factor is set to 0.01, so that the time integration errors are negligible. For the definition of N∆x

ν and
N∆x

ξ
see Eqs. (3.1) and (3.4).

which is unphysical. However, the modulus of that “positive damping” was much smaller than the
modulus of the damping caused by the RK3 integrator.

To demonstrate that the numerical viscosity is proportional to the characteristic speed of the
system (ν∗ ∝ V and ξ∗ ∝ V), we ran several simulations with 32 zones, the MP5 reconstruction
scheme and the HLL Riemann solver. The natural choice for the characteristic velocity is the
sound speed, i.e. one should expect ν∗ ∝ cs =

√
Γp0/ρ0. We changed the value of the background

pressure from 1 to 104 keeping the density constant (ρ0 = 1). For each simulation, we determined
the numerical viscosity, and we fitted the results with the function

ln(
4
3

ν∗+ξ∗) = a ln(p0)+d. (3.17)

If ansatz (3.1) is correct, one would expect ν∗ ∝
√

p0, and hence a should be equal to 1/2. In
another set of simulations, we kept the pressure constant (p0 = 1) varying the background density
from 10−4 to 10. We fitted the measured numerical viscosities with another function:

ln(
4
3

ν∗+ξ∗) = a ln(ρ0)+d, (3.18)

this time expecting a =−1/2. The results are presented in Table 3.4, and Figs. 3.4 and 3.5. They
clearly indicate that we correctly identified the characteristic velocity of the system. At this point,
we would like to note that the magnetosonic speed reduces to the sound speed in the absence of
the magnetic field. Therefore equally well, we could say that the system’s characteristic velocity
is the magnetosonic speed.

Another set of simulations allowed us to determine the system’s characteristic length, for which
the most natural candidate in wave simulations it the wavelength. We ran several simulations with
the MP5 reconstruction scheme, the HLL Riemann solver, the RK3 integrator and CCFL = 0.01.



48 NUMERICAL RESISTIVITY AND VISCOSITY

We chose wavelengths λ ranging from 0.1 to 20. The box size was changed accordingly (L = λ ).
The resolution was set to 32 zones. For every, simulation we determined the numerical damping.
We fitted the results with the function

ln(
4
3

ν∗+ξ∗) = a ln(λ )+d, (3.19)

expecting a = 1. The results, presented in Table 3.4 and in Fig. 3.6, confirm our hypothesis.

3.3.2 Alfvén waves

Another type of waves allowed us to determine a linear combination of the numerical shear
viscosity and resistivity of the code. We set the background magnetic field and density to b0x =
ρ = 1, and the pressure to p = 2×10−3. We perturbed the system with an Alfvén wave:

b1y(x,0) = ε sin(kx), (3.20)

v1y(x,0) =−
by1√

ρ
. (3.21)

In ideal MHD, the wave would propagate with a constant amplitude at the Alfvén speed cA =
b0x/
√

ρ . In the presence of viscosity and resistivity, the wave amplitude will decrease with time.
In the weak damping approximation, i.e. for k4(ν +η)2/(4c2

A)� 1, the velocity evolution reads
(for the derivation, see Campos (1999))

vy(x, t) = v0e−(k
2/2)(η+ν)teik(x+(b0x/ρ)t). (3.22)

We define the Alfvén damping coefficient as

DA =
k2

2
(η +ν) (3.23)

and rewrite Eq. (3.22) as
vy(x, t) = v0e−DAteik(x+cAt). (3.24)

We first tested Eq. (3.23) by running simulations with different values of the physical shear viscos-
ity and resistivity (from 10−4 to 10−3). The MP9 reconstruction scheme, the RK3 time integrator
and the HLL Riemann solvers were used. In order to keep the numerical dissipation low, the res-
olution was set to 512 grid zones and the CFL factor to 0.5. The measured the damping of the
magnetic energy’s y component should equal to 2DA. We found a very good agreement between
theory and numerical experiment. We also ran a few simulations with non-zero bulk viscosity,
which, as expected, had no influence on the damping coefficient.

The remaining simulations were analogous to the sound wave tests. We compared the influence
of the MP5, MP7 and MP9 reconstruction schemes on the numerical shear viscosity ν∗ and res-
istivity η∗. We ran several Alfvén wave simulations in ideal MHD with resolutions from 8 to 256
zones. We used the HLL Riemann solver, the RK3 time integrator with CCFL = 0.01, so that the
temporal errors were negligible. For every simulation, we measured the kinetic energy damping,
from which we determined a linear combination of the numerical shear viscosity and resistivity

ν∗+η∗ =
2
k2DA. (3.25)
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reconstruction scheme N∆x
ν +N∆x

η r
MP5 42.6±2.1 4.965±0.013
MP7 44±53 6.194±0.034
MP9 1190±190 8.57±0.06

Table 3.5: Comparison of reconstruction schemes’ contribution to the numerical shear viscosity
and resistivity for Alfvén wave simulations. For all schemes the HLL Riemann solver and the
RK3 time integrator are used. The CFL factor is set to 0.01, so that the time integration errors are
negligible. For the definition of N∆x

ν and N∆x
η see Eqs. (3.1) and (3.5).

Riemann solver N∆x
ν +N∆x

η r
LF 41.9±2.9 4.95±0.02
HLL 42.6±2.1 4.96±0.013
HLLD 42.1±2.8 4.95±0.02

Table 3.6: Comparison of the Riemann solvers’ contribution to the numerical shear viscosity and
resistivity for the Alfvén wave simulations. For all simulations the MP5 scheme and the RK3 time
integrator are used. The CFL factor is set to 0.01, so that the time integration errors are negligible.
For the definition of N∆x

ν and N∆x
η see Eqs. (3.1) and (3.5).

time integrator N∆t
ν +N∆t

η q
RK3 0.86±0.08 2.949±0.022
RK4 7.6±2.5 5.181±0.096

Table 3.7: The RK3 and RK4 time integrators’ contribution to the numerical shear viscosity and
resistivity for the Alfvén wave simulations. In all of them the HLL Riemann solver and the MP9
reconstruction schemes are used. For all simulations the reconstruction scheme’s dissipation is
negligible. For the definition of N∆t

ν and N∆t
η see Eqs. (3.1) and (3.5).

varied quantity N∆x
ν +N∆x

η a
magnetic field 44±2 0.9998±0.0001
pressure 38±2 0.49792±0.0008
density 44±2 −0.50001±0.00006
wavelength 44±2 −1.0003±0.0003

Table 3.8: The results of simulations aiming to identify the system’s characteristic velocity and
length (for details, see main text). For all simulations, the MP5 reconstruction scheme, the HLL
Riemann solver and the RK3 time integrator are used. The CFL factor is set to 0.01, so that the
time integration errors were negligible. For the definition of N∆x

ν and N∆x
ξ

see Eqs. (3.1) and (3.5).
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Figure 3.7: Numerical dissipation as a function of resolution for the MP5 (green asterisks), the
MP7 (blue diamonds) and the MP9 (black crosses) reconstruction schemes in Alfvén wave sim-
ulations. Straight lines of corresponding colours are linear fits of the simulation results. To keep
the time integration errors negligible, the RK4 method with the CFL factor set to 0.01 were used.
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Figure 3.8: Numerical dissipation as a function of resolution (hence effectively timestep) for the
RK3 (red crosses) and the RK4 (blue asterisks) time integrators in Alfvén wave simulations. The
HLL Riemann solver and the MP9 reconstruction scheme are used. The spatial discretisation
errors are negligible. The red and blue straights result from the linear fit to the data points.
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The simulation results were fitted with the function

ln(ν∗+η∗) = r ln(∆x)+d, (3.26)

where r is the order of the reconstruction scheme. From the estimator of d, with the help of Eqs.
(3.1), (3.5) and (3.25), we determined N∆x

ν +N∆x
η .5 The results are presented in Table 3.5 and

Fig. 3.7. The MP5 and the MP9 schemes were approximately of 5th and 9th order of accuracy,
respectively , whereas the order of the MP7 was lower than theoretically expected.

Next, we investigated the contribution of the LF, HLL and HLLD Riemann solvers to the nu-
merical dissipation. We used the MP5 reconstruction scheme and the RK3 time integrator with
CCFL = 0.01. We ran simulations with 8 to 256 zones. Since the further analysis was analogous to
the previous simulation set, we omit the details here. The results are presented in Table 3.6. All
three Riemann solvers were equally dissipative within the errors.

Another set of simulations allowed us to determine the dependence of the numerical dissipation
on the RK3 and RK4 time integrators. The HLL Riemann solver and the MP9 reconstruction were
used. We set CCFL = 0.8 and with both integrators, we ran several simulations with resolutions
from 8 to 128 zones. The results are presented in Table 3.7 and Fig. 3.8. Note that equally well,
we could keep the resolution fixed and change the CFL factor, as we did for the sound waves (see
Table 3.7 and Fig. 3.3). To determine the system’s characteristic length we ran several simulations
with wavelengths from λ = 0.01 to 10 (changing the box size accordingly, L = λ ). We set the
resolution to 32 zones and used the HLL Riemann solver, the MP5 reconstruction and the RK3
time integrator with CCFL = 0.01. We fitted the simulation results with the function

ln(ν∗+η∗) = a lnλ +d. (3.27)

Should a = 1, the wavelength is the system’s characteristic length. From the estimator of d we
determined N∆x

ν and N∆x
η . The results, presented in Table 3.8 and in Fig. 3.9, confirm our hypo-

thesis.

When it comes to the characteristic velocity, the situation becomes a bit more complicated
than for the sound waves. The Alfvén speed seems to be a natural candidate for the system’s
characteristic velocity. In the end, we simulate Alfvén waves. However, we must not forget that
the LF, HLL and HLLD solvers do not use the full solution of the Riemann problem. They employ
the two6 fastest (in absolute value) wave speeds to approximately represent the Riemann fan.
The fastest MHD waves are the magnetosonic ones. Their speed for a wavevector parallel to the
background magnetic field reads

cms = max{cA,cs}. (3.28)

This means that there should be a simple test to determine whether the Alfvénor magnetosonic
speed is the characteristic velocity V. For cA ≥ cs both speeds are equal and we expect V ∝ b0.
However, for cA < cs there are two possible scenarios: either this proportionality still holds or
V becomes independent of b0. In the first case, the system’s characteristic velocity is the Alfvén
speed, in the second case, it is the magnetosonic speed. We ran several simulations with ρ =
1, p0 = 0.1 and a magnetic field b0 in the range from 10−3 to 200 with a resolution of 32 zones.
The HLL Riemann solver, the MP5 reconstruction and the RK3 integrator with CCFL = 0.01 were
used. To the measured numerical dissipation from simulations with b0≥ 0.5, we fitted the function

ln(ν∗+η∗) = a ln(b0)+d. (3.29)

5For the characteristic velocity we put V= 1. See later in this subsection for an extended discussion.
6The more accurate HLLD solver uses one additional wave.
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Figure 3.9: Dependence of the numerical dissipation on the characteristic length for the Alfvén
wave simulations. The results are marked with asterisks and the straight line is a linear fit of the
data. The resolution is set to 32 zones. The MP5 scheme and the RK4 time integrator are used,
the CFL factor is set to 0.01
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Figure 3.10: Dependence of the numerical dissipation on the system’s characteristic, i.e. fast
magnetosonic, velocity for the Alfvén wave simulation. The numerical setup is like in simulations
presented in Fig. 3.9. The magnetosonic speed is inversely proportional to the square root of the
density. The line is a fit to the simulation data.
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Figure 3.11: Dependence of the numerical dissipation dependence on the system’s characteristic,
i.e. fast magnetosonic, velocity for the Alfvén wave simulation. The numerical setup is like in
simulations presented in Fig. 3.9. Top: The green straight line results from a fit to the points with
b0 > 0.5, where the magnetosonic speed linearly depends on the magnetic field. For b0 < 0.4, the
magnetosonic velocity equals the sound speed, which is constant in all simulations. The expected
numerical dissipation for this regime is marked with the red line. Bottom: The red straight results
from a fit to the points with p > 103, where the magnetosonic speed linearly depends on the square
root of the pressure. For p < 0.7, the magnetosonic velocity equals the Alfvén speed, which is
constant in all simulations. The expected numerical dissipation for this regime is marked with the
green line.
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As expected, a equals 1 within the errors. From the estimator of d, we computed N∆x
ν +N∆x

η .
The results are presented in Table 3.8 and in the upper panel of Fig. 3.11. For b0 < 0.4, the
sound speed (cs ≈ 0.4) is higher than the Alfvén speed (cA = b0) and the magnetosonic speed
equals to the former. The values of numerical damping from simulations with such low magnetic
fields no longer lie on the green fitting straight line. For b0 ≤ 0.01, the numerical dissipation
becomes independent of the magnetic field. Hence, the system’s characteristic velocity must be
the magnetosonic speed. With the red horizontal line, described as “pressure contribution”, we
marked the expected numerical damping, assuming that the characteristic velocity is equal to the
sound speed. The expected value was determined in the following test (see the bottom panel of
Fig. 3.11). For simulations with cA ≈ cs (b0 ≈ 0.4), the numerical dissipation is somewhat higher
than expected. We note that for this particular configuration and cA = cs a so called triple umbilic
point (see, e.g. Goedbloed & Poedts (2004)) is encountered, where four MHD characteristics, i.e.
the Alfvén , sound, slow and fast magnetosonic wave speeds coincide. This means that probably
all of these waves are more likely to appear as a result of errors caused by approximately solving
the Riemann problem. Naturally, all these spurious waves will have negligible amplitudes, still
they will drain energy from the Alfvén wave. This probably explains why both the magnetic field
and the gas pressure contribute to the numerical damping additively and not only one of them
exclusively, as expected from the equation for the magnetosonic speed of a wave propagating
parallel to the background magnetic field. Since such a degeneracy of the MHD wave speeds is
rather an exception than a rule, we can conclude that ansatzes (3.1) and (3.5) work well the Alfvén
waves and we correctly identified the system’s characteristic velocity.

Another set of simulations was run to investigate the influence of the pressure on the numerical
damping. For the same numerical setup like in the previous test, we put b0 = ρ = 1 and chose
pressure values from 10−2 to 107. The measured values of the numerical damping are presented in
the bottom panel of Fig. 3.11. As expected, for simulations with p< 0.1, the numerical dissipation
is pressure independent. In this regime the magnetosonic speed is equal to the Alfvén speed. With
the green curve we mark the expected numerical damping if the system’s characteristic velocity
were the Alfvén speed. To the data from simulations with p≥ 103, we the fitted the function

ln(ν∗+η∗) = a ln(p)+d. (3.30)

The fitting straight line is drawn in red in Fig. 3.11. The value of a, as expected, is equal to 1/2
within the error. From the estimator of d, we computed N∆x

ν +N∆x
η . The results are presented in

Table 3.8. In the intermediate regime, where cs ≈ cA, like in the previous tests, both the magnetic
field and the gas pressure contribute to the numerical dissipation.

Rather as a formality, we also checked the dependence of the numerical damping on the back-
ground density ρ . We ran several simulations for b0 = 1, p = 2×10−3 and densities from 10−4 to
104. To the simulation data, we fitted the function

ln(ν∗+η∗) = a ln(ρ)+d. (3.31)

The results are presented in Fig. 3.10 and in Table 3.8. As expected, the estimator of a equals
−1/2 within the errors. This confirms our finding on the system’s characteristic speed.

Additionally, we investigated whether spatial discretisation- and time integration-errors are ad-
ditive. For this purpose we ran a set of simulations in the parameter space region, where both
terms from Eq. (3.1) for the numerical shear viscosity, i.e. N∆x

ν ×V×L×
(

∆x
L

)r
and N∆t

ν ×V×
L×

(
V∆t
L

)q
, should be comparable. Analogically, both terms from Eq. (3.5) should contribute to

the numerical resistivity. The HLL Riemann solver, the RK3 time integrator with CCFL = 0.5 and
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Figure 3.12: Numerical dissipation as a function of resolution for the MP5 reconstruction scheme
and the RK3 time integrator. The CFL factor is set to 0.5. The simulation results are marked
with black pluses. The green straight line depicts the predicted numerical dissipation of the RK3
time integrator for the given CFL factor. The blue straight shows the theoretical prediction for
the MP5 scheme. The red curve is a sum of both types of numerical dissipation. For resolutions
≤ 16 zones, Alfvén waves are mainly damped by spatial discretisation errors, and for≥ 128 zones
by time integration errors. In the intermediate regime (16 ∼ 128 zones), both types of errors add
linearly (like proper scalars).

the MP5 reconstruction were used. We ran simulations with ≈ 5 to 1024 zones. 7 The simulation
results are presented in Fig. 3.12. Additionally, we marked the expected numerical dissipation of
the RK3 integrator (green), the MP5 reconstruction (blue) and the sum of both contributions (red).
As we see from the figure, the errors add linearly.

3.3.3 Magnetosonic Waves

With the help of magnetosonic wave simulations, we determined the numerical resistivity and
viscosity of the code. If not otherwise written, the background pressure, density and magnetic
field were set to p0 = ρ0 = 1 and b0 = b0yŷ, respectively. We perturbed the system with a fast

7See the comment in Footnote 4 on page 42.
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magnetosonic wave

vx1(x,0) = εsin(kxx), (3.32)

vy1(x,0) = vx1
k2

xb0xb0y

b2
0xk2

x −ρ0ω2 , (3.33)

by1(x,0) = vx1
kxb0yωρ0

ρ0ω2−b2
0xk2

x
, (3.34)

ρ1(x,0) = vx1
kxρ0

ω
, (3.35)

e1(x,0) = vx1
kx p0Γ

ω(Γ−1)
(3.36)

where

ω =
k√
2ρ0

√
b0

2 +Γp0 +

√(
b0

2 +Γp0
)2−4b0

2
Γp0 cos2 θ (3.37)

is the wave frequency, θ is the angle between the wavevector and the background magnetic field,
e1 is a perturbation of the total specific energy and the velocity amplitude was set to ε = 10−5. For
θ = π

2 (the angle chosen in almost all simulations), the magnetosonic speed reads

cms ≡
ω

k
=

√
b0

2 +Γp0

ρ0
. (3.38)

In the presence of viscosity or resistivity, the wave will be damped over time, e.g. the evolution of
the velocity’s x component will read

vx(x, t) = εe−Dmsteik(x+cmst), (3.39)

where the damping coefficient for the fast magnetosonic wave propagating perpendicularly to the
background magnetic field reads (for the derivation, see Campos (1999))

Dms =
k2

2

(
4
3

ν +ξ +
η

1+ c2
s/c2

A

)
. (3.40)

It not only depends on viscosity and resistivity but also on the sound to Alfvén speed ratio. There-
fore, for the fast magnetosonic waves, unlike for the Alfvén waves, one can control the contri-
bution of the resistivity to the total damping. In the two most extreme cases, i.e. for cs � cA,
DMS ≈ (k2/2)(4

3 ν + ξ + η) and for cs � cA, DMS ≈ (k2/2)(4
3 ν + ξ ). 8 We will exploit this

feature later in the tests.

Like for the previous wave simulations, we verified the analytical predictions for damping coef-
ficient (3.40), performing several simulations with the HLL Riemann solver, the MP9 reconstruc-
tion and the RK3 time integrator with CCFL = 0.1. The resolution was set to 128 zones. Checking
the dependence of Ds on ν and ξ was rather straightforward. The term containing resistivity is
proportional to 1/(1+c2

s/c2
A), which we will denote as α and call the resistivity contribution. We

ran a few simulations changing α from≈ 10−4 to≈ 1. The lowest value was achieved for b0 = 0.1
and p= 100, and the highest one for b0 = 10 and p= 0.01. The resistivity was set to either 10−4 or
10−5. The measured damping values are presented in Fig. 3.19, where red and blue straight lines
mark the theoretical predictions for the higher and lower resistivity, respectively. The agreement
between the theory and simulations is excellent.



3.3 WAVE DAMPING 57

magnetosonic  wave damping

10−5 10−4 10−3 10−2 10−1 100

α (resistivity contribution)

10−7

10−6

10−5

10−4

10−3

10−2

d
am

p
in

g
 c

o
ef

fi
ci

en
t 

 [
(k

2
/2

) 
( 

(4
/3

) 
ν

 +
  ξ

 +
 α

 ⋅
 η

)]

η = 10−4

η = 10−5

Figure 3.13: The resistivity contribution, α ≡ 1/(1+ c2
s/c2

A), to the magnetosonic wave damping
(see Eq. (3.40) and discussion below it). The simulations are run with the HLL Riemann solver,
the MP9 reconstruction and the RK3 time integrator with CCFL = 0.1. The resolution is set to 128
zones. The resistivity is set to 10−4 (red pluses) or 10−5 (blue asterisks). The analytical predictions
are marked with the straight lines of the corresponding colour.

reconstruction scheme 4
3N

∆x
ν +N∆x

ξ
+ 3

8N
∆x
η r

MP5 39.5±2.7 4.95±0.02
MP7 288±20 6.903±0.023
MP9 1970±160 8.82±0.03

Table 3.9: Comparison of reconstruction scheme’s contribution to the numerical shear and bulk
viscosity, and resistivity for the magnetosonic wave simulations. For all schemes, the HLL
Riemann solver and the RK3 time integrator are used. The CFL factor is set to 0.01, so that
the time integration errors are negligible. For the definition of N∆x

ν , N∆x
ξ

and N∆x
η , see Eqs. (3.1),

(3.4) and (3.5).

time integrator 4
3N

∆t
ν +N∆t

η + 3
8N

∆t
η q

RK3 1.77±0.06 2.9774±0.0066
RK4 4.34±0.75 4.834±0.013

Table 3.10: The RK3 time integrator contribution to the numerical dissipation for the magneto-
sonic wave simulations. In all of them, the HLL Riemann solver and the MP9 reconstruction
schemes are used. In all simulations, spatial discretisation errors are negligible. For the definition
of N∆t

ν , N∆t
ξ

and N∆t
η , see Eqs. (3.1), (3.4), and (3.5).
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Figure 3.14: Numerical damping (see Eq. (3.40)) in magnetosonic wave simulations as a function
of grid resolution for three reconstruction schemes: the MP5 (green asterisks), the MP7 (blue
diamonds) and the MP9 (black crosses). In the simulations, the HLL Riemann solver, the RK3
time integrator are used. The CFL factor is set to 0.01, so that temporal errors are negligible.
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Figure 3.15: The influence of the RK3 (red crosses) and RK4 (blue asterisks) time integrators on
the numerical dissipation in magnetosonic wave simulations with the HLL Riemann solver, the
MP9 reconstruction scheme and a resolution of 64 zones. The spatial discretisation errors are
negligible. The red and blue straight lines result from a linear fit to the data points.
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Next, we investigated the influence of the MP5, MP7 and MP9 reconstruction schemes on the
numerical dissipation. We chose b0 = p0 = 1, for which α = 3/8 = 0.375. We ran several mag-
netosonic wave simulations in ideal MHD with resolutions from 8 to 256 zones. We used the HLL
Riemann solver and the RK3 time integrator with CCFL = 0.01. For every simulation we measured
the kinetic energy damping, from which we determined the linear combination of the numerical
resistivity, and shear and bulk viscosity

4
3

ν∗+ξ∗+
3
8

η∗ =
2
k2Dms. (3.41)

To the simulation results, we fitted the function

ln
(

4
3

ν∗+ξ∗+
3
8

η∗

)
= r ln(∆x)+d, (3.42)

where r is the reconstruction scheme order. From the estimator of d, with the help of Eqs. (3.1),
(3.4), (3.5) and (3.41), we determined 4

3N
∆x
ν +N∆x

ξ
+ 8

3N
∆x
η . The results are presented in Table 3.9

and Fig. 3.14.

With another set of simulations, we determined the RK3 and RK4 time integrators’ contribution
to the numerical dissipation. The HLL Riemann solver and the MP9 reconstruction were used.
We set the resolution to 64 zones and for both integrators we ran several simulations with the CFL
factor from 0.1 to 0.9. The results are presented in Table 3.10 and Fig. 3.15. Note that the RK4
integrator’s order was higher by one than theoretically expected.

There was no surprise in determining the system’s characteristic velocity. It was the magneto-
sonic speed. To demonstrate that, we ran three groups of simulations with the HLL Riemann
solver, the MP5 reconstruction and the RK3 time integrator with CCFL = 0.01. The resolution
was set to 32 zones. In the first set of simulations, the background pressure and density were
p0 = ρ0 = 1 and the magnetic field strength ranged from 10−4 to 103. To the measured numerical
dissipation, we fitted the function

ln
(

4
3

ν∗+ξ∗+
3
8

η∗

)
= a ln

(√
(Γp0 +b2

0)/ρ0

)
+d. (3.43)

From the estimator of d, we computed 4
3N

∆x
ν +N∆x

ξ
+ 3

8N
∆x
η . The results are presented in the upper

panel of Fig. 3.16 and Table 3.11. As expected, a = 1 within the measurement errors. In the
asymptotic regime b0� p0, the numerical damping is independent of the magnetic field, while for
b0� p0 proportional to it . In the second set of simulations, the background magnetic field and
density were b0 = ρ0 = 1 and the pressure ranged from 10−4 to 104. The further data analysis was
analogous to the previous one, i.e. the fitting function was like in Eq. (3.43). The results, presented
in the lower panel of Fig. 3.16 and Table 3.11, once again confirm the hypothesis on the system’s
characteristic velocity. In the third set of simulations, the background magnetic field and pressure
were b0 = p0 = 1 and the density ranged from 10−3 to 104. To the simulation results, we fitted the
function

ln
(

4
3

ν∗+ξ∗+
3
8

η∗

)
= a ln(ρ0)+d. (3.44)

The outcome is presented in Fig. 3.17 and Table 3.11. As expected, s =−1/2 within the measure-
ment errors. With this, we conclude that the system’s characteristic velocity is the magnetosonic
speed. Since we already showed twice that for the wave simulations the characteristic length is
the wavelength, we did not design any further tests to verify it for a third time.

8 For cA → 0, a magnetosonic wave becomes a sound wave and the damping coefficient does not depend on the
resistivity and is equal to the sound wave damping coefficient (see Eq. (3.13)).
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Figure 3.16: Dependence of the numerical dissipation on the system’s characteristic velocity V for
the magnetosonic wave simulations. The resolution is set to 32 zones, the HLL Riemann solver,
the MP9 reconstruction and the RK3 time integrator with CCFL = 0.01 are used. In the upper
panel, all simulations have p0 = 1 and different values of the magnetic field amplitude, whereas
in the bottom panel, the magnetic field is constant (b0 = 1) and background pressure varies. The

green curves in both panels are assuming V= cms =
√
(Γp0 +b2

0)/ρ0.
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Figure 3.17: Dependence of the numerical dissipation on the background density for the mag-
netosonic wave simulations. The resolution is set to 32 zones, the HLL Riemann solver, the MP9
reconstruction and the RK3 time integrator with CCFL = 0.01 are used. The straight line is a fit to
the simulation points (diamonds).

varied quantity 4
3N

∆t
ν +N∆t

η + 3
8N

∆t
η a

magnetic field 42.6±3.8 0.970±0.008
pressure 36.6±3.4 1.04±0.01
density 40.7±2.8 −0.49969±0.00015

Table 3.11: The results of tests aiming to identify the system’s characteristic speed in magneto-
sonic wave damping simulations (for more details, see main text). For all simulations, the MP5
reconstruction scheme, the HLL Riemann solver and the RK3 time integrator are used. The CFL
factor is set to 0.01, so that the time integration errors are negligible. For the definition of N∆x

ν ,
N∆x

ξ
and N∆x

η , see Eqs. (3.1), (3.4) and (3.5).
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Figure 3.18: Dependence of the total numerical damping on the numerical resistivity contribution
α (see Eq. (3.40) and discussion below it). The resolution is set to 32 zones, the MP5 reconstruc-
tion scheme and the RK3 time integrator with CCFL = 0.01 are used. The results for the LF, HLL
and HLLD Riemann solvers are marked with the red pluses, green diamonds and blue x symbols,
respectively. The black straight line is a theoretical prediction assuming that η∗ = ν∗ = ξ∗. This
hypothesis must be wrong and η∗� ν∗+ξ∗.

As already mentioned before, the resistivity contribution α to the magnetosonic wave damping
depends on the Alfvén to sound speed ratio (see Eq. (3.40)), or equivalently on the plasma β

parameter (β ≡ p0/(2b2
0)). Exploiting this feature, we can measure the numerical resistivity. For

each Riemann solver we ran three simulations with constant pressure, p0 = 1, and magnetic fields
b0 = 10,1 and 0.1 which correspond to α ≈ 0.984,0.375 and 0.006, respectively. The density was
chosen such that the characteristic velocity remained constant. The resolution was set to 32 zones,
and the MP5 reconstruction scheme and the RK3 time integrator with CCFL = 0.01 were used. The
measured values of the numerical damping are presented in Fig. 3.18. Additionally, with the black
straight line, we mark the expected damping, assuming that the numerical resistivity, and shear
and bulk viscosity are equal, i.e. η∗ = ν∗ = ξ∗. We calibrated the straight line to give the correct
values, by definition, for the simulations with the LF and HLLD Riemann solvers and α = 0.375.
As we can see, the hypothesis that η∗ = ν∗ = ξ∗ must be wrong. The only conclusion that we
can draw from the figure is that the numerical resistivity must be much lower than the sum of the
numerical bulk and shear viscosity.

One could argue that the influence of the numerical resistivity is negligible because the wave
propagates along the x axis, which is a numerically favoured direction (the same like y and z
axes in multidimensional simulations). One could test this hypothesis with 2D simulations where
the wavevectors are neither aligned to the x- nor to the y-axis. This would require non-standard
and somewhat complicated boundary conditions that keep the periodicity in the wave propagation
direction. Even if we implemented them to the, we would still not be able to tell how much they
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Figure 3.19: Dependence of the magnetosonic wave damping on the resistivity, shear and bulk
viscosity for different values of plasma β . The solid curves depict the analytical predictions from
Eq. (3.40) for θ = π

2 (the angle between the wavevector and the background magnetic field) for
shear viscosity (black), bulk viscosity (blue) and resistivity (orange). The values for θ = π

4 are
obtained from simulations (for details see main text) with physical shear viscosity (blue diamonds),
bulk viscosity (green crosses) or resistivity (red asterisks).

contribute to the total numerical damping. Therefore, we did not test this hypothesis. Another
possible reason for the negligible numerical resistivity is the particular angle chosen between the
background magnetic field and the wave vector (θ = π

2 ). We decided to investigate this matter
more closely. Even though the analytical form of the damping coefficient DMS is unknown for
θ 6= π

2 , one can guess some of its features from dimensional analysis. The damping coefficient
must have a dimension of [s−1]. Therefore, it seems natural to postulate that in general

DMS(θ) =
k2

2

(
ν f (θ ,

cs

cA
)+ξ g(θ ,

cs

cA
)+ηh(θ ,

cs

cA
)

)
, (3.45)

where f ,g and h are dimensionless functions. Note that for θ = π/2, we have f = 4
3 ,g = 1 and

h = 1/(1+ c2
s/c2

A). To learn more about the functions f ,g and h, we ran several simulations for
θ = π

4 , with 128 zones, the HLL Riemann solver, the MP9 reconstruction, the RK3 integrator
with CCFL = 0.5, and different values of the plasma β . The magnetic field and pressure were
in the range b0 = 0.1–10 and p0 = 0.01–100, respectively. For every simulation, we set either
the resistivity or one of the viscosities to 10−4 and measured the wave damping. The simulation
results are presented in Fig. 3.19. Additionally, for comparison, with the solid curves we marked
the analytical predictions for θ = π

2 . In general, we see similar damping behaviour for both angles.
In the high β regime, the resistivity contribution becomes negligible, being higher for θ = π

4 . This
again allowed us to try to measure the numerical resistivity for θ = π

4 . Like in the simulations with
θ = π

2 , we ran several ideal MHD simulations with 32 zones for different plasma β parameters.
The MP5 reconstruction scheme and the RK3 time integrator with CCFL = 0.01 were used. For
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Figure 3.20: Dependence of the total numerical damping on the plasma β for θ = π

4 . The res-
olution is set to 32 zones, the MP5 reconstruction scheme and the RK3 time integrator with
CCFL = 0.01 are used. The results for the LF, the HLL and the HLLD Riemann solvers are
marked with red plus signs, green diamonds and blue crosses, respectively. The independence
of the numerical damping on β implies that η∗� ν∗+ξ∗.

three Riemann solvers we measured the numerical damping. The results are presented in Fig. 3.20.
Once again we do not see any significant dependence of the numerical damping on the plasma β .
This means that the numerical resistivity must be much smaller than the sum of the numerical
viscosities.

3.3.4 Summary of the wave tests

The wave damping simulations were computationally inexpensive, yet provided useful results.
They confirmed the correctness of ansatzes (3.1), (3.4) and (3.5) for the numerical shear and bulk
viscosity, and the resistivity, respectively. In almost all simulations, the reconstruction schemes
and the RK time integrators had the theoretically expected order. There were two somewhat un-
expected results, however. For the magnetosonic wave simulations, the numerical resistivity was
much lower than the numerical viscosity. The characteristic velocity for the Alfvén wave simu-
lations turned out to be another surprise. However, this could be a consequence of solving the
Riemann problem only approximately. Anyway, we can formulate a general statement that for
all MHD waves their characteristic velocity and length are the fast magnetosonic speed and the
wavelength, respectively.

So far we, measured the numerical damping for three wave types separately. For each type
of a wave, the damping coefficient depends on a linear combination of the resistivity, shear- and
bulk-viscosity (see Eqs. (3.13), (3.23) and (3.40)). This gives three linearly independent equations
with three unknowns. From the mathematical point of view, such a system should have a unique
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Figure 3.22: The ratio of numerical dissipation in magnetosonic wave simulations to numerical
dissipation in sound wave simulations for the MP5, MP7 and MP9 reconstruction schemes (for
details, see main text).
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solution. Hence, if a given reconstruction scheme has the same order of accuracy for all three
types of waves, we can determine the coefficients N∆x

ν ,N∆x
ξ

and N∆x
η separately (see Eqs. (3.1),

(3.4) and (3.5)) , provided that the coefficients only depend on the numerical methods and not on
the simulated physical problem.

In Fig. 3.21, we show the numerical dissipation for sound waves (ν∗ + η∗), Alfvén waves
(4ν∗/3+ ξ∗) and magnetosonic waves ( 4ν∗/3+ ξ∗+ 3η∗/8),9 the straight lines being a graph-
ical representations of the results from Tables 3.1, 3.5 and 3.9. There are nine lines in total, but
only six are visible, because the numerical dissipation for the MP5 scheme is almost identical for
all wave types. The same holds for the MP7 scheme for sound and magnetosonic waves. The
numerical dissipation is very similar for all wave simulations, which is good news.

Unfortunately, based on these data, it was impossible to determine N∆x
ν ,N∆x

ξ
and N∆x

η separately.
To demonstrate the reason for this, we present in Fig. 3.22 the ratio of the numerical dissipation in
magnetosonic wave simulations to the numerical dissipation in sound wave simulations, i.e.

r≡
[(4/3)ν∗+ξ∗+(3/8)η∗]magnetosonic

[(4/3)ν∗+ξ∗]sound
. (3.46)

If N∆x
ν ,N∆x

ξ
and N∆x

η were independent of the simulated physical problem, the above ratio would be
constant, and r≥ 1 (for a negligible numerical resistivity r= 1). As we can see from the figure, in
the shown resolution regime, r< 1 for the MP5 scheme, and r> 1 for the MP7 scheme. Hence, the
coefficients N∆x

ν ,N∆x
ξ

and N∆x
η must (at least weakly) depend on the simulated physical problem.

The MP9 reconstruction scheme has a different order of accuracy for sound and magnetosonic
wave simulations (see Tables 3.1 and 3.9, respectively), which makes it impossible even to define
the ratio r properly.

3.4 Tearing modes

The tearing modes (TM) are a resistive MHD instability, which can develop in current sheets,10

and break and rejoin magnetic field lines (see Fig. 3.23). Its linear theory, in the context of plasma
fusion physics, was extensively studied in a seminal paper by Furth, Killeen & Rosenbluth (Furth
et al. (1963); later referred to as FKR). The instability is a much more complex process than
a mere wave damping. During the tearing mode evolution, resistivity manifests itself not only
by dissipating magnetic energy into thermal energy, but also by converting one magnetic field
component into another one. This makes the instability an excellent candidate for determining an
MHD code’s numerical resistivity. Tearing modes are of also relevance in astrophysics. They can
play an important role in the magneto-rotational instability.

However, before one can start using tearing modes as a tool for measuring the numerical res-
istivity, it is necessary to understand their physics better. We recommend Schnack (2009) for a
concise introduction to the topic. A very pedagogical and yet mathematically rigorous descrip-
tion, the reader will find in Goedbloed et al. (2010). In the next subsection, we describe the linear
tearing mode theory. Then, we discuss our numerical setup and the obtained results.

9We would like to remind the reader that the third damping coefficient does depend on the resistivity contribution α

(see Eq. (3.40) and the discussion below), which for p0 = b0 = 1 and Γ = 5/3 is α = 3/8.
10Current sheets are formed by magnetic shear. As a direct consequence of Ampère’s law, with every spatial change

of the magnetic field direction there is associated a current.
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Figure 3.23: Schematic presentation of the tearing mode instability and our numerical setup. The
figures are not to scale. Upper left: The velocity stream lines for a tearing motion. The magnetic
shear extends from −δ−1 to δ−1. Top right: Magnetic field lines at the initial time. Bottom
left: Later evolutionary stage: magnetic fields are stretched by the fluid motion. Bottom right:
Eventually, magnetic field lines of different polarities will meet in the centre. If resistivity is
present in the system, they can break and rejoin, i.e. reconnect.

3.4.1 Theoretical introduction

FKR, in their original paper on the tearing mode instability (Furth et al. 1963), account for many
physical factors, like position dependent: background density, temperature and resistivity. We will
restrict ourselves to a much simpler system, yet demonstrating the key features of the instability.

First, we present a detailed derivation of the tearing mode equations in resistive MHD, based
on Goedbloed et al. (2010).11 We decided not to introduce dimensionless variables but at the very
late derivation stage, however. Even though working with dimensionless variables has obvious
theoretical advantages, it can sometimes obscure an intuitive interpretation of equations. The
reader is forced to remember all preceding transformations to dimensionless variables to be able to
decipher physical meaning of dimensionless equations. We hope that our presentation is relatively
easy to follow without auxiliary tools like pen and paper already at first reading .

Next, we briefly discuss how to generalise the results in the presence of viscosity, which was

11However, these authors used a different background magnetic field, i.e. b0x = b0 sin(δy), where the symbols in this
equation are explained after Eq. (3.47).
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already done by FKR. We derive a more accurate tearing mode growth rate equation for the used
background magnetic field configuration.

Consider a two dimensional system of constant density ρ0 = 1, threaded by a background mag-
netic field 12

b0x = b0 tanh(δy), (3.47)

where b0 is the magnetic field amplitude and δ defines the shear length.13 Such a magnetic field
configuration forms a current sheet at |δy| ≈ 0. To balance the resulting non-zero magnetic pres-
sure gradient, one can either introduce a gas pressure gradient, so that ∇y(p+ b2

x0/2) = 0 (a so
called pressure equilibrium configuration) or an additional magnetic field component, so that
∇y(b2

x0/2+ b2
z0/2) = 0 (a so called force-free configuration). Such a system is stable in ideal

MHD. However, in resistive MHD, the system may become tearing mode unstable.

To derive the instability criterion and the growth rate, we use linearised resistive-viscous MHD
equations in the incompressible limit. Linearisation is justified, when the perturbations (denoted
with the subscript “1”) are much smaller than the initial background quantities (denoted with the
subscript “0”),14 e.g. the magnetic field can be decomposed to b = b0 + b1, where |b1| � |b0|.
The incompressible approximation, i.e. ∇ ·v = 0, holds for the fluid velocities much smaller than
the sound speed, i.e. |v| � cs.

After introducing perturbations in velocity v1 and magnetic field b1 to the system, the linearised
incompressible resistive-viscous MHD equations read

∂tb = ∇× (v1×b0)+η∇
2b, (3.48)

ρ0∂tv1 =−∇p+(∇×b1)×b0 +(∇×b0)×b1 +ρ0ν∇
2v1, (3.49)

∇ ·v = 0, (3.50)

∇ ·b = 0. (3.51)

To simplify the notation, we will further omit the subscript “1” for the velocity perturbations. To
solve the above equations we use a WKB ansatz

vy(x,y, t) = v(y)eikx+γt , (3.52)

b1y(x,y, t) = b1(y)eikx+γt , (3.53)

where k is the wavevector in the x direction and γ is the growth rate of the tearing mode instability.
We will consider perturbations whose wavelength in x direction is comparable to the shear width,
i.e.

k ∼ δ . (3.54)

Note that one only needs to solve Eqs. (3.48) and (3.49) for vy and b1y and the other components
can be easily determined from the conditions ∇ · b = ∇ · v = 0. For this ansatz to be justified,
two further conditions must be met. Firstly, the diffusion time scale must be much larger than the
instability time scale, i.e. 1/(δ 2η)� γ−1, so that the background magnetic field can be treated
as constant. Secondly, the Alfvén crossing time must be sufficiently short, i.e. Ly/cA � γ−1,

12 We use a rather “non-standard” magnetic field configuration. In the majority of the literature B0y = B0y(x) is
considered (see, e.g. Furth et al. (1963), Goedbloed et al. (2010)). Our choice is due to the numerical setup that we
used, which was initially based on Landi et al. (2008).

13We remind the reader, that we use CGS units with a redefined magnetic field b = B/√ρ .
14With the exception of the velocity perturbations, which must be much smaller than the sound speed.
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where Ly is the system length in y direction.15 One can treat then the Alfvén speed as infinite,
i.e. cA→ ∞, and not allow for wave solutions in the WKB ansatz. Physically it means, that any
information spreads instantaneously through the whole system. The two above conditions can be
combined to

1
δ 2η

� γ
−1�

Ly

cA
. (3.55)

We insert the WKB ansatz to Eqs. (3.48) and (3.48) and take curl of the latter, to eliminate the
pressure from the equation. The y component of the induction equation and the derivative ∂x of
the z component of the equation of motion, respectively, read

γb1y = [∇× (v×b0)]y +η(−k2 +∂
2
y )b1y, (3.56)

γρ0(−k2 +∂
2
y )vy = ∂x{∇× [(∇×b1)×b0 +(∇×b0)×b1 +ρ0ν∇

2v]}z. (3.57)

After some algebra we arrive at

γb1y = ikvyb0x +η(−k2 +∂
2
y )b1y, (3.58)

γρ0(−k2 +∂
2
y )vy = ρ0ν(k4−2k2

∂
2
x +∂

4
x )vy + ik[−b1y∂

2
y b0x +b0x(−k2 +∂

2
y )b1y]. (3.59)

Unfortunately, it is impossible to integrate the above equations analytically. Therefore, we will
solve this problem with a so-called boundary layer analysis method. We divide the equations’
domain into three regions: two outer ones (−Ly ≤ y < −yε and yε < y ≤ Ly, where yε is a small
positive constant such that δyε � 1) in which dissipative effects can be neglected, and one inner
layer (−yε < y < yε ) in which resistivity (and viscosity) play an important role. Once the solutions
of the Eqs. (3.58) and (3.59) are obtained in the separate regions, they have to be matched at the
regions’ boundaries.

Outer layer To solve Eqs. (3.58) and (3.59) in the outer regions, i.e. for |y| > yε , we make the
following approximations. We note that from condition (3.55), we have γ � δ 2η ∼ k2η (in the
last step, we used assumption 3.54), hence the term containing resistivity in the induction equation
(3.58) can be neglected, i.e.

ikvy =
γb1y

b0x
. (3.60)

Physically, it means that the magnetic field does not experience any strong spatial variations in the
outer layers, consequently resistive effects are unimportant. Furthermore, from the second part
of condition (3.55), we have γ � cA/Ly ∼ cAk. This inequality and Eq. (3.60) allow us to estim-
ate that terms proportional to velocity (gradients) in Eq. (3.59) are negligible, i.e. |γρ0k2vy| �
|ik3b0xb1y|. This means that the tearing mode evolution is so slow that the plasma interia (terms
containing ρ0vy in Eq. (3.59)) can be neglected on the ideal MHD time scale. Finally, Eqs. (3.58)
and (3.59) in the outer layers simplify to

ikvy =
γb1y

b0x
, (3.61)

ik[−b1y∂
2
y b0x +b0x(−k2 +∂

2
y )b1y] = 0. (3.62)

15The definition of Ly is somewhat arbitrary and should be more precisely specified at this point. Ly should be
understood as a distance from the centre (magnetic field shear) at which the background magnetic field is already
almost homogeneous (for a profile b0x ∝ tanh(δy)). Obviously, Ly cannot be arbitrarily large (i.e. Ly → ∞), because
then the inequality Ly/cA� γ−1 could be only fulfilled for cA→ ∞. As a rule of thumb, Ly should be of the order of
(at least) δ−1.
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So far, we have not made any assumptions about background magnetic field. For b0x(y)= b0 tanh(δy),
the solution of Eq. (3.62) reads16

b1y(y) = b1
[1− tanh(δy)]

2δ−k
2δ [1+ tanh(δy)]

k
2δ [−k+δ tanh(δy)]

δΓ(2δ−k
δ

)[1− tanh(δy)]
, (3.63)

where b1 is a constant (initial perturbation amplitude) and Γ is the Euler gamma function. The
velocity perturbations can be easily determined combining Eqs. (3.61) and (3.63):

v1y(y) =
γb1

ikb0

[1− tanh(δy)]
2δ−k

2δ [1+ tanh(δy)]
k

2δ [−k+δ tanh(δy)]

δΓ(2δ−k
δ

)[1− tanh(δy)] tanh(δy)
. (3.64)

Eqs. (3.61) and (3.64) are valid in the outer layers, i.e. for |y| > yε . However, for |δy| → 0, Eq.
(3.61) has a singularity, i.e. as |b0x| → 0, |vy| → ∞ (since b1y(0) 6= 0). As we can see, ideal MHD
equations break down in this region. Resistivity, which was neglected in the outer layers, will play
a crucial role in the inner layer by smoothing out (“renormalising”) the singularity. This will give
rise to a new phenomenon, i.e. tearing mode solutions, which are forbidden in the ideal MHD
limit.

Inner layer Resistive (and viscous) terms can no longer be neglected and we have to solve Eqs.
(3.58) and (3.59) simultaneously. Since in the inner region, |δy| � 1, we can approximate the
background magnetic field as

b0x(y) = b0 tanh(δy)≈ b0
(
∂y tanh(δy)|y=0

)
y = b0δy. (3.65)

Moreover, in this region, perturbations in both velocity and magnetic field experience much stronger
variations in the y than in the x direction, i.e. |k2vy| � |∂ 2

y vy| and |k2b1y| � |∂ 2
y b1y|.17 Therefore,

we can neglect the terms proportional to k2 in Eqs. (3.58) and (3.59), obtaining

γb1y = ikvyb0δy+η∂
2
y b1y, (3.66)

γρ0∂
2
y vy = ρ0ν(−2k2

∂
2
y +∂

4
y )vy + ikb0δy∂

2
y b1y, (3.67)

where we additionally used approximation (3.65). Finally, we can eliminate terms containing b1y

between the equations, arriving at a complicated sixth order ordinary differential equation (ODE)
for vy, i.e.

v(6)y [νηρ0y2]+ v(5)y [−2νηρ0y]+ v(4)y [−(γ(η +ν)+2νηk2)ρ0y2 +2νηρ0]+

v(3)y [2ηρ0(γ +2νk2)y]+ v(2)y [k2
δ

2b2
0y4 + γ(γ +2νk2)ρ0y2−2ηρ0(γ +2νk2)]+

v(1)y [2k2
δ

2b2
0y3] = 0, (3.68)

16Goedbloed et al. (2010) used a different background magnetic field, i.e. b0x(y) = b0 sin(δy) (written in our nota-
tion), for which the outer solution has a less complicated form. However, it does not mean that we obtained an original
result. Both magnetic field configurations were already considered by Furth et al. (1963), who wrote that Eq. (3.62),
given b0x(y) = b0 tanh(δy), can be solved in terms of associated Legendre functions. We only found their explicit form
in Mathematica 8.

17As an example, we will consider velocity perturbations. From Eq. (3.61), assuming for the time being that b1y =
const., we have |∂ 2

y vy| ∼ |vy/y2| (where we also used approximation (3.65)). Since in the inner layer |y| � δ−1, and
from Eq. (3.54), we have δ ∼ k, hence finally |vy/y2| � |vyk2|. Eq. (3.61) holds only in the outer layers, yet it should
be still (roughly) valid at the border with the inner region. The assumption b1y = const. was only made to simplify the
calculations, relaxing it does not change the estimates made here.
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where v(n)y ≡ ∂ n
y vy. The above equation is too complex to be integrated analytically and some fur-

ther approximations are necessary. Before we proceed with mathematical details, a few comments
are appropriate. Apart from the innermost region of the inner layer, velocity perturbations will
have a solution of type vy ∝ y−1 for |δy| � 1. Therefore, terms with highest order derivatives of
vy are dominant in ODE (3.68) (i.e. |∂yvy| � |∂ 2

y vy| � |∂ 3
y vy| and so on). Consequently, further

approximations made to solve the above equation will basically consist in neglecting lower order
derivatives. Note that two terms with the highest order derivatives (i.e. ∂ 6

y vy and ∂ 5
y vy) contain vis-

cosity. We will consider ODE (3.68) in two different cases: with and without viscosity. However,
from the solution in resistive-viscous MHD, we will not be able to obtain the resistive-non-viscous
solution in the limit ν → 0, because in both cases, we will keep different dominant terms in ODE
(3.68). In the following subsection, we integrate Eqs. (3.66) and (3.67) without viscosity. Next,
we show how to generalise these results in the presence of viscosity.

Non-viscous case

Note that in the non-viscous case, i.e. for ν = 0, Eq. (3.68) reduces to a fourth order differential
equation, which is still too complicated to be solved analytically. Therefore, following FKR, we
will make a so-called constant ψ approximation. These authors noted that it is the function vy

that has a singularity in ideal MHD (i.e. vy ∝ y−1 for y→ 0; see Eq. (3.61)) and therefore it
should exhibit large variations in the limit of small resistivity. The function b1y should vary less
for |δy| ≈ 0 and can be approximated by a constant b1y(y) ≈ b1y(0) for |δy| ≈ 0.18 Under this
approximation, Eqs. (3.66) and (3.67) reduce to

γηρ0∂
2
y vy− k2

δ
2b2

0vyy2 = ikγb0δyb1y(0), (3.69)

∂
2
y b1y =

γρ0

ikb0δy
∂

2
y vy. (3.70)

Note the huge difference, Eq. (3.68) for vy reduced from a sixth order ODE to a second order
ODE (3.69). We can solve the above system of equations by first integrating Eq. (3.69). Once the
function vy is known, we can plug it into Eq. (3.70) to find a solution for b1y.

To express the above equations in a dimensionless form, we introduce new dimensionless vari-
ables:19

s = y
(

k2δ 2b2
0

γηρ0

) 1
4

≡ y
εR

, (3.71)

Φ = ivy

(
b2

0ρ0ηk2δ 2

b4
1y(0)γ3

) 1
4

, (3.72)

ψ =
b1y

b1y(0)
, (3.73)

λ = γ

(
ρ0

k2δ 2ηb2
0

) 1
3

(3.74)

18 FKR worked with dimensionless variables in which ψ ∝ b1y in our notation. Hence, the name of the approximation,
which is commonly used in the literature, see e.g. Goedbloed et al. (2010) and Schnack (2009).

19We hope that the reader now understands why we refrained from introducing dimensionless variable until it was
really necessary.
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where we have additionally defined

εR ≡
(

γηρ0

k2δ 2b2
0

) 1
4

. (3.75)

In these new variables, Eqs. (3.69) and (3.70) read

d2Φ

ds2 − s2
Φ =−s, (3.76)

d2ψ

ds2 =−λ
3/2 1

s
d2Φ

ds2 . (3.77)

At first, εR may look like a parameter introduced just to write the ODEs in a dimensionless from.
However, as we will see later, it has a well defined physical meaning (and will play a key role in
our numerical studies).

The solution of Eq. (3.76) can be written as an integral over an auxiliary variable u (Goedbloed
et al. 2010): 20

Φ =
s
2

∫ 1

0
(1−u2)−1/4e−s2u/2du. (3.78)

The function Φ (depicted with black in Fig. 3.24) is always positive for s > 0 and has a global
maximum at s≈ 1.48. Furthermore,

0 1 2 3 4 5

s

0.0

0.2

0.4

0.6

0.8
Φ(s)

1/s

Figure 3.24: Graphical illustration of functions Φ(s) (black), defined in Eq. (3.78), and 1/s (green).
Velocity perturbations, vy, are exactly proportional to the former in the inner region and approx-
imately proportional to the latter in the outer region for |δy| � 1. For s & 2.5 both functions are
very similar.

20We also integrated Eq. (3.76) in Mathematica 8 and obtained that Φ is a linear combination of modified Bessel and
Struve functions.
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Φ(s)≈ 2.12
2
√

π
s for s� 1 and Φ(s)≈ 1

s
for s� 1. (3.79)

In ideal MHD, the velocity has a singularity (vy ∝ y−1) for y→ 0 (see Eq. (3.61)). Resistivity
regularises this misbehaving solution.

Matching To find the final form of the velocity perturbations, vy, in the inner layer (given by
Eqs. (3.72) and (3.78)), we need to determine the tearing mode growth rate, γ . It can be calculated
from matching the inner and outer solutions of vy (the former given by Eq. (3.64)) in a certain point
ym, where the subscript m stands for “matching”. This should be done in an intermediate region,
where both solutions are valid and overlap (i.e. give the same predictions for velocity and magnetic
field perturbations). The value of ym must be “large enough”, so that Φ(s) can be approximated
as Φ(s) ≈ s−1, i.e. s� 1, yet “small enough” that the outer ideal MHD solution behaves like
vy ∝ y−1 (for y→ 0). Moreover, we must also remember that the inner resistive solution was
found for such small values of y, that b0x(y) could be approximated as b0x(y) ≈ b′0x(0)y = b0δy.
Therefore, ym� δ−1 must hold. When we recall that s = 1 for y = εR, we can combine the above
conditions as

εR� ym� δ
−1. (3.80)

The rest of the matching procedure is conceptually rather straightforward. From comparing Eqs.
(3.78) and (3.64) in the vicinity of ym, we can determine the tearing mode growth rate, γ . We omit
the details of these calculations21 and just give the final form of the tearing mode growth rate in
resistive (-non-viscous) MHD:

γ =

(
2

2.12

)4/5

η
3/5
(

b0k
√

ρ

)2/5

δ
6/5
(

δ

k
− k

δ

)4/5

. (3.81)

For k > δ , this expression would have a complex value (because of the term ((δ/k− k/δ )4/5).
This means that the system is tearing mode unstable only for perturbations with wavevectors

k < δ (instability). (3.82)

On the other hand, for k→ 0, the instability growth rate seems to diverge, i.e. γ ∝ k−2/5→ ∞ (?).
However, this is not the case, because for k→ 0, εR, which can be now computed from Eq. (3.75):

εR =

(
2

2.136

)1/5

η
2/5
(√

ρ0

b0k

)2/5( 1
δ

(
δ

k
− k

δ

))1/5

, (3.83)

would also diverge, i.e. εR ∝ k−3/5 → ∞ (?). Hence, condition (3.80) would be violated. It
does not mean, however, that tearing modes cannot grow for k→ 0, but rather that growth rate
expression (3.81) and also Eq. (3.83) are no longer valid in that limit. Tearing modes must develop
at considerably lower rates in this regime. Based on these considerations, we see that it is not easy
to find the fastest growing tearing mode, because for its wavevector k, condition (3.80) must be
violated and the analytical predictions break down.

At this point, we would like to make some more comments on the parameter, εR. When looking
at its definition (3.75), we could think that it merely is another parameter introduced to transform

21To put it in a nutshell, we must impose that vy(y) (3.64) in the outer layer and its counterpart in the inner layer
(vy(y) = vy(Φ(s)) (3.78) and their first derivatives are equal in the vicinity of ym. Furth et al. (1963) and Goedbloed
et al. (2010) did this function sewing for magnetic field perturbations. However, in our numerical studies we will be
more interested in velocity perturbations, therefore we paid more attention to them in the theoretical introduction.
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differential equations to a dimensionless form. As we have already written, the matching of the
outer ideal MHD solution with the inner resistive MHD solution can be done for such “large”
value of s that Φ(s) ≈ s−1. From Fig. 3.24, we can see that this condition is roughly met at
s = 2.5. Hence, maybe already for s > 2.5, instead of resistive MHD equations, we could use the
ideal ones. Physically speaking, resistive effects are important only for s ≤ 2.5. Recalling that
s = y/εR (Eq. 3.71), we see that εR defines the width of a thin layer (which we will call resistive
layer) where resistive effects are important, i.e. εR is not just another parameter, but it has sound
physical interpretation. We should note however, that the exact definition of the resistive layer is
somewhat arbitrary, e.g. Goedbloed et al. (2010) define this layer to extend up to s ≈ 1. On the
other hand, the inner resistive MHD equations should be still valid for, say, s= 10. From Fig. 3.24,
we can see that the “resistive smoothing” of the velocity is strongest for s . 2. We decided to use
a pragmatic definition, i.e. we say that the resistive layer width equals s = 1.48 (hence 1.48εR in
dimensional units)22, where the function Φ(s) has a well defined maximum, which can be easily
measured in simulations.

There is one misconception that could possibly appear in the readers mind at this moment. Even
though we wrote that the whole “resistive action” takes place in the resistive layer and that the tear-
ing modes are a resistive instability, it would be wrong to say that only the inner region determines
the dynamics of the whole system and the outer (ideal MHD) solution was just “glued” to fulfil the
boundary conditions. Note that the instability growth rate was determined from matching of Eq.
(3.78) with Eq. (3.64), and the latter does depend on the background magnetic field in the outer
region. To illustrate this, we consider, the background magnetic field

b0x = b0 sin(δy), (3.84)

whose Taylor expansion is the same as for the magnetic field given by Eq. (3.47) in the inner
region, i.e. b0x(y) ≈ b0δy (for |δy| � 1), yet the instability growth rate is different (see, e.g.
Goedbloed et al. (2010)), i.e

γ =

(
2

2.12

)4/5

η
3/5
(

b0k
√

ρ

)2/5

δ
6/5
(√

1− (k/δ )2 cot
(

1
2

√
1− (k/δ )2

))4/5

. (3.85)

Eqs. (3.64), (3.78) and (3.63) (supplemented by Eq. (3.81) and transformations (3.71) and
(3.72)), for the velocity, vy, and the magnetic field, b1y, perturbations practically constitute a com-
plete solution of the tearing mode problem in resistive MHD. The magnetic field perturbations,
b1y, in the inner layer can be approximated by a constant, i.e. b1y(y≤ ym)≈ b1y(ym), and the other
perturbation components, i.e. vx and b1x, can be determined from the condition ∇ ·b = ∇ ·v = 0.

We remind the reader that our main goal is to use tearing modes as a tool to determine the
numerical resistivity of our code. To put it in a nutshell, our strategy would be to run a simulation
in ideal MHD and observe whether tearing modes driven by numerical resistivity, η∗, develop
in the system. If they do, we could measure their growth rate, γ , and from Eq. (3.81), calculate
the numerical resistivity in a given setup. However, in practice, Eq. (3.81) cannot be used for
that purpose, since it does not include the effect of (numerical) viscosity, which is always present
in simulations. Therefore, our next step is to generalise the obtained results to resistive-viscous
MHD.

22Counting from the origin of the Y axis, hence the actual (total) width is twice larger, i.e. from y = −1.48εR to
y = 1.48εR.
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Viscous case

The derivation of the tearing mode solution in resistive-viscous MHD is in many steps similar to
the non-viscous case. Therefore, we will only briefly sketch the further procedure (the interested
reader will find the details in Furth et al. (1963)). Once again, Eqs. (3.58) and (3.59) are integrated
separately in the outer and inner region. In the former, we can again neglect dissipative terms and
momenta (i.e. use ideal MHD equations), hence magnetic field, b1y, and velocity, vy, perturbations
are still given by Eqs. (3.63) and (3.63), respectively. The differences become apparent in the
inner region. This time, we have to integrate the full sixth order ODE (3.68) (and not the 4th
order equation, which we obtain after putting ν = 0). After once again using the constant ψ

approximation, this ODE for vy reduces to a fourth order equation (which includes viscous terms).
To further simplify that equation, FKR neglected terms with lower order derivatives, which should
be a good approximation for magnetic Prandtl numbers Pm ≡ ν/η ≥ 0.1 (this step limits the
validity of their final results to Pm ≥ 0.1). Next, these authors made another transformation to
dimensionless variables, where the interesting for us details of it read

s̃ =
y

εRV
(3.86)

Φ̃ ∝ v1y, (3.87)

with

εRV = (ην)1/6
(√

ρ0

b0δk

)1/3

. (3.88)

This time the width of a layer where dissipative effects are important is proportional to a different
parameter, εRV. As we can see, both resistivity and viscosity affect the size of this region, which we
will call resistive-viscous layer. The function Φ̃(s̃), which is proportional to velocity perturbations
in the inner region, has a similar shape to Φ(s) (defined in Eq. (3.78)), but its maximum is located
at s̃≈ 1.76. In the resistive-viscous case, matching condition (3.80) hast to be replaced by

εRV� ym� δ
−1. (3.89)

From the matching of Φ̃(s̃) with Eq. (3.64) in this intermediate regime, we obtain the tearing mode
growth rate in resistive-viscous MHD:

γ ≈ 2
3

21/3
η

5/6
ν
−1/6

(
b0k
√

ρ0

)1/3

δ
4/3
(

δ

k
− k

δ

)
. (3.90)

The above expression differs from the result of Furth et al. (1963) (see Eq. (H.8) in their paper),
because these authors derived their equation in the k/δ� 1 limit (in our units). For the background
magnetic field b0x = b0 tanh(δy), we calculated the growth rate more accurately. Note that we used
the symbol “≈”, instead of “=”, in the above equation, because FKR only approximately solved
ODE (3.68) (after already using the constant ψ approximation). Therefore, the above equation
could be off by a small constant numerical factor.

3.4.2 Numerical simulations

Verification of the theory

Our initial setup was based on Landi et al. (2008) (later referred to as LLVB), who were mainly
interested in the non-linear phase of tearing modes, i.e. the formation of magnetic islands and the
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onset of turbulence. Since we wanted to study the exponential growth phase of a single tearing
mode in more detail, we modified the setup for our purposes. We used a box of the size (−Lx,Lx)×
(−Ly,Ly), where Lx = Ly = π/3, with periodic and open boundary conditions in x and y direction,
respectively. We set the density and pressure to ρ0 = p0 = 1 and used the ideal EOS with Γ = 5/3.
The default background magnetic field was set to

b0x = b0 tanh(δy), (3.91)

with b0 = 1 and δ = 10. As already mentioned in Sec. 3.4.1, in order to keep the system in
equilibrium, one needs to balance the non-zero magnetic pressure gradient. We tested both the
pressure equilibrium and force-free configurations and found that only the latter was suitable for
our numerical experiments.23 To obtain the force-free configuration we set

b0z =
b0

cosh(δy)
. (3.92)

Initially, we only perturbed the velocity v1y of the system according to the prescription of Landi
et al. (2008). However, those perturbations could trigger the tearing mode instability only for very
high resistivities (η ≥ 10−5), while for lower values (η ≤ 10−6) the onset of the instability was
too strongly postponed, which made the whole investigation computationally very expensive. 24

Therefore, we decided to use other perturbations both for the velocity and the magnetic field. We
introduced

vy(x,y, t = 0) = v(y)sin(kx), (3.93)

b1y(x,y, t = 0) = b1(y)cos(kx), (3.94)

where k = 3 and the function v(y) is given by Eqs. (3.64) and (3.78) in the outer and inner regions,
respectively, and for the function b1(y) we use Eq. (3.63) in the outer regions and the constant
ψ approximation in the inner region, i.e. b1(y ≤ ym) = b1(ym) (for the details, see the previous
section). The functions v1x(x,y, t = 0) and b1x(x,y, t = 0) are determined from the divergence free
conditions, i.e. ∇ ·b = ∇ ·v = 0. In order to reduce the computational cost, we chose such a value
of k that exactly one tearing mode would fit into the box.

We can use Eq. (3.81) or (3.90) for predicting the TM growth rate in resistive or resistive-
viscous MHD, respectively, only in the parameter range, where both the spatial (Eq. (3.80)) and
the temporal (Eq. (3.55)) conditions are met. For the reader’s convenience we write again the
time-scale conditions (3.55)

1
δ 2η

� γ
−1�

Ly

cA
. (3.95)

For a typical resistivity η ∼ 10−5 and the above chosen parameters we obtain 1/(δ 2η) ≈ 103,
γ−1 ∼ 102 and Ly/cA = 1. As we can see, the first part of this condition is not (or just marginally)

23In the pressure equilibrium configuration, the initial gas pressure profile tended to “diffuse with time” in simulations
of too low resolutions, i.e. the pressure maximum would spread after several time units. This would lead to a small total
pressure imbalance, in the vicinity of the magnetic field shear, around which two (from both sides of the y axis) “pressure
humps” would from. These positive pressure gradients would partially slow down incoming fluid perturbations and
consequently reduce the tearing mode growth rate. This phenomenon was very subtle and needed several time units to
be operational, yet it was noticeable in our studies, where a growth rate reduction by a factor of ∼ 10% is considered
relevant.

24 LLVB did not experience this problem, because they always used very high resistivities. However, in that case,
the analytical expressions (3.81) and (3.90) for the tearing mode growth rate cannot be used. In our studies a typical
numerical resistivity was of the order η∗ ∼ 10−6.
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fulfilled, since it is arguable to claim that 103� 102. For η = 10−4, the situation becomes even
worse (the inequality 1/(δ 2η)� γ−1 is clearly violated, since it is not true that 102� 102). An
obvious remedy to this problem would be using much lower values of resistivity. However, this
is impractical in our case for several reasons. Firstly, lowering resistivity would considerably in-
crease the computational cost, because it would decrease the TM growth rate and the lower growth
rate, the longer time needed to observe a growth of the instability. Moreover, higher resolutions
would be required. Secondly, our goal is to investigate how the code behaves in rather underre-
solved systems and to measure its numerical resistivity and viscosity. Therefore, we needed to
validate Eq. (3.81) also for rather high values of resistivity (η ∼ 10−5–10−4). We circumvented
the violation of the condition (3.95) with the help of a numerical trick. Instead of solving the
proper induction equation

∂tb = ∇× (v×b)+η∇
2b, (3.96)

we used a modified (physically incorrect!) version

∂tb = ∇× (v×b)+η∇
2(b−b0), (3.97)

so that resistivity does not act on the background magnetic field b0. In this way, we eliminated a
rather trivial, yet problematic, effect of the background magnetic field diffusion. We would like to
point out that there is no difference between using Eq. (3.97), instead of Eq. (3.96), in a simulation,
and assuming that the background field is constant in the analytical derivation.

The second important ’spatial condition’ (3.80) is

εR� ym� δ
−1. (3.98)

Once again, we are faced with the question what ” a� b” numerically means. Probably, there is
no good answer to this question and in general it will be problem dependent. Assuming that

εR .
ym

100
and ym .

δ−1

100
(3.99)

properly satisfy condition (3.98), we are faced with a serious computational problem. In order to
resolve the resistive-viscous layer one needs a few, say 5, zones. Then for the whole box of size
2Ly = 2π/3 ≈ 20δ−1 we would need 106zones,25 which is numerically unfeasible, even in 2D.
Were we interested in studying the physical aspects of the TM growth, it would be beneficial to use
a non-equidistant grid, e.g. with a logarithmic spacing. This could probably reduce the amount of
necessary zones to as few as 100. However, since our main goal is to study the numerical resistivity
and viscosity of the code, we chose on purpose a “non-optimal” Cartesian grid. Condition (3.80)
arises from the matching problem of the inner and outer solution. The inner function Φ(s) should
be matched when Φ(s) ≈ 1/s, which is the case for s� 1. We found before that this asymptotic
behaviour is already seen for s > 2.5 (see Fig. 3.24), i.e. the relative difference between the
functions Φ(s) and 1/s is of order 10−2. So the first necessary condition is ym > 2.5εR. The upper
limit for ym comes from the fact, that in our derivation, we used the approximation tanh(δy)≈ δy.
For δy = 0.25 the relative error of this approximation is ≈ 2× 10−2, which we consider as still
acceptable. To summarise, a necessary but not yet sufficient condition for inequality (3.80) to hold
can be written as

2.5εR < ym < 0.25δ
−1. (3.100)

25From Eq. (3.99), we estimate δ−1 ≈ 104εR, and hence 2Ly ≈ 2×105εR. Thus, 5 zones per εR give 106 zones per
2Ly.
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Recalling that ym has no real physical meaning, this inequality can be interpreted as a relation
between the resistive layer and the magnetic shear length (proportional to δ−1), i.e.

εR <
χ

10δ
, (3.101)

where χ is a small number (i.e χ ≤ 1, ideally χ � 1) that needs to be determined from numerical
experiments. We need to stress one fact here, however. Inequality (3.98) (or (3.101)) is a criterion
not for the onset of the instability, but for the validity of the analytical expression (3.81) for the
tearing mode growth rate. Therefore, one can determine χ in a rather straightforward manner. For
given b0, δ , k and ρ0, one should run simulations with different values of η , so that the size of the
resistive layer changes, and measure γ . If the theoretical growth rate disagrees with the numerical
one, the width of the resistive is too large and a smaller value of η should be chosen.

We did not find a full agreement between theory and experiment for any value of resistivity
for the non-viscous case. The analytical predictions overestimate the growth rate by a factor of
≈ 1.5–1.8. The source of that discrepancy is the non-zero numerical viscosity, which is present
in every simulation. Equations for the TM growth rate were derived either for no viscosity ν = 0,
(Eq. (3.81)), or for ν > 0.1η (Eq. (3.90)). Unfortunately, we do not have a suitable analytical
expression at our disposal that is valid in the limit of small Prandtl number, i.e for ν�η . Note that
in ODE (3.68) for vy (valid in the resistive-viscous layer), viscosity couples with the highest order
derivatives of vy, which are dominant in that equation. Therefore even a very small (numerical)
viscosity can have a non-negligible effect on the system.

As a next step, we studied tearing modes in the presence of viscosity. In order to have initial
perturbations as close as possible to the real viscous tearing mode solution, function Φ(s) (which
is proportional to velocity) should be replaced with Φ̃(s̃) (see Subsection 3.4.1) in the inner layer.
However, the qualitative difference between both functions is not very big, i.e. they have a similar
shape, and the former has a maximum at s ≈ 1.48, whereas the latter at s̃ ≈ 1.76. In practice,
we used non-viscous initial perturbations (Eqs. (3.93) and (3.93)), which were able to trigger
tearing modes quickly enough for our purposes.26One important physical aspect changes, however.
Inequality (3.101) should be replaced for the viscous case with

εRV <
χ

10δ
, (3.102)

where χ ≤ 1, ideally χ � 1, and the subscript “TM” in εRV stands for resistive-viscous.

As a first step, we tried to verify the theoretical predictions for the TM growth rate in the
presence of viscosity (Eq. (3.90)). We ran several simulations with the HLL Riemann solver,
the MP9 reconstruction scheme, a very high resolution (2048× 2048 zones), constant viscosity
ν = 10−4 and resistivity ranging from η = 10−7 to 10−5. We explain the procedure of growth
rate measuring on an exemplary simulation with resistivity set to η = 10−5. The y components of
initial magnetic field and velocity perturbations are shown in left right panels of Fig. 3.25 (top and
bottom panel, respectively), and the ones after 100 time units in the right panels. Apart from higher
amplitudes, the evolved perturbations do not differ much from the initial ones. Thus, the initial
perturbations based on the tearing mode solution in resistive-non-viscous MHD (in the constant
ψ approximation) are very similar to the eigenfunctions of resistive-viscous tearing modes. The
upper right panel of Fig. 3.26 depicts a one dimensional projection of the initial and the evolved
magnetic field perturbations from Fig. 3.25 at x = −0.5. The amplitude of the latter ones is

26 We also observed that it was sufficient to use initial perturbations only in either velocity or magnetic field. However,
in such simulations the instability onset was delayed.
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Figure 3.25: Perturbations of the magnetic field and the velocity in a tearing mode simulation
with resistivity and viscosity set to η = 10−5 and ν = 10−4, respectively. The HLL Riemann
solver and the MP9 reconstruction schemes were used. The simulation domain was resolved with
2048× 2048 zones. Top left: Initial magnetic field perturbations, by. Top right: Magnetic field
perturbations, by, after 100 time units. Apart from the innermost region (i.e. for y ≈ 0) (and
obviously the amplitude) their shape has not changed much over time, which means that the initial
perturbations were very similar to the tearing mode eigenfunction. Bottom left: Initial velocity
perturbations, vy. Bottom right: Velocity perturbations, vy, after 100 time units. Their shape is
very similar to the initial perturbations. Only the amplitude has increased by roughly one order of
magnitude.
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magnetic perturbation time evolution
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Figure 3.26: Results of a tearing mode simulation with resistivity and viscosity set to η = 10−5 and
ν = 10−4, respectively. The HLL Riemann solver and the MP9 reconstruction scheme were used
in the simulation and its domain was resolved with 2048×2048 zones. Top left: Time evolution of
Ēmagy (see Eq. (3.103); black solid curve). After≈ 15 time units, the instability is fully operational.
The green dashed line results from a linear fit to the logarithm of Ēmagy for t ≥ 20, from which
the instability growth rate can be measured.Top right: Initial (black) and evolved (after 100 time
units; green) magnetic field perturbations, b1y. The amplitude of the latter ones was normalised
to the initial amplitude. Both curves are almost identical, but in the innermost region, where the
constant ψ approximation was used for the initial perturbations. Bottom left: Analogous, to the
upper right panel, plot of the velocity perturbations, vy. At y ≈ −0.02 and y ≈ 0.02 two velocity
peaks, which (according to our definition) determine the width of the resistive-viscous layer, are
clearly visible. Bottom right: The innermost part of the evolved velocity perturbations, vy from
the bottom left panel. The region where the modulus of the dimensionless parameter s̃ (Eq. (3.88))
is smaller than one, is marked in red. Two points where y = ±εRV, are marked with red vertical
lines. According to our definition, the green vertical lines delimit the resistive-viscous layer, where
velocity perturbations, vy, have the characteristic maxima.
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normalised to the initial amplitude. In the bottom left panel of Fig. 3.26, we present an analogous
comparison of the velocity perturbations at x = 0. In the bottom right panel of Fig. 3.26, which is a
zoom of the evolved velocity perturbations (from the bottom left panel) around the magnetic shear
layer (i.e. for δy� 1), two velocity peaks, which are characteristic for tearing modes, are clearly
visible. With green vertical lines, we mark the width of the resistive-viscous layer (according to
our definition). For each simulation, we measured the tearing mode growth rate in the following
way. For every time output, we computed

Ēmagy ≡
∫ Lx

−Lx

∫ 0.1

−0.1

b2
y

2
dxdy, (3.103)

which is a contribution of the component by to the magnetic field energy in the inner region of the
box (i.e. −0.1 < y < 0.1). The integration was performed only in this inner region, to reduce a
potential influence of boundary conditions on the real solution. Typically after approximately 20
time units, Ēmagy grows at a constant rate, i.e. by that time the tearing mode is fully operational
and all discrepancies between the initial perturbations and the real solution are carried away from
the system. Since by ∝ exp(γt), by taking the logarithm of Eq. (3.103), we arrive at

1
2

ln
(

Ēmagy

)
= γt + const., (3.104)

where the constant depends on the initial perturbation amplitude and the box size. From the above
equation, by means of a simple linear regression, we computed the instability growth rate. In
the upper left panel of Fig. 3.26, the black solid line depicts time evolution of Ēmagy

from the
above describe simulation (with i.e. η = 10−5), and the green dashed line results from a linear fit
according to Eq. (3.104).

For every simulation (with constant viscosity ν = 10−4 and resistivity in the range η = 10−7–10−5),
we measured the instability growth rate, whose logarithm should theoretically read (see Eq. (3.90))

ln(γ) =
5
6

ln(η)+ ln

(
2
3

21/3
ν
−1/6

(
b0k
√

ρ0

)1/3
)

δ
5/3
(

δ

k
− k

δ

)
, (3.105)

which for our numerical setup (δ = 10,k = 3,b0 = ρ0 = 1) gives

ln(γ) = 0.83̄η +5.907 (3.106)

(where 0.83̄≡ 0.8333 . . . ). Fitting the function

ln(γ) = a ln(η)+ c. (3.107)

to the simulation results (Fig. 3.27), a linear regression gives

a = 0.7994±0.0012, (3.108)

c = 5.377 ±0.015. (3.109)

The difference between the theoretical value of c and the estimator of c equals ≈ 0.53, which
cannot be explained by the statistical error. Were a = 0.83̄, this would lead to a growth rate
overestimation by a factor of ≈ 3. This discrepancy could still be eliminated by multiplying
the right hand side of Eq. (3.90) by that numerical constant. In the end, in that equation the
symbol “≈” was used instead of the sign “=”, to indicate that it is just an approximate result
(even within linearised MHD). Unfortunately, the exponent estimator a does not agree either. One
could conclude at this point that, since no use of Eq. (3.90) and Eq. (3.81) can be made, the whole
theoretical effort to understand the tearing modes better was in vain. However, we decided to adopt
a different approach and we proposed a semi-analytical equation for the tearing-mode growth rate.
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Figure 3.27: Tearing mode growth rate as a function of resistivity. Asterisks denote results of
simulations run with ν = 10−4, the HLL Riemann solver, the MP reconstruction scheme and a
resolution of 2048× 2048 zones. The solid line is a result of a linear fit to the logarithm of the
measured growth rates.

Semi-analytical theory

The general form of equation for the tearing-mode growth rate can be postulated based on
the theoretical insight gained after all the analytical derivations, whereas the details and exact
numbers will need to be found with the help of numerical simulations. In the analytical expressions
(3.81) and (3.90), the growth rate of the tearing mode is proportional to a product of resistivity,
(viscosity,) Alfvén speed, δ ,k and (δ/k− k/δ ), all of them to a certain different power. Based on
this observation, we postulate an ansatz:

γ
?
= n0η

n1ν
n2

(
b0√
ρ0

)n3

kn4δ
n5

(
δ

k
− k

δ

)n6

, (3.110)

where n0 is a constant and n1, . . . ,n6 are fractionals, which need to be determined by numerical
simulations.

Similarly, since the analytical expression (3.90) for the growth rate of the tearing mode in
resistive-viscous MHD does not agree with our simulation results, there is no reason either to
trust Eq. (3.88) for εRV, which is proportional to the width of the resistive-viscous layer. Instead,
we can formulate a similar (to Eq. (3.110)) ansatz for εRV, i.e.

εRV
?
= η

m1ν
m2

(
b0√
ρ0

)m3

km4δ
m5 , (3.111)

where m1, . . . ,m6 are fractional numbers This time, we did not introduce a constant m0, since
εRV cannot be measured directly from simulations. It should just be thought as a prescription to
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transform y in ODE (3.68) to a dimensionless variable s̃ ≡ y/εRV. What we can expect however,
is that the characteristic velocity peak, vy, (which according to our convention defines the width
of the resistive-viscous layer) should be present for the same value of s̃ (i.e. the function Φ̃(s̃) has
a maximum for a certain constant s̃). In other words, the distance of the velocity peak from the
centre, which we will denote with the symbol LεRV , should be proportional to εRV. Therefore, the
width of the resistive-viscous layer should be equal to

LεRV

?
= m0εRV

?
= m0η

m1ν
m2

(
b0√
ρ0

)m3

km4δ
m5 , (3.112)

where m0 is a constant to be determined by simulations.

The verification of ansatzes (3.110) and (3.112), and the determination of the unknown con-
stants n0, . . . ,n6 and m0, . . . ,m5 is a tedious task. Therefore, we decided to describe it in detain
in Appendix A. In short, from dimensional analysis, we obtain some constraints on the constants
n1, . . . ,n6 and m1, . . . ,m5. Next, we perform various simulations to determine these constants and
to test different aspects of ansatzes (3.110) and (3.112). In principle, we could find all the un-
known constants n0, . . . ,n6 and m0, . . . ,m5 with the method described in Appendix A. However, to
save computational time, we only determined these which were necessary for our main purpose,
i.e. measuring the numerical resistivity of our code.

We found that the equations for the growth rate of the tearing modes and for the width of the
resistive-layer read (see Eqs. (A.51) and (A.52) from Appendix A)

γ = n0η
4/5

ν
−1/5

(
b0√
ρ0

)2/5

kn4δ
n5

(
δ

k
− k

δ

)n6

and (3.113)

LεRV = m0(ην)1/6
(

b0√
ρ0

)−1/3

km4δ
m5 , (3.114)

respectively, where n1 and m0 are constants, n4,n5,n6 and m4,m5 are fractionals, n4 + n5 = 8/5
and m4 +m5 =−2/3.

Additionally, we calibrated these equations for k = 3 and delta= 10 (which are default paramet-
ers in our simulations) with the help of very high resolution simulations (of 2048×2048 zones):
(see Eqs. (A.53) and (A.54) in Appendix A)

γ(k = 3,δ = 10) = 34.56η
4/5

ν
−1/5

(
b0√
ρ0

)2/5

and (3.115)

LεRV(k = 3,δ = 10) = 0.634(ην)1/6
(

b0√
ρ0

)−1/3

. (3.116)

We now refer the interested reader to Appendix A, where we explain how Eqs. (3.113)–(3.116)
were obtained. Moreover, we discuss there possible explanations of the discrepancy between the
theoretical predictions for the tearing-mode growth rate (Eq. (3.90)) and the simulation results.

Numerical tearing modes

After the tedious derivation of the semi-analytical Eqs. (3.115) and (3.116), we are ready to
measure the code’s numerical resistivity. Unlike the wave damping tests, tearing mode simulations
are quite complicated system and full of pitfalls when interpreting their results. We hope that by
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the end of this subsection, we will have convinced the reader that it was worth spending so much
effort on a better understanding their theory.

Let us have a look at the whole problem with the eye of a physicist, who is familiar with our
ansatzes (3.1), (3.4) and (3.5) for numerical dissipation, but has only a superficial knowledge of
tearing mode theory. The physicist would know that in order to make use of the ansatzes, it is
necessary to determine the system’s characteristic velocity and length. A natural candidate for the
former seems to be the Alfvén speed, since it explicitly enters the growth rate equations (3.81),
(3.90) and (3.113). Taking the box length, 2Ly, as the characteristic length would be a clear
misunderstanding. Yet, many authors use in their numerical simulations the whole box size to
define Reynolds numbers, forgetting that the actual physical phenomenon can take place only in
a much smaller region. In our case, the magnetic shear width, proportional to δ−1, seems to be
a good candidate for the characteristic length of the system.27 In the end, the whole interesting
physics takes place there. Unfortunately, both educational guesses are wrong. Neither the system’s
characteristic velocity is the Alfvén speed, nor is its characteristic length the shear width. we go
back to the main discussion.

The idea behind using tearing modes to determine the code’s numerical resistivity, η∗, is quite
simple. If a simulation is run without any physical resistivity and the instability is still observed,
it means that it must have been driven by numerical one. From the growth rate Eq. (3.115),

γ(k = 3,δ = 10) = 34.56η
4/5
∗ ν

−1/5
(

b0√
ρ0

)2/5

, (3.117)

the numerical resistivity can be easily computed

η∗ =

(
γ(k = 3,δ = 10)

34.56

)5/4

ν
1/4
(√

ρ0

b0

)1/2

. (3.118)

Alternatively, one could measure the resistive-viscous layer width (Eq. (3.116)), from which

η∗ =

(
LεRV(k = 3,δ = 10)

0.634

)6

ν
−1
(

b0√
ρ0

)2

. (3.119)

This method is much less accurate, however. Firstly, LεRV measurements have rather high relative
errors (order of 0.1). Secondly, because η∗ ∝ L6

εRV
, they would lead to even higher relative errors

of η∗.

At first, we compared the numerical resistivity of three Riemann solvers: the LF, the HLL and
the HLLD. We used the MP5 reconstruction scheme, the RK3 time integrator with a CFL factor
equal to 0.7. For the standard parameters, i.e. δ = 10,k = 3,b0 = ρ0 = 1,ν = 10−4, and no res-
istivity, we ran simulations with resolutions from 128× 128 to 1024× 1024 zones. For the LF
solver, tearing modes appeared and, as expected, the higher the resolution, the lower the instabil-
ity growth rate (see Fig. 3.28). For resolutions less than 320× 320 zones, the resistive-viscous
layer was so wide, that condition (A.56) was violated, making Eq. (3.115) invalid. Therefore,
these results had to be discarded for further data analysis. In the simulations with the HLL and
HLLD Riemann solvers, the instability was not observed at all, even for the lowest resolution. We
conclude that their numerical resistivities, although undetermined, must be much lower than that
of the LF solver. In the wave damping simulations, all three solvers exhibited a very similar beha-
viour, yet the tearing modes showed a clear difference among them. We can think of two possible

27For sure, we would use this quantity to compute the Reynolds numbers.
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Figure 3.28: Tearing mode growth rate as a function of resolution in simulations in which the
instability is driven only by numerical resistivity. In all simulations, viscosity was set to ν = 10−4

and the LF Riemann solver was used. The results of simulations with the MP5, the MP7 and the
MP9 reconstruction scheme are marked with green asterisks, blue plus signs and black diamonds,
respectively. The straight lines of corresponding colours result from linear fits to the logarithms of
tearing-mode growth rates.

explanations for this fact. The first one is that ansatzes (3.1), (3.4) and (3.5) for numerical dissipa-
tion do not work universally for all physical problems. One of the assumptions made was that the
coefficients N∆x

ν ,N∆x
ξ

and N∆x
η depend only on the numerical schemes used in a simulation. The

LF solver’s coefficient would be almost equal to the HLL- and HLLD solver’s coefficients for the
wave damping, but larger for more complicated physical problems. Another explanation is that
in the wave damping simulations, the numerical resistivity of all Riemann solvers was negligible.
This hypothesis is supported by the magnetosonic wave tests, but we could not conclude anything
on that from the Alfvén wave simulations. The LF solver’s coefficient N∆x

η could be much smaller
than its N∆x

ν and N∆x
ξ

, but sufficiently large to trigger the tearing mode instability numerically. The
values of N∆x

η for the HLL and HLLD solvers could simply (always) be much smaller than those
for the LF solver. It is also possible that a “mixture” of these two explanations holds.

In another two sets of simulations, we chose the same parameters but changed the reconstruction
scheme to either the MP7 or the MP9. Like in all remaining tests, the LF Riemann solver was used.
The results of an exemplary simulation with the MP7 reconstruction scheme and the resolution of
256× 256 zones are presented in Fig. 3.29. The dependence of the instability growth rate on
resolution is presented in Fig. 3.28. To the simulation results, w e fitted the functions

ln(γ) = a5 ln(∆x)+ c5,

ln(γ) = a7 ln(∆x)+ c7,

ln(γ) = a9 ln(∆x)+ c9, (3.120)



86 NUMERICAL RESISTIVITY AND VISCOSITY

magnetic perturbation time evolution
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Figure 3.29: Results of a (tearing mode) simulation with viscosity set to ν = 10−4 and no physical
resistivity (i.e. η = 0). The simulation domain was resolved with 256× 256 zones. The LF
Riemann solver and the MP7 reconstruction scheme were used. Theoretically, in non-resistive
MHD, tearing modes should not develop and initial perturbations (very similar to those presented
in the left panels of Fig. 3.25) should not grow with time. However, the tearing mode instability
driven by numerical resistivity is observed in the simulation. Top left: For t > 15 time units, the
energy of magnetic field perturbations grows exponentially with time, like in a simulation with
non-zero physical resistivity (compare with the upper left panel of Fig. 3.26). Top right: Magnetic
field perturbations after 100 time units look like those observed in a tearing mode simulation with
physical resistivity (compare with the upper right panel of Fig. 3.25). Bottom right: Analogous
plot for velocity perturbations (compare with the bottom right panel of Fig. 3.25). Bottom left:
1D projections at x = 0 of the velocity perturbations from the bottom right panel. Characteristic
velocity peaks defining the resistive-viscous layer are clearly visible (compare with the upper left
panel of Fig. 3.26).
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where ai and ci are the coefficients of the reconstruction scheme of the i−th order. We obtained
the following estimators

a5 = 2.355±0.021, c5 = 9.85±0.13,

a7 = 2.740±0.015, c7 = 11.06±0.09,

a9 = 2.876±0.051, c9 = 11.1±0.3. (3.121)

At first, these results may look a bit puzzling. All three reconstruction schemes seem to have
almost the same, quite low, third order of accuracy.28 The first explanation that comes to mind
is that the main contribution to the numerical resistivity is from the RK3 time integration errors.
The order would agree more or less. To test this hypothesis, we ran additional simulations with
different timesteps. For a given resolution and a CFL factor in the range 0.1–0.7, the instability
growth rate was the same. This clearly indicates that numerical resistivity was caused mainly
by spatial discretisation errors. The simulations with a CFL factor ≥ 0.8 exhibited a peculiar
behaviour. The whole system became unstable against not the tearing modes but some other
unphysical instability. Hence, the time integration errors either do not contribute to the numerical
resistivity or give completely unphysical results.29 This is another key difference between the
tearing mode- and wave damping-simulations.

Having tested that the numerical dissipation arises from the spatial discretisation, we need to
explain the apparently big reduction of the accuracy order. A physicist who is unfamiliar with the
tearing mode theory and our ansatz (3.5) for the numerical resistivity, could prematurely conclude
that high order reconstruction schemes are overrated (theoretically up to the 9th order, practically
not even the 4th order) and not worth using. However, for lower order schemes (PL and MP3), it
was impossible to simulate the tearing modes at all in the used resolution range, because the flow
was spoilt by some unphysical instabilities.

Coming back to the main discussion, one has to be careful when using ansatz (3.5) for numerical
the resistivity:

η∗ =N∆x
η ×V×L×

(
∆x
L

)r

, (3.122)

where V and L are the system’s characteristic speed and length, respectively, and r is the recon-
struction order. If we assumed that L ∝ δ−1 (which is constant), once again we would obtain that
ri = (5/4)ai. The conceptual mistake is that δ−1 is the correct choice for the characteristic length
of the background magnetic field diffusion problem, but not for tearing modes, whose scale is
much smaller than the shear width. It turns out that the system’s characteristic length is propor-
tional to the width of the resistive-viscous layer, i.e. L ∝ εRV. This seems logical, because from
the beginning, we assumed that Ohmic dissipation takes place only in the very narrow layer, where
the non-ideal MHD equations are solved. It is somewhat arbitrary to specify the exact value of L,
because there should be a transition region, where both ideal and non-ideal MHD equations are
valid. Therefore, saying that L = εRV or L = 2εRV does not really make sense. For our applica-
tions, we found a useful definition, however. For the wave simulations we assumed that L = λ ,
which is a natural choice. If we want to compare both types of simulations, we should have the
same convention for L. We notice that in wave simulations, the distance between the points where
velocity pertubations are equal to zero and reach the maximum is λ/4. Similarly, in a tearing mode

28In such a straightforward interpretation the reconstruction order of the MP9 scheme would be equal to (5/4)a9 ≈
3.6.

29Numerical dissipation is, in the end, also unphysical, but at least we have a way to describe and estimate it.
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simulation, velocity pertubations are equal to zero at y = 0 and reach the characteristic maximum
at y = LεRV (see bottom right panel of Fig. 3.26). This allows us identify “LεRV ≈ λ/4”, and hence

L= 4LεRV . (3.123)

This definition is somewhat arbitrary but it is unimportant how close the velocity profile resembles
a sine function (in our case, both functions are indeed quite similar). The distinct velocity peak
was the key aspect. For any physical problem viscosity and resistivity are important only in places
where velocity or magnetic field experience strong variations. One should just consistently use one
way of measuring these regions, e.g. with the help of some characteristic maxima,if they appear -
like in our case, or non-zero velocity or magnetic fields gradients. Equally well, we could assume
that for the wave simulations L= λ/4 or L= 1/k, which would only lead to a rescaling of N∆x

η .

Before we can prove our statement about the characteristic length of the tearing mode, we must
understand the consequences that it has for the numerical resistivity. Combining Eqs. (3.123) and
(3.122), we obtain

η∗ =N∆x
η ×V×4LεRV×

(
∆x

4LεRV

)r

. (3.124)

On the other hand, from Eq. (3.116), we have

LεRV(k = 3,δ = 10) = 0.634η
1/6
∗ ν

1/6
(

b0√
ρ0

)−1/3

. (3.125)

Hence, the numerical resistivity depends on the width of the resistive-viscous layer, which in
turn depends on the numerical resistivity. As we see, the situation becomes quite complicated.
Increasing the resolution decreases ∆x in the numerator of Eq. (3.124), which lowers the numerical
resistivity. This reduces the width of the resistive-viscous layer, which depends on η∗. A smaller
value of LεRV in the denominator of Eq. (3.124) increases the numerical resistivity. And so on. Of
course for a given N∆x

η and r, there is a unique solution of this problem. From this brief discussion
we see why the MP5, the MP7 and the MP9 reconstruction schemes had apparently low orders of
accuracy. Equation ri = (5/4)ai is simply wrong as it does not take into account the influence of
the characteristic length.

Once we know the characteristic length of the system, we can Eq. (3.124) into Eq. (3.117),
obtaining

γ(k = 3,δ = 10) = 34.56(N∆x
η )4/5V4/5(4LεRV)

4(1−r)/5(∆x)4r/5
ν
−1/5

(
b0√
ρ0

)2/5

. (3.126)

This equation should be sufficient to determine the order of a reconstruction scheme, by taking the
logarithm of both sides and fitting the function

ln(γ) =
4r
5

ln(∆x)+
4(1− r)

5
ln(4LεRV)+ c, (3.127)

since γ and LεRV can be measured in every simulation. The yet unknown characteristic velocity,
V, only contributes to the constant c. This approach has two drawbacks, however. First of all, we
need to fit a function of two variables, which can lead to bigger uncertainties. What is even more
important, unlike the growth rate, γ , and the zone length, ∆x, the resistive-viscous layer width,
LεRV , can be measured only relative error of up to 0.2.
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What can be measured with negligible errors is the growth rate, from which the numerical
resistivity can be easily determined. This suffices to compute the theoretical value of the resistive-
viscous layer width without any error. In further calculations, we can proceed assuming that the
code “knows” this value “for determining its own numerical resistivity”, even though it cannot be
exactly represented because of the finite grid resolution. In other words, we will treat LεRV as a
continuous function, blissfully ignoring its discrete nature. From combining Eq. (3.124) with Eq.
(3.125), we find

η∗ =(2.536)(6−6r)/(5+r)(N∆x
η )6/(5+r)×

V6/(5+r)
ν
(1−r)/(5+r)

(
b0√
ρ0

)(2r−2)/(5+r)

(∆x)6r/(5+r). (3.128)

By plugging this expression into the growth rate equation (3.117), we obtain

γ(k = 3,δ = 10) = 34.56(N∆x
η )24/(25+5r)V24/(25+5r)×

(2.536)(24−24)/(25+5r)
ν
−(1+5r)/(25+5r)

(
b0√
ρ0

)(2+10r)/(25+5r)

(∆x)24r/(25+5r). (3.129)

Even though LεRV does not appear in this equation explicitly, we should bear in mind that its
derivation heavily relies on the resistive-viscous layer concept. Especially, both equations (3.125)
and (3.117), let alone ansatz (3.5), must hold for numerical resistivity, which is not obvious. In the
end, numerical dissipation is just a sum of errors, which we try to describe as if they behaved like
proper physical resistivity or viscosity. It cannot certainly be the case in every situation. Therefore,
Eq. (3.129) can be used only for simulations in which from numerical resistivity, calculated from
this growth rate equation, it is possible to determine the resistive-viscous layer width. It tests
if both Eqs. (3.125) and (3.117) are fulfilled. If it is not the case, such a simulation should be
discarded from the further statistical analysis.

In Fig. 3.30, black crosses depict the measured widths of the resistive-viscous layer in the sim-
ulations run with the MP7 reconstruction scheme, while the red curve presents a theoretically
expected layer width (Eq. (3.125)) for the numerical resistivity determined from the measured
growth rate Eq. (3.118).30 The agreement between the theoretical and measured values is excel-
lent. This result shows that our assumptions are correct, which is far from being obvious. In the
end, we firstly postulated that (i) numerical errors can be called “numerical resistivity”, (ii) this
numerical resistivity can be treated as normal physical resistivity, and (iii) the same equations can
be used to either determine it or predict its influence on the system. Moreover, we also had to
make use of ansatz (3.5) for numerical resistivity.

With the help of Eq. (3.129), we can determine the order of the reconstruction schemes, i.e.

r =
25a

24−5a
, (3.130)

where the coefficient a is obtained from the fitting results (3.121) of the corresponding scheme.
To compute the coefficient N∆x

η , the characteristic velocity V needs to be identified. As we will
show later, it is the fast magnetosonic speed, which reads

V= cms =
√

c2
s + c2

A ≈ 1.63. (3.131)

30More precisely, instead of using measured growth rates for every resolution, we used expected values from linear
fit (3.120) to the simulation data. However, the differences between the expected and measured growth rates are almost
negligible (Fig. 3.28).
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Figure 3.30: Width of the resistive-viscous layer as a function of resolution (i.e. numerical resistiv-
ity) in simulations of tearing modes driven by numerical resistivity . Black crosses depict meas-
ured values in the simulations run with the MP7 reconstruction scheme. The red curve presents the
expected layer width (Eq. 3.125), given the numerical resistivity determined from the measured
growth rate and Eq. (3.118). The agreement between the predicted and the measured layer widths
is excellent.

Note that we assumed that the wavevector is perpendicular to the background magnetic field. We
will discus this choice later.

Finally, we are ready to interpret the fitting results (3.121) correctly and to determine N∆x
η and

r. Their uncertainties arise from the statistical errors of the estimators ai and ci. Since the error
analysis equations are somewhat long and not very instructive, we do not write down their explicit
form. The results are presented in Table 3.12. The MP5 scheme is almost 5th order accurate ,
whereas the MP7 and the MP9 schemes performed a bit below the theoretical expectations. The
higher the reconstruction scheme, the higher the reduction of the accuracy order.31

31The graphical representation of the results is presented in Fig. 3.33 from Sec. 3.5. Note that quantities in this figure
do not correspond to the parameters used in the tearing mode simulations. We put L=V= 1 for all points (i.e. such that
the characteristic length is constant like in the wave damping simulations, and not a function of numerical resistivity as
it is in the tearing mode simulations). The number of zones per characteristic length, 8 to 24 (abscissa in Fig. 3.33) ,

Reconstruction scheme N∆x
η r

MP5 16±5 4.814±0.085
MP7 142±33 6.65±0.08
MP9 170±220 7.56±0.55

Table 3.12: Estimators of N∆x
η and the reconstruction scheme order, r, (for the definition, see Eq.

(3.5)) determined in tearing mode simulations with the LF Riemann solver.
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Another important task is to determine the system’s characteristic velocity. There are three
natural candidates, the Alfvén, the fast magnetosonic and the fluid perturbation speed. The third
one can be discarded for the following reason. Velocity perturbations exponentially grow with
time. If numerical resistivity depended on them, it should also increase with time. However,
the numerically driven tearing mode growth rate remained constant. Additionally, we ran three
simulations with the same parameters, but different initial perturbation amplitudes. We changed
those by up to three orders of magnitudes, but this did not affect the growth rate at all. As a
next step to identify the characteristic velocity, we ran several simulations with the background
pressure in the range 0.01–900. We used the standard physical parameters (δ = 10,k = 3,b0 =
ρ0 = 1,ν = 10−4), no resistivity and the MP5 reconstruction scheme. The simulation box was
resolved with 512×512 zones. Neither the Alfvén speed (cA = b0/

√
ρ), nor the TM growth rate

(see, e.g. Eq. (3.115)) depend on pressure, whereas the magnetosonic speed (Eq. 3.131)) changes
from ≈ 1 to ≈ 39 in this pressure range. As we can see from the simulation results (upper panel
of Fig. 3.31), the growth rate increases with pressure, which means that the numerical resistivity
must have increased as well. This excludes the Alfvén speed to be the characteristic velocity. The
only candidate left is the magnetosonic speed, which reads

cms =

√
1
2

(
c2

A + c2
s +
√

(c2
A + c2

s )
2−4c2

Ac2
s cos2 θ

)
, (3.132)

where θ is the angle between the perturbation wavevector and the background magnetic field. For
the tearing modes, the perturbed fluid makes a “U-turn” in the vicinity of the magnetic shear (i.e.
for |δy| � 1). Therefore, it does not make sense to specify for which value of θ the magnetosonic
speed should be computed. Probably one could take a somehow averaged value along the fluid
path. However, solving this problem accurately seems to be impossible and even counterproduct-
ive. All in all, we introduced ansatzes (3.1), (3.4) and (3.5) to have a simple way of estimating the
code’s numerical dissipation. Consequently, for further analysis, we take the maximum possible
magnetosonic speed (cosθ = 0),

cms =
√

c2
A + c2

s . (3.133)

This leads at most to a slight underestimation of N∆x
η in ansatz (3.5) for the numerical resistivity.

However, if N∆x
η is given (from some other tests), it is better to overestimate rather than underes-

timate the numerical dissipation. Therefore, we recommend to always use the maximum possible
value for the characteristic velocity. Already from looking at the upper panel of Fig. (3.31), we
can suspect that it is the magnetosonic speed that affects the numerical resistivity for the following
reasons. Firstly, regardless of the chosen θ in Eq. (3.132), for cs � cA, we have cms ≈ cA = 1
(i.e. cms very weakly depends on p) , and for simulations with p≤ 0.1, indeed the TM growth rate
almost does not depend on pressure. Secondly, for cs � cA, cms ≈ cs ∝

√
p, and in this regime,

the growth rate is proportional to pressure. To the growth rates from the simulations with p≥ 20,
we performed the asymptotic fit

ln(γ) = s ln(p)+d (3.134)

and obtained the following estimators

s = 0.207±0.001,

d =−4.8465±0.0044. (3.135)

The fitting straight line is marked with red in the figure.

corresponds to resolutions 224×224 to 1024×1024 zones for the whole box (abscissa in Fig. 3.28).
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Figure 3.31: Top panel: Growth rate of tearing modes driven by numerical resistivity as a function
of pressure. Results of simulations run with a resolution of 512×512 zones and the MP5 recon-
struction scheme are marked with black plus signs. The growth rate (proportional to numerical
resistivity) increases with pressure. Hence, the system’s characteristic velocity must be pressure
dependent. The red, blue and orange curves result from the asymptotic, simple and best fit, re-
spectively (for details, see main text). Bottom panel: Resistive-viscous layer width (black crosses)
as a function of pressure in the simulations presented in the upper panel. The red, blue and orange
curves mark expected layer widths given the numerical resistivity resulting from the the asymp-
totic, simple and best fit, respectively, which were performed to the growth rates presented in the
upper panel.
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We must not forget that for the tearing modes, the characteristic velocity V changes the numer-
ical resistivity not only directly, i.e. via Eq. (3.5), but also through the implicit dependence of η∗
on the resistive viscous layer (Eq. (3.125)). Taking these two facts into account we arrive at

γ ∝ V24/(25+5r)b(10r+2)/(25+5r)
0 . (3.136)

By combining Eqs. (3.134) and (3.136), and putting cms ∝
√

p we obtain

s =
12

25+5r
. (3.137)

From this equation, we estimated the order of the MP5 reconstruction scheme to be r = 6.59±
0.05, which is a higher value than both theoretically expected and determined in the resolution
studies (r = 4.814±0.085, see Table 3.12).32 For lower pressure values (p < 20), the approxim-
ation cms ≈ cs is no longer valid and the magnetic contributions become important in Eq. (3.133).
We took it into account in the simple fit (blue curve in Fig. 3.31). We took the values of s and

d from Eq. (3.135) and additionally put V = cms =
√

c2
A + c2

s for the characteristic velocity. As
expected, for high pressure values, we obtain the same predictions as from the simple fit. For
p < 10, the curve overestimated the growth rate values. This fact can be easily explained. Firstly,
we used b0 = 1 to compute the magnetosonic speed. However, around the shear, where numerical
resistivity is most important, b0→ 0. It is impossible to tell a priori which value of b0 should be
taken. Secondly, we used Eq. (3.133), instead of a somehow averaged version of Eq. (3.132), to
compute the characteristic velocity. To fit the simulation data even better, we varied the value of
b0 in Eq. (3.133). For b0 ≈ 0.72, we obtained the best f it (orange curve in Fig. 3.31). As we can
see, all simulation results lie close to this curve. The value b0 ≈ 0.72 also seems quite reasonable.
We conclude that the characteristic velocity for the tearing modes is the fast magnetosonic speed.
In the bottom panel of Fig. 3.31, we plot the measured width of the resistive-viscous layer and also
the theoretical predictions based on the asymptotic, simple and best fit. As we can see, all three
of them agree with the simulation results within the measurement errors. This demonstrates that
on the one hand our model is self-consistent. On the other hand the predictions based only on the
resistive-viscous layer measurements are quite inaccurate, as they cannot distinguish between the
fits.

Another set of simulations was run to reconfirm that the Alfvén speed is not the characteristic
velocity. We used the standard parameters (δ = 10,k = 3, p0 = ρ0 = 1,ν = 10−4), no resistivity
and the MP9 reconstruction scheme. The simulation domain was resolved with 256×256 zones.
The background magnetic field b0 was in the range 1–10. To the measured growth rates, we fitted
the function

ln(γ) = s ln(b0)+d (3.138)

32There are a few possible reasons of this discrepancy. First of all, in the derivation of Eq. (3.137), we assumed
that numerical resistivity can be treated like a physical one and therefore Eqs. (3.117), (3.124) and (3.125) are exactly
fulfilled. However, this may not always be the case, yet we did not write (and we do not know) how many uncertainties
these equations could introduce. The error ±0.05 results only from the final statistical fit to the simulation results
and does not take the above mentioned problem into account. Second of all, the concept of the characteristic velocity
may not always work in 100% correctly, either. In simulations with cs � cA, the characteristic velocity, i.e. cms,
is mainly determined by the sound speed (cms ≈ cs), whereas tearing modes themselves are an MHD instability, in
which the Alfvén speed plays a crucial role. Therefore, we could intuitively think that “pressure related errors” should
be somewhat less important than “magnetic field related errors” in this problem. Consequently, the magnetosonic
speed could influence numerical resistivity less than expected from the characteristic velocity concept. Moreover, it is
also hard to imagine a more complicated and possibly more unreliable method to determine a reconstruction scheme
order than the one based on Eq. (3.137). All in all, we do not think that this discrepancy of 1.5 accuracy orders (i.e.
r = 6.59±0.05 instead of r ≈ 5) is a failure of our ansatz (3.5).
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Figure 3.32: Growth rate of tearing modes driven by numerical resistivity as a function of back-
ground magnetic field. The results of simulations run with a resolution of 256× 256 zones and
the MP9 reconstruction scheme are marked with black plus signs. The straight line results from a
linear fit to the logarithm of the growth rate.

and obtained the following estimators

s = 1.45±0.04,

d =−6.83±0.56. (3.139)

We interpret these results (see Fig. 3.32) testing the two hypothesis that the characteristic velocity
is either equal to the Alfvén speed or independent of the background magnetic field.33 According
to the first hypothesis, from Eq. (3.136), we obtain

γ ∝ V24/(25+5r)b(10r+2)/(25+5r)
0 ∝ b(10r+26)/(25+5r)

0 . (3.140)

Combining Eqs. (3.139) and (3.140), we determine the order of the MP9 scheme

s ?
=

26+10r
25+5r

. (3.141)

Hence, r = 3.73±0.62. The discrepancy between this value and the order of the MP9 reconstruc-
tion scheme determined in the resolution studies (r = 7.55±0.55; see Table 3.12), is too big and
we can discard the first hypothesis. Given the second hypothesis, we have

γ ∝ V24/(25+5r)b(10r+2)/(25+5r)
0 ∝ b(10r+2)/(25+5r)

0 (3.142)

and
s ?
=

10r+2
25+5r

. (3.143)

33Since these simulations are in the range, where cA ≈ cs, it is impossible to draw any conclusion about the mag-
netosonic speed. Assuming that V= cms, equation γ ∝ bα

0 , where α is a certain power, is simply invalid.
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From this equation, we compute that r = 12.4± 1.2, which once again contradicts our previous
result. Therefore, we conclude that in the simulated regime, the characteristic velocity must de-
pend on the magnetic field but not linearly as it is for the Alfvén speed, which once again indirectly
hints that the magnetosonic speed is the characteristic one.

3.5 Summary and conclusions

We demonstrated that our ansatzes (3.1), (3.4) and (3.5) for the code’s numerical dissipation
work both for wave damping and tearing mode simulations. Everything worked for the former
ones as expected. The system’s characteristic length and velocity were the wavelength and the
wavespeed, respectively. The orders of the reconstruction and time integration schemes were
close to their theoretical values. Both temporal and spatial discretisation errors contribute to the
numerical dissipation. The only surprise was that the numerical resistivity was much lower than
the numerical viscosity. In other words, the numerical magnetic Prandtl number, Pm∗ ≡ ν∗/η∗,
was not close to 1, as it is commonly suspected in the numerical community.34 Unfortunately, it
was impossible to measure precisely the numerical resistivity in magnetosonic wave simulations.

In the tearing mode simulations, the situation was not so obvious. It is hard to imagine a simpler,
yet interesting MHD system. Still, its analysis was full of pitfalls. In order to use ansatz (3.5) for
the numerical resistivity, the system’s characteristic velocity and length needed to be identified.
The “natural candidates”, namely the Alfvén speed and the magnetic shear width turned out not to
be the system’s characteristic quantities. Their proper identification required a good understanding
of tearing mode theory, especially of the concept of the resistive-viscous layer. However, not for
every physical problem, such a theory will be at our disposal. Hence, a correct determination
of a system’s characteristic length may not always be straightforward. When it comes to the
characteristic velocity, the situation seems to be simpler. Note that the fast magnetosonic speed in
the absence of a magnetic field reduces to the sound speed. Thus, in all simulations discussed in
this chapter, the characteristic velocity is equal to the magnetosonic speed.

Another issue concerns the discrepancy among the orders of the reconstruction schemes de-
termined in the wave damping and tearing mode simulations (compare Tables 3.1, 3.5 and 3.9 with
Table 3.12). In the former ones, the reconstruction schemes had their theoretical order, whereas in
the latter ones, the schemes experienced an accuracy reduction. We think we can give a plausible
explanation of this phenomenon. All schemes reconstruct a function from its zone averaged values
using a Taylor expansion. For a scheme of r-th order, a reconstructed function, f̂ (xi+1/2), is equal
to its exact value, i.e. f (xi+1/2), up to terms of r-th order, i.e.

| f̂ (xi+1/2)− f (xi+1/2)| ∼ |(∂ r
x f (xi+1/2))(∆x)r +O((∆x)r+1)|, (3.144)

where ∆x is the zone width. Usually, because (∆x)r is small, the difference between the exact and
reconstructed value is small, i.e. ∣∣∣∣∣ f̂ (xi+1/2)− f (xi+1/2)

f (xi+1/2)

∣∣∣∣∣� 1. (3.145)

This holds for functions, which do not have any singularities, like, e.g. any wave solution. How-
ever, this is not the case for tearing modes, where the y component of the velocity perturbations

34Private communication with Pablo Cerdá-Durán, Ewald Müller, Martin Obergauliner and Maxime Viallet.
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experiences strong variations in the vicinity of the magnetic field shear, i.e. for |δy| � 1 (see, e.g.
bottom left panel of Fig. 3.26). Especially in the ideal MHD limit, this function would behave
like vy ∝ 1/y for |δy| � 1 and would have a singularity at y = 0 (see Eq. (3.61); because of that,
tearing modes were not allowed in ideal MHD and only resistivity could smooth (and remove) this
singularity). Therefore, the difference between the exact value of vy(y) and its reconstructed value
v̂y(y) could behave like

|v̂y(y)− vy(y)| ∼
∣∣∣∣( ∂ r

∂yr
1
y

)
(∆y)r

∣∣∣∣∼ ∣∣∣∣ 1
yr+1 (∆y)r+1

∣∣∣∣ , (3.146)

which diverges for y→ 0. Consequently, the standard argument that “higher order terms in the
Taylor expansion can be neglected” does not apply in this case. From the the above equation,
we see why errors introduced by reconstruction schemes would not necessarily scale like (∆y)r.
Moreover, it may even seem surprising that these errors did not diverge for y ≈ 0 leading either
to a code crash or completely unphysical solutions. For lower order reconstruction schemes, i.e.
the MP3 and the piecewise-linear, we did observe such pathological behaviour. One could say
at this point that our tearing mode simulations disproved that ansatzes (3.1), (3.4) and (3.5) can
be universally used to estimate the numerical dissipation in any MHD simulation. Ideally, we
would like to have an expression, say for numerical resistivity (Eq. (3.5)), which after determining
the coefficients N∆x

η and N∆x
η , and the scheme orders r and q in one type of simulations, can

be universally applied in any other MHD simulation. However, the orders of the MP7 and the
MP9 reconstruction schemes, r, were lower in tearing mode simulations than in wave damping
tests, which suggests that ansatzes (3.1), (3.4) and (3.5) are always problem dependent. To some
extent, it is true. In the limit ∆x→ 0 , estimates of, say, the numerical dissipation introduced by
the MP9 reconstruction scheme will differ by many orders of magnitude, depending whether the
calibration was done with the help of (e.g. magnetosonic) wave damping tests or tearing mode
simulations (because of different estimators of the scheme’s order, r = 8.82± and r = 7.56±
0.55, respectively; see Tables 3.9 and 3.12). Nonetheless, we should also compare how much
the predictions of these ansatzes, depending on the chosen calibration simulations, differ in an
interesting, from the numerical point of view, parameter regime. We should consider how many
zones we use in a typical MHD simulation to resolve a characteristic length. Five zones is probably
the minimum “reasonable” number and it is unlikely that we will be able to use more 100 zones in
multidimensional simulations (assuming that the characteristic length is considerably smaller than
the box length).

In Fig. 3.33, we present a comparison of the expected numerical dissipation in magnetosonic
(MS) wave damping simulations and tearing mode (TM) simulations, based on ansatzes (3.1),
(3.4) and (3.5), and the estimators from Tables 3.9 and 3.12, respectively, given that the charac-
teristic velocities and lengths are equal to one, i.e. V = L = 1. The box length is set to 1, hence
“resolution” in the abscissa of this figure refers to the number of zones per characteristic length.
100 zones per resistive viscous-layer would roughly correspond to ∼ 104 zones in y direction in
a typical tearing mode simulation from Sec. 3.4.2. As we can see, the expected numerical dis-
sipation based on calibration with the help of both types of simulations (MS waves and TM) is
surprisingly similar. At this point, we would like make three comments. Firstly, whereas the char-
acteristic length in a wave damping simulation is obviously the wavelength, the choice for tearing
mode simulations is not as straightforward. Secondly, we should bear in mind that in Fig. 3.33,
we basically compare numerical viscosity in wave damping simulations with numerical resistiv-
ity in tearing mode simulations. Therefore, we find a “good agreement” between two physically
different quantities. Moreover, numerical resistivity seems to be much lower than numerical vis-
cosity in wave damping simulations. As for tearing mode simulations, because of the restriction
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Figure 3.33: Comparison of the code’s dissipation for two different physical problems: magneto-
sonic waves (MS) and tearing modes (TM). Numerical dissipation equals (4/3)ν∗+ξ∗+η∗/(1+
c2

s/c2
A) for the former ones and η∗ for the latter ones. For the wave simulations, we determined

that η∗/(1+c2
s/c2

A)� (4/3)ν∗+ξ∗ (see Sec. 3.3.3). The MP5, the MP7 and the MP9 reconstruc-
tion schemes were used in both the MS wave damping (green, violet and brown curve, respect-
ively) and in the TM simulations (red, blue and black curves, respectively). In the former and
in the latter simulations, the HLL and the LF Riemann solvers were used, respectively. For the
wave problems, both solvers introduce very similar dissipation, whereas for the TM simulations
η∗(HLL)� η∗(LF). The CFL factor was chosen so that the errors of the time integration, per-
formed with RK3, were negligible. The results are renormalised to the characteristic velocity and
length equal one, i.e. V= L= 1.

on the Prandtl number (for the semi-analytical equations to be valid), i.e. 0.1η < ν , and the very
weak dependence of the tearing mode growth rate on viscosity, i.e. γ ∝ η−1/5 (see Eq. (3.113)),
we did not manage to determine the numerical viscosity in a reliable way.35 Thirdly, the values of
the numerical resistivity in the tearing mode simulations were obtained only for the LF Riemann
solver. The other Riemann solvers (i.e. HLL and HLLD) had a much lower numerical resistivity.
In wave damping simulations, all solvers had comparable numerical viscosity.

Readers interested in using our ansatzes (3.1), (3.4) and (3.5) to estimate the numerical dissip-
ation of their MHD code, may feel confused at this moment. They may not know which tests
should they use to calibrate these equations. As a rule of a thumb, we would recommend per-
forming some wave damping tests, and for higher order schemes (r > 5), just subtract “by hand’
one or two orders of magnitudes from the final estimator of r. We do believe that it is better to
overestimate rather than underestimate numerical dissipation. We do not recommend using tearing

35Although, we did see its influence on the tearing mode growth rate. However, technical difficulties in designing
suitable (and reliable) simulations and the measurement uncertainties were rather discouraging and we decided not to
present these results. From these studies, it seems that numerical resistivity and viscosity are of the same order, however
we do not have a sound statistical proof of this statement.
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mode simulations for a “quick” calibration, because of their higher computational costs and more
complicated implementation.



Chapter 4

Magnetorotational instability

4.1 Introduction

The magnetorotational instability (MRI) was first studied by Velikhov (1959) and Chandrasekhar
(1960). However, it was only Balbus & Hawley (1991), who pointed out its importance for accre-
tion disc physics. Already Shakura & Syunyaev (1973) suspected MHD turbulence to be the agent
transporting angular momentum outwards, which is necessary for an efficient gas accretion onto
a central (compact) object. However, the physical mechanism exciting the turbulence remained
unknown. Balbus and Hawley identified the MRI as the most promising candidate. Ever since
their pioneering work, the MRI has been an active field of research. Even though the instability
has been studied for over twenty years, there are still many unanswered question regarding its
nature (e.g. the saturation level of the instability, MRI driven turbulence and transport in accretion
discs, influence of resistivity and viscosity, connection to disc dynamos, interplay with radiative
transfer, convergence of numerical simulations).

The MRI can also possibly play an important role in certain core-collapse supernovae. Akiyama
et al. (2003) pointed out that the magnetic field of an initially rotating progenitor, could be amp-
lified by the MRI in the post-bounce phase of the supernova explosion.1 Obergaulinger et al.
(2009) confirmed this hypothesis by means of local numerical simulations. Their studies suggest
that progenitor’s magnetic field could be amplified to dynamically relevant values, i.e. of order
1015G. However, because of limited computational resources, these authors used initial magnetic
fields, which were a few orders of magnitude stronger than expected from stellar evolution models
(Heger et al. 2005).2 Moreover, even though the simulations of Obergaulinger et al. (2009) were
done in the ideal MHD approximation, they must have been affected by numerical resistivity and
viscosity, the consequences of the enhanced initial magnetic field and of the numerical dissipation
on the results remaining unknown.

In this chapter, we investigate this problem with the help of an MRI termination model proposed
and developed by Goodman, Xu and Pessah (later denoted as GXP) (Goodman & Xu (1994),
Pessah & Goodman (2009), Pessah (2010)). GXP suggested that the initial exponential growth
phase, in which MRI channels form, can be terminated by parasitic instabilities, i.e. the Kelvin-

1The supernova physics was discussed in more detail in Chapter 1.
2 To put it in a nutshell, the greater the initial magnetic field strength, the larger the MRI structures form. Hence,

in simulations with artificially enhanced initial magnetic fields, lower resolutions could be used. For an extended
discussion, see also Sec. 4.5.1.
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Helmholtz or tearing mode instability. We verify this hypothesis by means of 2D and 3D resistive-
viscous MHD simulations.

In the next section, we explain the basic concepts of the MRI and give a criterion for its onset. In
Section 4.3, we describe the Kelvin-Helmholtz instability and the tearing modes. In Section 4.4,
we discuss Goodman, Xu and Pessah’s MRI termination model, describing its assumption and
pointing out some inconsistencies. We also propose an alternative description of the termination
process, which is free from the GXP model’s flaws. In Section 4.5, we present our 2D and 3D
MRI simulation results and verify a modified GXP model. Finally, in Section 4.6, we discuss the
implications of our findings for core-collapse supernovae.

4.2 The MRI exponential growth phase

Consider a differentially rotating fluid with velocity v = Ωrφ̂ , whose angular velocity is given
by

Ω = Ω0

(
r
r0

)α

, (4.1)

where Ω0 is the angular velocity given at the radius, r0, and α is a dimensionless parameter. The
resulting centrifugal force has to be balanced by some additional forces, like gravity or pressure
gradients, to provide an equilibrium. The corresponding local rotational shear, defined as

q =−dln(Ω)

dln(r)
, (4.2)

reads
q =−α. (4.3)

The rotational profile (4.1) is quite generic in astrophysical system, e.g. for α =−3/2, we recover
a Keplerian profile (which is encountered in accretion discs) and for differentially rotating stars,
−3/2 < α < 0 (although in the case of the stars, this rotational profile is not a law of nature, but
rather a convenient approximation).

In the absence of magnetic fields, a system with the rotational profile (4.1), is unstable against
the Rayleigh instability, if the specific angular momentum of the flow, j = Ωr2, decreases with
radius, i.e. for

∂r j < 0 (instability) (4.4)

(hence for α <−2). To understand this criterion, we consider the following Gedankenexperiment.
Imagine that we perturb a fluid element of specific angular momentum j0 from its initial orbit at
r0 to a new position r1 > r0 (where surrounding elements have less specific angular momentum).
In the absence of forces which are able to redistribute the angular momentum (like, e.g. viscous
or magnetic forces), the perturbed fluid element will retain its specific angular momentum. This
means that at its new position, the fluid element will experience an excess centrifugal force and it
will be pushed even further outwards. Consequently, the fluid element will run away from its initial
orbit to infinity. Similarly, a fluid element perturbed slightly inwards to r1 < r0 will eventually fall
onto the centre (to r = 0).

Since in differentially rotating stars and accretion discs, the specific angular momentum in-
creases with radius, i.e.

∂r j > 0, (4.5)
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these systems are stable against the Rayleigh instability. A fluid element perturbed outwards (to
r1 > r0) will not rotate fast enough at its new position and the excess gravitational force will start
pulling it back inwards. When the fluid element returns to its initial orbit at r0, it will have a non-
zero (negative) radial velocity and hence it will continue to fall inwards until an excess centrifugal
force will stop it at some radius r2 < r0 and then push it back outwards. As a results, the fluid
element will oscillate around its initial orbit with an epicyclic frequency,

κ
2 =

1
r3 ∂r(r2

Ω)2, (4.6)

which for the angular velocity profile (4.1) reads

κ =
√

2(2+α)Ω. (4.7)

Accretion discs are stable against this purely hydrodynamical instability. However, the situation
dramatically changes in the presence of even a very weak magnetic field. Balbus & Hawley (1991)
found in their pioneering paper that such a system can be unstable against the magnetorotational
instability (MRI). These authors considered an axisymmetric accretion disc of a finite vertical
extent threaded by a vertical magnetic field, b = (0,0,b0z), whose dynamical equation read3

1
ρ
(∂t +v ·∇)ρ +∇ ·v = 0, (4.8)

(∂t +v ·∇)v+
1
ρ

∇

(
p+

b2

2

)
− 1

ρ
(b ·∇)b+∇ϕ = 0, (4.9)

∂tb−∇× (v×b) = 0. (4.10)

To investigate the stability of the system, Balbus & Hawley used a standard WKB ansatz for
axisymmetric perturbations, whose dependence was of the form ei(krr+kzz−ωt) (we used the same
technique to calculate the tearing mode growth rate in Chapter 3; see Eqs. (3.52) and (3.53)), in
the Boussinesq approximation (∇ ·v = 0). These authors found that, independent of the initial
magnetic field strength, the system is unstable against the MRI if its angular velocity decreases
with radius, i.e. for

∂rΩ
2 < 0 (instability), (4.11)

which is the case both for accretion discs and differentially rotating (proto-neutron) stars. Rather
than deriving this instability criterion (the details can be found in Balbus & Hawley (1991)), we
will just give an intuitive explanation of the MRI mechanism. To understand why even a weak
magnetic field can change the dynamics of the system, we must first recall two facts from ideal
MHD. Firstly, one of the consequences of the induction equation (2.23) is that a magnetic field
flux is “frozen in” a fluid element, i.e. they are always co-moving. Secondly, magnetic field
“does not like to be curved” - if it is bent, there will act on it a restoring (Lorenz) force (also
called magnetic field tension in such a situation), trying to make the magnetic field line (again)
“as straight as possible”. Armed with this knowledge, we are ready to analyse what will happen
with a fluid element perturbed from its initial position r0 to r1 > r0 in a magnetised accretion disc.
Since the magnetic field (line) is frozen in the fluid element, it will be stretched (hence, a non-zero
br component will be created), and consequently it will try restore the fluid element to its initial

3The set of equations is completed with the entropy equation for adiabatic perturbations in the Boussinesq approx-
imation.
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position (to resist stretching) and at the same time it will try to enforce rigid rotation (to resist
shearing). The former is clearly stabilising. The latter is at the heart of the MRI. Had it not for the
magnetic field, the angular velocity of the fluid element would decrease at the new position, r1 > r0
(because of angular momentum conservation). However, this would create a shear, i.e. stretch the
field line in the azimuthal direction (and produce a component bφ ). The magnetic field tries to
counteract it by transferring some angular momentum (from other fluid elements connected by
this line), to the displaced fluid element, so that the whole field line has a constant angular velocity
Ω0. However, now the fluid element will rotate faster (than other fluid elements at the position
r1) and experience an excess centrifugal force, which will push it further outwards. The magnetic
field will once again try to enforce rigid rotation, and the fluid element will be driven by the
excess centrifugal force even more outwards. The same considerations hold for a fluid element
perturbed inwards to r2 < r0. This time, the magnetic field will drain angular momentum from the
fluid element, which will consequently start falling towards the centre (to orbits with even smaller
radii). When we consider these two fluids elements (one escaping from the accretion disc, and the
other one falling to the centre) simultaneously, we see that the magnetic field (in the MRI) is an
agent transferring angular momentum between them (outwards).

As we already wrote, systems in which condition (4.11) is met are MRI unstable, independent
of the initial vertical magnetic field strength, however not for any perturbation wavelength. If
the restoring force (the one resisting stretching), which is proportional the amplitude of and the
curvature of the magnetic field, is strong enough, the fluid element will be pulled back to its initial
position and the MRI will be suppressed. This means that there should exist a critical perturbation
wavelength below which the system is stable against the MRI. This heuristic argumentation is
confirmed by the calculations done by Balbus & Hawley (1991), who showed that only modes
with wavevectors larger than a critical value

(kz)
2
crit =

1
2c2

Az


[(

N2 +
dΩ2

dlnR

)2

−4N2
z

dΩ2

dlnR

]1/2

−
[

N2 +
dΩ2

dlnR

] , (4.12)

are MRI unstable, where

cAz =
b0z√

ρ
(4.13)

is the Alfvén speed in the z direction and

N2 =− 1
Γρ

(∇p) · (∇ lnPρ
−Γ) = N2

r +N2
z , with (4.14)

N2
i =− 1

Γρ
(∇i p) · (∇i lnPρ

−Γ), i ∈ {r,z} (4.15)

is the Brunt-Väisälä or buoyancy frequency,4 and Γ is the adiabatic index. Even though, formally
all wavevectors |k| > |kcrit| are unstable, the MRI growth rate goes to zero for very long modes,
i.e. γmri → 0, for |k| → ∞. Given rotational profile (4.1), the MRI has a maximum growth rate5

(see, e.g. Pessah & Chan (2008))

γMRI =−
α

2
Ω, (4.16)

4 In a convectively stable system, a perturbed fluid element will oscillate with a frequency N2 > 0. In a convectively
unstable system N2 < 0.

5γMRI =−iω , for the WBK ansatz used by Balbus & Hawley, i.e. ei(krr+kzz−ωt).
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for the wavevector

kMRI =

√
1− (2+α)2

4
Ω

√
ρ

b0z
=

√
1− (2+α)2

4
Ω

cAz
. (4.17)

Note that we use capital letters in the subscripts to distinguish the fastest growing mode (with a
growth rate and wavevector γMRI and kMRI, respectively) from the other modes developing at a lower
rate, i.e. γmri(kmri)< γMRI.

Imposing perturbations with a wavevector kmri, Balbus & Hawley (1991) showed that for linear-
ised MHD equations coherent MRI channels will emerge:

vc = vc(t)(r̂cosφv + φ̂ sinφv)sin(kmriz) = ṽc(r̂cosφv + φ̂ sinφv)sin(kmriz)eγmrit , (4.18)

bc = bc(t)(r̂cosφb + φ̂ sinφb)cos(kmriz) = b̃c(r̂cosφb + φ̂ sinφb)cos(kmriz)eγmrit , (4.19)

where the subscript c stands for channel, ṽc and b̃c are the initial amplitudes, φv and φb are the
angles between the r axis and, respectively, the velocity and magnetic field channels (in ideal
MHD, φv = π/4 and φb = 3π/4; see, e.g. Pessah & Chan (2008)). In ideal MHD, the magnetic
field and velocity amplitudes are related by

vc =

√
−α

4+α

bc√
ρ
=

√
−α

4+α
cAc. (4.20)

Goodman & Xu (1994) showed that the MRI channels not only fulfil linearised MHD equations,
but also are an exact solution of non-linear ideal MHD equations in the incompressible limit in
the shearing sheet (local) approximation. This approximation consists in transforming to a frame
co-rotating with a fiducial fluid element and linearising the rotational profile around a radius r0,
i.e. Ω(r) ≈ (r− r0)∂rΩ(r)|r0 . In this frame, gravitational and centrifugal force cancel out, but
the Coriolis force hast to be taken into account. Hence, in the first stage of the MRI, i.e. the
exponential growth phase, the equations for velocity and magnetic field, in the shearing sheet
approximation, read

v =−qΩ0(r− r0)φ̂ +vc, (4.21)

b = b0zẑ+bc, (4.22)

where vc and bc are given by Eqs. (4.18) and (4.19), respectively, and q was defined in Eq. (4.2).

Obviously, the MRI channels cannot grow indefinitely, because the energy stored in them would
constantly increase. Since the total energy of the system is finite, there must be a physical mechan-
ism terminating MRI growth. GXP put forward a hypothesis that MRI channels can be disrupted
by parasitic (or secondary) instabilities growing on top of them, i.e. by Kelvin-Helmholtz in-
stability the tearing modes.

We briefly describe these secondary instabilities in Sec. 4.3 and discuss the GXP termination
model in Sec. 4.4.

Magnetorotational instability in core-collapse supernovae

Since Akiyama et al. (2003) pointed out that the matter of rotating proto-neutron stars can be un-
stable against the MRI, this instability has attracted the attention of the supernova community. The
MRI in core-collapse supernovae can be influenced by additional effects like thermal stratification
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or viscosity (caused by neutrinos). Moreover, the instability analysis can no longer be restricted to
the equatorial plane. Balbus (1995) added a thermal stratification to the MRI analysis and Menou
et al. (2004) additionally included viscosity and resistivity, obtaining a complicated dispersion re-
lation. Obergaulinger et al. (2009) discussed the instability criterion in core-collapse supernovae
for any orientation of the perturbation wavevector. We restrict our analysis to the equatorial plane
and vertical perturbation wavevectors (for which the MRI is known to develop fastest; see, e.g.
Balbus & Hawley (1998)). Under these assumptions, the instability criterion reads (ignoring the
dissipative effects):

N2 +
1
r3 ∂rΩ

2 < 0 (instability), or

(−∂z p)
[
∂rΩ

2
∂z ln(pρ

−Γ)−∂zΩ
2
∂r ln(Pρ

−Γ)
]
< 0 (instability). (4.23)

There are a few limiting cases, which are worth mentioning. In a system of constant entropy, this
criterion reduces to the Balbus-Hawley criterion (Balbus & Hawley (1991)), which we discussed
above. Positive entropy gradients in a system can stabilise it against the MRI. In a convectively
unstable system (i.e. with negative entropy gradients) magneto-buoyant or magneto-convective
instabilities can develop. The former resembles the MRI, however the instability is not driven
by the angular velocity shear but an unstable stratification. The latter is a convective instability
in a magnetised flow, where modes of short wavelengths can be stabilised by magnetic field ten-
sion. Obergaulinger et al. (2009) identified these regimes (and additional mixed regimes, in which
two types of the above mentioned instabilities can be present simultaneously) in their numerical
simulations.

The last issue, which needs to be discussed is the influence of viscosity and resistivity on the
MRI. In this thesis, we are going to analyse only initial models with a constant entropy. In this
case, the dispersion relation of Menou et al. (2004) reduces to the one analysed by Pessah &
Chan (2008), which was obtained in the shearing sheet approximation in resistive-viscous MHD.
The corresponding dispersion relation of Pessah & Chan (2008) is still quite complicated (for the
details, see their paper). For the Reynolds numbers, defined as

Re =
c2

Az

νΩ
(4.24)

Rm =
c2

Az

µΩ
, (4.25)

which we use in the simulations (i.e. Re,Rm > 10), the corrections to the MRI unstable modes
(their growth rates and the wavelength of the fastest growing mode) are small (≈ 10%). There-
fore, we do not discuss the results of Pessah & Chan (2008) here, but rather summarise them in
Appendix B. To put it in a nutshell, resistivity and viscosity decrease the MRI growth rate (the
smaller the perturbation wavelength, the larger the effect), its maximum being shifted towards
longer modes (the larger the dissipation the larger the shift). Moreover, the angles φv and φb
(defined in Eqs. (4.18) and (4.19)), which, the velocity and magnetic field channels, respectively,
form with the r axis depend on resistivity and viscosity. In general, resistivity has a stronger
influence on the MRI modes. For Reynolds numbers, which are encountered in core-collapse
supernovae (i.e. Re,Rm� 10), non-ideal MHD corrections to the MRI become completely negli-
gible (� 1%). Therefore, in the further analysis, we will often refer to these expressions (e.g. for
the MRI growth rate) that are obtained in ideal MHD.



4.3 PARASITIC INSTABILITIES 105

Figure 4.1: The Kelvin-Helmholtz instability developing in terrestrial clouds over Mount Duval in
Australia. The picture is reproduced from Wikipedia (author: GRAHAMUK).

4.3 Parasitic instabilities

The Kelvin-Helmholtz and tearing mode instabilities are quite complex and each of them de-
serves to be a study subject of themselves. We are not going to describe them in too much detail,
but rather highlight their key aspects that are relevant for the MRI.

4.3.1 Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability can develop in systems with velocity shears. It mixes two
fluid layers moving at different speeds and increases the vorticity of the system. The instability
is commonly encountered in nature on many different scales, from the terrestrial clouds (see Fig.
4.1) to intra-cluster medium6 (Roediger et al. 2011).

Consider an initial configuration with a constant density and pressure, and a velocity profile
given by

v0x =

{
v0 for y > 0
−v0 for y < 0,

(4.26)

where v0 is a constant. Such a system will be unstable against the KH instability. In ideal hydro-
dynamics, velocity perturbations around the shear will exponentially grow with time, i.e.

v1y(x,y, t) = ṽ1(y)sin(kkhx)eγkht , (4.27)

where ṽ1(y) is an odd function peaked around y = 0 and vanishing for y→∞, kkh is the wavevector
of the initial perturbation in the x direction and γkh is the instability growth rate. For the velocity
profile given by Eq. (4.26), the growth rate in the incompressible limit is given by (Chandrasekhar
1961)

γkh = kkhv0. (4.28)

6Intracluster medium is superheated (to ≈ 107–108 K) plasma in the centre of a galaxy cluster (the biggest gravita-
tionally bound structure in the Universe).

http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg
http://en.wikipedia.org/wiki/User:GRAHAMUK
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In this idealised setup, the larger the wave-vector, the larger the growth rate. This peculiarity is
caused by the singular jump in the velocity profile. For a shear layer of a finite width, γkh will be
considerably reduced, e.g. for the velocity profile given by

v0x = v0 tanh(δx), (4.29)

where δ−1 is the shear width, the maximum growth rate,7 γKH ≈ 0.2δv0, is at kKH ≈ 0.45δ ; for
kkh� δ , γkh→ 0.

The initial perturbations of the KH instability cannot unboundedly grow with time, as it is
suggested by Eq. (4.27), which is only valid during the early evolution of the instability. The
perturbations grow at the expense of the kinetic energy stored in the shear flow. Once their kin-
etic energy, Epert

kin , reaches around 0.01 of the total kinetic energy E tot
kin, non-linear effects start to

play an important role and the instability growth rate decreases (see, e.g. Keppens et al. (1999)).
Eventually, when Epert

kin ≈ 0.05E tot
kin, the instability reaches saturation and further growth is halted.

The KH instability can be significantly affected by a magnetic field, whose influence depends
on the Alfvénic Mach number (the ratio of the fluid to the Alfvénspeed) and the orientation of
the field with respect to the direction of the fluid motion. Miura & Pritchett (1982), found that a
constant magnetic field parallel to a velocity shear (in our case, the bx component) has a stabilising
effect on the instability. This result can be intuitively understood. During the instability evolution,
the velocity component (v1y) perpendicular to the shear flow is created. Fluid motions in this
direction will stretch the magnetic field lines (create a by component). This will lead to a magnetic
field tension (bxby), which will try to restore the field lines to their initial configuration and prevent
further fluid movements. The stronger the initial magnetic field, the stronger the stabilising effect
and the greater the reduction of the growth rate.

A constant magnetic field perpendicular to the shear flow does not have such a strong influence
on the KH instability (Miura & Pritchett 1982), the flow perturbations perpendicular to the shear,
i.e. in the y direction, will follow the magnetic field lines, without causing any stretching.

Keppens et al. (1999) numerically studied the KH instability with a magnetic field that was
aligned with the shear flow and changed its sign at the shear interface. They found that in such
a configuration, the magnetic field can additionally destabilise the system, i.e. increase the KH
instability growth rate.

From this brief discussion, we see that the KH instability, which is of hydrodynamical nature,
can be affected by a magnetic field in various ways. It is difficult to tell a priori its influence on
the flow for any field configuration.

So far, we only discussed the KH instability in the frame of ideal (magneto)-hydrodynamics.
The studies of Junk et al. (2010) confirm the intuitive presumption that shear viscosity slows down
the instability development. For velocity profile (4.26), the instability growth rate is given by
(keeping the terms linear in viscosity)

γkh = kkhv0−ν
k2

kh

2
. (4.30)

4.3.2 Tearing mode instability

In the previous chapter, we discussed in detail the linear phase of the tearing mode evolution.
The instability was studied in a very simple system, so that we could support our investigations

7In this chapter, the growth rate and wavevector of the fastest growing KH mode are denoted as γKH and kKH,
respectively, whereas for all other modes, we use symbols γkh and kkh.
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Figure 4.2: Magnetic field reconnection driven by the tearing mode instability. The simulation
setup was like the default one in Sec. 3.4.2. The box of size Lx = Ly = 2π/3 was resolved with
128× 128 zones. Resistivity was equal to η = 10−4. Left: Initial magnetic field configuration
b0x = tanh(δy). Magnetic field lines with a positive and negative bx component are blue and
red, respectively. Right: The tearing mode instability entered the non-linear phase (after 500
dimensionless time units). Around (x,y) = (−0.8,0), the magnetic field reconnects in a so-called
X point. In the vicinity of (x,y) = (0.1,0), a so-called O point is visible, where no magnetic field
is present. The X and O points are characteristic for the tearing mode instability.

with the analytical theory. We consider the background magnetic field

b0y = b0 tanh(δy), (4.31)

where δ−1 is proportional to the shear width. In resistive non-viscous MHD, a tearing mode (TM)
with a wavevector ktm in the x direction will grow at a rate8 (see Eq. (3.81)):

γtm = (2/2.12)4/5
η

3/5
(

b0ktm√
ρ

)2/5

δ
6/5
(

δ

ktm

− ktm

δ

)4/5

, (4.32)

provided ktm ∼ δ .

If viscosity is present in the system, it will reduce the TM growth rate. Given η < 0.1ν , accord-
ing to the calculations of Furth et al. (1963) (with our small improvements for this particular field
geometry), the instability will develop at the rate (see Eq. (3.90)):

γtm =
2
3

21/3
η

5/6
ν
−1/6

(
b0ktm√

ρ0

)1/3

δ
4/3
(

δ

ktm

− ktm

δ

)
. (4.33)

For the reasons discussed in the previous chapter, we found a discrepancy between the above
equation and our simulation results. Therefore, we proposed a semi-analytical formula (see Eq.

8Like for the KH instability and MRI, we will denote the growth rate and the wavevectror of the fastest developing
TM mode as γTM and kTM, respectively, whereas for all other modes, we use symbols γtm and ktm.
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(3.117) that is only valid for ktm = 3 and δ = 10 (but it is possible to generalise it to any combination
of δ and ktm):

γtm(ktm = 3,δ = 10) = 34.56η
4/5

ν
−1/5

(
b0√
ρ0

)2/5

. (4.34)

When tearing modes enter the non-linear phase of their evolution, they significantly change
the magnetic field topology. In Fig. 4.2, we can see that initially straight magnetic field lines of
opposite polarity start to reconnect at a so called X point, which is characteristic for the tearing
modes.

4.4 Termination model

In this section, we discuss the GXP MRI termination model. Its key idea is that in the MRI
channels, parasitic instabilities, i.e. Kelvin-Helmholtz or tearing modes, can develop. Once their
growth rate (denoted commonly as γp) becomes comparable to the MRI growth rate, γMRI, they
will start to play a dynamically important role. Eventually, they will destroy the MRI channels
and terminate the MRI growth.

The secondary instabilities will develop from perturbations in the system with already well
formed MRI channels9

v =−qΩ0(r− r0)φ̂ + ṽc(r̂cosφV + φ̂ sinφv)sin(kMRIz)eγMRIt +vp(r,φ ,z, t), (4.35)

b = b0zẑ+ b̃c(r̂cosφb + φ̂ sinφb)cos(kMRIz)eγMRIt +bp(r,φ ,z, t), (4.36)

where vp and bp are the velocity and magnetic field of the parasitic instabilities, respectively. The
main challenge of the GXP model is to solve the equations governing their evolution. As we could
see in the previous chapter, already computing the tearing mode growth rate with a constant back-
ground magnetic field is a difficult task. The MRI channels, which are the background magnetic
field and velocity shear for the parasitic instabilities, are time dependent. This leads to additional
complications in determining the parasitic growth rate and it is obviously no longer justified to
search for solution with a WKB ansatz.

GXP model

To make this task more tractable for analytical studies, Goodman & Xu (1994), Pessah & Good-
man (2009) and Pessah (2010) make some arguable10 simplifications. They compute the parasitic
growth rate γp in the shearing box approximation under the assumption that temporal MRI channel
variations can be neglected. This is justified only, if the parasitic time scale is much shorter than
the MRI time scale, i.e. γMRI� γp. Moreover, they consider the MRI stage, when the channel amp-
litude is already much larger than the initial background magnetic field, bc� b0z. For this reason,
they neglect the latter, the Coriolis force and the background shear flow in their calculations. All
in all, instead of searching for solutions of perturbations according to Eqs. (4.35) and (4.36), GXP
consider a much more simplified system where the velocity and the magnetic field are given by

v(t) = ṽc(r̂cosφV + φ̂ sinφv)sin(kMRIz)eγMRIt0 +vp(r,φ ,z, t), (4.37)

b(t) = b̃c(r̂cosφb + φ̂ sinφb)cos(kMRIz)eγMRIt0 +bp(r,φ ,z, t), (4.38)

9In the equation below, we implicitly assume that the fastest growing MRI mode, with kMRI and γMRI, is most likely
to emerge from random initial perturbations.

10The critics will come later.
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where t0 is the time at which the perturbations are imposed. The evolution equations for this
system read (Pessah 2010)

∂tvp +(vc(t0) ·∇)vp(t0)+(vp ·∇)vc(t0) =−
1
ρ

[
∇(p1 +bc(t0) ·bp)

+(bc(t0) ·∇)bp +(bp ·∇)bp

]
+ν∇

2vp, (4.39)

∂tbp +(vc(t0) ·∇)bp +(vp ·∇)bc(t0) = (bc(t0) ·∇)vp +(bp ·∇)vc(t0)+η∇
2bp. (4.40)

Pessah (2010) seeks solutions of the form

vp = ṽp(z)eik·x+γp(t−t0), (4.41)

bp = b̃p(z)eik·x+γp(t−t0), (4.42)

(4.43)

where ṽp(z) and b̃p(z) are the initial perturbation amplitudes, γp is the parasitic instability growth
rate and k = kh + kzẑ, where kh ≡ krr̂+ kφ φ̂ is a horizontal wavevector. In the ideal MHD limit,
he finds that Kelvin-Helmholtz modes with a wavevector

kKH ≈ 0.59kMRI (4.44)

have the highest growth rate given by

γKH ≈ 0.45kKHvc(t0). (4.45)

Eq. (4.45), even though only valid in the limit γKH� γMRI, gives us an intuitive understanding of the
parasitic instability problem. Initially, when the channel amplitudes are small, the KH instability
will develop much more slowly than the MRI, i.e. γKH � γMRI. Eventually, for a large enough vc
(i.e. for t0 chosen “late enough”) , the secondary instability growth rate will be much larger than
the one of the MRI, i.e. γKH� γMRI.

Pessah (2010) himself argues whether the condition γp � γMRI can be fulfilled for a simple
energetic reason. The parasites could achieve such high growth rates only for very large MRI
amplitudes. However, the secondary instabilities constantly drain energy from the channels. Once
the former ones have a considerably greater growth rate than the latter ones, the time derivative of
the MRI channels’ energy will be negative. Hence, the MRI growth cannot continue indefinitely
and the channels cannot achieve arbitrarily large amplitudes.

Pessah (2010) puts forward the hypothesis that the MRI exponential growth phase will be ter-
minated by the parasites, when γp ≈ γMRI. We denote the channel’s magnetic field amplitude for
which this condition is met as bterm. Determining bterm in non-ideal MHD is the main goal of
Pessah’s paper. To compute the MRI termination amplitude, one would need to have an appropri-
ate expression for the parasitic growth rate, γp = γp(bc). With the help of that relation, one could
obtain bterm from the equation

γp(bterm)≡ γMRI. (4.46)

Calculating the parasitic instability growth rate in the γp ≤ γMRI regime is a challenging task, be-
cause treating MRI channels as time-independent structures, and using Eqs. (4.39) and (4.40) is no
longer justified. Nevertheless, Pessah still uses this approximation claiming that “the assumption
of stationary background is only marginally satisfied” (quote from Pessah (2010)). According to
our understanding, this assumption is clearly violated and therefore Pessah’s calculations are in-
consistent. To correctly compute the growth rates of parasitic instabilities close to the termination
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point, one has to include the temporal variation of the channels, since both timescales are compar-
able during this phase, i.e. γ−1

MRI ≈ γ−1
p . Before termination, i.e. when γp < γMRI, one could rather

neglect the secondary instabilities, but for γp = γMRI both instabilities should be taken into account,
and for γp > γMRI, MRI termination, according to Pessah’s hypothesis, has already happened.

Pessah also gives an alternative criterion for MRI termination, namely when the amplitudes of
the parasites and MRI channels, bterm, are comparable. Using the same expressions for γp, he
estimates that this leads to 3–10 times larger values of bterm, but this value should once again be
questioned. Even if the channels did not change because of the MRI amplification, it would still
be wrong to use growth rate expressions derived under the assumption that the perturbations are
much smaller than the background velocity and magnetic field, for the case when perturbations
and background fields become comparable.

Another point of criticism concerns neglect of the initial background magnetic field. It was
argued by Goodman & Xu (1994) and later repeated by Pessah (2010) that at some stage of the
MRI evolution, the channel amplitude will be much larger than the initial vertical field, i.e. bc�
b0z and therefore, the latter one can be neglected. First of all, it was Balbus & Hawley (1991), who
in their pioneering paper on the MRI, pointed out that even apparently negligible magnetic field
can drastically change the dynamics of the whole system. Second of all, according to Pessah’s own
estimates (Pessah 2010), bterm ≈ 3.8b0z in the ideal MHD limit. Hence, the condition bc� b0z is
clearly not met around the saturation point.

In the case of the KH instability, a physically better argumentation can be supported by the res-
ults of Miura & Pritchett (1982), who studied the instability in 2D11 for an arbitrary angle between
the velocity shear and the constant background magnetic field. They found that a perpendicular
field, which in our case is the b0z component, does not change the instability growth rate (it is the
same like in pure hydrodynamics). This result could be a hint that the b0z component might be neg-
lected in studies of the KH instability. However, we refrain from drawing too strong conclusions.
The magnetic field of the channels (br and bφ components), shortly before MRI termination, will
be comparable to b0z. This gives rise to non-diagonal components of the Maxwell stress tensor
(i.e. brb0z and bφ b0z) which vary in z direction. It would require a careful analysis to determine
how these magnetic tension components can affect the KH instability dynamics. In the case of
tearing modes, we do not know how the vertical magnetic field component influences their growth
rate.

Another dubious step in Pessah’s calculations is neglecting the Coriolis force in Eq (4.39) in the
regime, where γp ≈ γMRI. The time derivative of the velocity perturbations and the Coriolis force
are of the same order, i.e. ∂tvp = γpvp and |−vp×Ω0| ≈ |vp2γMRI/α| ≈ vpγp (since |α | is of order
1), respectively.

After these remarks, the results of Pessah (2010) should obviously be taken with some scepti-
cism. As already pointed out, we definitely cannot rely on his parasitic growth rate calculations.
However, we should not discard his oversimplified model completely, but rather see which parts
of it can be useful in our further analysis.

The MRI termination criterion

Pessah (2010) suggested two termination criteria, either when the parasitic instabilities and
the MRI (channels) have comparable growth rates (γp ≈ γMRI), or amplitudes (vp ≈ vc or bp ≈ bc).

11The system was homogeneous in the third direction.
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From a mathematical point of view, one can exclude the former criterion. Let us consider a system,
where there is no MRI yet. We introduce perturbations in velocity and magnetic field (with amp-
litudes ṽc and b̃c, respectively) that exactly correspond to the MRI channel solutions (Eqs. (4.18)
and (4.19)). Additionally, we add perturbations vp(t = 0) and bp(t = 0), from which the parasitic
instabilities will develop. We set the amplitudes of vp(t = 0) and bp(t = 0) to be arbitrarily smaller
than ṽc and b̃c, say max[vp(t = 0)] = ṽc10−10 and max[bp(t = 0)] = b̃c10−10. Initially, the second-
ary instability will develop more slowly than the MRI, because the former’s growth rate will be
much smaller, i.e. γp(t = 0)� γMRI. Since γMRI is constant and γp(t) increases (approximately expo-
nentially) with time, at some point both growth rates will be equal, i.e. γp(t0) = γMRI. However, at
this time, the parasitic to MRI amplitude ratio (max[vp(t0)]/max[vc(t0)]) will be even smaller than
initially, because for t ≤ t0, γp(t)≤ γMRI. The quantities related to the secondary instabilities would
have relative amplitudes smaller than 10−10 and can neglected. To play a dynamically important
role, the parasites must grow for some time at a higher rate than the MRI, i.e. with γp(t) > γMRI,
to catch up with the channel amplitudes. From this simple reasoning, we see that equality of both
growth rates, i.e. γp = γMRI, cannot be a good criterion for MRI termination. It has to happen at
some later time. Actually, in nature we expect both the MRI and the parasitic instability to be
triggered by random perturbations, i.e. both of them should initially have comparable amplitudes.
Still, at the time when γp(t0) = γMRI, the MRI channels will have much higher amplitudes, because
they were growing at a higher rate than the parasitic instabilities. Hence, from a physicist’s point
of view, we could say the condition γp(t0) = γMRI, does not determine MRI termination, but sets
the time after which it will soon12 happen.

The other MRI termination criterion (Pessah 2010), i.e. comparable amplitudes of the secondary
instabilities and the MRI channels, seems to be physically better justified. Certainly, at that stage,
the parasitic instabilities must have entered the non-linear phase and modified the MRI channel
structure.

The definition of the MRI termination point is also somewhat ambiguous. It could be chosen
when the MRI growth rate either starts to decrease, or drops to zero, i.e. when the volume in-
tegrated brbφ component of the Maxwell stress reaches its first maximum (the one, before the
turbulent phase sets in). In our simulations, we chose the latter condition, since one can measure it
unambiguously and we are interested in how much the MRI can amplify the initial magnetic field.

An alternative formulation

We adopt a different approach than Pessah (2010) and do not try to find approximate equations
for the parasitic instabilities at the cost of potentially oversimplifying the problem. Instead, we
discuss which features the exact equations for the secondary instability should have. Even though
our considerations will have no predictive power by themselves, they will prove to be very useful
when extrapolating our simulation results to the parameter regime which is relevant for core-
collapse supernovae. We begin the discussion with the Kelvin-Helmholtz instability. Then, we
briefly repeat the steps for the tearing modes.

As already mentioned before, even local simulations of the MRI with realistic initial magnetic
fields (b0z of order 1011G) are computationally unaffordable. To reduce the simulation’s cost,
following Obergaulinger et al. (2009), we use initial magnetic fields, which are approximately two
orders of magnitude higher, i.e. b0z ≈ 1013G, than those encountered in the proto-neutron stars.

12Obviously soon has to be somehow specified. In the MRI case, it should be understood as withing a few MRI
timescales, i.e. γ−1

MRI .
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This creates a theoretical problem, however. We need to find a way to extrapolate our simulation
results to the parameter regime, which is relevant for core-collapse supernovae. Needless to say,
one must always verify whether such an extrapolation is justified. Fortunately, it is the case for
simulations in which the MRI is terminated by the KH instability. As we will soon show, in the
high plasma β regime (i.e. for cs� cA), which is relevant for our studies, the initial magnetic field
can be amplified only by a constant factor in the ideal MHD approximation. This seems to be an
intrinsic feature of the MRI.

We do not have an appropriate expression for the growth rate of the fastest developing KH
mode in time-dependent MRI channels. However, we can guess some of its features from a simple
physical argumentation and dimensional analysis. We start with the expression valid for stationary
backgrounds in ideal hydrodynamics, i.e.

γKH = fKHvckKH, (4.47)

where fKH is a dimensionless function. For fKH = 1 and fKH ≈ 0.45, we recover Eqs. (4.28) and
(4.45), respectively. For time-dependent channels and background magnetic fields, the above ex-
pression must be modified. At first, when writing down all possible variables on which the growth
rate of the fastest developing KH mode may depend, the problem seems to be very complicated,

γKH = γKH(vc,vp,cAp,cAc,cAz,cms,kKH,kMRI,γMRI,Ω,α). (4.48)

It can depend on six speeds (the velocity amplitude of MRI channels vc, perturbation velocity vp,
three Alfvén speeds related to the magnetic fields of the perturbations cAp, the magnetic fields
of MRI channels cAc and the constant background magnetic field cAz, and the fast magnetosonic
velocity cms), two lengths (the inverses of the KH instability and the MRI wavevectors k−1

KH and k−1
MRI,

respectively), two timescales (the inverses of the MRI growth rate γ−1
MRI and the angular velocity

Ω−1), and the dimensionless parameter α determining the rotational profile. However, many of
these variables are not independent. We expect that, similarly to Eq. (4.44), the wavevector of
the fastest growing KH mode kKH will still be mainly proportional to the wavevector of the fastest
growing MRI mode kMRI. The dimensions of any other variables possibly influencing kKH must
cancel out:

kKH = kMRIh
(

vc

cAz
,

vp

cAz
,

cAp

cAz
,
cms

cAz
,

Ω

γMRI

,
kMRIcAz

γMRI

,α

)
, (4.49)

where h is a dimensionless function. In general, we can say that with the help of the above
equation, the explicit dependence of γKH on kKH in Eq. (4.48) can be removed, i.e.

γKH = γKH(vc,vp,cAp,cAc,cAz,cms,kMRI,γMRI,Ω,α). (4.50)

We are interested in the high plasma β regime, in which the fast magnetosonic speed, cms ≈
cs � cA, can be treated as infinite (the fast magnetosonic wave crossing time is much shorter
than the MRI timescale, i.e. λMRI/cms � γ−1

MRI). This allows us to use the incompressible flow
approximation, i.e. cms not enter Eq. (4.50). As long as the parasitic perturbations are small (with
respect to the other background quantities), they should not influence the secondary instability
growth rate either:

γKH = γKH(vc,cAc,cAz,kMRI,γMRI,Ω,α). (4.51)

With the help of Eq. (4.16), we can eliminate either the angular velocity, or the MRI growth
rate, since γMRI ∝ Ω. The fastest growing MRI mode is given by Eq. (4.17), hence kMRI is not
independent. The channel amplitudes are related by Eq. (4.20), hence vc ∝ cAc and one of the two
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velocities is redundant. In the end, there are only four independent variables in the equation for
the KH instability growth rate:

γKH = γKH(cAc,cAz,Ω,α). (4.52)

From dimensional analysis, the above equation must have the form

γKH = Ω fKH

(
cAc

cAz
,α

)
, (4.53)

where fKH is a dimensionless function which can depend only on two dimensionless variables. We
see that the original KH instability growth rate problem (Eq. (4.48)), initially depending on eleven
variables, has been greatly simplified. However, we should not forget that the whole complexity of
this problem is hidden in the function fKH(cAc/cAz,α), and determining its form can be extremely
complicated. Yet, as long as the amplitude of the secondary instability is small, fKH depends only
on one time dependant dimensionless variable, i.e. cAc/cAz.

The KH instability will not affect the MRI until their amplitudes become comparable. As
already mentioned before, it is difficult to tell , when this will happen, but for sure not before

γKH = γMRI. (4.54)

From Eqs. (4.53) and (4.16) we have

Ω fKH

(
cAc

cAz
,α

)
=−α

2
Ω, (4.55)

hence

fKH

(
cAc

cAz
,α

)
=−α

2
. (4.56)

This is an interesting result: both growth rates become equal for a constant ratio cAc/cAz. If
γKH = γMRI were the termination criterion, the MRI would only amplify the initial magnetic field
by a constant factor.

Once the perturbations amplified by the KH instability influence the dynamics of the system, the
situation becomes more complicated. The MRI growth rate, will no longer be constant. Moreover,
the KH instability will be affected by its own perturbations, i.e.

γKH = γKH(cAc,cAz,cAp,vp,Ω,γMRI,γKH,α), (4.57)

where γMRI and γKH on the right hand side equation represent the time dependence of the other
variables, i.e. if a given quantity is mainly changed by the MRI or the KH instability, its logarithmic
time derivative is approximately proportional to γMRI or γKH, respectively, e.g. ∂t ln(cAc)≈ γMRI. We
can rewrite the above equation, bearing in mind the dimensionality of all variables included in the
problem,

γKH = ΩgKH

(
cAc

cAz
,

cAp

cAz
,

vp

cAz
,
γMRI

Ω
,
γKH

Ω
,α

)
, (4.58)

where gKH is a dimensionless function depending on dimensionless variables. The key point to
realise here is that the further evolution of the MRI and KH instability will depend on the parasitic
perturbations, which were introduced at t = 0. Therefore, it is impossible to formulate a general
conditions like Eq. (4.56) for the MRI termination point. However, if we make the physically
reasonable assumption that the initial perturbations of both the MRI and the KH instability are
proportional to the background magnetic field, i.e. c̃Ac ∝ cAz, ṽc ∝ cAz, max[cAp(t = 0)] ∝ cAz and
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max[vp(t = 0)] ∝ cAz, further progress can be made. If in two systems with different values of the
initial vertical magnetic field the corresponding ratios cAc/cAz and cAp/cAz are the same at t = 0,
they will also stay the same later in the evolution. In both systems, the ratios cAc/cAz will equally
change with time, i.e. cAc/cAz ∝ exp(γMRIt). The same holds for the ratios cAp/cAz , which grow at
the same rate, i.e. γKH(t) = γKH(cAc/cAz). ratio cAp/cAc. Consequently, the ratios cAp/cAc will also
be equal in both systems. Therefore, both systems will enter the non-linear phase of the MRI at the
same time and with the same corresponding amplitude ratios. Hence, we can presume that during
the further evolution, all ratios will be similar if not the same. Consequently, the MRI termination
happens in both systems for the same cAc/cAz ratios. We conclude that the MRI will increase the
initial magnetic field by a constant amplification factor A, i.e.

bterm =Ab0z. (4.59)

The value of A needs to be determined from the numerical simulations.

Now, we discuss MRI termination caused by tearing modes. As we will show later, this scenario
is not relevant for core-collapse supernovae. The discussion is based on resistive-viscous MHD
equations. When, the amplitude of the secondary instability is much smaller than that of the MRI
channels, the growth rate of the fastest developing tearing mode can in general depend on the
following parameters:

γTM = γTM(η ,ν ,cAc,vc,cAz,kTM,kMRI,γMRI,Ω,α). (4.60)

Once again, we expect the wavevector of that the fastest growing mode, kTM, to be a function of the
other parameters. Therefore, it can be eliminated from the above equation. For the same reasons
like in the case of the KH instability, many of the other quantities are not independent either. In
the end, the growth rate equation reduces to

γTM = γTM(η ,ν ,cAc,cAz,Ω,α). (4.61)

With the help of dimensional analysis, the above expression can be rewritten as

γTM = Ω fTM

(
η

ν
,
cAc

cAz
,
ηΩ

c2
Az

,α

)
, (4.62)

where fTM is a dimensionless function which depends on dimensionless variables. Notice the key
difference between Eqs. (4.53) and (4.62). The tearing mode growth rate expression contains
resistivity η , whose dimension is “compensated” by Ω/c2

Az (or equally well by either Ω/c2
Ac or

Ω/(cAccAz)).13 Hence, unlike for the KH instability, cAc and c−1
Az must enter the growth rate equa-

tions with different powers. This means that the ratio cAc/cAz at MRI termination (and therefore
the total field amplification) must depend on the initial magnetic field. Therefore, one cannot
simply extrapolate results within the parameter regime, in which tearing modes are the dominant
secondary instability. Fortunately, this is not the case in proto-neutron stars.

Finally, we mention that also the termination caused by the KH instability becomes more com-
plicated in non-ideal MHD. Since at least the viscosity, ν , has to enter the KH growth rate equa-
tion, it can no longer have such a simple form like (4.53). Repeating the discussion for the tearing

13 The dimension of resistivity cannot be “compensated” only by viscosity for the simple reason that tearing modes
are present in resistive-non-viscous MHD.
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modes, we find that the KH instability in resistive-viscous MHD must have the following depend-
ence

γKH = Ω f̃KH

(
ν

η
,
cAc

cAz
,
νΩ

c2
Az

,α

)
. (4.63)

There is still a big difference between Eqs. (4.63) and (4.62), however. Because the KH instability
is an ideal (magneto-)hydrodynamical instability, viscous and resistive terms will enter the growth
rate equation as corrections. However, for sufficiently high hydrodynamic and magnetic Reynolds
numbers, i.e. Re,Rm� 1, these corrections can possibly be neglected. We could express this fact
symbolically as

γKH = Ω fKH

(
cAc

cAz
,α,

)
−ΩgKH

(
ν

η
,
cAc

cAz
,
νΩ

c2
Az

,α

)
. (4.64)

where gKH� fKH for Re,Rm� 1. Hence, using ideal MHD equations for Re,Rm > 100 should still
be a reasonable approximation. The tearing modes are a resistive MHD instability and a split like
the one in Eq. (4.64) is not possible. The resistivity must enter the main term in Eq. (4.62) and can
never be neglected.

Some simple estimations

So far our discussion of the MRI termination was quite formal. Even though our reasoning was
mathematically correct, it is hard to gain a simple physical understanding of the problem, when
looking at Eqs. like (4.53) and (4.62). At this point we shift focus to a less rigorous approach.
We will support our arguments by equations, whose usage is not always well justified. Some of
them may be even incorrect and oversimplify the problem. However, these equations will have
one big advantage, namely simplicity. To summarise, we go back to Pessah’s approach (Pessah
2010), but this time fully aware of its limitations. One point has be made clear. We will not treat
the following results as a physically well justified approximate solution of the MRI termination
problem and we will not use them to analyse and interpret our numerical simulations. The sole
purpose of the following discussion is to gain some intuitive understanding of the phenomenon.
As we will see, Eqs. (4.53) and (4.62))encompass the results of Pessah’s toy model.

Pessah (2010) considered parasitic instabilities developing in time-independent MRI channels,
i.e. Eqs. (4.39) and (4.40). He seeks solutions using the WKB ansatz (Eqs. (4.41) and (4.42)) of
the form

vp = ṽp(z)eik·x+γp(t−t0),

bp = b̃p(z)eik·x+γp(t−t0).

The main difficulty consists in determining the functions ṽp(z) and b̃p(z), which Pessah expands
these functions in Fourier series (ṽp(z) and b̃p(z) must be 2π/kMRI periodic in z)

ṽp(z) =
∞

∑
n=−∞

αn exp(inkMRIz), (4.65)

b̃p(z) =
∞

∑
n=−∞

βn exp(inkMRIz). (4.66)

He finds recursion relations for the coefficients αn and βn (for the details see Pessah (2010)),
and solves those relations numerically. Obviously, the sums in Eqs. (4.65) and (4.66) have to
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be truncated in numerical calculations. Pessah (2010) reports that for |n| ≤ 30 he achieved a
convergence to “the desired accuracy” (he did not specify this statement, however). This is a very
important point, to which we will come back later.

In the ideal MHD limit, Pessah (2010) finds that the KH mode with the wavevector

kKH ≈ 0.59kMRI (4.67)

has the highest growth rate given by

γKH ≈ 0.45kKHvc(t0). (4.68)

With the help of Eqs. (4.44), (4.17), and (4.20), we rewrite the above equation as

γKH ≈−0.13αΩ
cAc

cAz
, (4.69)

and note that its form is in accordance with Eq. (4.53).

If we assume that MRI termination happens, when the condition

γKH = γMRI (4.70)

is met, then by comparing Eqs. (4.69) with (4.16), we would obtain

−0.13αΩ
cAc

cAz
=−α

2
Ω, (4.71)

and hence
cAc

cAz
=

bc

b0z
≈ 3.8. (4.72)

The initial magnetic field is amplified by a constant factor (≈ 3.8) before the MRI is terminated.
Pessah (2010) reported this result for Keplerian rotational profiles, but the generalisation to any
rotational profile given by Eq. (4.1) (i.e. for any α) is straightforward. Eq. (4.72) agrees with our
prediction (see Eq. (4.56) and the discussion below) that MRI termination given Eq. (4.70)should
happen for a constant ratio cAc/cAz. With our method, however, we cannot determine whether this
ratio is independent of α .

As we already mentioned before, Eq. (4.70) is not a condition for MRI termination. It should
rather happen when the amplitudes of the parasitic instabilities become comparable to those of
the MRI channels, for i.e. max[bp] ≈ bc. If we assumed that MRI channels grew completely
undisturbed until the termination time, t term , and then their destruction would instantaneously
happen at t = t term, we would still be allowed to use Eqs. (4.16), (4.18) and (4.19) to describe
their evolution for t < t term (this assumption obviously is not met in reality). Under the same
assumption, the KH instability growth rate would be l given by Eq. (4.69), i.e. shortly before MRI
termination, the KH instability would achieve its highest growth rate

γ
max
KH ≈−0.13αΩ

cAc(t term)

cAz
. (4.73)

For physically plausible initial conditions (random perturbations from which both the MRI and
parasitic instabilities will develop), the time interval between when condition (4.70) is met (t = t0)
and the MRI is terminated (t = t term), should be independent of the initial magnetic field. Hence,
the channel amplitude cAc(t0) would be amplified during this time interval by a constant factor

cAc(t term) = cAc(t0)eγMRI(t term−t0). (4.74)
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Combining Eqs. (4.70), (4.73) and (4.74), we notice that at the MRI termination point the follow-
ing condition would be met

γKH = σγMRI, (4.75)

where
σ ≡ eγMRI(t term−t0). (4.76)

The time t term is unknown and it would need to be determined by numerical simulations. We do
not expect Eqs. (4.74) and (4.76) to have such a simple form in reality. However, we can still
postulate that relation (4.75), with a constant factor σ > 1, should hold at MRI termination. Once
the value of σ is determined with the help of numerical simulations, we can use it to calculate
the MRI termination amplitude for any initial magnetic field. Combining Eqs. (4.72), (4.73) and
(4.75), we have

cAc(t term)≈ 3.8σcAz. (4.77)

A final comment has to be made concerning condition (4.75). It should not be understood that σγKH

is a sort of threshold for MRI termination. MRI channels would be destroyed for any γKH > γMRI, if
the secondary instability were given sufficient time. Eq. (4.75) and the factor σ appear as a result
of a particular interplay between the instability growth rates and their initial perturbations.

Pessah (2010) reports that the MRI is terminated by tearing modes (before the KH instability
would do the job) for magnetic Reynolds numbers Rm < 1, i.e. for

c2
Az

ηΩ
< 1. (4.78)

Therefore, tearing modes should not play any role in the MRI termination problem, given the con-
ditions relevant for core-collapse supernovae (Rm� 1). At this point, we could finish the discus-
sion of tearing modes, since from our point of view they seem to be unimportant. However, there
are two good reasons to pay some attention to this secondary instability. Firstly, tearing modes can
be also driven by numerical resistivity (see the discussion in the previous chapter). Obergaulinger
et al. (2009) observed them in ideal MHD simulations of MRI in core-collapse supernovae. There-
fore, it is important to understand how the (undesired) appearance of this secondary instability can
affect simulation results. Secondly, we would like to point out the differences between MRI ter-
mination caused by the KH instability and by tearing modes.

The problems with tearing modes result from the form of their growth rate given by Eq. (4.62).
Already at the stage, when they grow at the MRI rate, i.e. when γTM = γMRI, the ratio cAc/cAz

must depend on the initial magnetic field. This means that also in the subsequent MRI termination
phase, this ratio will not be constant either. Thus, many simulations would be needed to investigate
the dependence of bterm/b0z on the initial magnetic field and resistivity. In addition, even if we
found such scaling relations, we could not use them to extrapolate the simulation results to an
unknown parameter regime. To do that, we would need to have a sound theoretical justification
that this is allowed. All in all, this means that much more work would be required to understand
MRI termination caused by tearing modes.

No, we show how the MRI itself is affected by a large value of the resistivity. Then, we discuss
tearing modes.

For very low magnetic Reynolds numbers, i.e. Rm < 1, the fastest developing MRI mode will
no longer have the growth rate and wavevector given by Eqs. (4.16) and (4.17), respectively, which
are valid in ideal MHD. Calculations of MRI growth rates in non-ideal MHD were done by Pessah
& Chan (2008). Needless to say, resistive and viscous terms in the dispersion relation lead to



118 MAGNETOROTATIONAL INSTABILITY

additional complications. For our purposes, we will use a more heuristic approach, yet giving
correct qualitative results. We begin with Eqs. (4.16) and (4.17), which are valid for ideal MHD,
i.e.

γMRI =−
α

2
Ω, (4.79)

kMRI =

√
1− (2+α)2

4
Ω

√
ρ

b0z
=

√
1− (2+α)2

4
Ω

cAz
. (4.80)

The width of the MRI channel is 2π/kMRI and its amplitude grows according to

bc(t) = b̃ceγMRIt . (4.81)

Imagine that at some point, say at the time t0, we turn on resistivity. For the time being, we
can forget about any MRI activity and just calculate at what rate the resistivity would diffuse the
magnetic field of the channel14

bc(z, t0) = bc(t0)sin(kMRIz). (4.82)

For this magnetic field configuration, solving the diffusion equation,

∂tb = ∇
2b, (4.83)

is trivial, since the sine is its eigenfunction. If the MRI were absent, the magnetic field would
decrease according to

bc(z, t) = bc(t0)sin(kMRIz)e−γDt , (4.84)

where
γD = ηk2

MRI. (4.85)

Plugging (4.17) into the above equation, we obtain

γD = η
Ω2

c2
Az
. (4.86)

In the parameter regime, in which tearing modes are relevant for MRI termination, we can estimate
with the help of Eq. (4.78) that

γD > Ω. (4.87)

On the other hand, from Eq. (4.16), we have

γMRI =−
α

2
Ω≈Ω, (4.88)

and hence
γD & γMRI. (4.89)

For the mode kMRI, which is the fastest growing one in ideal MHD, the resistivity would diffuse the
magnetic field faster than the MRI is able to amplify it. This does not mean, the MRI is completely
suppressed by the dissipative effects that in this parameter regime. Modes with kmri < kMRI have
smaller growth rates, γmri, than γMRI (the maximum growth rate given by Eq. (4.16)) in ideal MHD.

14To make the key point, we only analyse the channels’ dependence in z direction. In a proper analysis of this
problem, Pessah & Chan (2008) show that the MRI channel orientation in the horizontal plane depends on resistivity
and viscosity.
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However, from Eq. (4.85), which is valid for any wavevector, we see that their magnetic field
would be diffused at a lower rate in resistive MHD. Therefore, there could be some modes whose
MRI growth rate γmri in ideal MHD exceeds their dissipation rate in resistive MHD for Rm < 1, i.e.

γmri > γD. (4.90)

We would expect that such modes would still be MRI unstable for Rm < 1, and their growth rate
could be roughly estimated as

γ̃mri ≈ γmri− γD. (4.91)

In general, we could presume from this very simplified analysis that the fastest developing MRI
modes in non-ideal MHD have smaller growth rates, γ̃MRI, and longer wavelengths than in ideal
MHD. Moreover, the smaller the magnetic Reynolds number, the lower the maximum MRI growth
rate. The rigorous calculations of Pessah & Chan (2008) confirm our heuristic considerations. For
Rm = 1, the maximum growth rate is one order of magnitude lower than in ideal MHD.

Pessah & Chan (2008) analytically studied the MRI in resistive-viscous MHD. We summarise
the results relevant for us in Appendix B. These authors numerically solved the dispersion relation
to find the fastest growing-modes for arbitrary hydrodynamic and magnetic Reynolds numbers.
Pessah & Chan managed to find analytical expressions for γ̃MRI only in limiting cases, usually
when the Reynolds numbers were either very large or very small, e.g. for Rm� 1 and Re� 1, or
for Re =Rm� 1. Already for Re =Rm = 10, using expressions derived in ideal MHD to determine
the fastest growing mode (Eqs. (4.16) and (4.17)) leads to errors of order ≈ 10%. For the MRI
in core-collapse supernovae,where Re,Rm� 10, we can safely use Eqs. (4.16) and (4.17) (see the
discussion in Appendix B).

We come back now to the main discussion of MRI termination caused by tearing modes. We
will consider a physically unrealistic scenario. We assume that the MRI can be described by
Eqs. (4.16) and (4.17), whereas for tearing modes, we use resistive-viscous MHD equations. This
scenario would be only justified if the KH instability could not develop in the system for some
reason. Only then for Rm > 1, the tearing modes could play any role. At first, this scenario may
seem to be not worth our time, but it is quite important from a numerical point of view. In 2D
MRI simulations assuming axial symmetry, the KH instability is suppressed and therefore the
MRI can be terminated only by tearing modes. As we will soon see, exactly this happens in our
2D simulations.

We start the analysis of this termination scenario by first considering its precondition, i.e. when
tearing modes grow at the rate of the fastest developing MRI (γTM = γMRI). In resistive MHD, we
could estimate γTM with Eq. (4.32). When additionally viscosity is present in the system, we could
use either Eq. (4.33) or Eq. (4.34). The careful reader could point out that all three equations
were derived for magnetic field profile b0z ∝ tanh(δ z) instead of b0z ∝ sin(δ z)), and without any
background velocity. However, for the current discussion, these are irrelevant details.15 We choose
Eq. (4.33) for our further analysis (this equation is the most relevant for core-collapse supernova
conditions), but it is easy to repeat it with the other equations. We first express Eq. (4.33) using
the notation from the previous chapter. For the background magnetic field given

bz(z) = b0 tanh(δ z), (4.92)

where b0 is a constant amplitude and δ−1 defines the magnetic shear length, tearing modes with

15The tearing mode growth rate for a background magnetic field b0z ∝ sin(δ z) is given by Eq. (3.85).
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wavevectors ktm ∼ δ growth a rate

γtm =
2
3

21/3
η

5/6
ν
−1/6

(
b0ktm√

ρ0

)1/3

δ
4/3
(

δ

ktm

− ktm

δ

)
. (4.93)

The above equation cannot be used to determine the fastest growing tearing mode, i.e. γTM(kTM),
(see Chapter 3 for an explanation). However, in general γtm = γtm(η ,ν , b0,ρ0,δ ,ktm), and for given
η , ν , b0 and ρ0, a tearing mode growth rate can be treated as a function of two variables, i.e.
γtm = γtm(δ ,ktm). Even thought we do not know the explicit form of γtm(δ ,ktm), it is obvious from a
physical point of view that for every δ , there must be a wavevector (kTM(δ )) for which the growth
rate is highest (γTM).16 Hence, kTM = f δ , where f is a dimensionless function. Therefore, we can
expect that the growth rate of the fastest developing tearing mode scales like17

γTM ∝ η
5/6

ν
−1/6

(
b0√
ρ0

)1/3

δ
5/3. (4.94)

Now, we adopt the above equation to the MRI problem. The background magnetic field amplitude
b0 is replaced with bc, and δ with kMRI

γTM ∝ η
5/6

ν
−1/6c1/3

Ac k5/3
MRI . (4.95)

The only missing part in this proportionality is a constant factor, which we denote as w, i.e.

γTM = wη
5/6

ν
−1/6c1/3

Ac k5/3
MRI . (4.96)

The wavevector of the fastest growing MRI mode is given by Eq. (4.17), hence

γTM = w
(

1− (2+α)2

4

)5/6

η
5/6

ν
−1/6c1/3

Ac c−5/3
Az Ω

5/3. (4.97)

Now, we can compute for what value of cAc the tearing modes grow at the MRI rate. Comparing
the above equation with the MRI growth rate equation (4.16) we have

w
(

1− (2+α)2

4

)5/6

η
5/6

ν
−1/6c1/3

Ac c−5/3
Az Ω

5/3 =−α

2
Ω, (4.98)

and hence

cAc = c5
Azν

1/2
η
−5/2

Ω
−2w−3

(
1− (2+α)2

4

)−5/2(−α

2

)3

, (4.99)

i.e. the MRI channel amplitude, bc = cAc
√

ρ , is not linearly proportional to the initial vertical
magnetic field, b0z = cAz

√
ρ , when the condition γp = γMRI is met.

If we use Eq. (4.33) instead of Eq. (4.34) to calculate the tearing mode growth rate, we obtain

cAc = c4
Azν

1/2
η
−2

Ω
−3/2w−5/2

(
1− (2+α)2

4

)−2(−α

2

)5/2

, (4.100)

16Not for every combination of η , ν , b0, ρ0 and delta, tearing modes develop in a given system (see Chapter 3). In
this discussion, we implicitly assume that these parameters are chosen such that the system is tearing mode unstable for
certain ktm.

17There is no guarantee that because γtm ∝ η5/6ν−1/6(b0/
√

ρ0)
1/3 is valid for ktm ∼ δ (Eq. (4.93)), then also γTM ∝

η5/6ν−1/6(b0/
√

ρ0)
1/3 holds for kTM. Hence, Eq. (4.94) might be incorrect. However, we only use this equation for

“demonstrative purposes” in the discussion and not for rigorous calculations. Moreover, any other plausible form of
γTM would not significantly change conclusions that we draw in this section.
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where the constant w has a different value. Finally, in resistive-non-viscous MHD, we have from
Eq. (4.32)

cAc = c4
Azη

−3/2
Ω
−3/2w−5/2

(
1− (2+α)2

4

)−2(−α

2

)5/2

. (4.101)

Already at this point, we see how analysing simulations, in which the MRI is terminated by tearing
modes, becomes more complicated. We would need to determine numerically the dependence of
the amplification factor A on the initial magnetic field, which would require many more simula-
tions. Even if we succeed, we would still not be sure whether we can extrapolate these results to
the core-collapse supernova regime.

4.5 Numerical simulations

As we already discussed in the previous section, the MRI termination is a very complex process,
which is too difficult to be fully described analytically. Therefore, numerical simulations are
indispensable to study this highly-non linear phenomenon. Already Obergaulinger et al. (2009)
numerically investigated this problem and the subsequent MRI driven turbulent phase in core-
collapse supernovae. These authors concentrated on exploring a wide range of the parameter
space (e.g. different initial magnetic field configurations, entropy and rotational profiles) mostly
by means of 2D and also by a few 3D local ideal MHD simulations. For reasons discussed in
the next section, Obergaulinger et al. (2009) used artificially enhanced initial magnetic fields to
reduce the computational costs. However, these authors did not provide a reliable prescription
how to extrapolate their results to realistic initial magnetic field strengths. Moreover, the influence
of the numerical resistivity and viscosity on these authors’ results remains unknown.

We extend these studies to non-ideal MHD, but our main goals being different. Instead of
covering a large subset of the physical parameter space, we focus on one initial model, in which,
apart from numerical parameters, we only vary the initial magnetic field, resistivity and viscosity.
We address two questions:

1. Is it possible to extrapolate simulation results, which are obtained with artificially enhanced
initial magnetic fields, to the regime relevant for core-collapse supernovae?

2. What is the influence of numerical resistivity and viscosity on these results?

In the next section, we describe the initial condition used in all our simulations. Then, we
discuss numerical methods applied in our simulations. In Sections 4.5.2 and 4.5.3, we present the
results of our 2D and 3D MRI simulations, respectively. In Sec. 4.5.4, we briefly compare these
simulations, and finally, in Sec. 4.6, we discuss the implications of our results for core-collapse
supernovae.

4.5.1 Initial conditions

Our initial setup is based on the one used by Obergaulinger et al. (2009). The simulation box
centre is located in the equatorial plane at a radius r0 = 15.5 km, which is roughly in the middle
of a nascent proto-neutron star (rPNS ≈ 30 km). In 3D simulations, the default box size is 1 km×
4 km× 1 km in r,φ and z direction, respectively. The boundary conditions are periodic in φ

and z, and shearing-disc (Klahr & Bodenheimer 2003) in r direction. This choice is natural for
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the φ direction, whereas some justification is required for the z direction, in which the system is
obviously not periodic. However, the gravitational force’s vertical component, Fgz, is much smaller
than the radial one, Fgr, near the equatorial plane for r ∈ [15,16] km and z ∈ [−0.5,0.5] km, 18 and
therefore the former one can be neglected. Under this approximation, one can assume periodicity
in the vertical direction. Unlike in accretion disc simulations, we could not use the shearing
sheet boundary condition in the radial direction, because they do not allow for global gradients
of thermodynamical variables (which are present in core-collapse supernovae) in the simulation
domain. Therefore, following Obergaulinger et al. (2009), we use the shearing disc boundary
condition, which is able to take these gradients into account. We do not perform a transformation
to the frame co-rotating with the fluid and we assume radial periodicity of the perturbations, e.g.

δρ(r, t)≡ ρ(r, t)−ρ(r,0), (4.102)

where δρ(r, t) is by definition an Lr-periodic perturbation at time t, and ρ(r,0) is the initial back-
ground state. Apart from the angular velocity,19 these boundary conditions are applied to density,
momentum and entropy.

In 2D simulations, axial symmetry is assumed and therefore all quantities are independent of φ .
The default simulation box size is 1 km×1 km in the (r,z) plane.

As an approximate model for neutron star matter, we use the hybrid equation of state (EOS) of
Keil et al. (1996). The total gas pressure, p, consists of two parts: baryonic, pb, and thermal pth.
They are respectively given by

pb = κρ
Γb , and (4.103)

pth = (Γth−1)eth, (4.104)

where κ is the EOS’s polytropic constant, Γb and Γth are the barotropic- and thermal- adiabatic
index, respectively, and eth is the thermal part of the internal energy e, i.e. eth = e− pb/(Γb−1).
We only consider subnuclear densities, ρ < ρnuc = 2×1014 g cm−3, since in our simulations the
density never exceeds a few times 1013 g cm−3.

The rotational profile is taken from the global MRI simulations of Obergaulinger et al. (2006b):

Ω = Ω0

(
r
r0

)α

, (4.105)

where Ω0 = 1900 s−1, r0 = 15.5 km and α =−1.25 (for the Keplerian profile, the dimensionless
parameter α = −1.5). The resulting centrifugal force is insufficient to balance the gravitational
attraction. The gas is kept in an initial hydrodynamical equilibrium by an additional pressure
gradient, so that

ρ∂rϕ−∂r p+ rρΩ
2 = 0, (4.106)

where ϕ is the gravitational potential. The initial distributions of angular velocity, pressure, density
and gravitational potential are depicted in Fig. 4.3.

The choice of the initial magnetic field is a more subtle issue. In all simulations, we used
a somewhat idealised initial setup. The magnetic field only has a constant component in the z
direction, i.e.

b = b0zẑ, (4.107)

18The ratio Fgz/Fgr is highest at r = 15 km and z =±0.5 km, yet it is as small as 0.03.
19In the shearing sheet method, by construction, angular velocity gradients are not present in the system.
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Figure 4.3: Initial conditions used in all our 2D and 3D MRI simulations.

This field geometry is a popular choice in MRI simulations, (see, e.g. Balbus & Hawley (1991);
Hawley & Balbus (1991); Sano & Inutsuka (2001); Obergaulinger et al. (2009)), since the vertical
component is the most important one for the development of the instability (Balbus & Hawley
1998). Another common choice is a so called zero net flux configuration (see, e.g. Fromang et al.
(2007); Fromang & Papaloizou (2007); Obergaulinger et al. (2009)), in which the magnetic field
has a sinusoidal radial dependence, i.e. b ∝ ẑsin(krr), where kr is chosen in such a way that an
integer number of wavelengths fits the computational domain (kr = 2πn/Lr, Lr being the radial
box length and n a natural number).

The initial magnetic field amplitude, b0z, requires some further comments. According to state-
of-the-art stellar evolution codes, the pre-collapse magnetic field for the most strongly magnetised
progenitors, is less than about 109 G. In the initial collapse phase, the magnetic field can be ampli-
fied by compression by two orders of magnitude to ≈ 1011 G (Meier et al. 1976). From Eq. (4.17)
we estimate, that given the proto-neutron star conditions, the length of the fastest growing MRI
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mode is

λMRI ≈ 6.9 cm
(

b0z

1011 G

)(
ρ

2.5×1013 g cm−3

)−1/2(
Ω

1900 s−1

)−1

. (4.108)

Assuming that approximately 10 zones are required to properly resolve an MRI channel,20 we
would need a resolution of ≈ 105 zones in each direction. Such a high resolution is already unaf-
fordable in 2D simulations, not to mention 3D ones. One could reduce the amount of necessary
zones by taking a significantly smaller box of size 1003 cm3. Then, only 1003 zones would be
required to resolve the MRI growth. However, this would not solve the problem, because the ro-
tational velocity (vφ ≈ 3×109 cm s−1) would limit the allowed timestep to ∆t ≈ 3×10−8 ms, i.e.
almost 109 iterations would be required to simulate the MRI until the termination point (≈ 15 ms).

Therefore, Obergaulinger et al. (2009) adopted a different approach to reduce the computational
cost. They used initial magnetic fields, which were two orders of magnitude higher (b0z ≈ 1013 G),
to increase the wavelength of fastest growing MRI mode to ≈ 10 m. This reduces the minimum
resolution to ≈ 100× 400× 100 zones in a 1 km× 4 km× 1 km box. Because the maximum
allowed timestep increases to ∆t ≈ 3× 10−4 ms, less than 106 iterations are required to simulate
15 ms, which is an affordable number.

In our simulations, we follow Obergaulinger et al. (2009) and also use artificially enhanced
initial magnetic field amplitudes. We made sure, however, that for the chosen values, only an
integer number of the fastest growing MRI modes fits into the computational domain. Otherwise,
they could be suppressed by an unfavourable box size, which is an undesired, yet easy to avoid
numerical artefact.21

To trigger the MRI, Obergaulinger et al. (2009) added random velocity perturbations of the form

v1 = Ωr
[
0.1δRr(r,φ ,z)r̂+δRφ (r,φ ,z)φ̂+δRz(r,φ ,z)ẑ

]
(4.109)

to the background velocity profile
v0 = Ωrφ̂, (4.110)

where Rr(r,φ ,z),Rφ (r,φ ,z) and Rz(r,φ ,z) are random numbers in the range [−1,1], and δ is the
perturbation amplitude (of order 10−5). Hence, the initial velocity field is given by

v = Ωr
[
0.1δRr(r,φ ,z)r̂+{1+δRφ (r,φ ,z)}φ̂+δRz(r,φ ,z)ẑ

]
. (4.111)

Sometimes these perturbations failed to excite the fastest growing MRI modes (see next section
for more detail). To make sure that these modes are triggered in every simulation, we added a
sinusoidal perturbation, whose wavelength is equal to λMRI, to the radial velocity component. The
final form of the initial velocity field reads

v = Ωr
[
{0.1δRr(r,φ ,z)+ ε sin(kzz)}r̂}+{1+δRφ (r,φ ,z)}φ̂+δRz(r,φ ,z)ẑ

]
, (4.112)

where kz is the radial perturbation wavevector and ε is the amplitude of the sinusoidal perturbation.
If not otherwise written, kz = kMRI, δ = 10−5, and ε = 2×10−6.

20We discuss this issue in detail in Section 4.5.2 on 2D simulations. It turns out that 10 zones is a good estimate.
21 We observed that in simulations with a magnetic field amplitude, for which say 2.5 fastest growing modes would fit

in the domain, usually three MRI channels would form. Depending on the initial perturbations, there were two possible
scenarios: either all three channels had the same length (hence these modes were shorter than the fastest growing ones),
or two channels had the length of the fastest growing one, and one smaller channel which grew considerably more
slowly. In both cases, the MRI developed at the rate which was lower than theoretically expected.



4.5 NUMERICAL SIMULATIONS 125

Numerical methods

In the previous chapter, we investigated the code’s numerical resistivity and viscosity with the
help of wave damping and the tearing mode simulations. The numerical dissipation is always an
undesirable effect, which can sometimes drastically change the dynamics of the simulated system.
Ideally, to minimise the numerical errors, we would like to use an infinitely high resolution with
an infinitely small time-step. Because such a simulation would require an infinite amount of
computational time, one needs to find an appropriate trade off between the desired accuracy and
the computational cost. Based on the results from the previous chapter, we chose a numerical
setup for 2D and 3D MRI simulations.

We decided to use the code’s best reconstruction scheme (MP9), even though it requires more
ghost zones than the other schemes. This aspect is especially important in 3D simulations, in
which MPI parallelisation is exploited. The increased number of ghost zones greatly decreases
the physical part of the simulated domain. To partially reduce this inevitable computational loss,
we used a hybrid code parallelisation, i.e. a combination of OpenMP and MPI techniques.22 The
accuracy offered by the MP9 scheme (very low numerical dissipation in comparison to the other
schemes) well justifies this extra computational cost.

When it comes to the time integration, we decided to employ the RK3 scheme. In the tearing
mode simulations, the main contribution to the numerical dissipation came form the spatial dis-
cretisation errors. We expect this to be also the case in the MRI simulations. Therefore, using the
RK4 time integrator, which is computationally one third more expensive, is not justified. The CFL
factor was set to CCFL = 0.7 for stability reasons. For higher values, the tearing modes simulations
became numerically unstable, and for lower values there was no accuracy gain observed.

In the wave damping simulations, all three Riemann solvers (LF, HLL and HLLD) performed
equally well. The teaing mode tests showed that, as expected, the LF solver was inferior to the
other ones and introduced much more numerical resistivity to the system. Unfortunately, it was
impossible to compare the HLL and HLLD solvers in those tests. We decided to use the HLLD
Riemann solver, because it is (theoretically) the most accurate one.

4.5.2 2D simulations

The main advantage of 2D simulations is that they are computationally less expensive, but their
practical application is very limited, because the KH instability cannot develop due to axis sym-
metry constraint (Pessah (2010)) and the MRI can only be terminated by tearing modes. For the
hydrodynamic and magnetic Reynolds numbers much larger than one (the parameter regime rel-
evant for the core-collapse supernovae), the KH instability develops much faster than the tearing
modes. This means that in 2D simulations, the MRI will reach amplitudes higher than in reality,
before the channels are destroyed by tearing modes, which are the only allowed parasitic instabil-
ity.

Even though 2D simulations overestimate the MRI termination point, they can be used as auxil-
iary tests for 3D simulations. Firstly, in 2D, we can test whether a chosen resolution is sufficiently
high to resolve the fastest growing MRI mode properly . Secondly, 2D simulations can be used to
verify the theoretical predictions of Pessah & Chan (2008) for the length and growth rate of fastest
growing MRI mode in non-ideal MHD (see Appendix B).

22 To put it in a nutshell, in this hybrid parallelisation, every MPI process, which solves the MHD equations in a sub-
domain of the computational domain, can open several OpenMP threads to speed up time consuming loop calculations.
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Fastest growing MRI modes

We extended the studies of Obergaulinger et al. (2009) to non-ideal MHD. If not otherwise
written, the resistivity and shear viscosity were set to ν = η = 4.45× 108 cm2s−1, which for
b0z = 4.6× 1013 G corresponds to Reynolds numbers (Re and Rm) equal to 100. Our first goal
is to find the magnetic field values, for which an integer number of MRI channels fits into the
computational domain. In order to simulate exactly the three, four and five fastest growing MRI
modes in the box of the size 1 km, their length has to be equal to λMRI = 0.333 km,0.25 km and
0.2 km, respectively.

According to Pessah & Chan (2008) (see Appendix B), the corresponding magnetic fields are
b0z = 4.6× 1013 G, 3.45× 1013 G and 2.76× 1013 G, respectively. We verify these predictions
with the help of simulations having a resolution of 1002 zones. For b0z = 2.76× 1013 G, five
MRI channels should be observed. In the first simulation, we triggered the MRI with random
perturbations in velocity (see Eq. (4.109)) and only four channels formed (see Fig. 4.4). This could
be misinterpreted that the calculations of Pessah & Chan (2008) must be off. However, the correct
explanation of this phenomenon is different. The formed channels do not have an equal width
(see bottom part of Fig. 4.4). The upper ones are wider and their amplitudes are smaller, hence
their growth rates must be lower. In the upper part of the box, the initial random perturbations
must have been favourable for more slowly growing MRI modes. Even though their growth rates
are lower, they can still dominate the initial evolution, if their amplitudes are considerably higher
than those of the fastest growing modes. Once the channel structure is established, the MRI will
not change it, but only amplify their amplitudes. The MRI growth rate averaged over the box was
equal to, γMRI ≈ 1077 s−1.

In general, such a phenomenon, i.e. the emergence of not identical modes, can possibly be
encountered in nature, however, it is undesirable for our purposes. In the end, we want to verify
the MRI termination model, which assumes that only the fastest growing modes are present in the
system. To avoid the emergence of different modes we used somewhat initial random perturba-
tions, adding a small sinusoidal velocity component vr ∝ sin(kMRIz) (see Eq. (4.112)). With the
help of this simple trick, the fastest growing MRI modes formed in all simulations. We point out
that we do not use the whole MRI channels as initial conditions, because the velocity compon-
ents vφ and vz are only randomly perturbed and the magnetic field components br and bφ remain
unchanged. Moreover, the amplitudes of the random and sinusoidal perturbations are of the same
order (10−5). To test how much the initial perturbations can affect the MRI termination amplitude,
we run additional 2D and 3D simulations. We will come back to this issue several times later in
the discussion.

In another simulation, in which the modified (i.e. random plus sinusoidal) perturbations from
Eq. (4.112) were used, five MRI channels formed (see Fig. 4.5). The instability growth rate was
γMRI ≈ 1103 s−1, which is larger than in the previous simulation. However, this is not yet a proof
that for b0z = 2.76× 1013 G, the length of the fastest growing mode is λMRI = 0.2 km. To test
that, we ran four additional simulations with initial magnetic fields in the range 2.6–2.9×1013 G
and the same type of perturbations. The simulations results are presented in Table 4.1. The MRI
growth rates are almost equal, the maximum being observed for b0z = 2.76× 1013 G. Another
question, which needs to be answered is whether using the MP9 reconstruction scheme, 20 zones
are sufficient to properly resolve one MRI channel (there were 5 channels in the box, and 100
zones were used in z direction).

One could say, that since the equations of Pessah & Chan (2008) did such a good job at predict-
ing the fastest growing MRI mode, we should just compare now the growth rate measured in the
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Figure 4.4: 2D MRI simulation with a resolution of 1002 zones. Given the initial magnetic field
b0z = 2.76× 1013 G (and the other initial conditions described in the main text), the instability
would have the highest growth rate for five equally wide MRI channels. The instability was
triggered with random velocity perturbations and only four MRI channels formed (compare with
Fig. 4.5). Top left: initial random perturbations of the radial velocity component vr. Top right: time
evolution of the volume averaged Maxwell stress component |brbφ |. From t ≈ 3 ms to t ≈ 11 ms,
the MRI is fully operational and the magnetic field is exponentially amplified at a constant rate.
The green vertical line indicates the time (t = 7 ms) at which the snapshots in the bottom panels
are taken. Bottom left: radial velocity, vr, at t = 7 ms, when four unequal MRI channels are clearly
visible. Bottom right: radial magnetic field component, br, at t = 7 ms.

simulations to its theoretically expected value. Well, the problem is that in “ numerics” things are
not always so straightforward. Given the simulation parameters, the maximum growth rate should
read

γMRI ≈ 1144 s−1, (4.113)
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Figure 4.5: Same as Fig. 4.4, but for initial perturbations consisting of two parts: a random one in
all three velocity components, and a sinusoidal one (of the wavelength equal to that of the fastest
growing MRI mode, λMRI) only in the radial component vr. After approximately two milliseconds,
five MRI channels formed (compare with Fig. 4.4). Bottom left: radial velocity vr at t = 7 ms.
Five equal MRI channels are clearly visible. Bottom right: note that the magnetic field channels
are shifted in the z direction by λMRI/4 with respect to the velocity channels, in accordance with
Eqs. (4.18) and (4.19).

but in the simulations we measured γMRI ≈ 1103 s−1 (see Table 4.1). At this point, one could
draw premature the conclusion that with 20 zones per MRI channel, the instability must have
been underresolved, i.e. the numerical resistivity, η∗, and viscosity, ν∗, must have been higher
than η = ν = 4.45× 108 cm2s−1. Therefore, the numerical dissipation reduces the instability
growth rate. To test whether this is a plausible explanation, we can use Eqs. (3.1) and (3.5) for
the numerical viscosity, ν∗, and resistivity, η∗, respectively, which we proposed and tested in the
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b0z [1013 G] γMRI [s−1]
2.6 1100.6
2.7 1102.3
2.76 1102.8
2.8 1102.0
2.9 1102.0

Table 4.1: Results of the 2D simulations with a resolution of 100× 100 zones. The resistivity
and viscosity are set to ν = η = 4.45× 108 cm2s−1, which corresponds to Reynolds numbers
Re = Rm ≈ 36. For an initial magnetic field b0z = 2.76× 1013 G, the MRI growth rate is highest
and λMRI = 0.2 km.

previous chapter. For the readers convenience, we write these equations again:

ν∗ =N∆x
ν ×V×L×

(
∆x
L

)r
+N∆t

ν ×V×L×
(
V∆t
L

)q

, (4.114)

η∗ =N∆x
η ×V×L×

(
∆x
L

)r

+N∆t
η ×V×L×

(
V∆t
L

)q

, (4.115)

where N∆x
ν , N∆t

ν ,N∆x
η , N∆t

η , r, and q depend on the numerical scheme, L and V are the characteristic
length and speed of the system, respectively. To make use of these equations, we have to specify
all these coefficients. The characteristic length of the system must obviously be equal to the MRI
channel width, i.e. L = λMRI. As for the characteristic velocity, like in the cases of the wave
damping and tearing mode simulations, we should take the fast magnetosonic speed, i.e. V= cms.
When it comes to the coefficients N∆x

ν , N∆t
ν ,N∆x

η , N∆t
η , a, and b, we have two possibilities. We

could take the values determined in either the wave damping or the tearing mode simulations.
We think that the second choice is more reasonable, since we do not want to overestimate the
numerical dissipation and the tearing mode simulations were numerically more demanding. It
is true that in this case, we did not manage to determine the numerical dissipation coefficients
caused by the time integration. However, we presume that also for the MRI and especially for
the secondary instabilities, the main contribution to the numerical errors mainly results from the
spatial discretisation. In the tearing mode simulations, we did not measure ν∗ either. However, it
seems reasonable to assume that for the MRI, ν∗ ≈ η∗. Moreover, resistivity influences the MRI
more than viscosity does (Pessah & Chan 2008). Finally, we write in a form that is also valid for
parasitic instabilities that

ν∗ ≈ η∗ =N∆x
η ×V×L×

(
∆x
L

)r

, (4.116)

and after applying the above equation to the MRI problem

ν∗ ≈ η∗ =N∆x
η × cmsλMRI

(
∆z

λMRI

)r

, (4.117)

where for the MP9 reconstruction scheme23 N∆x
η = 170± 220 and r = 7.56± 0.55 (see Table

3.12). In Eq. (4.117), we used ∆z instead of ∆x, because this is the most important dimension for

23In the MRI simulations we use the HLLD Riemann solver, whereas N∆x
η = 170±220 was determined for the LF

solver (for the former one, N∆x
η was immeasurably smaller). Taking the estimator for N∆x

η of the more dissipative
solver, can lead to an overestimation of the numerical resistivity and viscosity. Since we want to estimate the upper
limit of the numerical dissipation, this step is acceptable.
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resolving the MRI channels. As we can see, the whole effort put in the previous chapter now pays
off. We obtain neat expressions, which will allow us to estimate the numerical dissipation for a
new problem. Given the initial conditions of the above MRI simulations, cms ≈ 3.3 ×109 cms−1,
λMRI = 2×104 cm and ∆z = 103 cm, we obtain from Eq. (4.117) that

ν∗ ≈ η∗ = 1.5×106±2.8×106 cm2s−1. (4.118)

Obviously, we should not conclude that within the errors, there is a chance that ν∗ ≈ η∗ ≈
0 cm2s−1, but we can estimate that

ν∗ ≈ η∗ < 5×106 cm2s−1. (4.119)

When we compare this values to the parameter values from above ν = η = 4.45× 108 cm2s−1,
we see that the numerical dissipation, when it comes to MRI channel evolution (this is a very
important point), is much smaller than the physical one and should not significantly influence the
MRI growth rate. It would be interesting to estimate for what resolution (or equivalently ∆z), both
types of dissipation (physical and numerical) would become comparable. In a simulation with
10 zones per MRI channel (hence with a twice lower resolution, i.e. 502 zones for the box), the
numerical resistivity and viscosity should approximately equal

ν∗ ≈ η∗ = 1.4×106±2.7×108 cm2s−1. (4.120)

One could say that this seems to be a reasonable result, because 10 zones should be more than
appropriate for such moderate numerical Reynolds numbers (i.e. Re = Rm ≈ 36) with the MP9
reconstruction scheme. In the end, the MRI channels have exactly the shape of the sine function,
and for the wave damping simulations performed with the MP9 schemes, we achieved numerical
Reynolds numbers, which are lower than 10−4 (see e.g. Figs. 3.2, 3.7 and 3.14). However, there is
one very important point, which must not be overlooked, when estimating the numerical dissipa-
tion. The numerical resistivity and viscosity do linearly depend on the characteristic velocity, cms.
Therefore,

for cms→ ∞, ν∗,η∗→ ∞! (4.121)

At first, this results may seem to be unintuitive. It is not only the number of zones, which we use
to resolve a given phenomenon, that matters.

If we claim, that this is not insufficient resolution causing the discrepancy between the theoret-
ical prediction (γMRI ≈ 1144) and the measured in simulation MRI growth rate (γMRI ≈ 1103) , we
should give a better explanation. The sceptical reader may say that it is our estimate of the numer-
ical dissipation (Eq. (4.119)), which is off. However, tt is not difficult to explain this discrepancy.
We used the equations of Pessah & Chan (2008) to determine the fastest growing mode, given
r = r0 = 15.5 km and therefore Ω0 = Ω(r0) = 1900 s−1, and cAz = cAz(r0)≈ 5.52×106 cm s−1.
However, the box extends from r = 15 km to r = 16 km, and both Ω and cAz depend on r. Ω

is given by Eq. (4.1) and cAz changes, because the density is not constant (see Fig. 4.3 and Eq.
(4.13)). In Appendix B, we show that for Re =Rm≈ 36 (the Reynolds numbers of the simulations),
the growth rate and wavelength of the fastest developing mode are given by

γMRI = γ̃Ω, and (4.122)

λMRI =
2π

k̃
cAz

Ω
, (4.123)
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where the dimensionless growth rate γ̃ ≈ 0.602 and the dimensionless wavevector k̃ ≈ 0.891. At
r = 15 km, Ω ≈ 1826 s−1 and cAz ≈ 5.20× 106 cm s−1, while at r = 15 km, Ω ≈ 1970 s−1 and
cAz ≈ 5.94×106 cm s−1. This implies

γMRI(r = 15 km) = 1207 s−1, (4.124)

λMRI(r = 15 km) = 0.189 km, (4.125)

and

γMRI(r = 16 km) = 1099 s−1, (4.126)

λMRI(r = 16 km) = 0.233 km. (4.127)

Moreover, the maximum growth rates given in Eqs. (4.124) and (4.126) hold for modes with
wavelengths given by Eqs. (4.125) and (4.127), respectively. However, in the simulations, the
channels have a length λMRI = 0.2 km everywhere in the box, i.e. at r = 15 km and r = 16 km, they
will grow at rates lower than those given by Eqs. (4.124) and (4.126), respectively. Finally, Eqs.
(4.124)-(4.127) are not entirely correct, because we neglected that at the edges of the box, i.e. for
r = 15 km or r = 16 km, the Reynolds numbers slightly differ from those in the middle of the box,
i.e. at r0 = 15.5 km. Thus, also the dimensionless γ̃ and k̃ appearing in Eqs. (4.122) and (4.123),
respectively, have slightly different values.

All in all, is just a “lucky coincidence” that for the same wavevector (predicted with the help of
the equations from Pessah & Chan (2008)), both the MRI grow rate in the middle of the box and
the box integrated growth rate of the MRI are the highest.

Armed with this knowledge, we once again have a look at the bottom panels of Fig. 4.4,
where we presented the results of the simulation with initial random perturbations in velocity.
The magnetic field and the velocity in the uppermost channel that is wider than λMRI = 0.2 km,
are amplified at a lower rate than in the two bottom channels whose widths ≈ 0.2 km. Fur-
thermore, the amplitudes of the bottom channels are larger at smaller radii (r < r0), because
γMRI(r = 15 km) > γMRI(r = 16 km) (compare Eqs. (4.124) and (4.126)). For the upper chan-
nels, the situation is opposite. The amplitudes are higher for r > r0, because the channel width is
closer to the “optimum value”, for which the MRI grows fastest (see Eq. (4.127)). As we can see,
this simulation is a very good illustration of the above discussed theory, i.e. Eqs. (4.124)-(4.127).

Our discussion has shown that even such an apparently trivial problem, like the MRI growth
rate in a numerical simulation, becomes quite complex when investigated in more detail. To see
whether the numerical dissipation significantly affected the simulation results, we have to perform
convergence tests. they are usually only done in 1D and 2D simulations, because 3D simulations
are not only more expensive, but also their computational cost increases with the 4-th power of the
(linear) resolution.

To test whether in the simulations with b0z = 2.76 × 1013G and a resolution of 1002 zones,
the numerical dissipation played an important role, we performed a simulations with twice that
resolution, i.e. with 2002 zones. The MRI growth rate was γMRI = 1102.3 s−1. Hence, the MRI
channels were not underresolved in the previous simulations (if that were the case the MRI growth
rate would be lower than theoretically expected). Thus , we conclude that 20 zones are sufficient to
resolve one MRI channel with the MP9 scheme. However, as we will discuss it later, resolving the
MRI channel does not imply that we resolve the complete MRI physics. To simulate properly the
parasitic instabilities developing on top of the MRI channels, a much higher resolution is required.

We performed analogous tests for a magnetic field b0z = 3.45× 1013G. In the simulation with
random initial perturbations (Eq. (4.111)), four MRI channels of unequal length formed and
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b0z [1013 G] γMRI [s−1]
3.3 1111.8
3.4 1111.9
3.45 1112.8
3.5 1110.5
3.6 1107.0

Table 4.2: Results of 2D simulations with a resolution of 100× 100 zones. The resistivity and
viscosity were set to ν = η = 4.45×108 cm2s−1, which corresponds to Reynolds numbers Re =
Rm ≈ 56. For the initial magnetic field b0z = 3.45× 1013G, the MRI growth rate is highest and
λMRI = 0.25 km.

γMRI ≈ 1063.7 s−1. In the simulation with additional sinusoidal vr perturbations, four equally
wide channels formed and γMRI ≈ 1112.8 s−1. We ran four additional simulations with initial
magnetic fields varying from b0z = 3.3× 1013 G to b0z = 3.6× 1013 G. The measured growth
rates are presented in Table 4.2. They confirm that the fastest growing mode has a wavelength
λMRI = 0.25 km, for b0z = 3.45× 1013 G. We also performed a convergence test, i.e. we ran a
simulation with twice the resolution (2002 zones) and a magnetic field b0z = 3.45× 1013 G. The
MRI growth rate was γMRI ≈ 1111.7 s−1.

In an analogous way, we verified that the equations of Pessah & Chan (2008) give correct
predictions that for b0z = 4.6× 1013 G, the fastest growing MRI mode has a wavelength λMRI =
0.333 km, i.e. exactly three modes fit into the computational domain.

MRI termination

After these auxiliary simulations concentrating on the MRI growth rate and channel structure,
we investigated the MRI termination problem. We set the initial magnetic field to b0z = 4.6×
1013 G and ran a simulations with a resolution of 1002 zones. The results are presented in Fig. 4.6.
From the initial perturbations given by Eq. (4.112), after ≈ 3 ms, three coherent MRI channels
emerged (see the upper right panel of the figure) and the instability was amplifying the magnetic
field at a constant rate until t ≈ 11 ms (see the upper left panel). At t = 11.86 ms, the box-integrated
Maxwell stress component |brbφ | reached a maximum. According to our definition, this means
that the MRI reached its termination point. In the rest of this chapter, we will refer to |brbφ | at
MRI termination as “the MRI termination amplitude”. For t > 11.86 ms, tearing modes are clearly
visible in the system (bottom panels of the figure). Based on these results, we conclude that the
MRI in 2D is indeed terminated by tearing modes. This was already noted by Obergaulinger et al.
(2009) in their ideal MHD simulations (in their case, the tearing modes must have been triggered
by numerical resistivity, which was reported by these authors).

To investigate the dependence of the MRI termination point on the initial perturbations we ran
five more simulations with the same prescription for the initial velocity (Eq. (4.111)). Obviously,
in each simulation, random perturbations were distinct, because each time different sets of random
numbers Rr(r,φ ,z),Rφ (r,φ ,z) and Rz(r,φ ,z) were generated. The MRI termination amplitudes24

vary within a factor of 2 (see Table 4.3). Note that there is a clear correlation between the MRI
termination time and amplitude. If the initial perturbations, from which the secondary instability

24I.e. the volume averaged Maxwell stress component |brbφ | at MRI termination.
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Figure 4.6: An exemplary 2D MRI simulation, in which the instability is terminated by tear-
ing modes. The resolution, the initial magnetic field, the viscosity and the resistivity were set
to 100× 100 zones, b0z = 4.6× 1013 G, and ν = η = 4.45× 108 cm2s−1, respectively. Top
left: Time evolution of the volume averaged Maxwell stress component |brbφ | . From t ≈ 3 ms
to t ≈ 11 ms, the MRI is fully operational and the channel modes are well developed. At
t ≈ 12 ms the MRI was terminated. Afterwards, a turbulent phase sets in. The green vertical
lines mark three times (t = 7,12.1 and 13 ms) at which the structure of the radial magnetic
field is presented in the other panels. Top right: Three MRI channels. Bottom left: Tearing
modes, developing on top of the MRI channels, are clearly visible. The X points character-
istic for the tearing modes (where magnetic field lines reconnect), are located at (r = 15.2, z =
0.4) km,(16,0.1) km and (15.2,−0.3) km, and the O points (where magnetic field lines are ab-
sent) at (15.5,0.4) km,(15.7,0.1) km and (15.8,−0.3) km. Bottom right: The MRI channels are
disrupted by tearing modes. Shortly afterwards, MHD turbulence sets in and the residues of the
channels are no longer visible.
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run #
|brbφ | [1030 G2]
at termination

termination
time [ms]

1 4.69 12.44
2 2.54 11.88
3 2.52 11.88
4 4.30 12.40
5 2.19 11.82
6 3.24 12.14

Table 4.3: Volume averaged Maxwell stress component |brbφ | at the termination time for six 2D
simulations (runs) with initial magnetic field b0z = 4.6× 1013 G and a resolution of 100× 100
zones. The resistivity and viscosity are ν = η = 4.45× 108 cm2s−1, corresponding to Reynolds
numbers Re = Rm = 100. The different values of the termination amplitude (within a factor of 2)
result from different random initial velocity perturbations. Note that there is a clear correlation
between the Maxwell stress component |brbφ | termination value and the time it occurs at.

run #
|brbφ | [1030 G2]
at termination

termination
time [ms]

1 2.27 11.72
2 2.20 11.72
3 3.14 11.98
4 2.49 11.74
5 2.32 11.80
6 2.40 11.76

Table 4.4: Same as Table 4.3, but twice higher resolution (200×200 zones).

developed, are smaller, they need to be amplified for a longer time before they become comparable
to the MRI channels. In that extra time, the MRI manages to amplify the strength of the channel
magnetic fields to higher values, before it was finally terminated.

This explanation can be supported with a Fourier analysis of the initial velocity perturbations.
Before we compare the spectra of different simulations, we briefly explain the used technique on
an exemplary simulation (presented in Fig. 4.6 and denoted as run 1 in Table 4.3). We used the
standard IDL fast Fourier transform (FFT) of the vr and vz velocity components in the z direction
defined as:

v̂r(r j, k̄z) =
1
Nz

Nz−1

∑
n=0

vr(r j,zn)e−i2πnk̄z/Nz , (4.128)

v̂z(r j, k̄z) =
1
Nz

Nz−1

∑
n=0

vz(r j,zn)e−i2πnk̄z/Nz , (4.129)

where j = 1, . . . ,Nr, Nr and Nz are the numbers of zones in the r and z direction, respectively, and
k̄z = 0, . . . ,Nz/2 is a box normalised wavevector (for k̄z = 1, one sine wave fits in the computational
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run #
|brbφ | [1030 G2]
at termination

termination
time [ms]

1 2.54 11.86
2 2.53 11.82
3 2.44 11.76
4 2.44 11.74
5 2.48 11.82
6 2.44 11.74

Table 4.5: Same as Table 4.3, but four times higher resolution (400×400 zones). Note that |brbφ |
varies much less than in the simulations with lower resolutions.

domain). The coefficients v̂r and v̂z form complex matrices of the dimension Nr× (Nz/2+ 1).25

For the following discussion, we were only interested in “box averaged” (or “spatially averaged”)
moduli of these coefficients. The averaging is done in all directions orthogonal to z (because,
e.g. v̂r(r j, k̄z) are by construction z independent), which in 2D simulations corresponds to only the
radial direction, i.e.

|ṽr(k̄z)| ≡
2
Nr

Nr

∑
j=1

√
v̂r(r j, k̄z)v̂∗r (r j, k̄z), (4.130)

|ṽz(k̄z)| ≡
2
Nr

Nr

∑
j=1

√
v̂z(r j, k̄z)v̂∗z (r j, k̄z), (4.131)

where j enumerates the radial zones and the asterisk denotes complex conjugation. The factor
2 appears on the right hand side of the above equations, because we discarded the negative fre-
quencies resulting from the IDL FFT (see also Footnote 25) and it is necessary for the correct
normalisation. |ṽr(k̄z)| and |ṽz(k̄z)| form (Nz/2+1)-dimensional vectors. These coefficients indic-
ate how strongly modes with a given wavevector were on average excited in the box, i.e. for 2D
simulations – the more radii r j at which the modulus of |v̂r(r j, k̄z)| was large, the larger |ṽr(k̄z)|.
Fig. 4.7 illustrates these concepts. The upper left panel depicts the initial radial velocity vr given
by Eq. (4.112) . Three channels and some random perturbations on the top of them are clearly vis-
ible. The right upper panel is a graphical presentation of the spatial averaged Fourier coefficients
|ṽr(k̄z)| (Eq. 4.130). Note that |ṽr(k̄z = 3)| is much greater than any other coefficient, because the
radial velocity has a corresponding sinusoidal component (see Eq. (4.112)), i.e.

vr(r,φ ,z) = 0.1δRr(r,φ ,z)+ ε sin
(

3
2π

Lz
z
)
. (4.132)

In the bottom panels, the corresponding plots for the vertical velocity are presented. The averaged
Fourier coefficients seem to have a larger scatter than in the case of the radial velocity (upper right).
This is just a graphical illusion caused by different scales in the ordinate axes. In Fig. 4.8, we
compare the coefficients |ṽr(k̄z)| form three simulations, which are denoted as run 1 (the highest
MRI termination amplitude), run 5 (the lowest termination amplitude) and run 6 (an average

25 The IDL FFT routine creates Nr ×Nz matrices with negative wavevectors, i.e. k̄z < 0, stored in rows N/2+
1, . . . ,N − 1. They would be important to properly perform the inverse Fourier transformation. However, for our
purposed, these parts of the matrices can simply be discarded.
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Figure 4.7: Initial velocity, given by Eq. (4.112), and its Fourier transform from a simulation with
a resolution, initial magnetic field, viscosity and resistivity of 100×100 zones, b0z = 4.6×1013 G,
and ν = η = 4.45×108 cm2s−1, respectively. Top left: Radial velocity showing three sinusoidal
channels plus some random perturbations. Top right: Spatially averaged Fourier transform coef-
ficients, |ṽr(k̄z)|, of the radial velocity (see Eq. (4.130)). The clear peak at the box normalised
k̄z = 3 results from the sinusoidal component added to the random perturbations (see Eq. (4.112)).
Bottom left: Z-velocity resulting from random initial perturbations. Bottom right: Same as upper
right panel, but for |ṽz(k̄z)|. Since the initial perturbations are purely random, there is no clear
maximum. The larger scatter in the averaged Fourier components (in comparison with |ṽr(k̄z)|), is
caused by using different scales in the ordinate axis in both right panels.

termination amplitude) in Table 4.3. In the first simulation, the random perturbations were the most
successful at exciting the parasitic instability (the tearing modes). However, it is impossible to tell
from this figure, which Fourier modes are preferred by the secondary instability, because we only
considered averaged Fourier coefficients and we only compared the components of the vertical
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Figure 4.8: Comparison of the spatially averaged Fourier transform coefficients |ṽr(k̄z)| (see Eq.
(4.131)) of the initial vertical velocity from three simulations denoted as run1 (black diamonds),
run 5 (blue crosses) and run 6 (red pluses) in Table 4.3.

velocity, vz. However, the other components, vr and vφ , are also important for the development
of the parasitic instability. Since we do not know the eigenfunctions of the tearing modes for this
setup, it is impossible to perform a more in-depth analysis. We conclude that for 2D simulations
with resolution of 100×100 zones, initial perturbations can change the MRI termination amplitude
within a factor 2. The coefficients |ṽz(k̄z)| are in the range

|ṽr(k̄z)|= 2900±400. (4.133)

Even though we ran the simulations with resistivity and viscosity ν = η = 4.45×108 cm2s−1,
it is not clear how large they are in comparison to their numerical counterparts. To test this, we
ran another six simulations with the same initial conditions but twice the resolution, i.e. with 2002

zones (see Table 4.4). We can notice two differences in comparison with simulations ran at the
lower resolution – the MRI termination amplitudes vary less (factor 1.5) and they are lower on
average. These differences can be explained by the fact that in the simulations with the higher res-
olution, the initial random perturbations are more likely to trigger efficiently parasitic instabilities
for two reasons. Firstly, the perturbations have “more variety” in Fourier space, i.e. because the
allowed wavevectors can be twice as large and therefore twice as many modes could be excited
(the maximum wavevector is given by k̄z = Nz/2). Secondly, there are twice more zones in the
radial direction. This means that there will be roughly twice as many r j, for which the random
perturbations will be similar to the tearing mode eigenfunction.
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Figure 4.9: Comparison of the spatially averaged Fourier transform coefficients |ṽr(k̄z)| (see Eq.
(4.131)) of the initial vertical velocity from three simulations with different resolutions: 100×100
(red pluses) , 200× 200 (blue crosses) and 400× 400 (black diamonds). The simulations are
denoted as run 1 in Tables 4.3, 4.4 and 4.5, respectively.

Finally, we ran six simulations with the same physical setup (b0z = 4.6×1013 G and ν = η =
4.45× 108 cm2s−1), but a resolution of 400× 400 zones (see Table 4.5). The MRI termination
amplitude has almost the same value in all six simulations, because there are even more zones,
and therefore the probability that in some part of the box, the random perturbations will be similar
to the tearing mode eigenfunctions is higher.

In Fig. 4.9, we compare the averaged Fourier transform coefficients |ṽr(k̄z)| from three simula-
tions (run 1 in the corresponding tables) with resolution of 100× 100, 200× 200 and 400× 400
zones. The higher the resolution, the lower the scatter in |ṽr(k̄z)|. Intuitively, this can be connected
with the scatter of the Maxwell stress component |brbφ | at the MRI termination: the more variety
in the perturbations, the higher the chance that the parasitic instability will be efficiently triggered.

According to the GXP model (see Section 4.4), the MRI should be terminated shortly after the
parasitic instabilities start to grow faster than the MRI itself. So far, we only measured the MRI
growth rate and termination amplitude. However, apart from a graphical identification (see Fig.
4.6), we have not investigated the secondary instability in sufficient detail. The key information,
which we would like to extract from the simulations, is the parasitic growth rate. It would facilitate
the studies for several reasons. Firstly, it could be possibly used to formulate some semi-analytical
expressions for the secondary instability growth. Secondly, we could verify the GXP model by
a direct comparison of the MRI and the parasitic growth rates. Unfortunately, for the reasons
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which we discuss in the next section on 3D simulations, we were unable to measure the secondary
instability growth rate.

4.5.3 3D simulations

The main objectives

According to our rough estimates based on the GXP model (see Section 4.4), given conditions
in the core-collapse supernovae, the MRI should be terminated by the KH instability. However, it
could not develop in the 2D simulations because of the assumed axial symmetry, and the MRI was
terminated by tearing modes, instead. Therefore, the MRI termination problem can be properly
investigated only in 3D simulations, whose main drawback, however, is a much higher compu-
tational cost. For the resolutions used by us, the 3D simulations were more expensive than the
2D ones by a factor of 250 to 1000.26 Covering the whole parameter space relevant for the core-
collapse supernovae would require too many simulations (of the order of hundred). Obergaulinger
et al. (2009) performed such investigations with the help of 2D simulations. However, apart from
the MRI growth rates, one should not trust their results, because the MRI was terminated there by
tearing modes irrelevant in supernovae. The scope of our study is seemingly much more modest.
We only focus on one initial model, in which besides numerical parameters, only the resistivity,
the viscosity and the magnetic field amplitude will be changed. We will try to answer the following
questions:

1. Is the Kelvin-Helmholtz instability responsible for MRI termination?

2. What is the influence of the numerical viscosity and resistivity on the termination amplitude?

3. Can we verify the GXP model (with our modifications)?

4. Can we extrapolate the results to the conditions relevant for core-collapse supernovae (i.e.
lower initial magnetic fields)?

The resolution requirements

The initial conditions for the 3D simulations were already described in Sec. 4.5.1. Following
Obergaulinger et al. (2009), we used a simulation box of size Lr × Lφ × Lz = 1 km× 4 km×
1 km as the default one. These authors also studied the post-termination phase, and in particular,
the possible appearance of second MRI growth phase, which they often observed in their 2D
simulations. Obergaulinger et al. (2009) found that for Lφ/Lz ≥ 2, parasitic instabilities could
effectively prevent another MRI channel formation (and the subsequent second MRI onset) in the
(post-termination) turbulent phase. Initially, we also intended to investigate the post-termination

26 To run a 2D MRI simulation with a resolution of 100× 100 zones for 15 ms, ≈ 20 CPUhs are needed on the
SuperMUC. For a 3D simulation with 100× 100× 100 zones, the computational time amounts to ≈ 5 000 CPUhs.
Doubling the resolution in a 2D and 3D simulation increases the computational time by a factor of 8 and 16, respectively
(because of scaling problems, which usually arise when a simulation is run on many processors, these factors are in
practice somewhat higher). The computational cost of a 2D and 3D simulation with 400 zones in each dimension (these
are highest resolutions that we used in our studies), increases to ≈ 1 280 and ≈ 1 280 000 CPUhs, respectively. The 3D
simulation is by factor ≈ 1000 more expensive.
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stage in detail. However, because of limited computational resources, we had to restrict these
studies. 27

A very important issue, which needs to be discussed first, is the required resolution to study the
MRI termination problem. As a starting point in our considerations, we take a simulation with the
default resolution of 100×400×100 zones for the a of size 1 km×4 km×1 km. Approximately
≈ 20 000 CPUhs on the SuperMUC are needed to run such a simulation for 15 ms (i.e. until
MRI termination). For an initial magnetic field b0z = 4.6× 1013 G, viscosity and resistivity ν =
η = 4.45× 108 cm2s−1, three MRI channels form will in the computational domain (because
λMRI = 0.333 km). This gives ≈ 33 zones (in the vertical direction) per MRI channel. As we
already know from the 2D simulations, 20 zones are sufficient to resolve fully an MRI channel
with the MP9 reconstruction scheme. However, the problem arises, when parasitic instabilities are
taken into account. In Section 4.4, we criticised the assumptions, which Pessah (2010) made to
calculate secondary instabilities, yet some of his results are useful for our current considerations.
He found approximate parasitic eigenfunctions with the help of the Fourier series expansion (see
Eqs. (4.65) and (4.66) and the discussion below). Pessah (2010) reported that it is sufficient to
consider modes with wavevectors k ≤ 30kMRI to achieve a convergence to the desired accuracy.28

Hence, to resolve the secondary instabilities with the same precision, we would need to use 30
times more zones than were needed per MRI channel. A simulation with the 30 times higher
resolution, would require at least 304 more computational time, i.e. 304×20 000≈ 1010 CPUhs,
which is beyond the reach of any supercomputer in the predictable future.29

In a simulation with the standard resolution (i.e. 100 zones in the z direction), ≈ 33 zones are
used per MRI channel. However, in Sec. 4.5.2, we showed that 20 zones are sufficient to resolve
one channel and also estimated that maybe even ≈ 10 zones would do. Hence, we could reduce
the resolution in each dimension by a factor of ≈ 3, decreases the computational cost ≈ 81 times.
In addition, maybe a lower accuracy than the one which Pessah (2010) reached in his calculations,
would be sufficient for our purposes. Thus, resolving only modes with wavevectors k ≤ 10kMRI,
and not k ≤ 30kMRI, might be fine , as well. This would reduce the computational time by another
factor of 81. From this rough estimate, we obtain that we may need≈ 100 zones per MRI channels
in the z direction, hence 300× 1200× 300 zones for the whole box (given the above mentioned
initial conditions), and the total simulation cost would “only” amount to 2 500 000 CPUhs.

Parasitic instabilities require a high resolution only in the z direction (see Eqs. (4.65) and (4.66)
and the discussion below), whereas in the horizontal plane, only a modest number of zones is
needed, because the moduli of the horizontal part of the secondary instability wavevector (i.e.
components kr and kφ ) and the fastest growing MRI mode wavevector (kMRI) are comparable, i.e.
kKH≈ 0.59kMRI (see (4.44)). In other words, λKH≈ 2λMRI, and only 30–60 (120–240) zones 30 would
be necessary in the radial (azimuthal) direction to resolve the parasitic instability during its linear

27Bodo et al. (2008) performed a part of their studies in a box of size Lr×Lφ ×Lz = (aLz)×(aLz)×Lz, where a > 1.
This choice is better justified. In ideal MHD, the KH instability grows fastest (on the top of the MRI channels), when
its horizontal wavevector forms an angle φ = π/4 with the radial axis (Goodman & Xu 1994). Hence, simulation boxes
with Lr = Lφ are optimal for the development of this parasitic instability. One should also make sure that at least one
KH mode fits into the computational domain.

28That author did not exactly specify what he meant by “the desired accuracy”. However, in (semi-)analytical calcu-
lations one can usually achieve high accuracy more easily than in purely numerical studies. Therefore, we can presume
that we would be satisfied with the same level of precision (probably the relative errors not greater than 10−2 or maybe
even much smaller) in our simulations.

29If we were given all ≈ 155000 cores of the SuperMUC (which in June 2013 still was among the top 10 Supercom-
puters in the world; see www.top500.org), we would need to run one simulation for at least 12 years.

30The lower limit assumes a resolution of 10 zones in the horizontal direction per MRI channel.

www.top500.org
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phase (i.e. when the perturbation amplitudes are much smaller than the MRI channels). Hence, in
the most optimistic scenario, a resolution of 30×120×300 zones would be sufficient to capture
the evolution of both the MRI and the secondary instability in the pre-termination phase. The
corresponding computational time of 25 000 CPUhs would be affordable. However, we do not
think that studying MRI termination in a simulation with such different resolutions in the spatial
directions is adequate. In this highly non-linear process, phenomena taking place at much smaller
scales in the horizontal plane may eventually become very important. The subsequent MRI driven
turbulent phase would be affected by the non-equidistant grid as well.

Before running any simulation, we can predict some general features of the MRI termination
amplitude dependence on resolution. In 3D simulations, the KH instability can develop and even-
tually disrupt the MRI channels before tearing modes would do it. Hence, the MRI will be active
for a shorter time and we expect the termination amplitude to be lower in 3D than in 2D. We also
know that the resolutions, which we are going to use, are sufficient to capture the MRI channel
evolution, but the KH instability may be underresolved. Hence, there will be some numerical vis-
cosity, ν∗, decreasing the growth rate of this secondary instability. By combining Eqs. (4.30) and
(4.45), we roughly estimate that

γKH ≈ 0.45kKHvc−ν∗
k2

KH

2
, (4.134)

where vc is the (velocity) channel amplitude.31 The termination will happen not before the growth
rates of the MRI and the KH instability become comparable, i.e.

γKH = γMRI. (4.135)

Substituting γKH with the estimate from Eq. (4.134), we write this precondition as

0.45kKHvc ≈ γMRI +ν∗
k2

KH

2
. (4.136)

Hence, at lower resolutions, because of the numerical viscosity, MRI channels will reach higher
amplitudes before the KH instability becomes important. Consequently, in simulations with lower
resolutions, the MRI termination amplitude will be higher. At first, this statement sounds counter-
intuitive. Usually, when something is insufficiently resolved, it develops more slowly or reaches
smaller values. In this case, however, it is not the MRI itself, but the secondary instability, which
is underresolved. Looking at Eq. (4.136), we can predict the general behaviour of the MRI ter-
mination amplitude with increasing resolution. The amplitude should decrease, until the term
containing ν∗ becomes insignificant. When, a further increase of the resolution does not lead to
any reduction of the termination amplitude, convergence has been reached.

Parasitic instability identification

We started the 3D studies, with a simulation in a box of size 1 km×4 km×1 km and a resolution
of 100× 400× 100 zones. The initial magnetic field, the viscosity and the resistivity were set to
b0z = 4.6×1013 G, and ν = η = 4.45×108 cm2s−1, respectively. We triggered the instability with
the perturbations defined in Eq. (4.112). Like in the 2D simulations, MRI channels formed after≈
3 ms (upper right panel of Fig. 4.10) and the instability was fully operational. The Maxwell stress

31Combining these two equations for KH growth rates for different velocity profile is an oversimplification, but it
should correctly capture the general features of the instability growth rate.
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component |brbφ | is exponentially amplified until≈ 11 ms (upper left panel). At t = 10.9 ms some
disturbances of the MRI channels are visible (bottom left panel). One tenth of the millisecond
later, at t = 11 ms, we can clearly recognise the patterns of the KH instability, which is developing
on top of the MRI channels (bottom right panel). Eventually, this secondary instability disrupts
the channels and terminates the MRI at t = 11.2 ms (see Fig. 4.11). The box averaged Maxwell
stress component |brbφ | is equal to 9.33× 1029 G2 (Table 4.6). 0.3 ms after the termination, at
t = 11.5 ms, the residues of the channels are still visible. At t = 12 ms, MRI-driven turbulence
sets in (bottom panels of Fig. 4.11). We did not observe any second MRI growth phase during
the later stages of the evolution (see Fig. 4.12), which is in accordance with Obergaulinger et al.
(2009) and Bodo et al. (2008).

These results confirm the hypothesis put forward in the GXP model, that it is the KH instability,
which is responsible for the MRI termination in 3D simulations (and nature). Knowing the time
evolution of the growth rate would be very helpful for a further verification of the GXP model
(with our modifications). Unfortunately, we were unable to measure the parasitic growth rate in
both 2D and 3D simulations. We discuss this issue in more detail below.

Measuring the parasitic instability growth rate

Obergaulinger et al. (2009) used Ez
mag ≡

∫
b2

z/2 dV , to trace the evolution of the secondary
instabilities. The idea behind this is that since the MRI does not affect the initial vertical magnetic
field component during the exponential growth phase, all changes in bz should be caused by the
parasitic instability (bpz(t)). These authors claimed that Ėz

mag/(2Ez
mag), where Ėz

mag ≡ ∂tEz
mag,

should be proportional to the parasitic growth rate, γp. However, because the initial background
magnetic field, b0z, also contributes to Ez

mag, i.e.

Ez
mag(t) =

∫
(b0z +bpz(r,φ ,z, t))2

2
dV, (4.137)

Ėz
mag/(2Ez

mag) does not have an easy physical interpretation. It is approximately equal to the
parasitic growth rate, only if bpz� b0z, which is never the case before MRI termination. To trace
the evolution of the parasites it is better to use the quantity

Epz
mag(t)≡

∫
(bz−b0z)

2

2
dV =

∫
(bpz(r,φ ,z, t))2

2
dV, (4.138)

because Ėpz
mag/(2Epz

mag) provides a better estimate of the growth rate of the secondary instabilities.
Computing Epz

mag would require some minor modification of the code and repeating the simulations.
However, we found an alternative, equally good method of dealing with this problem. We traced
the contribution of the motions in the z direction to the kinetic energy:

Ez
kin(t) =

∫
ρ(r,φ ,z, t)(vpz(r,φ ,z, t))2

2
dV. (4.139)

Because the MRI should not excite any motion in this direction, any increase of Ez
kin indicates

activity of the parasites. Although vpz(r,φ ,z, t) is unknown, we can make some estimates. In the
GXP model

vpz(t) = vpz(t0)eγp(t−t0), (4.140)

where vpz(t0) is the parasitic velocity at time t0, i.e. during the time interval t − t0, the velocity
would grow with (an approximately) constant rate γp. Hence,

v̇pz(t)
vpz(t)

= γp, (4.141)
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Figure 4.10: 3D MRI simulation, in which the instability is terminated by the Kelvin-Helmholtz
instability. The simulation box has a size of 1 km× 4 km× 1 km in the r, φ and z directions,
respectively, and is resolved with 100×400×100 zones. The initial magnetic field, the viscosity
and the resistivity are b0z = 4.6× 1013 G, and ν = η = 4.45× 108 cm2s−1, respectively. Top
left: time evolution of the volume averaged Maxwell stress component |brbφ |. From t ≈ 3 ms to
t ≈ 10 ms, the MRI is fully operational and the channel modes are well developed. At t ≈ 11 ms,
the MRI was terminated and a turbulent phase sets in. The green vertical lines mark the three
times (t = 4,10.9 and 11 ms) at which the radial magnetic field strength at the simulation box
surface is presented in the other three panels. In all 3D plots, the following axis orientation is
used: the z direction is up, the r direction – right, and the φ direction – “diagonal”. Top right:
The radial magnetic field at t = 4 ms forms three MRI channels. Bottom left: The radial magnetic
field shortly before MRI termination, at t = 10.9 ms. Some perturbations in the MRI channels
are visible. Bottom right: From the perturbation pattern at t = 11 ms, we can identify the Kelvin-
Helmholtz instability.

or equivalently
Ėz

kin
2Ez

kin
≈ γp. (4.142)
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Figure 4.11: Later evolution of the simulation presented in Fig. 4.10. Top left: time evolution of
the volume averaged Maxwell stress component |brbφ |. The green vertical lines mark the three
times (t = 11.2,11.5 and 12 ms) at which the radial magnetic field at the simulation box surface
is presented in the other three panels. In all 3D plots, the following axis orientation is used: the
z direction is up, the r direction – right, and the φ direction – “diagonal”. Top right: The radial
magnetic field at t = 11.2 ms, when the Kelvin-Helmholtz instability develops on top of the MRI
channels. Bottom left: The MRI channels are being disrupted by the KH instability. Bottom right:
MHD turbulence sets in and the MRI channels are no longer visible.

However, because MRI channels, which are the background field for the parasites, are time de-
pendent, Eq. (4.140) is incorrect for two reasons. The growth rate of the parasites is also time
dependent, i.e. γp = γp(t), and we cannot simply use an WKB ansatz (vpz(t) ∝ eγpt) for the per-
turbations without further complications, as we will see next.

If we assume

γp(t) = γp(t0)eγMRI(t−t0), (4.143)
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Figure 4.12: Time evolution of the volume averaged Maxwell stress component |brbφ | for a 3D
MRI simulation in a box of size 1 km× 4 km× 1 km in the r, φ and z direction, respectively.
The initial magnetic field, the viscosity and the resistivity are b0z = 4.6× 1013G, and ν = η =
4.45× 108 cm2s−1, respectively. From t ≈ 3 ms to t ≈ 10 ms, the MRI is fully operational. At
t ≈ 11 km, the instability is terminated by the Kelvin-Helmholtz instability and shortly afterwards
a turbulent phase sets in.

where γp(t0) is the parasitic growth rate at time t0 < t, obviously, we cannot simply write

vpz(t) = vpz(t0)eγp(t)(t−t0) = vpz(t0)eγp(t0)exp(γMRI(t−t0))(t−t0), (4.144)

because it overestimates the perturbations’ growth. We can only estimate that

vpz(t0)eγp(t0)(t−t0) ≤ vpz(t)≤ vpz(t0)eγp(t)(t−t0), (4.145)

where γp(t) is given by Eq. (4.143). But then

v̇pz(t)
vpz(t)

6= γp(t) (4.146)

and γp(t) loses its growth rate interpretation.

Instead, we could first define the parasitic growth rate as

γ̃p(t)≡
v̇pz(t)
vpz(t)

, (4.147)
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and then try to find how it is related to γp(t) given by Eq. (4.143). However, the solutions of both
the tearing mode and KH instability are based on the assumption that v̇pz(t)/vpz(t) = const., which
is not the case in our situation. As a result, perturbations evolving on top of time-dependent back-
ground fields would not only grow at a different rate, but would also have different eigenfunctions.
Moreover, it is arguable if these perturbations would evolve according to Eq. (4.147) at all.

We measured the quantity Ėz
kin/(2Ez

kin) in our 2D and 3D simulations. In all cases, shortly after
the MRI channels form it was approximately equal to the MRI growth rate, γMRI (see Fig. 4.13).

If Ez
kin increases because of parasitic instabilities, we would expect that Ėz

kin/(2Ez
kin)� γMRI

until shortly before the MRI termination . Since it was not the case, the increase of the kinetic
energy must be related to the MRI itself. Because the analytical MRI theory does not predict such
a phenomenon, it must be of a numerical origin. We came up with one hypothesis to explain it.
The MRI growth rate is given by (see Eqs. (4.16) and (4.1)),

γMRI =−
α

2
Ω =−α

2
Ω0

(
r
r0

)α

, (4.148)

where r0 = 15.5 km. The simulation domain extends from rmin = 15.0 km to rmax = 16.0 km, i.e.
the maximum and the minimum of the MRI growth rate differ by ≈ 8%. This leads to a radial
shear in the MRI channel amplitudes located at the radial boundaries, which is not compensated
for by the shearing box boundary conditions (see e.g. bottom panels of Fig. 4.5), which only
work properly when the MRI growth rate is almost constant in the whole domain (i.e., when
(rmax− rmin)/r0� 1). The shear can generate some motions (kinetic energy) and magnetic field
in the z direction (see Fig. 4.14). Unfortunately, because of this non-physical phenomenon we
cannot use Ėz

kin/(2Ez
kin) to diagnose the parasitic growth rate.

Convergence

As we already discussed, we expect that the simulation with 100× 400× 100 zones will not
fully resolve the evolution of the parasitic (i.e. KH) instability. This statement can be supported
with the numerical viscosity estimate (see Eq. (4.116). The numerical dissipation depends on the
characteristic length of the simulated phenomenon, L. We estimated that for the MRI channels
(L= λMRI; see Eq. (4.118)):

ν∗ ≈ η∗ = (1.5±2.8)×106 cm2s−1. (4.149)

The simulation was run with ν = η = 4.45×108 cm2s−1. Hence, when resolving the MRI chan-
nels, the numerical resistivity and viscosity (ν∗ and η∗, respectively) are much smaller than their
physical counterparts (ν and η , respectively). The situation is very different, however, when
it comes to the secondary instability. We do not know exactly the characteristic length of the
KH instability developing on top of the channels. We can only roughly estimate its lower limit.
Pessah (2010) in his approximate calculations of parasitic instabilities used Fourier modes with
wavevectors up to k≤ 30kMRI (see Eqs. (4.65) and (4.66) and the discussion below). If we wanted to
resolve the secondary instabilities with the same accuracy as Pessah, we should use L = λMRI/30
as the characteristic length of the problem. In that case, the numerical resistivity and viscosity
resulting from the KH instability can be estimated as

ν∗ ≈ η∗ = (2.6±4.9)×1014 cm2s−1, (4.150)

which corresponds to numerical Reynolds numbers of order Re ≈ Rm ≈ 10−4. Hence, because of
the very strong numerical damping, modes with such short wavelengths could not properly evolve
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Figure 4.13: An attempt to measure the parasitic instability growth rate in a 2D and 3D MRI
simulations with b0z = 4.6× 1013 G in a box of the size 1 km× (4 km×)1 km in r,(φ ,)z direc-
tions, respectively, and the resolution set to 100× (400×)100 zones. Top left: time evolution of
the volume averaged Maxwell stress component |brbφ | in the 2D simulation. From t ≈ 3 ms to
t ≈ 11 ms, the MRI is fully operational, and for t ≈ 12 ms, it is terminated by tearing modes.
Top right: the green curve depicts the growth rate of the Maxwell stress component |brbφ | , i.e.
∂t(|brbφ |)/(2|brbφ |), which from t ≈ 4 to t ≈ 10 is approximately constant and equals γMRI. The
blue curve depicts Ėz

kin/(2Ez
kin), which should be equal to the growth rate of the parasitic instabil-

ity (in this case, the tearing mode). Already at t ≈ 5 ms, Ėz
kin/(2Ez

kin) exceeds γMRI, however the
MRI is not terminated shortly afterwards. Bottom left: the time evolution of the volume averaged
|brbφ |Maxwell stress component in the 3D simulation. For t ≈ 11ms, the MRI terminated by the
Kelvin-Helmholtz instability. Bottom right: analogous plot to the upper right one, but for the 3D
simulation. Ėz

kin/(2Ez
kin) exceeds γMRI at t ≈ .5 ms. Moreover, from t ≈ 4 ms to t ≈ 10 ms, the blue

curves look very similar in the upper and lower left panels, even thought they should indicate the
growth rates of different parasitic instabilities. This suggests that for t ≤ 10 ms, the growth of Ez

kin
is caused by some other (non 3D-)phenomenon.
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Figure 4.14: Vertical velocity, vz, at t = 8 ms in the 2D (left) and 3D simulations (right) shown
in Fig. 4.13. The MRI should not induce any vertical motions, therefore one could presume that
they are indicators of the parasitic instabilities. However, we already know that in 2D and 3D
simulations, there are different dominant secondary instabilities (tearing modes and KH instabil-
ity), yet these two velocity profiles are very alike. Moreover, they have extrema close to the radial
boundaries.

in the simulation.32 We are faced with a numerical viscosity and resistivity, which are many
orders of magnitude higher than desired (or better to say: tolerable). However, maybe longer
modes (with, e.g. k ≈ kMRI/10 and not with k ≈ kMRI/10 ) are the most important for resolving
the KH instability, and for these, the numerical dissipation is obviously smaller (because then
L ≈ λMRI/10). Moreover, simulations with higher resolutions will further decrease the numerical
viscosity and resistivity.

This observation draws our attention to a very important general problem. In simulations of two
(or more) phenomena, which have very different characteristic lengths, numerical resistivity and
viscosity cannot be treated like scalars (even up to first order approximation). This adds additional
complications, when comparing simulation results with theoretical predictions. The scale depend-
ent numerical dissipation has to be somehow properly included in the (semi-)analytical description
of the simulated problem. It would also be a mistake, however, to use the highest possible values
of the numerical resistivity and viscosity for both phenomena. Some sort of a hybrid approach
may be necessary, e.g. in our case, we could in principle use the ideal MHD equations for the
MRI, and the non-ideal MHD equations (with scalar resistivity and viscosity) to describe the para-
sitic instability. 33 In many other situations, the choice may be less obvious, however. After these
remarks, we come back to the main discussion.

In the simulation with a resolution of 100×400×100 zones, the box averaged Maxwell stress
component |brbφ | at the MRI termination point was equal to 9.33×1029 G2. This means that the

32 We could simply notice that, in the given simulation, ≈ 33 zones are used per MRI channels. This only gives
approximately one zone to resolve the characteristic length L= λMRI/30, which is obviously bound to fail.

33 We wrote “in principle”, because we did not even try to solve the secondary instability evolution equations, since
it is a highly non-linear problem.
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amplification factor A defined in Eq. (4.59) was equal to

A≡ bterm

b0z
=

√
|brbφ |
b0z

= 21.0. (4.151)

To test how much the value depends on the initial perturbations, we run two additional simulations
with the same initial conditions (obviously the random perturbations were unique in each case).
The results of all three simulations are presented in Table 4.8 (first three rows). The differences
among the termination amplitudes (and hence the amplification factors) are marginal. We explain
this issue in the next section.

To test whether the termination amplitude was affected by numerical viscosity, we run a sim-
ulation with the very same physical and numerical setup, but a twice higher resolution, i.e. with
200× 800× 200 zones. The MRI was terminated earlier and the box averaged Maxwell stress
component was smaller and equal to |brbφ | = 7.34× 1029 G2 (see Table 4.6). This result can be
easily understood in the light of the previous discussions. Increasing the resolution, lowered the
numerical viscosity for the KH instability and therefore it developed faster and disrupted the MRI
channels earlier.

So far, we can conclude that at least in the simulations with a resolution of 100× 400× 100
zones, the numerical viscosity, ν∗, for the KH instability must have been (at least comparable to or)
higher than ν = 4.45×108 cm2s−1. Otherwise, their MRI termination amplitudes would converge
to those of the simulation with twice higher resolution (200×800×200 zones). We do not know
however, if the numerical viscosity played a non-negligible role also in the latter simulation. The
only way to check this is by running another simulation, with an even higher resolution and then
comparing the results. However, because the computational cost of the simulation with 200×
800× 200 zones was ≈ 250 000 CPUhs, a simulation with a twice higher resolution would need
at least 4 000 000 CPUhs, which were not at our disposal. Hence, we ran the simulation with
the highest resolution in a smaller box, that did not affect the MRI termination, but would have
affected the subsequent turbulent phase. From Eq. (4.44), we estimate that the fastest growing KH
mode

λKH ≈ 1.7λMRI ≈ 0.56 km. (4.152)

Because the KH wavevector should form an angle π/4 with the r axis, the KH instability should
be able to develop in a box, whose minimum size in the horizontal direction is Lr×Lφ = 0.5 km×
0.5 km.34 As we discussed in Sec. 4.5.2, the MRI growth rate does depend on the radius. There-
fore, changing the radial box size could possibly influence the box averaged MRI growth rate and
termination amplitude. Reducing the box size by a factor of four in the azimuthal direction (from
Lφ = 4 km to Lφ = 1 km), however, should not change the MRI termination amplitude. To test this
hypothesis, we ran a simulation of box size 1 km×1 km×1 km with resolution 100×100×100
zones (run 5 in Table 4.6). The MRI termination amplitude was the same as in the simulation run
with the standard box size (see Table 4.6).

For the given initial magnetic field, i.e. b0z = 4.6× 1013 G, three MRI channels form in the z
direction. It is tempting to reduce the vertical box size by a factor of three, so that only one channel
forms in the computational domain. However, we must test, whether this step will not influence the
MRI termination amplitude, e.g. in a box with three MRI modes, some inter-channel interactions

34 The diagonal of a box as small as Lr×Lφ = 0.4 km×0.4 km is greater than 0.56 km. However, in such a small
box, the mode could develop only along the diagonal. On the other hand, the modes developing close to the edges
would be affected by the boundary conditions in any box. It would be better to study the parasitic instability in a box
rotated by 45◦ around the z axis. This box orientation, however, would be sub-optimal for the MRI channels.
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run #
box size
(r×φ × z) [km]

resolution
(r×φ × z)

zones per
channel

|brbφ | [1030 G2]
at termination

termination
time [ms]

amplification
factor A

1 1×4×1 60×240×60 20 1.11 11.36 22.9
2 1×4×0.333 60×240×34 34 0.977 11.22 21.5
3 1×4×1 76×304×76 ≈ 25 1.04 11.28 22.2
4 1×4×1 100×400×100 ≈ 33 0.933 11.20 21.0
5 1×1×1 100×100×100 ≈ 33 0.930 11.18 21.0
6 1×1×0.333 100×100×34 34 0.929 11.20 21.0
7 1×4×1 200×800×200 ≈ 67 0.734 11.10 18.6
8 1×1×0.333 400×400×134 134 0.731 11.12 18.6

Table 4.6: The results of 3D MRI simulations with initial magnetic field, viscosity and resistivity
of b0z = 4.6×1013 G, and ν = η = 4.45×108 cm2s−1, respectively. In the simulations, different
resolutions and box sizes were used. Comparing runs 4–6, we conclude that the box size within
the explored range does not have any influence on the MRI termination amplitude and therefore
on the amplification factor.

could be possible, or the channels could be disrupted at slightly different times. To test this, we
ran a simulation in a box of size 1 km× 1 km× 0.333 km with a resolution of 100× 100× 34
zones (run 6 in Table 4.6), which gave the same MRI termination amplitude.

After making sure that a simulation run in a box, whose volume is 12 times smaller (in compar-
ison to the standard box), gives the same predictions for the MRI termination amplitude, we ran
a simulation in a box of size 1 km× 1 km× 0.333 km with a resolution 400× 400× 134 zones
(run 8 in Table 4.6).35 The MRI termination amplitude was the same as in the simulation run with
the standard box size of 200×800×200 zones (run 7 in Table 4.6). This shows that the influence
of the numerical viscosity in the simulation with 200× 800× 200 zones was negligible. Hence,
we can draw the conclusion that for Reynolds numbers Re = Rm = 100, the amplification factor is
A= 18.6 (see Table 4.6), which also gives an upper limit for supernova conditions (e.g. for even
larger Reynolds numbers: Re,Rm� 100).

For reasons, discussed in the next section, we ran two more simulations in the standard box
(1 km× 4 km× 1 km), with much lower resolutions of 60× 240× 60 and 76× 304× 76 zones
(runs 1 and 3 in Table 4.6). The results show a clear correlation between the MRI termination
amplitude and time. The lower the resolution, the later the termination time and hence the higher
the termination amplitude (and by definition, the amplification factor). Fig. 4.15 depicts the time
evolution of the volume averaged Maxwell stress component |brbφ | from simulations presented in
Table 4.6. During the first ≈ 10.7ms, the time evolution of the |brbφ | is indistinguishable in all
simulations. Differences appear once the parasitic instabilities start to play a role in the system.

So far, we have used an initial magnetic field strength, which is approximately two orders of
magnitude higher than the upper limit expected in core-collapse supernovae (at the stage when the
proto-neutron star forms). Hence, without giving any prescription how to extrapolate our results,
our simulations cannot be used to draw any conclusions, given supernova conditions.

35This simulation required ≈ 460 000 CPUhs.
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Figure 4.15: Time evolution of the volume averaged Maxwell stress component |brbφ | from 3D
MRI simulations with different resolutions and with the magnetic field, the viscosity and the res-
istivity set to b0z = 4.6×1013 G, and ν = η = 4.45×108 cm2s−1, respectively. All simulations,
but the one with the highest resolution, were run in a box of size 1 km×4 km×1 km in the r, φ

and z directions, respectively. The simulation with the highest resolution was run in a smaller box,
i.e. of 1 km× 1 km× 0.333 km, to reduce the computational cost. The list of the simulations is
presented in Table 4.6. The evolution of |brbφ | is almost identical in all simulations, i.e. with: 60
(orange), 76 (red), 100 (green), 200 (blue) and 400 (black) radial zones, until t ≈ 10.7 ms. After
this time, the differences start to be visible. In general, the lower the resolution, the higher the ter-
mination amplitude. Only the simulations with the two highest resolutions converge to the same
value. Note that there is a clear correlation between the MRI termination time and termination
amplitude.

The influence of the initial magnetic field

In Sec. 4.4, we argued that the amplification factor A should be independent of the initial
magnetic field strength. To test whether this statement holds, we ran three additional simulations
with two different initial field values. We used the standard simulation box size (1 km× 4 km×
1 km), and viscosity and resistivity set to ν = η = 4.45×108 cm2s−1. In the first two simulations
with resolution of 100×400×100 zones, we set the initial magnetic field to b0z = 2.76×1013 G
and 3.45×1013 G, for which respectively five and four MRI channels formed in the computational
domain. In the former and the latter simulation, the amplification factor was A = 23.4 and A =
21.6, respectively (run 1 and 3 in Table 4.7). In a corresponding simulation with an initial magnetic
field b0z = 4.6× 1013 G, the amplification factor was A = 21.0 (see run 5 in Table 4.7). These
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run # b0z [1013 G]
resolution
(r×φ × z)

zones per
channel γMRI [s−1]

|brbφ | [1030 G2]
at termination

termination
time [ms]

amplification
factor A

1 2.76 100×400×100 20 1108 0.416 10.86 23.4
2 2.76 168×672×168 ≈ 34 1109 0.366 10.84 21.9
3 3.45 100×400×100 25 1119 0.555 11.06 21.6
4 4.6 60×240×60 20 1126 1.11 11.36 22.9
5 4.6 76×304×76 ≈ 25 1127 1.04 11.28 22.2
6 4.6 100×400×100 ≈ 33 1127 0.929 11.20 21.0

Table 4.7: The results of 3D MRI simulation run in a box of the size 1 km× 4 km× 1 km in the
r, φ and z directions, respectively. In all simulations, the viscosity and the resistivity were set to
ν = η = 4.45×108 cm2s−1. For the initial magnetic field b0z = 2.76×1013 G, 3.45×1013 G and
4.6×1013 G, respectively, five, four and three MRI channels formed in the computational domain.

results suggest that A does depend on the initial magnetic field. We must not forget, however,
that because in the simulations with b0z = 2.76× 1013 G and 3.45× 1013 G, five and four MRI
channels formed, respectively, a smaller number of zones was available to resolve one channel: 20
and 25, respectively. This means, that because of the higher numerical viscosity, the KH instability
developed more slowly and therefore, the MRI could amplify the magnetic field for a longer time
(to higher amplitudes).

We ran three more simulations, to support this argument. In the first simulation with an initial
magnetic field b0z = 2.76×1013 G, we used a higher resolution of 168×672×168 zones (run 2 in
Table 4.7), which corresponds to a resolution of ≈ 33 zones per MRI channel. The amplification
factor dropped to A = 21.9, which is closer to the value obtained in the simulation with b0z =
4.6× 1013 G (Table 4.7). In two other simulations with magnetic field b0z = 4.6× 1013 G, we
used lower resolutions of 60× 240× 60 and 76× 304× 76 zones (run 3 and 4 in Table 4.7).
This approximately gives the same number of zones per MRI channel as in the simulations with
b0z = 2.76×1013 G and 3.45×1013 G, respectively, and 100×400×100 zones. In both cases, in
the simulations with b0z = 2.76×1013 G the amplification factor was somewhat higher than in the
corresponding simulations with b0z = 4.6×1013 G (in the simulations with the lower resolutions
A= 23.4 and A= 22.9, respectively for the smaller and bigger initial field, and in the simulations
with the higher resolutions A = 21.9 and A = 21.0, respectively). This could still suggest some
weak dependence of A on the initial magnetic field strength. However, in the simulation with b0z =
3.45× 1013 G, the amplification factor A = 21.6 is lower than in the corresponding simulation
with b0z = 4.6× 1013 G, i.e. A = 22.2. This clearly shows, that these small differences are of a
numerical origin.

First of all, we made sure that an integer number of the MRI channels would fit into the compu-
tational domain. However, we could not do the same for the KH modes, which develop in diagonal
direction (in the horizontal plane) in the box. Moreover, the fastest growing KH mode length de-
pends on the channel width – for a different initial magnetic field strength, a different non-integer
number of the KH modes will fit in the computational domain. This can clearly affect the MRI
termination process. Second of all, in all simulations we used the same values of the viscosity
and resistivity. This means that simulations with different initial magnetic fields had somewhat
different Reynolds numbers, which could affect the system dynamics (see e.g. the MRI growth
rates in Table 4.7). All in all, we can conclude that the amplification factor A does not depend on
the initial magnetic field strength.
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Influence of initial perturbations

In the 2D simulations, we learnt that the MRI termination amplitude can be significantly (for
the current discussion by a factor of two) affected by the initial velocity perturbations (see e.g.
Table 4.3). Therefore, it is necessary to investigate this issue also with 3D simulations. We ran for
this purpose three simulations with the standard initial magnetic field, box size and resolution, i.e.
b0z = 4.6×1013 G, Lr×Lφ ×Lz = 1 km×4 km×1 km and 100×400×100 zones, respectively.
The initial velocity was given by Eq. (4.112):

v = Ωr
[
{0.1δRr(r,φ ,z)+ ε sin(kzz)}r̂}+{1+δRφ (r,φ ,z)}φ̂+δRz(r,φ ,z)ẑ

]
,

where kz = kMRI is the radial perturbation wavevector, δ = 10−5 and ε = 2×10−6 are the random
and the sinusoidal perturbation amplitudes, respectively. In all three simulations, the differences
between the MRI termination amplitudes were marginal (see Table 4.8), in strong contrast to the
results of the 2D simulations with the same resolution in the (r,z) plane (see Table 4.3). In 3D
simulations, the initial random perturbations are introduced not only in one (r,z) slice, i.e. for
constant φ , but throughout the box. Hence, the likelihood that in some part of the box, random
perturbations will effectively trigger parasitic instability is much higher. This can be illustrated
with the Fourier transforms of the radial and vertical velocity in the z direction, analogous to Eqs.
(4.128) and (4.129), respectively:

v̂r(r,φ , k̄z) =
1
Nz

Nz−1

∑
n=0

vr(r,φ ,z)e−i2πnk̄z/Nz , (4.153)

v̂z(r,φ , k̄z) =
1
Nz

Nz−1

∑
n=0

vz(r,φ ,z)e−i2πnk̄z/Nz . (4.154)

This time, the spatial averaging of the coefficients v̂r(r,φ , k̄z) and v̂r(r, k̄z) is performed in two
orthogonal directions: r and φ , i.e.

|ṽr(k̄z)| ≡
2

NrNφ

Nr

∑
j=1

Nφ

∑
k=1

√
v̂r(r j,φk, k̄z)v̂∗r (r j,φk, k̄z), (4.155)

|ṽz(k̄z)| ≡
2

NrNφ

Nr

∑
j=1

Nφ

∑
k=1

√
v̂z(r j,φk, k̄z)v̂∗z (r j,φk, k̄z), (4.156)

where j and k enumerate the zone numbers in the radial and azimuthal directions, respectively.
The outcome of this procedure is presented in Fig. 4.16. For comparison, we also included there
the 2D simulation results, which were already presented in Figs. 4.7 and 4.8. As we can see, the
coefficients |ṽr(k̄z)| and |ṽr(k̄z)| have a much smaller scatter in the 3D simulations, because the
random perturbations had much more variety. Fig. 4.16 can by no means be taken as a rigorous
proof of our claim, but it strongly supports our argumentation.

So far, we only showed, that for one particular combination of δ and ε in Eq. (4.112), the
MRI termination amplitude is constant. An important question to ask is, whether it is also the
case for different perturbation amplitudes. On the one hand, one could intuitively guess that for
higher values of ε (the amplitude of the sine perturbations in vr), the MRI might be able to form
the channels faster and amplify the magnetic field to higher values. On the other hand, random
perturbations with higher amplitudes, δ , would be better seeds for the parasitic instabilities. They
could develop faster and terminate the MRI earlier. To test this, we run one simulation with the
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Figure 4.16: Comparison of the spatially averaged Fourier transform coefficients |ṽz(k̄z)| and
|ṽz(k̄z)| (see Eqs. (4.130), (4.131), and Eqs. (4.155), (4.156)) of the initial radial and vertical velo-
city for the 2D (left panels) and 3D (right panels) simulations. Similar plots for a 2D simulation
are presented in Fig. 4.7. Top left: The coefficients |ṽr(k̄z)| from three 2D simulations denoted as
run 1 (black diamonds), run 5 (blue crosses) and run 6 (red pluses) in Table 4.3. The peak corres-
ponding to the sine perturbation (see Eq. (4.112)) at k̄z = 3 is clearly visible. The other coefficients
have some random scatter. Top right: The coefficients |ṽr(k̄z)| of 3D simulations denoted as run 1
(black diamonds), run 2 (blue crosses) and run 3 in Table 4.8. The values of the corresponding
coefficients |ṽr(k̄z)| are similar in all three simulations. Bottom left: The coefficients |ṽz(k̄z)| from
the three 2D simulations. Since the perturbations of vz were purely random, there is no distinct
maximum in |ṽz(k̄z)|, but some scatter. Bottom right: The coefficients |ṽz(k̄z)| from the three 3D
simulations. The scatter is much smaller than for the 2D simulations.
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run # δ [10−5] ε[10−6] kz
box size
(r×φ × z) [km]

resolution
(r×φ × z)

|brbφ | [1030G2]
at termination

termination
time [ms]

amplification
factor A

1 1 2 kMRI 1×4×1 100×400×100 0.933 11.20 21.0
2 1 2 kMRI 1×4×1 100×400×100 0.931 11.20 21.0
3 1 2 kMRI 1×4×1 100×400×100 0.943 11.21 21.1
4 2 2 kMRI 1×4×1 100×400×100 0.949 11.22 21.2
5 1 2 kMRI 1×1×0.333 100×100×34 0.929 11.20 21.0
6 1 2 3kMRI 1×1×0.333 100×100×34 0.851 14.40 20.0

Table 4.8: The results of 3D simulations designed to investigate the dependence of the MRI ter-
mination amplitude on the initial velocity perturbations (given by Eq. 4.112)). The initial magnetic
field, the viscosity and the resistivity set to b0z = 4.6×1013 G, and ν = η = 4.45×108 cm2s−1,
respectively. The amplitudes: δ of the sine radial velocity perturbations, and ε of the random ve-
locity perturbations were defined in Eq. (4.112). kMRI is the wavevector of the MRI fastest growing
mode, i.e., kMRI ≡ 2π/λMRI. Given the initial conditions, kMRI = 2π/0.333 km−1. In the first three
simulations, the same prescription for the initial velocity was used (obviously, the random part of
the perturbations was unique in every simulation). In the last simulation, the radial velocity per-
turbations formed channels, which were three times shorter, than the MRI fastest growing mode
(see also Fig. 4.17). In general, we can conclude that the MRI termination amplitude very weakly
depends on the initial perturbations.

very same initial conditions (i.e. b0z = 4.6× 1013 G, Lr × Lφ × Lz = 1 km× 4 km× 1 km and
100× 400× 100 zones) but a twice higher random perturbation amplitude, i.e. δ = 2× 10−5

instead of δ = 10−5. The simulation results are presented in Table 4.8. The amplification factor
was even slightly larger than in the previous simulations, i.e. A = 21.2. This disproves our
hypothesis.

The final issue, which needs to be discussed, is the sinusoidal component (proportional to ε)
of the radial velocity perturbations in Eq. (4.112), which we introduced to guarantee a certain
number of equally wide MRI channels. However, it is highly doubtful, whether such perturb-
ations would be encountered in nature. To test how much these sinusoidal perturbations af-
fect the MRI termination amplitude, we performed another simulation. In the box of the size
Lr×Lφ ×Lz = 1 km× 1 km× 0.333 km, resolved with 100× 100× 34 zones, we set the initial
magnetic field set b0z = 4.6× 1013 G (run 6 in Table 4.8). For these initial conditions, exactly
one fastest growing MRI mode would fit into the computational domain. Once again we used Eq.
(4.112), however this time we set kz = 3kMRI, i.e. the radial velocity formed three channels, which
were three times smaller than the fastest growing MRI mode (see the upper left panel of Fig. 4.17).
The other velocity components were, as usually, randomly perturbed. It is hard to imagine more
unfavourable initial conditions for the MRI fastest growing mode. Still, after ≈ 3 ms (later than
usually), the instability managed to form one channel (see the bottom left panel of the figure).36

36This simulation is a very good illustration of two aspects. Firstly, the MRI is a powerful instability, which does not
need any specially fine tuned initial conditions to start growing. Secondly, that the simulated physics can be sometimes
(strongly) affected by boundary conditions, which facilitated the formation of exactly one channel from unfavourable
initial conditions for the following reason. Three channels were not growing fast enough, to dominate the initial stage
of the evolution. For the formation of either two or one MRI channels, these perturbations were as good as random
ones. Only one channels formed, because it had a much higher growth rate. However, all other possibilities like , e.g.
formation of 1.5 channels were forbidden by the periodic vertical boundary conditions. It is not clear, whether in a
much larger box, exactly one channel would emerge from these initial conditions. See e.g. Fig 4.4, where four instead
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Figure 4.17: The influence of the initial velocity perturbations on MRI channel formation in a 3D
simulation (run 6 in Table 4.6). The magnetic field, the viscosity and the resistivity were set to
b0z = 4.6×1013 G, and ν = η = 4.45×108 cm2s−1, respectively. The simulation box size 1 km×
1 km×0.333 km in the r, φ and z directions, respectively, was resolved with 100×100×34 zones.
The initial velocity is given by Eq. (4.112). However, this time, the wavelength of the sinusoidal
radial velocity perturbations was equal to λ = 0.111 km (see upper left panel), instead of to λMRI =
0.333 km – the wavelength of the fastest growing MRI mode. In spite of these unfavourable initial
conditions, after ≈ 4ms, one fastest growing MRI channel was formed (see bottom left panel).
Right: time evolution of the volume averaged Maxwell stress component |brbφ |. Because of the
unfavourable initial conditions, the MRI starts to be fully operational only after≈ 4 ms, and not as
usually after ≈ 2 ms (compare e.g. with Fig. 4.10). The termination amplitude |brbφ | (achieved at
a later time) is almost the same as in the other comparable simulations (see Table 4.6). The green
vertical like marks the time t = 8 ms at which the radial velocity is shown in the bottom left panel.

What is more important, the amplification factor A= 20.0 was only 5% smaller than in the other
simulations (see Table 4.8). From this result, we can conclude that the amplification factor very
weakly depends on the initial conditions.

Final conclusions

We have shown that in the 3D MRI simulations with Reynolds numbers Re = Rm = 100, the
MRI amplifies the initial magnetic field by a constant factor A = 18.6, independent of the ini-
tial magnetic field strength and very weakly depending on the initial perturbations.37 This result
provides us with an upper limit for the magnetic field amplification by the MRI at even higher
Reynolds numbers, for which A can be even smaller. We conclude that theoretically expected
magnetic fields encountered in core-collapse supernovae (in the nascent proto-neutron star in the
post-bounce phase) of order 1011 G cannot be amplified by the MRI to dynamically significant
amplitudes of order 1015 G.

of the theoretically expected five MRI channels formed from random perturbations.
37Provided they do not have a special form, e.g. of the exact MRI channel solutions.
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viscosity
ν [cm2 s−1]

resistivity
η [cm2 s−1]

box size
(r×φ × z) [km]

resolution
(r×φ × z) γMRI [s−1]

|brbφ | [1030 G2]
at termination

termin.
time [ms]

amp.
factor A

0 0 1×4×1 100×400×100 1137 0.960 11.10 21.3
4.45×108 4.45×108 1×4×1 100×400×100 1127 0.933 11.20 21.0
4.45×109 4.45×108 1×4×1.05 100×400×106 1128 1.02 11.26 22.0
4.45×108 4.45×109 1×4×1.08 100×400×108 1042 0.926 12.32 20.9
4.45×109 4.45×109 1×4×1.13 100×100×114 1043 1.09 12.36 22.7
4.45×1010 4.45×1010 1×4×1.95 100×100×200 566 0.536 22.76 15.9

Table 4.9: Results of the simulations with the initial magnetic field set to b0z = 4.6×1013 G and
different values of viscosity and resistivity. ν = 4.45× 108,4.45× 109 and 4.45× 1010 cm2s−1

corresponds to Re = 100,10 and 1, respectively. The box size in the z direction is chosen so that
three fastest growing MRI modes fit into the computational domain.

Other Reynolds numbers

Additionally, we run a few simulations with the initial magnetic field set to b0z = 4.6×1013 G
and with different Reynolds numbers in the standard box size 1 km×4 km×Lz with a resolution
of 100×400×Nz zones. The resistivity and viscosity were independently set to 4.45×108,4.45×
109 or 4.45× 1010 cm2s−1, which corresponds to Reynolds numbers 100,10 and 1, respectively.
The vertical box length, Lz, and the resolution, Nz, were chosen so that exactly three fastest grow-
ing MRI modes fit into the computational domain, and ≈ 33 zones were used per channel. We
also run one simulation without physical viscosity and resistivity, i.e. ν = η = 0 cm2s−1, which
corresponds to infinite Reynolds numbers, i.e. the ideal MHD limit. Obviously, numerical dissip-
ation was present in that simulations. The details of the initial setups and simulation results can
be found in Table 4.9. Since (apart from the ideal MHD limit) such low Reynolds numbers, i.e.
Re,Rm ≤ 100, are not encountered in core-collapse supernovae, we did not spend too much time
analysing these simulations. The MRI channels are well resolved in all simulations and the meas-
ured instability growth rate values are reliable. Note that only for Re = Rm = 1, the MRI growth
rate is significantly affected by resistivity and viscosity. The growth rate in the ideal MHD limit
is very close to the one obtained for Re = Rm = 100, which were the default Reynolds numbers in
our simulations. As for the amplification factor, it is clear that in all simulations it must have been
affected by numerical dissipation. Therefore, we cannot draw any reasonable conclusions on the
dependence of the amplification factor on hydrodynamic and magnetic Reynolds numbers.

4.5.4 Comparison of 2D and 3D simulations

In this section, we present a brief comparison between the 2D and 3D MRI simulations. The
first stages of the instability, i.e. MRI channel formation and exponential magnetic field ampli-
fication, look the same in both type of simulations. Differences become visible during the phase,
when the MRI is terminated by parasitic instabilities developing on top of its channels. In the 2D
simulations, the KH instability is suppressed because of the assumed axial symmetry, and these
are only tearing modes, which can terminate the MRI growth. In the 3D simulations, the faster
developing KH instability is responsible for the disruption of the MRI channels. In Fig. 4.18, we
compare the radial magnetic field at MRI termination in a 2D and 3D simulation. The differences
in the field structure are obvious.
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Figure 4.18: Comparison of the radial magnetic field at MRI termination in a 2D (left) and 3D
(right) simulation with the initial magnetic field, the viscosity and the resistivity set to b0z = 4.6×
1013 G, and ν = η = 4.45× 108 cm2s−1, respectively. The results of the 2D and 3D simulation
were already presented in Fig. 4.6, and Figs. 4.10 and 4.11, respectively. In the left panel, the X
and O points characteristic for the tearing modes are clearly visible. From the field pattern in the
right plot, we can identify the Kelvin-Helmholtz instability. The two panels clearly demonstrate
that the MRI termination mechanism is different in 2D and 3D simulations.

Because the MRI is terminated faster in 3D simulations, it can amplify the initial magnetic field
less. In Fig. 4.19, we present the MRI termination amplitude as a function of resolution for the 2D
and 3D simulations.

Another difference, which can be observed in Fig. 4.19, is that in the 2D simulations (especially
at lower resolution), the MRI termination amplitude depends on the initial random velocity per-
turbations. We explained this phenomenon by the fact that in 3D simulations, where many more
zones were used, the random perturbations had a higher chance to trigger parasitic instabilities
effectively in some part of the simulation domain.

4.6 Summary

In accordance with Obergaulinger et al. (2009), by means of numerical simulations, we showed
that the MRI can develop in core-collapse supernovae. Moreover, we have confirmed the theoret-
ical hypothesis (Goodman & Xu (1994), Pessah & Goodman (2009), Pessah (2010)) that the MRI
can be terminated by parasitic instabilities, i.e. the Kelvin-Helmholtz or tearing mode instability.
We pointed out some inconsistencies in Pessah’s calculations of the MRI termination amplitudes
and proposed an alternative description of this highly non-linear phenomenon. Combining this
theoretical, somewhat phenomenological, approach with our simulation results, we conclude that
for the conditions encountered during a core-collapse supernova explosion, the MRI can amplify
the initial magnetic field only by a constant factor (≈ 20). Therefore, the progenitor’s magnetic
field (of order 109 G), first amplified by compression (up to≈ 1011G) in the pre-bounce phase and
later by the MRI in the post-bounce phase (up to ≈ 1012 G), cannot reach dynamically important
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Figure 4.19: Comparison of the MRI termination amplitude in 2D (red crosses) and 3D (blue
diamonds) simulations with the initial magnetic field, the viscosity and the resistivity set to b0z =
4.6×1013 G, and ν = η = 4.45×108 cm2s−1, respectively. The results were presented in Tables
4.3, 4.4 and 4.5 for the 2D and in Table 4.6 for the 3D simulations. The abscissa gives the number
of zones used to resolve the radial direction, r. Since the Kelvin-Helmholtz instability cannot
develop in 2D, the magnetic field is amplified to higher amplitudes (in comparison with the 3D
simulations) by the MRI before it is terminated by tearing modes. In 3D simulations, the MRI is
terminated by the faster developing KH instability and therefore the magnetic field reaches lower
values. In the 2D simulations with lower resolutions, the MRI termination amplitude depends on
the random initial velocity perturbations (see Eq. (4.112)). In 3D simulations, there is no such
dependence observed. For the resolution “100”, the results from three different simulations are
plotted. However, the differences between the amplitudes are indistinguishable in the plot (see
Table 4.8). The simulations with resolutions “200” and “400” converge to the same value (see
Table 4.6).
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amplitudes (of order 1015 G). However, it is known from astronomical observations that magnetars
have magnetic fields of order 1015 G (Kouveliotou et al. 1998). Thus, the question of magnetic
field amplification remains open. Some new mechanism has to be proposed. The MRI could still
be an important but not the sole amplifying agent.

Another important lesson that we learnt is that for MRI studies, 3D simulations are a must. In
2D simulations, because of the assumed axial symmetry, the KH instability is suppressed and the
MRI can only be terminated by the tearing modes. This undesirable and unphysical phenomenon
will lead to too high MRI termination amplitudes. Hence, only the exponential growth phase of
the MRI can be correctly captured in 2D numerical simulations. However, there is no need for
such simulations, since analytical equations describing this stage of the MRI evolution are known
even in non-ideal MHD (Pessah & Chan 2008).

The idea of taking magnetic fields, which have amplitudes much higher than expected in nature,
as initial conditions and then trying to extrapolate the simulation results to the parameter regime of
interest seems to be questionable. It is true that we successfully did it in the local MRI simulations,
however, we do not think that this will always be possible. The problem, which we considered was
relatively simple (in comparison with the core-collapse mechanism) and we knew what physical
phenomena can be expected. Moreover, because of many symmetries in the system, we managed
to find appropriate scaling relations.

Without an appropriate (semi-)analytical model, it would be very difficult to interpret our results
(and similarly, the results of Obergaulinger et al. (2009)). One might wonder whether the initial
magnetic field was amplified to 1015 G because for this value the magnetic field energy became
comparable to the kinetic or rotational energy (in this case one might expect also much smaller
initial fields to be amplified to this value), or because the system would amplify any field only by
a constant factor (which was the case in the MRI simulations). In the latter case, much weaker
initial magnetic fields (of order 1011 G) could not reach values of 1015 G. Obviously, one could
not exclude more complicated scenarios.

This leads us to the final conclusion. Any reliable simulation of the magnetic field amplification
hast to be done in 3D. Moreover, the initial amplitudes must not be artificially enhanced. Such
simulations inevitably demand very high resolutions. Whereas it should be computationally feas-
ible to study locally the magnetic field amplification problem in core-collapse supernovae in the
foreseeable future, we do not think that it will ever be possible in global simulations.



Chapter 5

Summary and outlook

Magnetic field amplification in core-collapse supernovae

The main goal of this thesis was to investigate whether magnetic fields can be amplified to
dynamically important strengths (of order 1015 G) within a few hundreds of milliseconds in the
post-bounce phase of a core-collapse supernova (CC-SN).

According to state-of-the-art stellar evolution theory, magnetic fields in CC-SN progenitors are
unlikely to exceed 109 G (Heger et al. 2005). In the initial (pre-bounce) core-collapse phase, a
magnetic field can be amplified by compression by roughly two orders of magnitude. In the post-
bounce phase, further amplification can be caused by convection or the standing accretion shock
instability. However, recent numerical studies of Obergaulinger & Janka (2011) show that mag-
netic field strengths of order of 1015 G cannot be reached in CC-SNe of non-rotating progenitors,
unless unrealistically high initial magnetic field strengths are used. For rotating cores, there are
additional ways in which magnetic field can be amplified. One of them is linear winding, which
is, however, too slow to increase the magnetic field strength to dynamically relevant values on the
supernova timescale (i.e. in less than a second; see, e.g. an estimate by Spruit (2008)). Akiyama
et al. (2003) pointed out that matter in rotating proto-neutron stars can be unstable against the mag-
netorotational instability (MRI; Balbus & Hawley (1991)). Independently of the initial magnetic
field strength, the MRI increases the magnetic field exponentially with time, which makes this in-
stability the most promising amplifying agent in CC-SNe. Obergaulinger et al. (2009) confirmed
by means of local numerical ideal MHD simulations that the instability growth-rate is sufficient
to increase the magnetic field strength by several orders of magnitude in the post-bounce phase.
However, because of computational constraints, these authors used initial magnetic fields which
were two orders of magnitude higher than theoretically expected. Moreover, the influence of nu-
merical dissipation on these authors’ simulation results is unknown. Furthermore, because of a
general lack of understanding of the MRI termination process, Obergaulinger et al. (2009) were
unable to answer the question whether given realistic initial magnetic fields, the MRI would be
able to amplify magnetic fields to dynamically relevant field strengths.

Our main goal was to extend the numerical studies of Obergaulinger et al. (2009) to non-ideal
MHD simulations, investigate the influence of numerical dissipation and extrapolate the results to
a parameter regime relevant for CC-SNe. Such an extrapolation requires an appropriate (physic-
ally justified) prescription. Goodman, Xu and Pessah (later denoted as GXP) in a series of papers
(Goodman & Xu (1994), Pessah & Goodman (2009), Pessah (2010)) proposed and developed an
MRI termination model. Its key idea is that the initial exponential growth-phase of the MRI, dur-
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ing which coherent velocity and magnetic field channels form, can be terminated by secondary
instabilities, i.e. the Kelvin-Helmholtz or the tearing mode instability. Based on these assump-
tions, Pessah (2010) (almost) analytically calculated MRI termination amplitudes (i.e. magnetic
field strength at termination) for different hydrodynamical and magnetic Reynolds numbers (de-
noted as Re and Rm, respectively). We planned to verify these predictions with the help of 2D and
3D resistive-viscous MHD simulations. However, a closer look at Pessah’s assumptions and sim-
plifications revealed that his calculations (i.e. the GXP model) are mathematically inconsistent and
therefore unreliable. Consequently, we proposed an alternative, free of the GXP model’s flaws,
prescription for extrapolating our simulation results to the CC-SN regime. In deriving our some-
what implicit formulae, we did not neglect physical effects which could possibly play an important
role in the MRI termination process and we did not use results of linearised MHD equations to
study nonlinear phenomena. We verified this prescription with the help of numerical simulations,
which confirmed its predictive power. This allowed us to conclude that, for sufficiently high Reyn-
olds numbers, i.e. Re,Rm � 10, independently of the initial magnetic field strength, the MRI is
able to amplify a magnetic field by a constant factor A. This result is relevant not only for CC-
SNe, but also for other astrophysical systems, especially accretion discs. For the rotational profile
used in our simulations, the amplification factor, A, was of order of 20. This leads us to the final
conclusion concerning CC-SNe. Given that the magnetic field of the most strongly magnetised
progenitors can be pre-amplified from ≈ 109 G to ≈ 1011 G by compression during the collapse
phase, the MRI is unable to amplify the magnetic field in the post-bounce phase to dynamically
relevant strengths (of order 1015 G), but only to roughly 1012 G.

In accretion discs, gas rotates according to a Keplerian profile, which could lead to a slightly
different (but still constant) value of the amplification factor, A (given Re,Rm� 10, which is the
case in all but proto-planetary discs). We presume that this variation should not be larger than
a factor of a few. However, this statement should be verified with numerical simulations. Our
study sheds some light on the nature of the MRI. The instability can be ubiquitous in accretion
discs, may be able to amplify even very weak initial magnetic fields, yet not by many orders
of magnitude, but only by a moderate factor. Numerical simulations with insufficient resolution
per MRI channel are misleading and suggest that much stronger amplification would be possible
However, as we could see in our resolution studies performed in Chapter 4, this artificial boost of
the amplification factor A is caused by numerical viscosity. Even though we used a monotonicity
preserving scheme of 9th order (MP9) and 33 zones per MRI channel (which are more than used
in most MRI studies), thiw was still insufficient to resolve fully the secondary Kelvin-Helmholtz
instability which was responsible for MRI termination in 3D simulations. Simulations with more
than 66 zones per channel converged to the same MRI termination amplitude (in other words, to the
same amplification factor, A). This shows that high resolutions are required to study the process of
MRI termination, not to mention the subsequent turbulent phase. This is a very important lesson
for the whole MRI community.

Even though we managed to answer the main question concerning the MRI-driven magnetic
field amplification in CC-SNe, we still see room for further research and improvements. Firstly,
from the numerical point of view, it would be interesting to investigate how the MRI termina-
tion amplitude depends on resolution for lower order reconstruction schemes, i.e. MP5 and MP7.
Obviously, this dependence would not be physical, but it would rather show how much numer-
ical viscosity is present in a given simulation. Answering this question would be very valuable
for users of other MHD codes, in which often only even lower order reconstruction schemes are
implemented.

Secondly, we showed in our simulations that the amplification factor, A, does not depend on the
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initial magnetic field strength. However, because of limited computational time, we managed to
show numerical convergence only for one initial magnetic field amplitude. We have demonstrated
that in simulations with other initial field strengths, numerical viscosity played an non-negligible
role. Still, we managed to estimate its effect and conclude that the amplification factor, A, is
indeed independent of the initial magnetic field. However, we think that it would be worthwhile to
show numerical convergence for at least two more initial magnetic field amplitudes. Such studies
would definitely show whether the amplification factor, A, is constant for a given rotational profile
without the need of making additional assumptions regarding numerical viscosity.

Thirdly, it would be undoubtedly beneficial to study the evolution of the parasitic instabilities in
more detail. This could be very helpful in formulating a consistent semi-analytical MRI termina-
tion model. As a first step in this direction, we tried to measure the growth rate of the secondary
instabilities with the help of Ez

kin, i.e. the contribution of the fluid motions in the z direction to the
kinetic energy . The idea behind this procedure is quite simple. Since the MRI does not induce
any motion in the vertical direction, any change in Ez

kin should be caused by parasitic instabilities.
Unfortunately, because of the chosen radial shearing-disc boundary condition (Klahr & Boden-
heimer 2003), and because of the fact that the MRI growth rate depends on (local) angular velocity
(shear), we observed that the MRI channels developed faster (and therefore had higher amplitudes)
for smaller radii. This would lead to a (radius dependent) shear (gradient) in the perturbations of
both the velocity and magnetic field at the radial boundaries, which is not properly taken into ac-
count (compensated) by the imposed boundary conditions. The shear would consequently lead to
some spurious fluid motions in the vertical direction, making it impossible to measure the activity
(growth rate) of the secondary instabilities with the help of Ez

kin. We can think of two solutions
how to reduce or eliminate this problem.

1. The simulation box could be moved further away from the proto-neutron star centre. For
larger radii, the relative MRI growth-rate difference at the boundaries (proportional to (r2−
r1)/r0, where r1 and r2 are the box boundaries and r0 is the box centre), would be smaller,
which would consequently reduce spurious vertical fluid motions. However, we cannot
choose r0 to be arbitrarily large, because the radius of a proto-neutron star is approximately
rPNS ≈ 30 km.

2. Alternatively, we could use the shearing sheet technique, which consists in transforming to
the frame co-rotating with a fiducial fluid element at a radius r0 and linearising the rotational
profile around r0. The main advantage of this approximation is that the local angular velo-
city shear and therefore also the MRI growth-rate, which is directly proportional to it, are
constant in the whole simulation domain. This should eliminate unphysical and undesired
vertical motions related to the shear in the perturbation amplitudes at the radial boundaries.
However, since the shearing sheet approximation does not allow for global gradients, it is
not suitable for studying the MRI in CC-SNe, where at least pressure gradients are neces-
sary to provide the initial magnetohydrodynamical equilibrium. Therefore, results of such
simulations could not be easily extrapolated to the parameter regime of interest here, but
would rather serve as an auxiliary input for creating a consistent semi-analytical theory of
the MRI termination process.

Numerical resistivity and viscosity

Another very important aspect, which was frequently discussed in this thesis are numerical
errors. In Chapter 2, we argued that they can be very often interpreted as (numerical) viscosity
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and resistivity. Chapter 3 was devoted to verifying this claim. Moreover, we proposed some
simple ansatzes for estimating numerical dissipation. Next, we tested these prescriptions with
the help of (sound, Alfvén, and fast magnetosonic) wave damping and tearing mode simulations.
We demonstrated that after some calibration (tests), our ansatzes can be used for estimating the
numerical dissipation of any grid based MHD code. This is probably the most interesting result
for the numerical MHD community. In Chapter 4, we used these prescriptions to assess numerical
viscosity and resistivity in the simulations of the MRI in CC-SNe.

Verifying our ansatzes with the help of the wave damping simulations was rather straightfor-
ward. Initial conditions were easy to implement and simulations were computationally inexpens-
ive. The results confirmed our hypothesis that numerical dissipation depends on the characteristic
velocity and length of the simulated system. Moreover, we confirmed that the employed (spa-
tial) reconstruction and time integration schemes had their theoretical order of accuracy within the
measurement errors. We recommend users of other MHD codes interested in applying ansatzes for
estimating the numerical viscosity and resistivity to perform a suitable calibration with the help of
wave damping simulations. The main advantages of this procedure are simplicity and low costs
(in terms of both computational- and human work-time).

We also tested our ansatz for numerical resistivity (and the concepts of the characteristic ve-
locity and length) with the help of tearing mode simulations. This instability was interesting to
study for several reasons. Firstly, tearing modes can develop on the top of the MRI channels and
subsequently terminate its further growth. As we have shown in Chapter 4, we observed this phe-
nomenon in 2D MRI simulations. Therefore, we decided to investigate this parasitic instability
in a much simpler system, i.e. with a constant background magnetic field and no velocity shear.
Secondly, resistivity manifest itself in the tearing mode instability in a somewhat unusual way. It
does not only simply dissipate magnetic field energy (into thermal and kinetic energy), but also
converts one magnetic field component into another one. It could be imagined that resistivity
not only “destroys” but also “creates” something in the system. Therefore, we also investigated
whether numerical resistivity (which is, in the end, just a sum of numerical errors) would exhibit
similar properties. Our simulations showed that indeed this was the case. Tearing modes driven
by numerical and physical resistivity were in many aspects alike. Thirdly, velocity perturbations
in the tearing mode instability experience a very strong variation around the magnetic field shear.
Moreover, they become singular for vanishing resistivity, and consequently tearing modes not
valid solutions in the ideal MHD limit. Therefore, it was very important to run some ideal MHD
simulations to see how the code would behave in the vicinity of potentially singular points. The
used high-order reconstruction schemes, i.e. MP5, MP7 and MP9, managed to “regularise” the
singular points (by introducing some numerical resistivity), which prevented the code from suffer-
ing any unphysical instability (apart from the numerically driven tearing modes). For the reasons
explained in Chapter 3, MP7 and MP9 reconstruction schemes experienced a (slight) reduction
of their accuracy order. However, they still performed much better than any other lower order
reconstruction scheme. For MP3 or the piece-wise linear scheme, the code would often crash or
produce completely unreliable results. These observations convinced us to use the highest order
reconstruction scheme, i.e. MP9, in the 3D MRI simulations, where such singular points could nat-
urally occur (during the exponential growth phase - around the shear of magnetic field channels,
and after MRI termination - literally everywhere).

We think that it would be worth conducting similar studies for the Kelvin-Helmholtz instabil-
ity, which is responsible for MRI termination in 3D simulations (and nature). Firstly, we could
test our ansatz for the numerical viscosity on another two dimensional hydrodynamical instabil-
ity. Secondly, such a detailed investigation of the Kelvin-Helmholtz instability dependence on



165

numerical viscosity could be very helpful in further MRI studies. A better understanding how
this parasitic instability develops in systems with non-negligible numerical viscosity could greatly
facilitate and improve an analysis of 3D MRI simulation results.





Appendix A

Semi-analytical theory of the tearing
mode instability

In Sec. 3.4.2, we wanted to verify the theoretical prediction (3.90) for the growth rate of the
tearing mode in resistive-viscous MHD with the help of numerical simulations. However, we
observed discrepancies between theory and simulation results (see Eqs. (3.105)–(3.109) and dis-
cussion after). Therefore, we postulated the “semi-analytical” ansatz (3.110) for the instability
growth rate

γ
?
= n0η

n1ν
n2

(
b0√
ρ0

)n3

kn4δ
n5

(
δ

k
− k

δ

)n6

, (A.1)

where n0 is a constant and n1, . . . ,n6 are fractionals, which need to be determined by numer-
ical simulations. The dimension of the growth rate is [s−1], which we will write shortly as
dim(γ) = [s−1], and it has to be “constructed” from the other physical quantities. Since dim(η) =
dim(ν) = [cm2 s−1], dim(cA) = [cm s−1] and dim(k) = dim(δ ) = [cm−1], we obtain from dimen-
sional analysis that the following conditions must hold

n1 +n2 +n3 = 1, and (A.2)
n1 +n2

2
+n3−n4−n5 = 0. (A.3)

The analytical expression (3.90) for tearing mode growth rate in resistive-viscous MHD does
not agree with our simulation results either. Therefore, there is no reason to trust Eq. (3.88) for
εRV, which is proportional to resistive-viscous layer width. However, we can formulate a similar
(to Eq. (A.1)) ansatz for εRV, i.e.
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)m3

km4δ
m5 , (A.4)

where m1, . . . ,m6 are fractional numbers and

m1 +m2 +m3 = 0, and (A.5)
m1 +m2

2
+m3−m4−m5 = 1. (A.6)

This time we did not introduce a constant m0, since εRV cannot be measured directly from simula-
tions. It should just be thought as a prescription to transform y in ODE (3.68) to a dimensionless
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variable s̃≡ y/εRV. What we can expect however, is that the characteristic velocity peak, vy, (which
according to our convention defines the width of the resistive-viscous layer) should be present at
the same value of s̃ (i.e. the function Φ̃(s̃) has a maximum at a certain constant s̃). In other words,
the distance of the velocity peak from the centre, which we will denote with the symbol LεRV ,
should be proportional to εRV. Therefore, the resistive-viscous layer width should be equal to

LεRV

?
= m0εRV

?
= m0η

m1ν
m2

(
b0√
ρ0

)m3

km4δ
m5 , (A.7)

where m0 is a constant to be determined from simulations.

In Sec. 3.4.2, we numerically investigated the dependence of the tearing mode growth rate as a
function of resistivity (see Fig. 3.27). We fitted the simulation results with the function

ln(γ) = a ln(η)+ c. (A.8)

obtaining a = 0.7994±0.0012 (see Eqs. (3.107) and (3.108)), which seems to indicate that n1 =
4/5. Then, ansatz (A.1) would read
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. (A.9)

To verify this guess and also to investigate the dependence of the tearing mode growth rate on
viscosity, we ran another set of simulations with the same numerical setup like in those presented
in see Fig. 3.27 (i.e. resolution of 2048×2048 zones, δ = 10,k = 3,b0 = ρ0 = 1), but the viscosity
set to ν = 10−4 and resistivity in the range η = 10−6–10−5. The measured growth rates (see Fig.
A.1), we once again fitted by the function

ln(γ) = a ln(η)+ c (A.10)

obtaining the following results

a = 0.801±0.004, (A.11)

c = 5.838±0.051. (A.12)

The estimator of a reconfirms our assumption that n1 = 4/5.

Now, we can reinterpret the simulation results and extract information on the influence of the
viscosity in the following somewhat indirect way. We fit the functions

ln(γ) = 0.8ln(η)+ c1, and (A.13)

ln(γ) = 0.8ln(η)+ c2 (A.14)

to the simulation results with ν = 10−4 and ν = 10−5, respectively. If ansatz (A.9) holds, the
difference between c1 and c2 should be

c1− c2 = ln(10−4n2)− ln(10−5n2) = n2 ln(10) (A.15)

From the linear regression we obtained the following estimators

c1 = 5.385±0.001, (A.16)

c2 = 5.826±0.003, (A.17)
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Figure A.1: Tearing mode growth rate as a function of resistivity. Blue diamonds and red asterisks
denote results of simulations run with constant viscosity set to ν = 10−5 and ν = 10−4, respect-
ively, the HLL Riemann solver, the MP reconstruction scheme and the resolution of 2048×2048
zones. The solid lines of the corresponding colours result from linear fits to the logarithms of the
measured growth rates.

hence c1− c2 = −0.441± 0.004, from which we can infer n2 = −1/5, since (−1/5) ln(10) ≈
−0.461. If γ were proportional to ν−1/6 or ν−1/4, c1− c2 should be equal to −(1/6) ln(10) ≈
−0.384 or −(1/4) ln(10)≈−0.576, respectively. Therefore, we conclude that n2 =−1/5.

We can also determined the values of m1 and m2 in Eq. (A.7) for LεRV , i.e. the width of the
resistive-viscous layer. For every simulation after 30 time units, we plotted vy(x = 0,y) and meas-
ured the positions of the velocity peaks L+

εRV
(for y > 0) and L−εRV

(for y < 0; see bottom right panel
of Fig. 3.26, where these peaks are marked with green vertical lines). To reduce the measurement
error, we can estimate that

LεRV =
L+

εRV
−L−εRV

2
± ∆y

2
, (A.18)

where ∆y is the width of one zone.1 To the measured widths of the resistive-viscous layer (see Fig.
A.2) in simulations with ν = 10−4 and ν = 10−5, we fitted the functions

ln(LεRV) = a1 ln(η)+ c1, and (A.19)

ln(LεRV) = a2 ln(η)+ c2, (A.20)

1 A more conservative approach would require to take ∆y as a measurement error . One can make the following
observation, however. For the sake of simplicity let us assume that index i numerates zone interfaces and y(i = 0) = 0.
There are two possibilities: either we see a clear local maximum, i.e. vy(0,y(iM−1))< vy(0,y(iM))> vy(0,y(iM +1)),
or the maximum is “smeared” across two zones, i.e. vy(0,y(iM −1)) < vy(0,y(iM)) ≈ vy(0,y(iM +1)) > vy(0,y(iM +
2)). In the first case we would conclude, that the exact (mathematical) value of L+

εRV should be somewhere in the range
[y(iM)−∆y/2,y(iM)+∆y/2]. In the other case, the exact maximum is more likely to lie between the two interfaces,
hence L+

εRV ∈ [(y(iM)+ y(iM+1)/2−∆y/2,(y(iM)+ y(iM+1)/2+∆y/2].
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Figure A.2: Resistive-viscous layer width as a function of resistivity. Blue diamonds and red
asterisks denote results of simulations run with constant viscosity set to ν = 10−5 and ν = 10−4,
respectively, the HLL Riemann solver, the MP9 reconstruction scheme and a resolution of 2048×
2048 zones. The solid lines of the corresponding colours result from linear fits to the logarithms
of the measured resistive-viscous layer widths.

respectively, obtaining

a1 = 0.160 ± 0.003, c1 =−2.079 ±0.037 and (A.21)

a2 = 0.1591±0.0073, c2 =−2.3928±0.0057. (A.22)

The logarithm of Eq. (A.7) reads

ln(LεRV) = m1 ln(η)+ ln
[

m0(ν)
m2

(
b0√
ρ0

)m3

km4δ
m5

]
. (A.23)

The estimators of a1 and a2 are equal within the measurement error to 1/6 = 0.16̄. We note that
a1 = a2 ≡ m1 = 1/6 is consistent with the original Eq. (3.88) for εRV. Therefore, to check if its
other predictions are correct, we refitted the functions

ln(LεRV) = 0.16̄ ln(η)+ c1, and (A.24)

ln(LεRV) = 0.16̄ ln(η)+ c2, (A.25)

expecting that c1− c2 = (1/6) ln(10)≈ 0.384. We obtained the following estimators

c1 =−1.992±0.004, and (A.26)

c2 =−2.393±0.006, (A.27)

hence c1− c2 = 0.40±0.01. This result confirms that m2 = 1/6.
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So far we know that n1 = 4/5 and n2 = −1/5. From condition (A.2), we obtain that n3 =
1− (n1 +n2) = 2/5. Hence ansatz (A.9) should read

γ
?
= n0η

4/5
ν
−1/5

(
b0√
ρ0

)2/5

kn4δ
n5

(
δ

k
− k

δ

)n6

, (A.28)

where from condition (A.3), we have n4 + n5 = 8/5. Analogically, from conditions (A.5) and
(A.6), and ansatz (3.112), by putting m1 = m2 = 1/6, we should have

LεRV

?
= m0(ην)1/5

(
b0√
ρ0

)−1/3

km4δ
m5 , (A.29)

where m4 +m5 =−3/5.

Another set of simulations enabled us to verify the postulated dependence of the growth rate and
the resistive-viscous layer width on background magnetic field (Eqs. (A.28) and (A.29), respect-
ively). The initial parameters were set to either δ = 10, k = 3, ρ0 = 1, η = 5×10−5, ν = 10−4

and b0 in the range 0.5–10, or δ = 20, k = 6, ρ0 = 1, η = 10−6, ν = 10−5 and b0 in the range
0.5–4. The latter simulations, were run in a twice smaller box, i.e. Lx = Ly = π/6, and a twice
lower number of zones in each direction, i.e. 1024×1024 (the effective resolution being the same).
The logarithms of Eqs. (A.28) and (A.29) read

ln(γ) =
2
5

b0 + ln
[

n0η
4/5

ν
−1/5

ρ
−1/5
0 kn4δ

n5

(
δ

k
− k

δ

)n6
]
, and (A.30)

ln(LεRV) =−
1
3

b0 + ln
(

m0η
1/6

ν
1/6km4δ

m5ρ
1/6
0

)
(A.31)

respectively. To the simulation results (presented in Fig. A.3) with δ = 10, k = 3 and δ = 20, k =
6, we fitted the functions

ln(γ) = a1 ln(b0)+ c1, (A.32)

ln(LεRV) = α1 ln(b0)+β1 (A.33)

and

ln(γ) = a2 ln(b0)+ c2, (A.34)

ln(LεRV) = α2 ln(b0)+β2, (A.35)

respectively, obtaining the following estimators

a1 = 0.3906±0.0044, c1 =−4.377±0.006, (A.36)

a2 = 0.4112±0.0078, c2 =−4.058±0.005, (A.37)

α1 =−0.364±0.017, β1 =−4.021±0.015, (A.38)

α2 =−0.329±0.017, β2 =−5.17±0.01. (A.39)

They confirm that a1 = a2 ≡ n3 = 2/5 = 0.4 and α1 = α2 ≡ m3 =−1/3 =−0.3̄ within the meas-
urement error. Please note that we predicted these results beforehand in Eqs. (A.28) and (A.29),
respectively. Were there any discrepancies between our semi-analytical theory and these simula-
tion results, we would have to modify or discard the former.

With these simulation results, one more aspect of Eqs. (A.28) and (A.29) can be tested. Even
though the powers n4,n5,n6 and m4,m5 are undetermined, we expect from dimensional analysis
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Figure A.3: Tearing mode growth rate (left) and resistive-viscous layer width (right) as a function
of background magnetic field. Results of simulations with δ = 20, k = 6, ρ0 = 1, η = 10−6, ν =
10−5 and b0 ranging from 0.5 to 4 are depicted with blue diamonds. Red asterisks represent result
of simulations with δ = 10, k = 3, ρ0 = 1, η = 5×10−5, ν = 10−4 and b0 in the range 0.5–10.
Straight lines of the corresponding colours result from linear fits to the logarithms of the simulation
data.

that n4 +n5 = 8/5 and m3 +m4 =−2/3. Therefore, doubling δ and k (from δ = 10,k = 3 to δ =
20,k = 6) should increase the instability growth rate by a factor of 28/5 and decrease the resistive-
viscous layer width by a factor of 2−2/3. Since the ratio δ to k is the same, the term (δ/k−k/δ )n6

remains constant. Hence, despite not knowing the exact value of n6, we can still use of Eq. (A.28)
for this case. Taking into account the different values of resistivity and viscosity between these two
simulation sets, we theoretically expect ∆c theory ≡ c1−c2 ≈ 0.282 and ∆β theory ≡ β1−β2 ≈ 1.11.
To check this hypothesis we fitted the functions

ln(γ) =
2
5

ln(b0)+ c1, (A.40)

ln(γ) =
2
5

ln(b0)+ c2, (A.41)

ln(LεRV) =−
1
3

ln(b0)+β1 (A.42)

ln(LεRV) =−
1
3

ln(b0)+β2 (A.43)

(A.44)

to the simulation results and obtained

c1 =−4.385±0.006, (A.45)

c2 =−4.055±0.005, (A.46)

β1 =−4.03±0.02, (A.47)

β2 =−5.17±0.01. (A.48)
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Hence ∆c simulation ≡ c1−c2 = 0.330±0.011 and ∆β simulation ≡ β1−β2 = 1.14±0.03. The differ-
ence between the theory and simulation amounts to

∆c theory−∆c simulation =−0.048±0.011, (A.49)

∆β theory−∆β simulation =−0.03±0.03. (A.50)

The predictions for the resistive-viscous layer agree within the measurement error. The discrep-
ancy for the growth rate change is≈ 0.04, i.e. the theory underestimates it by 4% (1−e0.04≈ 0.04).
This error is small and could be explained, e.g. by the fact that we underresolved the simulations.
Therefore, we conclude that our ansatzes for the instability growth rate and the resistive-viscous
layer width (Eqs. (A.28) and (A.29), respectively) are correct.

From the theoretical point of view, tearing modes should not depend on the background pressure
p0. Firstly, because all equations were derived in the incompressible limit, i.e. formally for cs =√

Γp0/ρ0 → ∞. Therefore, all terms proportional to pressure should cancel out, otherwise they
would dominate the equations. The second argument comes from dimensional analysis. Pressure,
via the sound speed, would introduce an extra term of dimension [cm s−1] in the equations for the
tearing-mode growth rate and the resistive-viscous layer width. Since there are no other physical
quantities from which one could ’construct’ [cm−1 s] to compensate that term, we conclude that
the equations must be pressure independent. To verify our theoretical considerations, rather as a
formality, we ran a few simulations with the standard setup (i.e. δ = 10, k = 3, b0 = ρ0 = 1),
resistivity and viscosity set to η = 10−4 and ν = 10−4, respectively, and pressure in the range
p0 = 1–100. The resolution was 512×512 zones. The simulation results (presented in Fig. A.4)
confirm that tearing mode growth rate is pressure independent in the incompressible limit.

Another quantity that could possibly influence tearing modes, is the bulk viscosity. However
in the incompressible limit, i.e. ∇ · v = 0, and all terms containing the bulk viscosity vanish.
Therefore, bulk viscosity should not to affect the tearing modes. We ran a few simulations with a
non-zero bulk viscosity and indeed it did not change the growth rate.

Let us summarise now our results. The purely analytically derived expression (3.90) for the
tearing mode growth rate did not agree with our simulation results. Therefore, we postulated semi-
analytical equations, which are a mixture of theoretical insight and simulation results. After some
modifications, we obtained equations, which fully agree with the simulations. For the reader’s
convenience we write them down again in their best known form. The equation for the tearing
mode growth rate reads

γ = n0η
4/5

ν
−1/5

(
b0√
ρ0

)2/5

kn4δ
n5

(
δ

k
− k

δ

)n6

, (A.51)

where n0 is a constant, n4,n5,n6 are fractionals and n4 +n5 = 8/5. The equation for the resistive-
viscous layer width reads

LεRV = m0(ην)1/6
(

b0√
ρ0

)−1/3

km4δ
m5 , (A.52)

where m0 is a constant, m4,m5 are fractionals and m4 +m5 =−2/3. We can calibrate these equa-
tions, using the results of the simulations run with the highest resolution. From estimators the
(A.16) and (A.26), we obtain2

γ(k = 3,δ = 10) = 34.56η
4/5

ν
−1/5

(
b0√
ρ0

)2/5

(A.53)

2In these two equations we decided not to include the measurement errors, since in the applications discussed in
Sec. 3.4.2, they would be negligible anyway.
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Figure A.4: Tearing mode growth rate as a function of background pressure in simulations with
resistivity and viscosity set to η = 10−4 and ν = 10−4, respectively, and pressure in the range
p0 = 1–100. The simulation domain was resolved with 512× 512 zones. In accordance with
theoretical predictions, tearing mode growth rate is pressure independent in the incompressible
limit.

and

LεRV(k = 3,δ = 10) = 0.634(ην)1/6
(

b0√
ρ0

)−1/3

, (A.54)

where these equations are only valid for k = 3 and δ = 10.

Finally, we would like to comment on possible reasons of the discrepancy between the theor-
etical prediction for the tearing mode growth rate (Eq. (3.90)) and the simulation results. Firstly,
this equation was derived the under assumption (see Eq. (3.98) for the non-viscous case)

εRV� ym� δ
−1, (A.55)

whereas in the simulations, only a much weaker condition (see Eq. (3.102))

εRV < 0.1δ
−1, (A.56)

was met.3 As a consequence, maybe in this regime the dominant terms in ODE (3.68) are those
containing the fifth (or even lower) and not the sixth order derivative of vy. Another possible
explanation is that the constant ψ approximation does not hold, either just in the simulated regime
or in general. Or maybe it is a combination of both reasons.

3However, when the latter condition was violated, the simulations did not agree with the semi-analytical theory.



Appendix B

Magnetorotational-instability
growth-rate in non-ideal MHD

In this appendix, we briefly summarise the results of Pessah & Chan (2008) relevant for us.
In the following equations, all physical quantities are transformed into dimensionless variables
with the help of the characteristic time Ω

−1
0 (the angular velocity Ω0 was defined in Eq. (4.1)) and

length cAzΩ0 (the Alfvén speed was defined in Eq. (4.13) ). As an example, let us consider the
dimensionless viscosity ν̃ . To recover its physical dimension it has to be multiplied by c2

AzΩ
−1
0 ,

i.e.

ν =
ν̃c2

Az

Ω0
. (B.1)

From now on, we will drop the tilde symbol over the dimensionless variables, which should not
lead to any confusion. In this convention, the hydrodynamical and magnetic Reynolds numbers
simply read

Re =
1
ν

(B.2)

and

Rm =
1
µ
, (B.3)

respectively. The notation of the variables used in this appendix follows the convention chosen by
Pessah & Chan (2008). Hence, two variables, which are denoted by the same letter in Chapter 4
and in this appendix, may represent two distinct quantities.

Pessah & Chan (2008) find from the dispersion relation that the growth rate of the MRI unstable
modes in resistive-viscous MHD is given by

γ = (
√

∆−Λ)1/2− ν

2
k2
(

1− κ2

2
√

∆

)
− η

2
k2
(

1+
κ2

2
√

∆

)
, (B.4)

where k is the wavevector, κ is the epicyclic frequency (defined in Eq. (4.7) ) and

Λ =
3α

4
+

y
2
, (B.5)

∆ = (y+α)2−λ , (B.6)
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where

α = 2(k2−µ
2)+κ

2, (B.7)

λ = (k2−µ
2)2 +κ

2(k2 +µ
2)−4k2, (B.8)

y =−5
6

α +
1
3

P
U
−U, (B.9)

where

µ =
1
2
(ν−η)k2, (B.10)

P =−α2

12
−λ , (B.11)

Q =− α3

108
+

αλ

3
− β 2

8
, (B.12)

U =

(
Q
2
±
√

Q2

4
+

P3

27

)1/3

(B.13)

(the choice of either sign Eq. (B.13) is unimportant, see Pessah & Chan (2008) for a discussion),
where finally

β =−2µκ
2. (B.14)

As we can see, this dispersion relation is a quite complex expression (the interested reader will
find its derivation in Pessah & Chan (2008)). We decided not to introduce it into the main text,
but to present some simple heuristic arguments how dissipative effects influence the MRI, instead
(see the discussion in Section 4.4, Some simple estimates). The growth rate γ defined by Eq. (B.4)
must be real and positive, i.e. γ > 0 (we do not consider here the other three possible modes: two
oscillatory and one damped). However, not for all combinations of k,ν and η , this will be the
case. Pessah & Chan (2008) investigated for which parameters, the condition γ > 0 is met. These
authors also derived some approximate analytical expressions for the maximum growth rate, given
certain limits of the Reynolds numbers (e.g. for η � 1 and either ν � 1 or ν � 1, etc.).

For our purposes, we adopted a very straightforward approach. We simply plotted γ , in Mathem-
atica 8, as a function of k for given ν and η . Then, we could easily find by eye for which k, γ had a
maximum. With this method, we could achieve any desired accuracy. Given η = ν = 0.01 (which
corresponds to Re = Rm = 100, the default Reynolds numbers, which we used in the simulations)
and rotational profile (4.1), the maximum growth rate γ ≈ 0.615 is achieved for k ≈ 0.914. For
comparison, in ideal MHD, the maximum γ = 0.625 for k ≈ 0.927. As we can see, the difference
is very small.

In some simulations, we changed the amplitude of the initial magnetic field (instead of b0z =
4.6×1013 G, we used either b0z = 3.45×1013 G or b0z = 2.76×1013 G), but we kept the values
of the physical viscosity and resistivity constant. This obviously affects the Reynolds numbers.
The simulations with b0z = 3.45× 1013 G, had Reynolds numbers Re = Rm ≈ 56, corresponding
to η = ν ≈ 0.018 in dimensionless units. For these values, the maximum growth rate γ ≈ 0.610
is given for k ≈ 0.904. For b0z = 3.45×1013 G, the dimensionless η = ν ≈ 0.018, for which the
maximum γ ≈ 0.602 is at k ≈ 0.891.
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