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Chapter 1

Introduction

Hardly any other astrophysical event is as complex and physically diverse as the death
of massive stars in a gravitational collapse and subsequent supernova explosion. The
mechanism of conversion of gravitational potential energy from the collapsing iron core
(with a radius similar to that of the Earth) into a shock-induced explosion has been the
subject of intense theoretical activity in the modern computational era. The bounce from
the imploding mantle rebounding off the nuclear density proto-neutron star does not in-
ject enough energy to produce a shock with momentum sufficient to reach the surface
[Wilson et al., 1986, Myra and Bludman, 1989, Swesty et al., 1994, Janka et al., 2007].
At the extreme temperatures and densities in the collapsing core, neutrinos of all three
flavors are created with a total energy emission of around 3 · 1053 erg. Deposition of a
small fraction of this energy has been proposed as the energy source to drive the explosion
[Colgate and White, 1966, Bethe and Wilson, 1985, Janka et al., 2007], and recent work
has advocated the idea of acoustic vibrations of the proto-neutron star [Burrows et al.,
2006]. The discovery of neutrinos from SN1987A confirmed the collapsing core idea in
spectacular fashion [Hirata et al., 1987]. A final breakthrough in our understanding of
how supernova explosions work, generally accepted and based on self-consistent models
with all relevant physics included, however, has not been achieved yet (see Section 1.1).

Core collapse supernovae display a huge variety in their physical properties, such as
remnant mass, explosion energy, and composition of the ejecta. For those cases where a
progenitor star has been linked to the supernova event, observers have found significant
variability even for stars of similar initial mass [see Smartt, 2009]. This variability could
either be explained by differences in the structure of (nonrotating) stars of similar initial
mass that can reflect in different explosion properties, or they might be connected to vari-
ations of the explosion mechanism, e.g. dependent on additional stellar parameters like
rotation or strong magnetic fields.
Furthermore, observations of binaries containing neutron stars and black holes (e.g., X-
ray binaries and binary pulsars) place constraints on their mass distribution. Estimates
of the neutron star mass distribution have benefitted from observations of close pulsar
binary systems where extremely accurate masses can be obtained through pulsar timing.
Recently it has become clear that the mass distribution is at least bimodal, and likely
has a wide spread ranging from low masses up to the maximum neutron star mass limit
[Schwab et al., 2010, Valentim et al., 2011].
Black hole mass measurements rely on a complex combination of challenging observa-
tions of X-ray binaries (in quiescence, if they are transient) and of modeling of photo-
metric and spectroscopic data. The uncertainties associated with these measurements
are more significant than in the case of neutron stars. Recent analyses report that the
minimum black hole mass lies in the range 4-5 M⊙ and conclude that there is clear evi-
dence for a gap in the compact objects distribution, with no remnants found in between
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the maximum neutron star mass (∼ 2 M⊙) and 4-5 M⊙ [Özel et al., 2010, Farr et al., 2011].

Knowledge of the connection between progenitor properties and explosion properties is a
fundamental component in understanding the explosions and many studies have been
devoted to this subject.
Woosley and Weaver [1995] calculated explosions for a grid of stellar masses and metal-
licities and followed explosive nucleosinthesys. Each star was exploded using a piston to
give a specified final kinetic energy at infinity. They found that in most cases the final
mass of the collapsed remnant did not correspond to the location of the piston, but to a
‘‘mass cut’’ farther out. This mass cut was found to be sensitive to the explosion energy,
the presupernova structure, the stellar mass and the metallicity. They also found that the
reverse shock generated when the supernova front shock travels through the hydrogen
envelope of the star can decelerate a significant amount of matter, further increasing the
final remnant mass. Woosley and Weaver [1995] concluded that stars larger than about
30 M⊙ would experience considerable reimplosion of heavy elements following the initial
launch of a successive shock and may leave black hole remnants up to 10 and more solar
masses.
Thielemann et al. [1996] performed a similar study. They initiated the explosions with
thermal energy deposition and they adjusted the parameters of their models in order to
eject 56Ni masses in agreement with supernova light curves. However they only study
four progenitors of solar metallicity. Their results agree reasonably well with Woosley
and Weaver [1995], after taking into account the systematic differences originating from
different physics employed.

Woosley et al. [2002], Heger et al. [2003] extended the work of Woosley and Weaver [1995],
including the effect of mass loss during the presupernova evolution which was neglected
in Woosley and Weaver [1995] and increasing the number of progenitors studied. The
predictions from all these works are summarized by Heger et al. [2003] in the diagram
that is shown in Figure 1.1, which represents the current paradigm for the outcome of
core-collapse supernovae. For solar metallicity, stars with an initial mass lower than
about 25 M⊙ will form neutron stars, while more massive stars will undergo weak explo-
sions and form black holes some time after the explosion, because part of the material
initially ejected does not have enough energy to escape and will fall back on the compact
remnant. There might be a ‘‘window’’ of neutron stars formed by very massive stars (more
than ∼ 60 M⊙) depending on the still uncertain mass loss rate of these stars during pre-
supernova evolution. For lower metallicities, stars more massive than roughly 40 M⊙ will
not explode but directly collapse to a black hole. The exact thresholds between different
regimes depend on many uncertain parameters.

Zhang et al. [2008] repeated this study starting from recently computed progenitors of
solar and zero metallicity, and found results in agreement with previous works.
All these works, however, suffer from a great limitation: the explosions are initiated arti-
ficially, either by means of a piston or by deposition of energy, and neutrino physics is
completely neglected. Both procedures are not based on a physical model of the explosion
mechanism and have two major shortcomings: the explosion energy and the mass cut
are imposed by hand and ad-hoc assumptions are made for the collapse phase.

Fryer [1999] computed two-dimensional simulations with a simplified scheme for neu-
trino transport to study the mass limits for black hole formation. He employed three
different progenitors (which initial masses were 15, 25 and 40 M⊙) and studied the effect
of variating the neutrino energy input. This study confirmed the paradigm that stars
more massive than ∼ 25 M⊙ form black holes (either via direct collapse or via fallback),
but the major weaknesses of this work were the limited amount of progenitors studied
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Figure 1.1: Remnants of massive single stars as a function of initial metallicity (y-axis; qualitatively)
and initial mass (x-axis). The thick green line separates the regimes where the stars keep their
hydrogen envelope from those where the hydrogen envelope is lost. The dashed blue line indicates
the border of the regime of direct black hole formation (black). This domain is interrupted by a
strip of pair-instability supernovae that leave no remnant (white). Outside the direct black hole
regime, at lower mass and higher metallicity, follows the regime of BH formation by fallback (red
cross-hatching and bordered by a black dot-dashed line). Outside of this, green cross-hatching
indicates the formation of neutron stars. The lowest mass neutron stars may be made by O/Ne/Mg
core collapse instead of iron core collapse (vertical dot-dashed lines at the left). At even lower mass,
the cores do not collapse and only white dwarfs are made (white strip at the very left). Credit: Heger
et al. [2003]

and the short time for which the simulations were carried on, ∼ 1 s. The final remnant
mass was calculated assuming that only the material whose binding energy was equal to
the explosion energy at 1 s would be ejected, whereas the remaining material would fall
back, which is rather simplistic since (i) the explosion energy might not be saturated yet
at 1 s and (ii) any fallback driven by a reverse shock is ignored.
More recently, Fryer [2006] developed an analytical recipe to estimate the explosion en-
ergy in core-collapse supernovae, based on the assumption that the energy reservoir is
limited to the convective region bounded by the edge of the proto-neutron star and the su-
pernova shock. This recipe was used in Fryer et al. [2012] to study the dependence of the
compact remnant mass function on the delay between core bounce and explosion. They
find that if the explosion happens quickly (less than 250 ms after core bounce) the mass
function has the same bimodality found by observers, while this bimodality disappears if
the explosion is delayed as found in tipycal core collapse simulations [Janka et al., 2007].
They conclude that if the observational gap is confirmed, this might be a constraint on
the explosion mechanism. However these results are based on a great number of assump-
tions and simplifications.

The study of the connection between progenitors and remnants which employs the most
accurate treatment of the explosion mechanism is the work of O’Connor and Ott [2011].
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They presented the results of a systematic study of failing core-collapse supernovae and
the formation of stellar-mass black holes, performed with a general-relativistic 1.5D code
with simplified neutrino transport. They study the dependence of black hole formation
on progenitor compactness, precollapse rotational setup, neutrino heating efficiency and
nuclear Equation of State (EoS).
They find that the outcome of core-collapse, for a given EoS, can be estimated, to first
order, by a single parameter, the ‘‘compactness parameter’’, defined as

ξ2.5 =
2.5M⊙/M⊙

R(Mbary = 2.5M⊙)/108 cm
.

which, calculated at the time of core bounce, estimates the compactness of the stellar
core at bounce.
The main shortcoming of this work was that no explosions were computed, therefore the
only predictions that are made are for black hole mass and number. Furthermore, in or-
der to estimate wether a model explodes or collapses to a black hole ad hoc assumptions
on the neutrino heating were made.
Therefore, predictions of the initial-final remnant mass function and of explosive nucle-
osynthesis are still based on very simple and physically inaccurate methods to initiate
the explosions.

We propose a novel approach to the study the connection between progenitors and the
properties of core-collapse supernovae, based on a physically motivated mechanism for
launching the explosions, namely neutrino energy deposition. Although the viability of
this explosion mechanism is still under debate, it is clear that neutrino heating plays an
important role in core collapse [Janka et al., 2007]. Moreover, recent sophisticated mul-
tidimensional simulations with detailed neutrino treatment are at least near the critical
conditions for a success of the neutrino-driven mechanism [Buras et al., 2006b, Marek
and Janka, 2009, Müller et al., 2012]. Therefore, adopting this approach is likely to be a
step towards more realistic modeling of the explosions.
Here we will present the results of spherically symmetric explosion simulations for a set of
about 100 progenitor stars of solar metallicity. The explosions were initiated by means of
a neutrino-heating scheme that depends on parametrized neutrino quantities (luminosi-
ties and mean spectral energies) based on an analytic cooling model of the high-density
core of the nascent neutron star. The free parameters of this model were calibrated by
reproducing the observed properties of SN1987A (explosion energy, remnant mass and
nickel ejection) with a suitable progenitor from our set, and kept constant for all calcula-
tions. The evolution of the explosion models was followed beyond shock breakout from
the stellar surface in order to calculate the amount of material that falls back and the
final remnant mass.

This thesis is structured as follows. In Chapter 2 we outline the numerical techniques
adopted for our simulations (in particular, the neutrino-heating scheme is described in
Section 2.3). In Chapter 3 we present the progenitors employed for this study and ex-
plain their most important properties. In Chapter 4 we compare the results of initiating
the explosions with neutrino heating or with pistons, and we show that neglecting the
effects of neutrinos can have a great impact on the predictions for remnant masses and
nucleosynthetic yields. In Chapter 5 we present the results of neutrino driven explosion
simulations for the full set of progenitors.

1.1 The neutrino-heating mechanism

At the end of hydrostatic burning, a massive star consists of concentric shells that are the
relics of its previous burning phases (hydrogen, helium, carbon, neon, oxygen, silicon).
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Figure 1.2: Schematic representation of the evolutionary stages from stellar core collapse through
the onset of the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase
of the proto-neutron star (PNS). The panels display the dynamical conditions in their upper half,
with arrows representing velocity vectors. The nuclear composition as well as the nuclear and weak
processes are indicated in the lower half of each panel. Credit: Janka et al. [2007]

Iron is the final stage of nuclear fusion in hydrostatic burning, as the synthesis of any
heavier element from lighter elements does not release energy; rather, energy must be
used up. When the iron core, formed in the center of the massive star, grows by silicon
shell burning to a mass around the Chandrasekhar mass limit of about 1.44 solar masses,
electron degeneracy pressure cannot longer stabilize the core and it collapses. This starts
what is called a core-collapse supernova in course of which the star explodes and parts
of the star’s heavy-element core and of its outer shells are ejected into the Interstellar
Medium.

The onset of the collapse and the infall dynamics are very sensitive to the entropy and to
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the number of leptons per baryon, Ye [Bethe et al., 1979]. In turn, these two quantities
are mainly determined by weak interaction processes, electron capture and ̙ decay. First,
in the early stage of the collapse, Ye decreases by electron capture on (Fe-peak) nuclei,
reactions which are energetically favorable when the electrons have Fermi energies of a
few MeV at the densities involved. This reduces the increase of the electron pressure with
density, thus accelerating the collapse, and shifts the distribution of nuclei present in
the core to more neutron-rich material (Fig. 1.2, upper left panel). Second, many of the
nuclei present can also ̙ decay. While this process is quite unimportant compared to
electron capture for initial Ye values around 0.5, it becomes increasingly competitive for
neutron-rich nuclei due to an increase in phase space related to larger Q̙ values.

Electron capture, ̙ decay, and partial photodisintegration of iron-group nuclei to alpha
particles cost the core energy and reduce its electron density. As a consequence, the
collapse is accelerated. An important change in the physics of the collapse occurs as
the density reaches ρtrap ≈ 1012g/cm3 (Fig. 1.2, upper right panel). Then neutrinos are
essentially trapped in the core, because their diffusion time (due to coherent conservative
scattering on nuclei) becomes larger than the collapse time [Bethe, 1990]. After neutrino
trapping, the collapse proceeds essentially homologously [Goldreich, 1980], until nuclear
densities (ρ0 ≈ 1014g/cm3) are reached. Since nuclear matter has a much lower compress-
ibility, the homologous core decelerates and bounces in response to the increased nuclear
matter pressure. This drives a shock wave into the outer core, i.e. the region of the iron
core which lies outside of the homologous core and in the meantime has continued to fall
inwards at supersonic speed.

The core bounce with the formation of a shock wave is the starting point of a sequence of
events that ultimately triggers a supernova explosion (Fig. 1.2, middle left panel), but the
exact mechanism of the explosion and the crucial ingredients of this physically appealing
scenario are still uncertain and controversial. If the shock wave is strong enough not only
to stop the collapse, but also to explode the outer burning shells of the star, one speaks
about the ‘‘prompt mechanism’’. However, it appears as if the energy available to the
shock is not sufficient, and the shock uses up its energy in the outer core mostly by the
dissociation of heavy nuclei into nucleons. This change in composition results in even
more energy loss, because the electron capture rate on free protons is significantly larger
than on neutron-rich nuclei due to the higher Q-values of the latter. A large fraction of the
neutrinos produced by these electron captures behind the shock leave the star quickly in
what is called the neutrino burst at shock break-out, carrying away energy.
This leads to further neutronization of the matter. The shock is weakened so much that it
finally stalls and turns into an accretion shock at a radius between 100 and 200 km, i.e.,
the matter downstream of the shock has negative velocities and continues falling inward
(Fig. 1.2, middle right panel). All state-of-the-art simulations of stellar core collapse agree
with the models of the 1980’s and 1990’s [e.g. Wilson et al., 1986, Myra and Bludman,
1989, Swesty et al., 1994] that the prompt shock is unable to trigger supernova explosions.

After core bounce, a compact remnant begins to form at the center of the collapsing star,
rapidly growing by the accretion of infalling stellar material until the explosion sets in.
This nascent remnant - the proto-neutron-star - will evolve to a neutron star or may
eventually collapse to a black hole. The newly born neutron star is initially still proton-
rich and contains a large number of degenerate electrons and neutrinos. The latter are
trapped because their mean free paths in the dense matter are significantly shorter than
the radius of the neutron star. It takes a fraction of a second for the trapped neutrinos to
diffuse out (Fig. 1.2, lower panels). On their way to the neutrinosphere, the neutrinos are
down-scattered in energy space, thus converting their initially high degeneracy energy to
thermal energy of the stellar medium [Burrows and Lattimer, 1986]. The further cooling
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of the hot interior of the proto-neutron star then proceeds by neutrino-pair production
and diffusive loss of neutrinos of all three lepton flavors. After several tens of seconds the
compact remnant becomes transparent to neutrinos and the neutrino luminosity drops
significantly [Burrows, 1988].

In the explosion scenario by the ‘‘delayed neutrino-heating mechanism’’, the stalled shock
wave can be revived by the neutrinos streaming off the neutrinosphere. These neutrinos
carry most of the energy set free in the gravitational collapse of the stellar core and deposit
some of their energy in the layers between the nascent neutron star and the stalled shock
front mainly by charged-current νe and ν̄e captures on free nucleons,

νe + n ⇒ e− + p, (1.1)

ν̄e + p ⇒ e+ + n, (1.2)

(Fig. 1.2, lower left panel). This neutrino heating increases the pressure behind the shock
and the heated layers begin to expand, creating between shock front and neutron star
surface a region of low density but rather high temperature, the so-called ‘‘hot bubble’’
[Colgate, 1989]. The persistent energy input by neutrinos keeps the pressure high in this
region and drives the shock outwards again, eventually leading to a supernova explosion.
This may take a few 100 ms and requires that during this time interval a few percent of
the radiated neutrino energy (or 10-20% of the energy of electron neutrinos and antineu-
trinos) are converted to thermal energy of nucleons, leptons, and photons. The canonical
explosion energy of a supernova is less than one percent of the total gravitational binding
energy lost by the nascent neutron star in neutrinos.

The success of the delayed supernova mechanism turned out to be sensitive to a deli-
cate competition of neutrino cooling between the neutrinosphere and the so-called ‘‘gain
radius’’ on the one hand, and neutrino heating between the gain radius and the shock
on the other (Fig. 1.2, lower left panel). The gain radius is defined as the radial position
where the neutrino heating rate per nucleon and the neutrino cooling rate per nucleon
become equal.
Only if the heating is sufficiently strong, depending on the size of the neutrino luminosi-
ties and the hardness of the neutrino spectra, an explosion can be triggered [Janka, 2001,
and citations therein]. The effect is self-enhancing: strong heating of the matter accreted
by the shock decelerates the infall and increases the time for matter to absorb neutrino
energy, thus raising the efficiency of energy deposition by neutrinos. This positive feed-
back leads to further shock expansion and can initiate the final runaway. Strong cooling
has the opposite effect. It accelerates the accretion flow through the gain layer and largely
reduces the time matter is exposed to heating, hence diminishing the chance for an ex-
plosion [Janka, 2001].

Spherically simmetryc simulations with the state-of-the-art treatment of hydrodynamics
and neutrino transport, disregarding multi-dimensional effects [e.g. Rampp and Janka,
2000, Mezzacappa et al., 2001, Buras et al., 2006b], agree that no delayed explosion can
be obtained for progenitors more massive than 10 M⊙.
In contrast, in case of stars with birth masses of 8-10 M⊙, which do not develop an iron
core but a core of oxygen, neon and magnesium with a thin carbon shell, surrounded
by an extremely dilute and only loosely bound helium shell, neutrino heating was found
to power explosions in one-dimensional (1D) simulations, although low energetic (only
0.1-0.2 bethe) [Kitaura et al., 2006].
With the currently most sophisticated treatment of neutrino transport that is applied in
multidimensional supernova simulations (at the same level of refinement in the treatment
of neutrino-matter interactions as in the state-of-the-art 1D models), neutrino heating and
postshock convection were found to trigger a (probably rather weak) explosion only in case
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of an 11.2 M⊙ star [Buras et al., 2006b]. The more massive progenitors investigated by
Buras et al. [2006b] did not explode during the simulated evolution periods of about 300
ms after core bounce, although a crucial criterion, the ratio of advection timescale to
heating timescale, indicates that the critical condition for an explosion was not missed by
much (roughly a factor of two in the 2D, 90◦ cases).
The onset of the explosion of the 11.2 M⊙ star was aided by a recently discovered generic
instability of the accretion shock to non-radial deformation. This so-called SASI (standing
accretion shock instability, Blondin et al. [2003]) shows highest growth rates of the l=1,2
modes (i.e., the dipole and quadrupole terms of an expansion in spherical harmonics) and
causes a bipolar sloshing of the shock with pulsational strong expansion and contraction.
Since the shock is pushed farther out and the time matter stays in the heating layer
therefore increases, this strengthens the neutrino-energy deposition and ultimately leads
to a globally asymmetric initiation of the explosion. The SASI was found to be present
in all multi-dimensional core-collapse simulations when the onset of the explosion was
delayed for a sufficiently long time to allow the instability to develop.

However, self-consistent models for progenitor masses larger than about 12 M⊙ do not
produce explosions. It is not clear what is still missing. Three-dimensional simulations
with sophisticated energy-dependent neutrino transport are definitely needed, however it
is controversial wether explosions in 3D occur easier and earlier than in 2D [Hanke et al.,
2011]. Even fundamental constraining parameters and ingredients are controversial. Do
we understand the neutrino physics sufficiently well? Are our models correct in predicting
the luminosities and mean energies of the radiated neutrinos? How important is rotation
in the collapsing core? Do magnetohydrodynamic effects play a crucial role, tapping a
large reservoir of free energy of rotation? Maybe the identification of such key aspects in
the explosion mechanism will require observations that yield more direct evidence of what
is going on in the supernova core than can be provided by explosion asymmetries, pulsar
kicks or nucleosynthesis yields. The measurement of neutrino signals and gravitational
waves will be able to yield such information, but that will require a galactic supernova to
happen.



Chapter 2

Fundamental Equations and
Numerical Methods

The analysis of the evolution of supernovae requires the solution of the hydrodynamics
equations for supersonic, compressible fluids, coupled to the Poisson equation for gravity
and the equation of radiative transfer for the neutrinos streaming away from the nascent
neutron star. This system of equations cannot be solved analytically without a great num-
ber of assumptions and simplifications, therefore the numerical approach is essential to
study the evolution of the supernova in detail.

The code employed is PROMETHEUS-HOTBubble, a neutrino-hydrodynamics code com-
posed of several modules.

The hydrodynamics module is a direct implementation of the Piecewise Parabolic Method
of Colella and Woodward [1984], a high-resolution shock capturing scheme that performs
a conservative, (finite-volume) explicit integration of the Newtonian hydrodynamics equa-
tions with third-order accuracy in space and second-order accuracy in time, augmented
by the Riemann solver of Colella and Glatz [1985] for real gases (see Sections 2.1 and
2.1.3).

General relativistic effects are approximated by using an ‘‘effective relativistic potential’’
(see Marek et al. [2006], Arcones et al. [2007] and Section 2.2).

The neutrino transport is based on a computationally very efficient, analytic integration
along characteristics of the frequency-integrated zeroth-order moment equations of the
Boltzmann equation for neutrino number and energy. The inner core of the neutron star is
excised and replaced by a contracting Lagrangian boundary, which mimics the shrinking
of the nascent neutron star. We prescribe a neutrino flux at the inner boundary according
to an analytic cooling model for the proto-neutron star, described in detail in Section 2.3.1,
and the neutrino spectra are assumed to have Fermi-Dirac distribution with a spectral
temperature that is determined from the ratio of neutrino energy flux to neutrino number
flux. Closure is achieved by employing the flux factor f (r, t) = F/Ec, for which we use a
prescribed function which was determined by fits to Monte Carlo transport results (see
Scheck et al. [2006] and Section 2.3).
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2.1 Hydrodynamics

The hydrodynamics equations are considered in Eulerian form for spherical symmetry
with source terms for gravity, neutrino energy and momentum exchange with the stellar
medium. The equations of continuity, momentum, and energy are:

∂ρ

∂t
+

1

r2

∂

∂r
(r2ρu) = 0, (2.1)

∂(ρu)
∂t
+

1

r2

∂

∂r
(r2ρu2) = −

∂p

∂r
− ρ

∂Φ

∂r
, (2.2)

∂e

∂t
+

1

r2

∂

∂r
[r2u(e + p)] = −ρu

∂Φ

∂r
+ Qν,e, (2.3)

where r, u, ρ, p, t are radius, fluid velocity, density, pressure and time and e is the sum
of internal and kinetic energy densities. The term Qν,e denotes the rate of energy gain or
loss per unit volume by neutrino heating and cooling. Φ(r) is an effective potential which
contains contributions from the gravitational potential and from the momentum transfer
to the stellar gas by neutrinos (see Section 2.2).
Closure is provided by specifying an Equation of State (EoS) relating thermodinamic quan-
tities. We employ two different Equations of State, which are described in section 2.1.1.

In the case of nuclear statistical equilibrium (NSE), a third independent variable, the
electron fraction Ye, is sufficient to characterize the composition. For this variable the
evolution is computed according to a conservation equation

∂

∂t
(ρYe) +

1

r2

∂

∂r
(r2ρYeu) = Qν,N , (2.4)

where the source term Qν,N is the rate of change of the net electron fraction (i.e. the
number fraction of electrons minus that of positrons) due to emission and absorption of
electron-flavor neutrinos. In case the medium is not in NSE, an equation like Eq. (2.4)
has to be solved also for the abundance of each nucleus k, Yk ≡ nk/nby, using

∂

∂t
(ρYk) +

1

r2

∂

∂r
(r2ρYku) = Rk , (2.5)

where nk and nby are the number density of nucleus k and the baryon number density,
respectively, and Rk is a source term that describes the rate of composition changes by
nuclear reactions for species k.
Note that PROMETHEUS only solves the left-hand sides of the hydrodynamic Eqs. (2.1)-
(2.5) and that the EoS is not evaluated during this procedure. The computation of the
terms on the right-hand sides, i.e. the gravitational, neutrino, and burning effects, as well
as the evaluation of the EoS and, if necessary, the determination of the NSE composition,
are done in operator split steps.

2.1.1 Equations of State

We use two equations of state, both based on the same baryon composition: free nucle-
ons, α particles and a representative heavy nucleus of the iron group (chosen to be 54Mn).
Nucleons and nuclei are treated as ideal, nonrelativistic Boltzmann gases; in addition,
electrons and positrons contribute as arbitrarily degenerate and arbitrarily relativistic
ideal Fermi gases. Photons are in equilibrium with the massive particles and their ther-
mal effects are taken into account.

In the high-temperature regime (T > 2 ·109 K) we use the EoS of Janka and Müller [1996],
which assumes that baryons are in NSE. These four species are also used to compute
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the energy source terms resulting from nuclear transmutations. Janka and Müller [1996]
found good agreement with the EoS of Lattimer and Swesty [1991] up to densities of about
5 · 1013 g/cm3.

In the low-temperature regime we employ the EoS of Timmes and Swesty [2000]. It is
based on table interpolation of the Helmholtz free energy for electrons and positrons. The
interpolation scheme guarantees perfect thermodynamic consistency, independent of the
interpolating function, while the choice of a biquintic Hermite polynomial as the inter-
polating function results in accurately reproducing the underlying Helmholtz free energy
data in the table, and yields derivatives of the pressure, specific entropy, and specific
internal energy which are smooth and continuous. The routine is computationally very
efficient.

In addition to the small NSE ‘‘network’’, but without feedback to the EoS and the hydrody-
namics, we also evolve a 14 species nuclear reaction network to approximately calculate
the products of explosive nucleosynthesis, whose spatial distribution we wish to follow
[see Kifonidis et al., 2003]. The latter network consists of the 13 α-nuclei from 4He to 56Ni
and an additional tracer nucleus to which we channel the flow resulting from the reaction
52Fe(α,γ)56Ni in case the electron fraction Ye drops below 0.490 and 56Ni ceases to be the
dominant nucleus synthesized in the iron group. In this way we can ‘‘mark’’ material that
freezes out from NSE at conditions of neutron excess and distinguish it from 56Ni whose
yield would otherwise be overestimated.

The 14 species network is solved for temperatures between 108 K and 7 · 109 K. Above
7 · 109 K, we assume that nuclei have been disintegrated to α-particles. Of course, the 14
species network is a simplification of the nucleosynthesis processes in a supernova, since
it neglects important isotopes and production channels of the considered nuclei.

2.1.2 The Method of Godunov for Non-linear Systems

In this Section the general solution of a non-linear system of hyperbolic partial differential
equations like (2.1)-(2.3) is explained. The numerical scheme employed in PROMETHEUS
is described in detail in Section 2.1.3.
Consider the general Initial-Boundary Value Problem (IBVP) for non-linear systems of
hyperbolic equations in one spatial dimension:



PDEs :
∂U
∂t
+

∂F(U)
∂x

= 0,

ICs : U(x, 0) = U(0)(x),

BCs : U(0, t) = Ul(t), U(L, t) = Ur (t),

(2.6)

where U(x, t) is the vector of conserved variables, F(U) is the vector of fluxes, U(0)(x) is the
initial data at time t = 0, [0, L] is the spatial domain and boundary conditions are, for the
moment, assumed to be represented by the boundary functions Ul(t) and Ur (t).
Let us assume that the solution of the IBVP (2.6) exists. In order to admit discontinuous
solutions an integral form of the conservation laws in (2.6) has to be used:

∫ x2

x1

U(x, t2)dx =

∫ x2

x1

U(x, t1)dx +

∫ t2

t1

F(U(x1, t))dt −

∫ t2

t1

F(U(x2, t))dt, (2.7)

for any control volume [x1, x2] × [t1, t2] in the domain of interest.

Numerical methods replace the continuous problem by a finite set of discrete values. These
are obtained by first discretising the domain of the equations into a finite set of points or
volumes via a mesh or grid. The corresponding discretization of the equations on the grid
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results in discrete values. In the Finite Difference approach one regards these values as
point values defined at grid points. The Finite Volume approach regards these discrete
values as averages over finite volumes. The second approach is the most commonly used.

The physics and mathematics embodied in the equations are intimately linked to the dis-
cretization procedure. In upwind schemes, spatial differencing is performed using mesh
points on the side from which information (wind) flows. These schemes are stable under
a condition that relates the mesh spacing ∆x and the step size ∆t, so they cannot vary
independently.

The spatial domain [0,L] is discretized into M computing cells or finite volumes Ii =
[xi−1/2, xi+1/2] of regular size ∆x = L/M, with i = 1, ..., M. For a given cell Ii the location of
the cell centre xi and the cell boundaries xi−1/2, xi+1/2 are given by:

xi−1/2 = (i − 1)∆x, xi = (i − 1/2)∆x, xi+1/2 = i∆x. (2.8)

The temporal domain [0,T] is generally discretized in steps ∆t of variable size: since for
non-linear systems wave speeds vary in space and time, the choice of ∆t is carried out as
marching in time proceeds.
Given general initial data Ũ(x, tn) for (2.6) at time t = tn, in order to evolve the solution to
a time tn+1

= tn
+∆t, the Godunov method first assumes a piecewise constant distribution

of the data. Formally, this is realized by defining cell averages

Un
i =

1

∆x

∫ x+1/2

x−1/2

Ũ(x, tn)dx, (2.9)

which produces the desired piecewise constant distribution U(x, tn) = Un
i , for x in each

cell Ii = [xi−1/2, xi+1/2], as illustrated in Figure 2.1 for a single component Uk of the vector
of conserved variables. Data now consist of a set {Un

i } of constant states in terms of the
conserved variables. Other variables may be derived to proceed with the implementation
of numerical methods, in particular, for the Godunov method the Riemann problem is
solved in terms of primitive variables (for example, for the Euler equations primitive vari-
ables are density, velocity and pressure).

Figure 2.1: Piecewise constant distribution of data at time level n, for a single component of the
vector U. Credit: Toro [1999]

The next step is to solve the Initial Value Problem (IVP) for the original conservation laws
but with the modified initial data {Un

i }. Effectively, this generates local Riemann problems
RP(Un

i , Un
i+1) centered at the intercell boundary positions xi+1/2:
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∂U
∂t
+

∂F(U)
∂x

= 0,

U(x, n) =


Un

i if x 6 xi+1/2,

Un
i+1 if x > xi+1/2.

(2.10)

The solution of (2.10) is a similarity solution Ui+1/2(x̄/t̄) where x̄, t̄ are defined in Eq. (2.12).
It consists of m + 1 constant states separated by m waves, as shown in Figure 2.2. For
each eigenvalue λi there is a wave family. For non-linear systems the waves may be
discontinuities such as shock waves and contact waves, or smooth transition waves such
as rarefactions.

Figure 2.2: Structure of the solution of the Riemann problem for a system of non-linear conserva-
tion laws. Credit: Toro [1999]

For a time step ∆t that is sufficiently small, to avoid wave interactions, one can define a
global solution Ũ(x, t) in the strip 0 6 x 6 L, tn

6 t 6 tn+1 in terms of the local solutions
as follows:

Ũ(x, t) = Ui+1/2(x̄/t̄), x ∈ [xi , xi+1], (2.11)

where the corespondance between the global (x, t) and local (x̄, t̄) coordinates is given by:



x̄ = x − xi+1/2, t̄ = t − tn ,

x ∈ [xi , xi+1], t ∈ [tn , tn+1],

x̄ ∈ [−∆x/2,∆x/2], t̄ ∈ [0,∆t].

(2.12)

Having found a solution Ũ(x, t) in terms of solutions to local Riemann problems, the
Godunov method advances the solution to a time tn+1

= tn
+ ∆t by defining a new set of

average values {Un+1}:

Un+1
i = Un

i +
∆t

∆x
[Fi−1/2 − Fi+1/2], (2.13)

with intercell numerical flux given again by the solution of the Riemann problem Fi+1/2 =

F(Ui+1/2(0)) if the time step satisfies the condition

∆t 6
∆x

Sn
max

. (2.14)

Therefore, one usually defines the time step as
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∆t = C
∆x

Sn
max

where 0 6 C 6 1. (2.15)

For a domain [0,L] discretized into M computing cells, boundary conditions are needed at
the boundaries x = 0 and x = L as illustrated in Figure 2.3. Numerically, such boundary
conditions are expected to provide numerical fluxes F1/2 and FM+1/2. These are required
in order to apply the conservative formula (2.13) to update the extreme cells I1 and IM
to the next time level n + 1. The boundary conditions consist in prescribing fictitious
data values in the fictitious ‘‘ghost cells’’ I0 and IM+1 adjacent to I1 and IM respectively.
In this way, boundary Riemann problems RP(Un

0 , Un
1 ) and RP(Un

M , Un
M+1) are solved and

the corresponding Godunov fluxes F1/2 and FM+1/2 are computed. The imposition of
boundary conditions is, fundamentally, a physical problem. Great care is required in
their numerical implementation.

Figure 2.3: Boundary conditions. Fictitious ‘‘ghost cells’’ are created outside the computational
domain. Credit: Toro [1999]

The Godunov original method is characterized by a large amount of numerical viscosity,
that causes shocks to be smeared over several cells. In order to avoid this drawback, high
order spatial polynomial reconstruction is often used. Nevertheless, as demonstrated
by Godunov, a higher order spatial reconstruction creates spurious oscillations in the
solution near shocks and discontinuities. Therefore, one must introduce some kind of
control, like slope limiters that reduce the order of reconstruction to the first in cells
where are present such features: in that manner the scheme preserves the monotonicity
of the solution.

2.1.3 The Piecewise Parabolic Method

The Piecewise Parabolic Method (PPM) of Colella and Woodward [1984] is a higher-order
extension of Godunov’s method. The introduction of parabolae as the basic interpolation
functions in a zone allows for a more accurate representation of smooth spatial gradients,
as well as a steeper representation of captured discontinuities, particularly contact dis-
continuities.

Applying the notation used in the previous section, we rewrite the system of hyperbolic
equations (2.1)-(2.3) as

∂U
∂t
+

∂(AF)
∂V

= −
∂H
∂r
+G, (2.16)

where

U =



ρ

ρu

e

 , F(U) =



ρu

ρu2

u(e + p)

 , H(U) =



0
p

0

 , G =



0
ρg

ρug

 . (2.17)

Here V (r) = r
α+1/(α+ 1) is a volume coordinate, A(r) = rα and g = −∂Φ/∂r.

The PPM scheme constructs a piecewise polynomial interpolating function U(r) satisfying
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the condition (2.9) and constrained in such a way so that no new extrema appear in the
interpolation function which do not already appear in the {Un

i }. U is given by a parabolic
profile in each zone:

U(r) = UL,i +
r − ri−1/2

∆ri

[
∆Ui + U6,i

(
1 −

r − ri−1/2

∆ri

)]
, ri−1/2 6 r 6 ri+1/2, (2.18)

where
∆Ui = UR,i − UL,i , U6,i = 6[Un

i − (UL,i + UR,i)/2]. (2.19)

UL,i and UR,i are calculated by first using an interpolation scheme to calculate Ui+1/2, an
approximation to the value of U at ri+1/2, subject to the constraint that Ui+1/2 does not fall
out of range of values given by Ui and Ui+1. The values UL,i and UR,i are further modified
so that U(r) is a monotone function on each interval (ri−1/2, ri+1/2). It is this step that
introduces discontinuities at zone edges.

To calculate Ui+1/2 the indefinite integral of U, U(r) =
∫

r
U(r ′, tn)dr ′, is interpolated

through the points (Ui+k+1/2, ri+k+1/2), k = 0,±1,±2, and differentiated to obtain Ui+1/2 =

dU/dr |i+1/2:

Ui+1/2 = Un
i +

∆ri

∆ri + ∆ri+1
(Un

i+1 − Un
i ) +

1
∑2

k=−1 ∆ri+k

(2.20)

×

{
2∆ri+1∆ri

∆ri + ∆ri+1

[
∆ri−1 + ∆ri

2∆ri + ∆ri+1
−
∆ri+2 + ∆ri+1

2∆ri+1 + ∆ri

]
(Un

i+1 − Un
i )

− ∆ri
∆ri−1 + ∆ri

2∆ri + ∆ri+1
δmUi+1 + ∆ri+1

∆ri+1 + ∆ri+2

∆ri + 2∆ri+1
δmUi

}
.

Here δmUi is the average slope of the parabola in the ith zone and is given by

δmUi =


min(| δUi |, 2 | Un

i+1 − Un
i |, 2 | Un

i − Un
i−1 |)sgn(δUi), if (Un

i+1 − Un
i )(Un

i − Un
i−1) > 0,

0, otherwise,
(2.21)

with

δUi =
∆ri

∆ri−1 + ∆ri + ∆ri+1

[
2∆ri−1 + ∆ri

∆ri+1 + ∆ri

(Un
i+1 − Un

i ) +
∆ri + 2∆ri+1

∆ri−1 + ∆ri

(Un
i − Un

i−1)

]
. (2.22)

The value Ui+1/2 is assigned to UL,i and UR,i−1. In order to calculate the states for the
Riemann problem, we define averages of the interpolation functions:

f U
i+1/2,L(y) =

1

y

∫ ri+1/2

ri+1/2−y

U(r)dr = UR,i −
y

2∆ri

[
∆Ui −

(
1 −

2y

3∆ri

)
U6,i

]
, (2.23)

f U
i+1/2,R(y) =

1

y

∫ ri+1/2+y

ri+1/2

U(r)dr = UL,i+1 +
y

2∆ri+1

[
∆Ui+1 +

(
1 −

2y

3∆ri+1

)
U6,i+1

]
. (2.24)

Using these interpolation functions, the first guess at the effective left and right states for
the Riemann problem is constructed:

Ũi+1/2,L = f U
i+1/2,L [Vi+1/2 − V (r̃i+1/2,L)],

r̃i+1/2,L = ri+1/2 −max(0,∆t(un
i + cn

i )),

Ũi+1/2,R = f U
i+1/2,R[V (r̃i+1/2,R) − Vi+1/2],

r̃i+1/2,R = ri+1/2 +max(0,−∆t(un
i+1 − cn

i+1), (2.25)
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where c is the speed of sound, defined by

c2
= τ2(ppe − pτ), τ = 1/ρ. (2.26)

These initial guesses are corrected by solving the equations of gas dynamics in character-
istic form,

∂V
∂t
+ A

∂V
∂r
+G = 0, (2.27)

with

V =



ρ

u

p

 , A(V) =



u ρ 0
0 u 1/ρ

0 ρc2 u

 , G(V, r, t) =



αρu/r
−g

αc2ρu/r

 , (2.28)

yielding the following states for the primitive variables ρ, u and p:

ρi+1/2,S =

(
1

ρ̃i+1/2,S

−
∑

m=0,+,−

̙m
i+1/2,S

)−1

,

ui+1/2,S = ũi+1/2,S + C̃i+1/2,S(̙+i+1/2,S − ̙−i+1/2,S),

pi+1/2,S = p̃i+1/2,S + C̃2
i+1/2,S(̙+i+1/2,S + ̙−i+1/2,S). (2.29)

Here C̃2
i+1/2,S

= Γp̃i+1/2,Sρ̃i+1/2,S and S = L, R. We also have

̙m
i+1/2,L = 0 if λm(Un

i ) 6 0; ̙m
i+1/2,R = 0 if λm(Un

i+1) > 0,

̙±i+1/2,S = ∓
1

2C̃i+1/2,S

[
(ũi+1/2,S − u±i+1/2,S) ±

(p̃i+1/2,S − p±
i+1/2,S

)

C̃i+1/2,S

,

± ∆t

(
αu+

i+1/2,S
c±

i+1/2,S

r±
i+1/2,S

∓ g±i+1/2,S

)]

̙0
i+1/2,S =

( (p̃i+1/2,S − p0
i+1/2,S

)

C̃2
i+1/2,S

+
1

ρ̃i+1/2,S

−
1

ρ0
i+1/2,S

)
. (2.30)

Γ is defined, in analogy with the special case of polytropic gases, as

Γ(ρ, p) ≡
ρc2

p
. (2.31)

For polytropic gases this is equivalent to

γ(ρ, p) ≡
p

eρ
+ 1, (2.32)

but this is not true in general. To solve the Riemann problem in the case of a general
equation of state, several calls to the equation of state routine would be needed for each
time step. To avoid this, we employ the Riemann solver of Colella and Glatz [1985], which
is based on a local parametrization of the equation of state.

The idea is that the equation of state can be expressed locally in terms of γ. For the
purpose of computing numerical fluxes, γ will be treated as a separate dependent variable;
the solution of characteristic equations and Riemann problems will necessarily involve an
approximate computation of the jump in γ across such waves. This approach, albeit
crude, is justified by the fact that γ is a slowly varying function of the thermodynamic
variables for real gases: although ρ, p, e may vary over many orders of magnitude, γ stays
in the range 1 6 γ 6 5/3.
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Since γ is a function of the thermodynamic state of the fluid, it is natural to consider its
dynamics along the streamline characteristic, which we parametrize by σ0. By definition,

dγ

dσ0
=

∂γ

∂τ

dτ

dσ0
+

dγ

de

∂e

∂σ0
. (2.33)

Using (2.31), (2.32), (2.26) and the first law of thermodynamics, this becomes

dγ

dσ0
=

(
1 −

γ

Γ

)
(γ − 1)

1

p

dp

dσ0
. (2.34)

In general, it is not possible to specify how γ behaves across a discontinuity without
solving the full Rankine-Hugoniot conditions. However, if the jump is not too large, then
the jump conditions for γ are well approximated by an integrated form of the characteristic
equation (2.34):

γ∗ − γ0 ≈

(
1 −

γ̄

Γ̄

)
(γ̄ − 1)

1

p̄
(p∗ − p0) + O(p∗ − p0)3, (2.35)

where γ̄, Γ̄ and p̄ are suitably centered across the jump.

The above local model leads to the following approximate solution to the Riemann problem.
For shock tube initial data, the solution to the Riemann problem is illustrated in Fig. 2.4:
the backward facing wave (U∗,L , UL ) and the forward facing wave (U∗,R, UR) may be either
shocks or rarefaction waves, while the center wave (U∗,L , U∗,R) must be a contact wave
across which there is no pressure or velocity jump (i.e. p∗,L = p∗,R and u∗,L = u∗,R). Thus,
the main step in solving the Riemann problem is the computation of the pair (p∗, u∗) which
is the unique solution to the jump conditions across the outermost waves of the Riemann
fan.

Figure 2.4: The solution of the Riemann problem in phisical space. Credit: Colella and Woodward
[1984]

For either a shock or a rarefaction wave, the postwave state is uniquely determined by the
prewave state and p∗. In particular the postwave velocity u∗,S can be defined as a function
of p∗ and US. The mean Lagrangian wave speeds are defined by

WS =



|p∗ − pS |

|u∗,S − uS |
if u∗,S , uS

CS = ρScS if u∗,S = uS.
(2.36)

At the solution, u∗,L = u∗,R = u∗. We then solve the equation

u∗,L(p∗) − u∗,R(p∗) = 0 (2.37)

by applying the secant method:
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uk
∗,S = uS ±

pk
∗ − pS

W k
S

(W k
S )2
=

(p∗ − pS)[p∗ + (γ∗,S − 1)(p∗ + pS)/2]

p∗τS −
γ∗,S−1
γS−1 pSτS

pk+1
∗ = pk

∗ − (uk
∗,R − uk

∗,L)

[
|pk
∗ − pk−1

∗ |

|uk
∗,L − uk−1

∗,L | + |u
k
∗,R − uk−1

∗,R |

]
(2.38)

for k=1,2,... Here γ∗ is calculated from Eq. (2.35) with γ̄ = (γL + γR)/2, Γ̄ = (ΓL +ΓR)/2 and
p̄ = p∗, and the combination of (S,±) are to be taken as either (L,-) or (R,+). The first two
guesses used to start the iteration are obtained using Godunov’s scheme.

The final conservative difference step is given by:

ρn+1
i = ρn

i + ∆t

[
rα
i−1/2

ρ∗,i−1/2u∗,i−1/2 − rα
i+1/2

ρ∗,i+1/2u∗,i+1/2

∆Vi

]
(2.39)

un+1
i =

un
i ρn

i

ρn+1
i

+ ∆t

[
rα
i−1/2

ρ∗,i−1/2u2
∗,i−1/2

− rα
i+1/2

ρ∗,i+1/2u2
∗,i+1/2

∆Vi

+
p∗,i−1/2 − p∗,i+1/2

∆ri

+
ρn

i gn
i + ρn+1

i gn+1
i

2

]
(2.40)

en+1
i = en

i + ∆t

[
rα
i−1/2

u∗,i−1/2(e∗,i−1/2 + p∗,i−1/2) − rα
i+1/2

u∗,i+1/2(e∗,i+1/2 + p∗,i+1/2)

∆Vi

+
ρn

i un
i gn

i + ρn+1
i un+1

i gn+1
i

2

]
(2.41)
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2.2 Gravity

Relativistic effects are taken into account in our Newtonian hydrodynamics code by using
an ‘‘effective relativistic gravitational potential’’ [Rampp and Janka, 2002]. The simula-
tions presented in this thesis employ the improved version of this potential described by
Marek et al. [2006] , who found excellent agreement with fully relativistic calculations
during core collapse and the first several hundred milliseconds after core bounce (tests
for the later neutrino-wind phase can be found in Arcones et al. [2007]).
According to Rampp and Janka [2002] and Marek et al. [2006], the effects of general
relativity in a Newtonian hydrodynamics code can be approximated by replacing the New-
tonian gravitational potential by a modified Tolman-Oppenheimer-Volkoff (TOV) potential:

ΦTOV (r) = −4πG

∫ ∞

r

dr ′

r ′2

[
mTOV

4π
+

r ′3(p + pν)
c2

]
1

Γ2

(
ρc2
+ e + p

ρc2

)
, (2.42)

where ρ is the rest-mass density, e = ρϸ is the internal energy density with ϸ being the
specific internal energy, p is the gas pressure and pν is the neutrino pressure.
The ‘‘modified TOV mass’’ mTOV is given by

mTOV (r) = 4π

∫ r

0

dr ′r ′2
(
ρ +

e + E

c2
+

vF

Γc2

)
Γ, (2.43)

where E and F are the the neutrino energy density and the neutrino flux, respectively.
The fluid velocity v is identified with the local radial velocity calculated by the Newtonian
code and the metric function Γ is given by

Γ =

√
1 +

v2

c2
−

2GmTOV

rc2
. (2.44)

The extra factor Γ in Eq. (2.43) compared to the relativistic definition of the TOV mass
enters the mass integral for reasons of consistency with the Newtonian hydrodynamics
equations and accounts for the fact that in the Newtonian code there is no distinction
between local proper volume and coordinate volume (for more details, see Marek et al.
[2006]).

There is, however, an important difference of our calculations compared to those per-
formed by Marek et al. [2006]. While the latter included the whole neutron star down
to the center, the use of the inner grid boundary at a radius Rib > 0 in the present work
prevents the evaluation of the integral in Eq. (2.43) within the neutron star core. We solve
this problem by starting our calculations with a given value of the modified TOV mass of
the core at t = 0, mTOV (Rib, 0), which was provided to us as part of the data set for the
initial conditions of our simulations. For t > 0 we then approximately evolve the modified
TOV mass according to the expression

mTOV (Rib, t) = mTOV (Rib, 0) −
∫ t

0

L ib
ν (t′)dt′ −

∫ t

0

4πR2
ib(t′)Pib(t′)

dRib

dt′
dt′, (2.45)

where the second term on the right hand side yields the energy loss from the neutron
star core by the total neutrino luminosity at the inner boundary, L ib

ν (t), and the last
term represents the compression (PdV) work done on the core at the contracting inner
boundary. The total modified TOV-mass at radius r is thus given by

mTOV (r) = mTOV (Rib, t) + 4π

∫ r

0

dr ′r ′2
(
ρ +

e + E

c2
+

vF

Γc2

)
Γ. (2.46)
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2.3 Neutrino Transport

The algorithm for solving the equation of radiation transport for neutrinos is the one
developed by Scheck et al. [2006]. Here we will summarize the procedure adopted; for a
more detailed description, see Appendix D in Scheck et al. [2006].
We start from the equation of radiation transport in spherical symmetry

1

c

∂

∂t
I + µ

∂

∂r
I +

1 − µ2

r

∂

∂µ
I = S, (2.47)

where I = I(t, r, ϸ, µ) is the specific intensity, S = S(t, r, ϸ, µ) is the source function, ϸ is the
neutrino energy, µ = cosϑ and ϑ is the angle between radiation propagation and radial
direction. Solid angle integration yields the zeroth angular moment equation,

1

c

∂

∂t
J +

1

r2

∂

∂r
(r2H) = S(0) ≡

1

2

∫
+1

−1

dµS, (2.48)

with {J, H}(t, r, ϸ) = 1
2

∫
+1

−1
dµµ{0,1}I(t, r, ϸ, µ). Integration over energy leads to

∂

∂t
E +

1

r2

∂

∂r
(r2F ) = Q+ − Q−, (2.49)

with {E, F }(t, r) = 4π
∫ ∞
0

dϸ{J/c, H}(t, r, ϸ) being energy density and energy flux, respectively.
The source term has been split in an emission rate Q+ and an absorption rate Q− = κacE,
which is proportional to the energy density. The flux factor is defined as the ratio of flux
to energy density,

f (r, t) = F (r, t)/cE(r, t). (2.50)

In neutrino transport simulations solving the full Boltzmann equation (see e.g. Buras
et al. [2003], Buras et al. [2006a], Buras et al. [2006b]) this quantity shows only little
short-time variability during most phases of the supernova evolution. Therefore ∂f/∂t = 0
is an acceptably good approximation. With L = 4πr2F = 4πr2fcE one can now rewrite
Eq. (2.49) as

∂

∂t
L + ceff

∂

∂r
L = 4πr2ceff (Q+ − Q−), (2.51)

where an effective speed of neutrino propagation has been introduced as ceff = cf . Pro-
vided ceff were known, the solution of Eq. (2.51) requires considerably less effort than the
numerical integration of Eq. (2.47). For vanishing source terms Q+ and Q− the neutrino
energy or number density is just advected along characteristics r(t) = r0 + ceff t. Although
ceff depends through f (r, t) on the solution of the transport problem (Eq. (2.50)), neutrino
transport calculations in the neutrino-decoupling layer of forming neutron stars reveal
that it can be well fitted by a r-dependent function which depends on the steepness of the
density profile [see Janka, 1991]:

fν(τν) =



(1 + D)/2

1 + (1 + D)(1 − D2)(n+1)/2
, if τν < τν,1,

(τν/τν,1)m/4, if τν > τν,1.
(2.52)

Here ν ∈ {νe, ν̄e, νx }, D =
√

1 − (Rν/r)2, τν is the optical depth, the neutrinosphere ra-
dius Rν is defined by τν(Rν) = τν,1 = 1.1, the power-law index m is chosen such that
fν(10) = 1/25, and n is defined by a local power-law fit of the density profile around the
neutrinosphere, ρ(r) ∝ r−n.
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Assuming further that the (medium dependent) coefficients Q+ and κ̃ ≡ κa/f = 4πr2Q/L

are constant between two points (r, t) and (r∗, t∗), which are connected by a characteristic
line, i.e.,

r∗ = r − ceff (t − t∗), (2.53)

Eq. (2.51) can be integrated analitically to yield

L(r, t) = L(r∗, t∗)e−κ̃ceff (t−t∗)
+

4πQ+

κ̃3

{[
1 − e−κ̃ceff (t−t∗)

][
1 + (κ̃r∗ − 1)2

]

+ κ̃ceff (t − t∗)

[
2κ̃r∗ + κ̃ceff (t − t∗) − 2

]}
, (2.54)

where L(r, t) and L(r∗, t∗) are the luminosity values at both ends of the characteristic line.
We use Eq. (2.54) to construct a numerical scheme to solve Eq. (2.51) in the general case:
we assume that the luminosity is known at the cell interfaces of a one-dimensional radial
grid for a time tn−1, and that the cell-averaged values of the quantities needed to compute
the emission rate Q+ and absorption coefficient κ̃ are also known for that time. As a
further simplification we do not allow neutrinos to propagate in negative radial direction
(actually this is granted by defining a non-negative function for the flux factor). Then
the luminosities at tn

= tn1
+ ∆t for each zone interface (starting at the innermost zone)

can be computed using Eq. (2.54). In doing so we have to distinguish between two cases
(see Fig. 2.5): if ceff∆t > ∆r, we can use point A as the starting point of the integration,
(r∗, t∗) = (ri−1, tA). The luminosity at this point is derived from a linear interpolation be-
tween L(ri−1, tn−1) and L(ri1, tn) (which is already known, as we are integrating outwards).
If ceff∆t 6 ∆r, we use point B, the luminosity at this point being given by a linear interpo-
lation between L(ri−1, tn−1) and L(ri , tn−1).

Figure 2.5: The solution at (ri , tn ) is computed from the data at a point (r∗, t∗) located on the same
characteristic line. Depending on the grid spacing, ∆r, the time step, ∆t, and the effective speed
of neutrino propagation, ceff , either point A or point B must be used. The solution there can be
obtained by interpolation in time or space, respectively. Credit: Scheck et al. [2006]

For time integration we use a predictor-corrector method: the transport routine is called
two times. In the first (predictor) step the luminosities, emission rates and absorption
coefficients of the last time step [Ln−1, Qn−1, κn−1] are used to compute preliminary values
(Q̃n , κ̃n ) for the neutrino-medium coupling at the next time level. In the second (corrector)
step the final values [Ln , Qn , κn ] are calculated using [Ln−1, (Qn−1

+ Q̃n)/2, (κn−1
+ κ̃n)] as

input.

Equation (2.51) is solved not only for the energy luminosity L = Le, but also for the num-
ber luminosity Ln = 4πr2Fn = 4πr2fcn (n is the particle density and f is assumed to be
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the same flux factor as for the energy transport). Furthermore the equation has to be
integrated for three neutrino types, νe, ν̄e, and νx (the latter denoting νµ, ν̄µ, ντ , and ν̄τ ,
which are treated identically).

To integrate Eq. (2.54) outwards, time-dependent boundary conditions are required for
the luminosities Le,ν and Ln,ν, where ν = νe, ν̄e, νx .
Scheck et al. [2006] assumed Le,ν and Ln,ν to be constant for a time interval of typically 1
s, and to decay subsequently with a power-law dependence in time. For the simulations
presented in this paper, we have developed a simple, analytic two-zone model for the
cooling of the neutron star, based on the physical constraints of energy conservation and
the virial theorem, which is presented in Section 2.3.1.

For treating the spectral dependence, we make the assumption that the neutrino phase
space distribution function can be factorised into a product of an angle-dependent func-
tion and an energy-dependent term, which we assume to be of Fermi-Dirac shape. This is
certainly a problematic simplification in view of the fact that the neutrino interactions with
the stellar medium are strongly energy-dependent. Nevertheless, this neutrino transport
treatment represents a practical approximation which is able to reproduce basic features
of more detailed transport solutions and yields agreement with those even beyond the
purely qualitative level [see Scheck et al., 2006].

For calculating the neutrino-matter interaction rates the reactions taken into account
are: charged-current processes with neutrons and protons, thermal electron-positron
pair creation, annihilation and neutrino scattering off nuclei, nucleons, electrons and
positrons. The equations for the reaction rates and neutrino source terms can be found
in appendix D.5 and D.6 of Scheck et al. [2006].

2.3.1 Boundary Condition

In our simulations we replace the inner core of the neutron star (usually roughly 1.1
M⊙ of baryonic matter) by an inner Lagrangian boundary of our grid, whose prescribed
contraction is supposed to mimic the shrinking of the nascent neutron star as it loses
energy and lepton number by neutrino emission. Using this inner boundary, which
typically is located at a νe optical depth of more than 100 and a density of ρib & 1013

g/cm3, allows us to apply the simple neutrino transport approximation described above.
Three parameters serve us to describe the motion of the inner boundary: Ri

ib, R
f
ib, and

t0. The initial radius Ri
ib is the radius of the inner core that we chose to excise from

the postbounce models we start our simulations from, R
f
ib is the final radius of this core

for time t → ∞, and t0 is the timescale of an exponential contraction according to the
expression

Rib(t) = R
f
ib + (Ri

ib − R
f
ib)e−t/t0 . (2.55)

Because of the contraction and postbounce accretion of the proto-neutron star, the den-
sity and optical depth in the layers near the inner grid boundary can increase to such
large values that the application of our transport approximation becomes inefficient by
the required very fine zoning, and the equation of state fails to describe the dense stellar
matter. For this reason, we have to set a rather large final radius and rather slow con-
traction of the neutron star: we typically choose R

f
ib=20 km and t0=0.4, which yield an

evolution of our inner grid boundary similar to the ‘‘standard boundary contraction’’ of
Scheck et al. [2006]. We have then developed a simple analitical model for the neutrino
emission of the proto-neutron star by considering a core that is, in general, different from
the one excised from the computational grid.
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Figure 2.6 shows a simple sketch of our model: an inner core of radius Rc (in general
different from the radius of the inner grid boundary) and mass Mc accretes the mass
contained in a thick layer around it and emits neutrinos. This core is also shrinking in
time to mimic the contraction of the PNS.

Figure 2.6: Model for the neutrino emission from the inner boundary.

Since the core is in hydrostatic equilibrium we can apply the virial theorem, taking into
account by the surface term S the fact that the pressure Ps at radius Rc is not zero:

Eg + 3(Γ − 1)Ei + S = 0, with S = −

∫

core

∇ · (xP)d3x = −4πR3
c Ps. (2.56)

The total energy of the inner core is then:

Etot = Eg + Ei =
3Γ − 4

3(Γ − 1)
Eg −

S

3(Γ − 1)
, with Eg ≃ −

2

5

GM2
c

Rc

(2.57)

for a homogeneus core inside Rc.
The energy of the core evolves with time because of neutrino losses and of PdV work done
on its surface:

dEtot

dt
= Ėtot = −Lc

ν,tot − Ps
dVc

dt
= −Lc

ν,tot − 4πPsR2
c Ṙc = −Lc

ν,tot + S
Ṙc

Rc

. (2.58)

In order to use this equation to coin a formula for the neutrino luminosity as a function
of time we need to know the surface pressure Ps. Since we use a hydrodynamical inner
boundary that is in general bigger than the core radius Rc we cannot get this value from
the code, and thus have developed an estimate.
If we consider a region in the accretion layer between inner core (with mass Mc and radius
Rc) and outer radius racc, containing the mass ∆macc, pressure equilibrium gives:

dP

dm
= −

GM

4πr4
⇒

Pacc − Ps

∆macc

≃ −α
GMc

4πR4
c

, (2.59)

where 0 < α 6 1. Since the pressure gradient is very steep, Pacc ≪ Ps and:

Ps ≃ α
GMc∆macc

4πR4
c

, S = −4πR3
c Ps ≃ −α

GMc∆macc

Rc

. (2.60)

We can now solve equation (2.58) for the neutrino luminosity:



26 Fundamental Equations and Numerical Methods

Lc
ν,tot = Ėtot + S

Ṙc

Rc

=
3Γ − 4

3(Γ − 1)
Ėg −

Ṡ

3(Γ − 1)
+ S

Ṙc

Rc

, (2.61)

where we have assumed ∂Γ/∂t = 0. Applying Eq. (2.60) we obtain

Lc
ν,tot = −

2

5

3Γ − 4

3(Γ − 1)
GM2

c Ṙc

R2
c

−
3Γ − 4

3(Γ − 1)
αGMc∆maccṘc

R2
c

−
αGMc∆ṁacc

3(Γ − 1)Rc

. (2.62)

The total neutrino luminosity is then distributed to the different neutrino species:

Le,νe
(Rib, t) = Lc

ν,totKνe
, (2.63)

Le,ν̄e
(Rib, t) = Lc

ν,totKν̄e
, (2.64)

Le,νx
(Rib, t) = Lc

ν,totKνx
, (2.65)

where the constants Kν denote the fractional contributions of the individual luminosities
to the total neutrino luminosity. They fulfill the requirement

Kνe
+ Kν̄e

+ 4Kνx
= 1. (2.66)

We also prescribe the mean energies of neutrinos entering the computational grid at the
inner boundary, 〈ϸν〉

ib, with ν ∈ {νe, ν̄e, νx }. Since the inner boundary is usually located in
the optically thick region, we can assume that neutrinos and matter are in thermodynamic
equilibrium, thus:

〈ϸν〉
ib
= kBT ib

ν F3(ηib
ν )/F2(ηib

ν ) = kBT ibF3(ηib
ν )/F2(ηib

ν ), (2.67)

with the Fermi integrals defined as

Fn(η) =
∫ ∞

0

xnfFD(x, η)dx, fFD(x, η) =
1

1 + exp(x − η)
. (2.68)

We have explored two choices for ηib
ν . Since we are assuming thermodynamical equili-

birum, the first choice was to set them equal to the equilibrium values:

ηeq,νe
= (µe + µp − µn)/kBT, ηeq,ν̄e

= −ηeq,νe
, ηeq,νx

= 0, (2.69)

[see Janka, 1991]. However, as the temperature and density in the inner boundary in-
crease, the equilibrium degeneracy parameters for νe and ν̄e approach zero [see e.g. Shen
et al., 2011], so we have also tried setting ηνe

= ην̄e
= 0. We have found minimal differ-

ence in the fluxes and mean energies of the neutrinos emerging from the neutron star
depending on the choice of ην, thus we have decided to set ηνe

= ην̄e
= ηνx

= 0 for simplicity.

With this choices for the neutrino mean energies, we can calculate the total lepton number
lost by the neutron star core until time t:

∆Ye,core =
1

Nb,core

∫ t

0

(
Le,νe

(Rib, t′)

〈ϸνe
〉

−
Le,ν̄e

(Rib, t′)

〈ϸν̄e
〉

)
dt′ =

(Kνe
− Kν̄e

)F2(0)

kBNb,coreF3(0)

∫ t

0

Lc
ν,core(t′)

T ib(t′)
dt′.

(2.70)
This constrains our choice of Kνe

and Kν̄e
. Since ∆Ye,core must be positive, Kνe

> Kν̄e
. We

have found good agreement with detailed simulations by setting Kνe
= 0.20 and Kν̄e

= 0.15.
Kνx

follows from Eq. (2.66).

We have some freedom in choosing the parameters appearing in Eq. (2.62).
Γ, the adiabatic index, depends on the still unknown equation of state for dense matter.
The assumption ∂Γ/∂t = 0 is rather crude, since this value varies between 1.5 and 3 [see
Shen et al., 2011, Lattimer and Swesty, 1991], however we have found that increasing Γ
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from 2 to 3 results in an increase of less than 10% of the emerging neutrino luminosities,
thus we expect that the error introduced by assuming Γ=const. is of the same order of
magnitude.

For the calculation of ∆macc we prescribe racc by choosing the radius at which ρ = 1010

g/cm3, which happens typically around ∼ 2 ÷ 3Rib. Since both the pressure and the
density gradients in the core are very steep, this is usually sufficient to have Pacc ≪ PS.

α is a scaling parameter and should have values between 0 and 1. The role of α in
Eq. (2.62) is to weight the contribution of accretion luminosity on the total luminosity
emitted from the core. If α ∼ 1, the amount of energy emitted in neutrinos will be domi-
nated by accretion, thus, if the remaining parameters are kept constant, it will be greater
for more massive stars. The other limit, α ∼ 0, means that the energy released in neutri-
nos depends only on the model used for the core and, if this model is the same for different
progenitors, it will be constant for all progenitors. We have tested different values of α

ranging from 0.5 to 1, and we find that they can lead to differences of up to ∼30% on
the explosion energy (depending on the progenitor considered), while other observables
considered like the remnant mass and the mass of nickel ejected vary much less as a
function of α (not more than 10%). We have thus decided to adopt intermediate values,
usually 0.5 or 0.6.

Finally, we need to prescribe the time behaviour of Rc (and consequently of Lc
ν,core). We

have tested three different functional forms for this parameter: the same function used
for the contraction of the inner grid boundary,

Rc(t) = Rc,fin + (Rc,ini − Rc,fin)e−t/t0 , (2.71)

a similar function but with two exponentials,

Rc(t) = Rc,fin +
1

2
(Rc,ini − Rc,fin)(e−t/t1 + e−t/t2), (2.72)

and a power-law function

Rc(t) = Rc,fin + (Rc,ini − Rc,fin)

(
t + tL

tL

)p

, (2.73)

where p < 0 and tL=1 s, in order to have Rc(0) = Rc,ini .
We found that using an exponential law for the time evolution of the core radius leads
to a very quick decline of the neutrino luminosities, which in turn means that the total
energy emitted in neutrinos is too low (a ‘‘standard’’ neutron star with a mass of about
1.4 M⊙ should radiate roughly 3 · 1053 erg in neutrinos of all flavours), while we get more
reasonable values with the power-law function. Hence we prescribe the time evolution of
Rc according to Eq. (2.73), where the power p is usually −3.5 6 p 6 −2.5.
Rc,ini is set equal to the initial inner boundary radius, Ri

ib, thus Mc is equal to the mass
of the excised core (tipycally 1.1 M⊙). Rc,fin is adjusted in order to release enough energy
in neutrinos to produce explosions, and is usually set to 5-6 km. Such a low value is
probably unrealistic for the 1.1 M⊙ mass shell, however it is required to release enough
neutrinos to compensate the high inner boundary radius of the grid. We are currently
working on further improvement to the neutrino transport routine which should allow us
to use a less dramatic value.
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Chapter 3

Progenitor Structure and
Properties

The progenitors employed for the calculations presented in this work are taken from a set
of nonrotating stars of solar metallicity calculated by Woosley et al. [2002]. This set is
composed by 98 progenitors, which cover the mass range 11-28 M⊙ in steps of 0.2 M⊙,
and the mass range 28-40 M⊙ in steps of 1.0 M⊙. Additionally, we cover the mass range
10-11 M⊙ with three stars of initial mass of 10.0, 10.2 and 10.8 M⊙ (A. Heger, private
communication).

A massive star spends about 90% of its life burning hydrogen and most of the rest burning
helium. These relatively quiescent phases, where convection and radiation transport dom-
inate over neutrino emission, also determine what follows during the advanced burning
stages and explosion. Once the central temperature exceeds ∼ 5 · 108 K, neutrino losses
from pair annihilation dominate the energy budget; radiative diffusion and convection
remain important to the star’s structure and appearance, but it is neutrino losses that,
globally, balance the power generated by gravitational contraction and nuclear reactions.
Indeed, the advanced burning stages of a massive star can be envisioned overall as the
neutrino-mediated Kelvin-Helmholtz contraction of a carbon-oxygen core, punctuated by
occasional delays when the burning of a nuclear fuel provides enough energy to balance
neutrino losses. Burning can go on simultaneously in the center of the star and in mul-
tiple shells, and the structure and composition can become quite complex. Owing to the
extreme temperature sensitivity of the nuclear reactions, however, each burning stage
occurs at a nearly unique value of temperature and density.

Except for a range of transition masses around 8-10 M⊙ (not considered in this work),
each massive star ignites a successive burning stage at its center using the ashes of the
previous stage as fuel for the next. Four distinct burning stages follow helium burning,
characterized by their principal fuel: carbon, neon, oxygen, and silicon. Only two of these
- carbon burning and oxygen burning - occur by binary fusion reactions. The other two
require the partial photodisintegration of the fuel by thermal photons.
Because the late stages transpire very quickly, the surface evolution fails to keep pace
and ‘‘freezes out’’. If the star is a red supergiant, then the Kelvin-Helmholtz time scale for
its hydrogen envelope is approximately 10000 years. Once carbon burning has started,
the luminosity and effective emission temperature do not change until the star explodes.
Wolf-Rayet stars, the progenitors of type-Ib supernovae, continue to evolve at their surface
right up to the time of core collapse.
The presupernova star is thus characterized by an iron core of roughly the Chandrasekhar
mass surrounded by active burning shells and the accumulated ashes of oxygen, neon,
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carbon, and helium burning. If the star has not lost its hydrogen envelope along the way,
most of the radius and an appreciable part of the mass may still consist of unburned
hydrogen and helium.

In addition to the complex interplay among thermal neutrino losses, degeneracy, and
nuclear energy generation, the core structure is sensitive to the location and timing of nu-
merous episodes of convective burning. Each stage of core or shell burning redistributes
the entropy in such a way as to create regions where its radial derivative is small. Since
the burning typically ignites at the bottom of a region of unburned fuel where the en-
tropy is initially the least, the greatest rises in entropy occur at the bottoms of convective
shells. These discontinuities serve as barriers to the outward penetration of subsequent
convection zones. Since a typical star of 15 M⊙ may have four stages of convective carbon
burning (core burning plus three stages of shell burning) and two or three stages each of
neon, oxygen, and silicon burning, the distribution of the composition becomes compli-
cated. Indeed the location of the bases of convective shells and even the masses of iron
cores in presupernova stars of variable mass may be quite nonmonotonic.

For the empirical mass-loss rates currently adopted by the groups that model the presu-
pernova evolution, all solar metallicity stars initially more massive than about 35 M⊙ are
thought to end their lives as hydrogen-free objects of roughly 5 M⊙ [see Woosley et al.,
2002]. This not only prevents the very massive stars (M > 100 M⊙) from exploding through
the pair-formation mechanism, but also limits the mass of the iron core produced at the
end of their thermonuclear evolution to values below 2 M⊙ and drastically increases the
probability for a successful hydrodynamic supernova explosion compared with the situa-
tion without mass loss. Due to the lack of hydrogen, those supernovae would be classified
as type Ib or Ic.

The density profiles of some progenitors of our sample are shown in Figure 3.1 (left panel).
The end of the stellar atmosphere is recognisable by a sharp decline in density. As the
mass of the star increases, the atmosphere is more and more reduced by mass loss. The
right panel shows the entropy profiles. A sudden increase in the entropy profile marks
the location of each composition interface.

Figure 3.1: Radial profiles at time of collapse for different progenitors. Left panel. Density. Right

panel. Specific entropy.

In order to carry on the calculations to sufficiently large times for the determination of the
fallback (usually 106 s, about 12 days), the region outside the star is filled with a wind-like
medium, with T=1100 K, ρ ∝ r−2 and zero velocity. In Figure 3.2 we show the resulting
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density profile for a low-mass star (left panel) and for a high-mass Wolf-Rayet star (right
panel). Placing the outer boundary at a radius where the density is 10−12 g/cm3 is usually
sufficient for our calculations.

Figure 3.2: Density profiles of two progenitors. The red line marks the extension to the original
model of Woosley et al. [2002]. Left panel. 11 M⊙ model. Right panel. 40 M⊙ model.

The presupernova structure plays a great role in determining the evolution of the super-
nova shock. According to the analytic blast wave solutions of Sedov [1959], the front
shock decelerates whenever it travels through a region of increasing ρr3, whereas it accel-
erates in regions of decreasing ρr3. Every time the shock decelerates, it leaves behind a
positive pressure gradient which slows down the post-shock layers. If the material post-
shock is still in sonic contact with the shock, the deceleration occurs smoothly; otherwise,
a reverse shock forms.

Figure 3.3: ρr3 for different progenitors. The composition of each shell is given on top of the plot
and the location of composition interfaces, where ρr3 drops, is marked with vertical dashed bars.
Left panel. 11 M⊙ model. Right panel. 25 ⊙ model.

We plotted this quantity for different progenitors in Figures 3.3 and 3.4. For low-mass
models (M0 . 15 M⊙), the carbon-oxygen and helium shells are not very massive and the
only region where ρr3 increases significantly is the hydrogen shell. For these stars we
expect little or no fallback at early times, and more fallback when the shock enters the
hydrogen shell and the reverse shock forms.
For intermediate mass models, up to about 22 M⊙, the carbon-oxygen and helium shells
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Figure 3.4: ρr3 for different progenitors. The composition of each shell is given on top of the plot
and the location of composition interfaces, where ρr3 drops, is marked with vertical dashed bars.
Left panel. 40 M⊙ model. Right panel. Comparison of different models.

increase in size and become massive enough to cause some fallback; however the hydro-
gen shell is still the region where most fallback will occur. For more massive stars (of
solar metallicity), mass loss reduces considerably the size of the hydrogen shell up to the
point where the reverse shock is too weak to travel back to the compact remnant, or does
not develop at all. However the carbon-oxygen shell of these stars is very massive and
significant fallback can be triggered in this region.

Table 3.1 summarizes the properties of all presupernova models. The table gives the Zero
Age Main Sequence (ZAMS) mass of the star, the mass Mfinal at the time of collapse, the
mass of the iron core (defined as the location where the electron fraction Ye becomes
greater than or equal to 0.497), the mass coordinate where an entropy of S/NAk = 4 is
reached (which is typically the base of the oxygen-burning shell), the mass of the carbon-
oxygen core, the mass of the helium core, the compactness parameter ξ2.5 defined in
Chapter 1, the radius of the star at the time of collapse Rfinal , measured in units of solar
radius and the radius of the extended model Rext that we use as outer boundary for the
simulations (again measured in units of solar radius).

ZAMS Mfinal Fe Core MS=4 CO Core He Core ξ2.5 Rfinal Rext

[M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [R⊙] [R⊙]

10.0 1.580 1.287 1.317 1.580 --- 0.0005 7.943 3548
10.2 10.20 1.214 1.376 1.462 2.067 0.0018 39.19 220
10.8 10.42 1.259 1.485 1.696 2.706 0.0033 562.6 5015
11.0 10.61 1.227 1.386 1.744 2.776 0.0040 586.4 5227
11.2 10.81 1.247 1.302 1.784 2.842 0.0052 594.9 5303
11.4 11.00 1.328 1.342 1.807 2.877 0.0059 596.3 5314
11.6 11.12 1.216 1.365 1.766 2.825 0.0049 581.9 5186
11.8 11.05 1.359 1.560 1.747 2.753 0.0036 569.8 5078
12.0 10.92 1.272 1.535 1.993 3.020 0.0165 636.1 5669
12.2 10.92 1.535 1.545 2.100 3.158 0.0222 674.7 6013
12.4 11.02 1.271 1.568 2.170 3.247 0.0281 679.5 5397
12.6 11.13 1.294 1.432 2.212 3.308 0.0306 685.6 5446
12.8 11.26 1.388 1.437 2.271 3.380 0.0297 695.6 5526
13.0 11.35 1.341 1.449 2.338 3.459 0.0416 709.4 5635
13.2 11.49 1.389 1.622 2.399 3.529 0.0494 741.3 5888
13.4 11.58 1.407 1.638 2.467 3.610 0.0597 754.6 5994
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ZAMS Mfinal Fe Core MS=4 CO Core He Core ξ2.5 Rfinal Rext

[M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [R⊙] [R⊙]

13.6 11.71 1.422 1.648 2.529 3.679 0.0710 757.3 6015
13.8 11.84 1.423 1.591 2.591 3.745 0.0806 773.9 5479
14.0 11.96 1.435 1.668 2.648 3.816 0.0961 788.9 5585
14.2 12.08 1.495 1.678 2.708 3.889 0.1117 801.0 5671
14.4 12.23 1.502 1.693 2.770 3.956 0.1252 814.4 5765
14.6 12.37 1.544 1.697 2.834 4.028 0.1285 823.6 5830
14.8 12.48 1.540 1.753 2.901 4.101 0.1362 834.9 5910
15.0 12.63 1.553 1.721 2.960 4.167 0.1499 842.6 5964
15.2 12.71 1.407 1.809 3.037 4.250 0.1606 852.8 6037
15.4 12.88 1.422 1.836 3.101 4.317 0.1760 860.5 6091
15.6 13.00 1.351 1.444 3.172 4.392 0.1702 892.7 5632
15.8 13.10 1.350 1.461 3.239 4.467 0.1588 901.0 5684
16.0 13.24 1.360 1.475 3.312 4.541 0.1543 912.7 5758
16.2 13.41 1.362 1.479 3.376 4.612 0.1664 920.0 5804
16.4 13.53 1.380 1.492 3.445 4.687 0.1586 931.5 5877
16.6 13.71 1.388 1.501 3.515 4.766 0.1615 930.1 5868
16.8 13.83 1.400 1.507 3.586 4.844 0.1595 940.6 5289
17.0 13.83 1.402 1.511 3.658 4.926 0.1617 957.7 5385
17.2 14.07 1.416 1.527 3.729 4.998 0.1681 952.6 5357
17.4 14.20 1.407 1.533 3.808 5.074 0.1612 956.8 5380
17.6 14.34 1.420 1.554 3.879 5.147 0.1675 970.5 5457
17.8 14.45 1.410 1.866 3.956 5.225 0.2077 995.8 5599
18.0 14.49 1.389 1.476 4.031 5.311 0.2021 1010.9 5064
18.2 14.57 1.405 1.499 4.115 5.392 0.1757 1002.5 5637
18.4 14.82 1.496 1.857 4.172 5.456 0.1882 1021.1 5117
18.6 14.85 1.413 1.539 4.250 5.537 0.1730 1038.1 5202
18.8 15.04 1.405 1.525 4.323 5.609 0.1686 1042.7 5225
19.0 15.03 1.586 1.918 4.393 5.689 0.1947 1040.7 5215
19.2 15.08 1.487 1.905 4.450 5.757 0.1946 1063.8 5331
19.4 15.22 1.373 1.823 4.552 5.856 0.1890 1066.0 5342
19.6 13.36 1.465 1.603 4.888 6.239 0.1197 1163.6 5197
19.8 14.53 1.445 1.532 4.775 6.109 0.1368 1126.9 5033
20.0 14.72 1.457 1.461 4.887 6.211 0.1273 1123.1 5016
20.2 14.46 1.465 1.586 5.005 6.338 0.1055 1158.2 5173
20.4 14.80 1.507 1.680 5.041 6.372 0.1960 1148.0 5128
20.6 14.02 1.546 1.810 5.225 6.575 0.2826 1196.8 4764
20.8 14.34 1.535 1.793 5.260 6.605 0.2774 1196.0 4761
21.0 12.99 1.461 2.016 5.524 6.965 0.2173 1246.4 4962
21.2 13.55 1.483 1.915 5.515 6.908 0.1918 1243.1 4948
21.4 14.79 1.509 1.532 5.443 6.796 0.2302 1200.6 4779
21.6 13.62 1.459 1.622 5.671 7.062 0.1825 1260.6 5018
21.8 14.77 1.485 1.920 5.596 6.954 0.1910 1222.5 4866
22.0 14.41 1.440 1.546 5.717 7.078 0.1661 1256.2 5000
22.2 13.21 1.613 1.985 5.951 7.372 0.3579 1302.7 4622
22.4 14.75 1.488 1.667 5.828 7.192 0.2020 1266.8 4494
22.6 14.67 1.533 1.785 5.890 7.261 0.2578 1275.8 4526
22.8 14.34 1.627 2.001 6.039 7.405 0.3680 1300.6 4614
23.0 12.99 1.613 2.147 6.334 7.729 0.4373 1369.8 4331
23.2 15.07 1.636 2.025 6.054 7.419 0.3780 1293.4 4589
23.4 13.88 1.599 2.142 6.327 7.717 0.4296 1353.2 4801
23.6 13.72 1.658 2.120 6.424 7.813 0.4242 1371.1 4335
23.8 14.79 1.648 2.096 6.362 7.715 0.4143 1349.9 4789
24.0 14.00 1.662 2.132 6.558 7.929 0.4300 1405.6 4444
24.2 13.89 1.650 2.144 6.632 7.994 0.4364 1413.0 4468
24.4 13.17 1.610 2.109 6.788 8.165 0.4202 1415.8 4477
24.6 13.45 1.608 2.089 6.833 8.196 0.4117 1420.5 4491
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ZAMS Mfinal Fe Core MS=4 CO Core He Core ξ2.5 Rfinal Rext

[M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [R⊙] [R⊙]

24.8 13.10 1.596 2.013 6.962 8.333 0.3714 1436.9 4543
25.0 12.52 1.619 1.978 7.126 8.484 0.3217 1446.9 4575
25.2 13.11 1.631 1.984 7.123 8.469 0.3589 1470.6 4650
25.4 14.14 1.609 2.046 7.015 8.371 0.3894 1458.7 4612
25.6 14.12 1.626 1.993 7.095 8.445 0.3647 1471.3 4652
25.8 12.36 1.555 1.834 7.417 12.36 0.2495 1482.2 4177
26.0 12.93 1.608 1.930 7.520 8.774 0.3386 1492.8 4207
26.2 12.23 1.537 1.718 7.657 12.23 0.2320 1477.4 4163
26.4 12.54 1.554 1.717 7.696 12.54 0.2391 1489.5 4197
26.6 13.17 1.538 1.701 7.571 8.923 0.2291 1510.3 4256
26.8 12.98 1.545 1.715 7.621 12.98 0.2341 1510.7 4257
27.0 12.44 1.506 1.679 7.209 12.44 0.2328 1482.1 4177
27.2 12.75 1.506 1.680 7.185 12.75 0.2352 1523.3 4293
27.4 13.03 1.534 1.720 7.914 13.03 0.2449 1536.4 4330
27.6 12.78 1.531 1.719 7.994 12.78 0.2474 1522.4 4290
27.8 12.56 1.515 1.704 8.166 12.56 0.2462 1497.1 4219
28.0 12.66 1.503 1.671 8.220 12.66 0.2359 1516.2 4273
29.0 12.61 1.536 1.543 7.575 12.61 0.2003 1330.7 2366
30.0 12.24 1.460 1.571 9.116 12.24 0.2240 1224.4 4874
31.0 11.71 1.447 1.584 10.28 11.71 0.1755 994.4 5591
32.0 11.99 1.479 1.671 10.26 11.99 0.1979 1112.7 4970
33.0 11.43 1.511 1.735 11.10 11.43 0.2275 3.022 2139
34.0 11.77 1.527 1.786 11.50 11.77 0.2500 0.887 3146
35.0 10.63 1.487 1.683 10.63 --- 0.2057 0.840 4726
36.0 10.30 1.484 1.700 10.30 --- 0.2070 1.193 4232
37.0 9.714 1.464 1.923 9.714 --- 0.2855 0.789 4977
38.0 9.264 1.518 1.685 9.264 --- 0.2434 0.969 3856
39.0 8.541 1.634 1.993 8.541 --- 0.3625 0.754 4755
40.0 8.739 1.563 1.850 8.739 --- 0.2654 0.722 4554

Table 3.1: Properties of the progenitor employed in this work.

For the neutrino-driven explosions we need to start from a model in the postbounce phase.
Therefore, the original progenitors from Woosley et al. [2002] are run through collapse
and bounce by Andreas Marek and Lorenz Hüdepohl with the VERTEX code [Buras et al.,
2006a], up to a few ms postbounce.



Chapter 4

Comparison of Explosions
Initiated by Pistons with
Explosions Initiated by Neutrino
Heating

4.1 Introduction

Since our understanding of the explosion mechanism of core-collapse supernovae is still
incomplete and self-consistent calculations do not, as yet, yield explosions, in the study
of nucleosynthesis and light curves of core collapse supernovae shock waves have to be
initiated artificially.
Two methods to initiate a shock wave inside a presupernova model have been applied
in the literature: ‘‘thermal bombs’’, used by Nomoto and collaborators (Shigeyama et al.
[1988]; Hashimoto et al. [1989]; Thielemann et al. [1990]; Nakamura et al. [2001]; Nomoto
et al. [2006]), and ‘‘pistons’’, used by Woosley and collaborators (Woosley and Weaver
[1986]; Woosley and Weaver [1995]; Woosley et al. [2002]; Woosley and Heger [2007];
Zhang et al. [2008]). Aufderheide et al. [1991] have reviewed these methods, discussing
the various parameters used and their effect on the nucleosynthesis results.

In the ‘‘thermal bomb’’ approach, the temperature of the innermost few zones of the star
is greatly elevated, which in turn increases the pressure and pushes the surrounding
material away. The free parameters for this model are the initial energy deposited, the
volume of this deposition and the time during collapse when the bomb is started.

In the ‘‘piston’’ approach, the shock wave is produced by moving one mass shell in the
star, the ‘‘piston’’, with a highly supersonic velocity. Its motion is given by a ballistic
trajectory defined by

du

dt
= −f

GMpis

r2
, (4.1)

where u is the velocity of the piston, Mpis is the mass enclosed by the piston and f is a
factor which accounts for the reduction in G due to the pressure gradient within the star.
The piston is initially placed at a radius R0 and is given an initial velocity u0.
Usually the piston is held fixed at the maximum radius reached instead of being allowed
to move back, in order to avoid artificial enhancement of the fallback. The free parameters
of this approach are u0, Mpis, f and the time during collapse when the piston is started.
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With the piston the energy of the shock wave can only be determined a posteriori, contrary
to the case of the thermal bomb.

Aufderheide et al. [1991] used the Nomoto and Hashimoto [1988] 20 M⊙ star to compare
these two methods of inducing shock waves. They studied the effect of initiating the shock
at two different times during the collapse of the core (at the beginning of the collapse and
at a time when all the iron core had fallen through the accretion shock) and of varying the
parameter f for the piston models and they calibrated the free parameters in order to get
explosion energies of about 1 foe. They concluded that the different explosion mechanism
lead to uncertainties of about 30% on the nucleosinthetic yields and that the mass cut
could not be constrained very precisely with such models.

They also compared the peak temperatures produced by each mechanism with an analytic
expression derived assuming that the energy of the shock is dominated by radiation, and
that temperature and density are uniform behind the shock. They concluded that, with
either way of initiating the explosions, the peak temperatures are incorrect in the early
history of the shock and this has a great impact on the explosive nucleosynthesis results,
especially concerning the production of 56Ni which was always overproduced in their cal-
culations. This happened because, in the early phases of the explosion, the energy was
not partitioned correctly and either too much energy was in internal energy (for the ther-
mal bomb method), or too much energy was in kinetic energy (for the piston method).

Figure 4.1: Initial-final mass function of nonrotating stars of solar composition. Credit: Woosley
et al. [2002].

Nevertheless, such methods have been used to study the explosions of massive stars for
decades and to derive the products of explosive nucleosynthesis and the mass function
of the remnants produced.
Woosley et al. [2002] summarize the current picture of the outcome of core-collapse for
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single nonrotating stars of solar metallicity in the diagram shown in Figure 4.1. They
predict neutron star formation up to an initial mass of ∼21 M⊙, then black hole formation
(via fallback), and two possible scenarios for stars of initial mass around 50 M⊙, depend-
ing on the uncertain mass loss rate of Wolf-Rayet stars: if the mass loss is high enough
there can be a ‘‘window’’ of neutron stars, otherwise only black holes are formed.

It is clear then that the currently favored methods to induce artificial explosions have
several drawbacks: the mass cut and the explosion energy have to be imposed by hand,
and the details of the models close to the location of the mass cut (nucleosynthesis,
fallback) cannot be trusted. Furthermore ad hoc assumptions are made for the collapse
phase, which will influence the stellar structure at bounce.
In order to get more reliable predictions of the remnant mass and nickel production,
with the aim of better understanding the link between progenitors and supernovae, we
have tried to improve the modeling of the explosion by employing a physically motivated
prescription to artificially induce the explosion of the star, namely neutrino heating. In
this chapter we will compare the results of piston-driven models with those of neutrino-
driven models and show that many properties of the models are greatly affected by the
way the explosion is triggered and that neutrino heating leads to considerable differences
in the predictions.

4.2 Simulation of the explosion

4.2.1 Piston-driven explosions

We have implemented the piston method following the prescriptions of Woosley and
Weaver [1995], Woosley et al. [2002] and Woosley and Heger [2007]. The piston is placed
at a constant Lagrangian mass coordinate and is first moved inward for 0.45 s, then it
is moved outward with a given initial velocity, u0, that is adjusted in order to get the de-
sired explosion energy. The piston velocity as a function of time is given by the following
formula:

dr

dt
=



v0 − a0t t < 0.45 s,√
u2

0 + 2fGMpist(1/r − 1/rmin) t > 0.45 s, r < 109 cm,

0 t > 0.45 s, r > 109 cm,

(4.2)

where v0 is the initial velocity of the shell where the piston is located, a0 is a constant
acceleration calculated in order to reach the minimum radius, rmin = 500 km, in 0.45 s
(so a0 = 2(r0 − rmin + 0.45v0)/(0.45)2, with r0 being the initial piston radius), Mpist is the
mass enclosed by the piston and f is chosen in order to ensure that the piston coasts to
an asymptotic radius (dr/dt = 0) of 109 cm (thus, f = −u2

0/[2GMpist(10−9cm−1 − 1/rmin)]).
The piston is then held at the maximum radius.

The free paramenters, i.e. the initial piston location (the so called ‘‘mass cut’’) and the
explosion energy, cannot be arbitrary but are coinstrained by observations, as discussed
in Woosley and Heger [2007]. In order to yield realistic values for remnant masses and
nickel production, the piston mass should lie between the iron core mass (defined as the
point where the electron fraction Ye reaches 0.495) and the mass of the base of the oxygen
shell (defined as the point where the dimensionless entropy S/NAk is equal to 4), while
the explosion energy is constrained to be 1-2 B.
We have explored both choices for the piston mass (the models labeled ‘PA’ are the ones
with the piston located at the edge of the iron core, while the models labeled ‘PB’ have
the piston at the base of the oxygen shell), while we have set the explosion energy to be
roughly 1.2 B for each model.
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We employ a numerical grid of 1000 logarithmically spaced zones and we perform the
calculations in two stages. In the first stage, the inner boundary of the grid coincides
with the piston location. In order to retain a good resolution near the center, when the
piston reaches the minimum radius rmin = 5 · 107 cm we remap the model to a new grid,
which is again composed by 1000 zones but is finer near the inner boundary (the size of
the first cell is ∆r1 = 0.01 ∗ rib and then the cells are logarithmically spaced). Likewise,
when the piston stops at the maximum radius rmax = 109 cm, we remap to a new grid
which is built in the same way.
In order to carry on the calculation to sufficiently large times for the determination of
the fallback, the original model is extended to a larger radius and the region outside the
star is filled with a wind-like medium, as described in Chapter 3. The outer boundary is
placed at Rext , which is given for each model in Table 3.1. For the calculations presented
in this Chapter we have employed a smaller progenitor set, taking the progenitors in steps
of 1 M⊙.

MacFadyen et al. [2001] have studied the effect of different boundary conditions on the
amount of fallback in piston-driven explosions and they conclude that the inner boundary
should be kept closed for the first 100 s in order to not remove pressure support from the
model while the explosion is still developing. In a more realistic calculation this pressure
support would be expected to be provided by the neutrino-driven wind, but in piston-
driven models it is necessary to mimic this behaviour with a reflecting inner boundary.
For this reason, we employ a reflecting inner boundary condition for the first 100 s, then
we switch to an open boundary.
The first stage of the calculation is run to t = 105 s, then we remap to a new grid,
moving the inner boundary to rib = 1010 cm, in order to save computing time. The outer
boundary is kept the same and we employ again 1000 logarithmically spaced radial zones.
The second stage of the calculation is run to at least t = 106 s, or longer if needed for the
fallback determination.

4.2.2 Neutrino-driven explosions

The boundary condition employed to initiate neutrino-driven explosions is described in
detail in Section 2.3.1.
The free parameters of this model have been set to

• Γ = 3

• α = 0.5

• Rc,min = 5 km

while p has been calibrated for each model in order to get a net explosion energy (i.e. after
subtracting the binding energy of the mantle of the star) of about 1.2 B for all cases.

Similarly to piston-driven explosions, we run the calculation in two stages. In the first
stage we simulate the first 15 seconds of the explosion with neutrino physics. The grid is
composed by 1000 logarithmically spaced zones, the inner boundary is placed at a mass
coordinate of 1.1 M⊙ and contracted to a minimum radius of 20 km, and the outer bound-
ary is placed at 2 · 1010 cm. The inner boundary is closed and hydrostatic equilibrium is
enforced, while the outer boundary is open.
After 15 seconds, when the explosion has been launched and the neutrino luminosity
from the PNS has become negligible, we switch off neutrino transport and remap to a
larger grid (rib = 109 cm, rob = Rext given in Table 3.1). The inner boundary is left open
from this moment to the end of the simulation. Once again, when the time reaches t = 105

s, we remap again to a larger inner boundary (rib = 1010 cm) and continue the simulation
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until at least t = 106 s, or longer if needed.

The initial models used for the calculations presented in this work are taken from the
nonrotating solar metallicity set of Woosley et al. [2002] and are described in Chapter 3.

4.3 Hydrodynamics of some reference cases

In order to discuss the major features of piston-driven explosions, we have selected two
progenitors as reference cases: a 15 M⊙ progenitor, representative of low-mass stars, and
a 25 M⊙ model, representative of high-mass stars. We will compare the effects of different
choices in the boundary location for the piston-driven models, and we will compare the
results of initiating the explosions with a piston or with neutrinos.
The models representing low-mass stars are shown in section 4.3.1, while the models
representing high-mass stars are shown in section 4.3.2.

4.3.1 Evolution of the 15.0 M⊙ models

The model that we chose as representative of low-mass stars is a star with initial mass of
15.0 M⊙. This star ends its life with a mass of 12.6 M⊙, an iron core of 1.55 M⊙, a silicon
core of 1.72 M⊙, a helium shell of 1.21 M⊙ and a hydrogen shell of 8.5 M⊙.

In Figures 4.2 and 4.3 we show the evolution of model P15A. For this model the piston is
located at the edge of the deleptonized core, at 1.55 M⊙.
Figure 4.2 displays radial profiles of density (left) and velocity (right) at different times.
After the explosion is launched, a steep density profile forms close to the inner bound-
ary and about 0.1 M⊙ of matter fail to escape and remain close to the boundary with
little or zero velocity. As soon as the boundary is open, at 100 s, this material feels the
gravitational pull of the compact remnant in the center and develops negative velocity,
quickly falling through the inner boundary on the compact remnant. Later on, when the
main shock travels through the hydrogen shell, a reverse shock forms (it can be seen in
the velocity profiles from 30000 s) and travels back towards the compact remnant. The
reverse shock brings back another 0.12 M⊙ of matter, increasing the final remnant mass
to 1.80 M⊙.

Figure 4.2: Evolution of model P15A. Left panel. Density as a function of radius at different times.
Right panel. Radial velocity as a function of radius at different times.

Figure 4.3 gives the remnant mass (left) and the total mass of nickel on the grid (right) as
functions of time.
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Figure 4.3: Evolution of model P15A. Left panel. Baryonic remnant mass as a function of time.
Right panel. Total mass of 56Ni on the grid as a function of time.

In the remnant mass plot one can see clearly that fallback happens at two distinct times.
There is an ‘‘early’’ fallback, which consists of the material that remains close to the piston,
which is accreted on the compact remnant very quickly after the opening of the boundary
(100 s). Then there is ‘‘late’’ fallback, which consists of matter that is decelerated down
to negative velocity by the reverse shock that forms when the front shock travels through
the hydrogen shell. This late fallback happens usually well after 100000 s.
As is shown in the right panel of Figure 4.3, a lot of nickel forms at the beginning of the
simulation. However most of this nickel remains close to the inner boundary and falls
back on the compact remnant, and some more is brought back by the reverse shock: in
the end only 0.08 M⊙ of nickel are ejected.

Figure 4.4: Evolution of model P15B. Left panel. Density as a function of radius at different times.
Right panel. Radial velocity as a function of radius at different times.

When the piston is placed at the base of the oxygen shell, at 1.72 M⊙, the material ahead
of the shock is much less dense and bound, therefore the shock is more efficient in
pushing matter far away from the inner boundary. The amount of ‘‘early’’ fallback is
greatly reduced (only 0.02 M⊙). The reverse shock still brings back a significant amount
of matter (0.15 M⊙), and the final remnant mass is 1.88 M⊙ (see Figure 4.5).
Since the piston is placed further out in radius, much less nickel is produced compared
to model P15A. Some of this nickel still falls back through the inner boundary (and some
more is brought back by the reverse shock), so the final amount ejected is 0.05 M⊙.



4.3 Hydrodynamics of some reference cases 41

Figure 4.5: Evolution of model P15B. Left panel. Baryonic remnant mass as a function of time.
Right panel. Total mass of 56Ni on the grid as a function of time.

When the explosion is triggered by neutrino heating, the resulting structure is consider-
ably different, as can be seen in Figure 4.6 where we plotted the evolution of density and
velocity in model N15.

Figure 4.6: Evolution of model N15. Left panel. Density as a function of radius at different times.
Right panel. Radial velocity as a function of radius at different times.

Neutrino heating pushes a dense shell of matter through the mantle of the star, while for
the explosion energy considered here, ∼ 1.2 · 1051 erg, little or no mass remains close to
the inner boundary, where the density profile is much flatter than in the corresponding
piston-driven model. For this reason the amount of mass that falls back early is minimal
(even for more massive stars, as shown in Section 4.3.2) and the only way that fallback
happens is via the reverse shock created when the front shock enters the hydrogen shell.

In Figure 4.8 we have plotted the accretion rate on the compact remnant (left panel) and
the peak temperatures (right panel) for the three models presented above.
The early accretion rate for piston-driven models is two to three orders of magnitude
greater than that of the corresponding neutrino-driven model, but this difference disap-
pears at late times when the reverse shock arrives at the remnant.
On the other hand, initiating the explosion with a piston produces peak temperatures that
are too low, at least in the early history of the shock, as already found by Aufderheide
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Figure 4.7: Evolution of model N15. Left panel. Baryonic remnant mass as a function of time.
Right panel. Total mass of 56Ni on the grid as a function of time.

et al. [1991]. This has an important effect on the nucleosinthesys, especially for nuclei
produced in the vicinity of the mass cut (the most important being 56Ni). Neutrino-driven
models produce nickel only in a very narrow mass region, whereas piston-driven models
produce much more nickel (see right panel of Fig. 4.8).

Figure 4.8: Left panel. Accretion rate on the compact remnant as a function of time for the 15 M⊙
progenitor exploded with different methods. Right panel. Peak temperature as a function of time
for the 15 M⊙ progenitor exploded with different methods.

4.3.2 Evolution of the 25.0 M⊙ models

The evolution of heavier stars is somewhat different. For such stars most of the fallback
happens at early times (within the first 15-20 minutes of the explosion), because the
material ahead of the shock is much more bound than in low-mass stars and the energy
transported by the shock initiated with a piston is not enough to unbind it. For this rea-
son, a significant amount of that matter remains close to the inner boundary and starts
to fall back as soon as the boundary is open.
On the other hand, the hydrogen shell of these stars is less massive than that of low-
mass stars because of mass loss in the presupernova evolution, so the reverse shock is
significantly weaker than for lower mass stars. For stars more massive than 22-24 M⊙
the reverse shock is not strong enough to travel back to the compact remnant.
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Our reference model for high-mass stars has a ZAMS mass of 25.0 M⊙, and loses a signif-
icant amount of its mantle during the presupernova evolution, dying with only 12.5 M⊙,
made up as follows: an iron core of 1.62 M⊙, a silicon core of 1.98 M⊙, a carbon-oxygen
shell of 4.5 M⊙, a helium shell of 2.0 M⊙ and a hydrogen envelope of 4.0 M⊙.

The evolution of the model exploded with the piston at the edge of the iron core, P25A, is
shown in Figures 4.9 and 4.10. In this case the final remnant mass is 2.38 M⊙. Most of
the nickel produced falls back and only 0.012 M⊙ are ejected.

Figure 4.9: Evolution of model P25A. Left panel. Density as a function of radius at different times.
Right panel. Radial velocity as a function of radius at different times.

Figure 4.10: Evolution of model P25A. Left panel. Baryonic remnant mass as a function of time.
Right panel. Total mass of 56Ni on the grid as a function of time.

When the piston is located at the base of the oxygen shell, at 1.98 M⊙ (model P25B, Figures
4.11 and 4.12), the fallback is significantly lower and the final remnant mass is 2.25 M⊙.
In this case a little more nickel is ejected: 0.02 M⊙.

The evolution of the reverse shock can be seen in the right panel of Figs. 4.9 and 4.11. The
reverse shock forms later than in the P15 models, around 100000 s, and by the time the
shock exits from the grid, 1000000 s, the reverse shock is still moving out in radius and
no material has acquired negative velocity. Its eventual arrival on the compact remnant
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Figure 4.11: Evolution of model P25B. Left panel. Density as a function of radius at different times.
Right panel. Radial velocity as a function of radius at different times.

Figure 4.12: Evolution of model P25B. Left panel. Baryonic remnant mass as a function of time.
Right panel. Total mass of 56Ni on the grid as a function of time.

will have little or no effect on the final remnant mass.

The relation between P25A and P25B is exactly opposite to the relation between P15A and
P15B, where the remnant mass was larger and Ni ejection lower for the model with the
piston located further out (P15B). As we will see in Section 4.4.1, this is a general trend:
in low- and intermediate-mass stars the early fallback is relatively small even for pistons
located near the edge of the iron core, thus the remnant mass is bigger when the piston
is located farther out; at the same time this choice leads to lower peak temperatures and
thus lower nickel production. For massive stars, placing the piston at the edge of the iron
core leads to considerably more massive fallback, thus to significantly bigger remnants
and to (almost) no ejection of nickel.

Once again, the picture is considerably different when the star is exploded employing
neutrino heating. Figure 4.13 shows the density and velocity profiles at different times.
Like the case of model N15, a dense shell of matter is pushed through the mantle of the
star by neutrino heating, leaving behind an almost flat density profile close to the inner
boundary. There is almost no early fallback (only 0.01 M⊙ of matter) and the final remnant
mass is 1.87 M⊙, considerably smaller than both piston models. The amount of nickel
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ejected is slightly more than 0.1 M⊙: almost 10 times more than in the piston models (see
Figure 4.14).
In Figure 4.15 we compare the accretion rate and peak temperatures of models P25A,
P25B and N25. Like in the case of the low-mass models, the piston mechanism produces
much higher accretion rates and lower peak temperatures.

Figure 4.13: Evolution of model N25. Left panel. Density as a function of radius at different times.
Right panel. Radial velocity as a function of radius at different times.

Figure 4.14: Evolution of model N25. Left panel. Baryonic remnant mass as a function of time.
Right panel. Total mass of 56Ni on the grid as a function of time.

In order to have significant fallback in a neutrino driven explosion, the explosion energy
needs to be much lower than 1 B. This is the case of the model shown in Figures 4.16 and
4.17, a 37.0 M⊙ star from the set of models computed in Chapter 5, which explodes with an
energy of 0.4 B. The energy released by neutrinos is not enough to unbind all the mantle
and a lot of matter falls back onto the compact remnant. However this fallback takes
more time to develop than in piston-driven models (no significant fallback happens in the
first 5-10 minutes of the neutrino-driven explosion) because matter was first accelerated
outwards and then decelerated. Even if the final remnant, with a mass of 6.5 M⊙, is clearly
a black hole, 5 M⊙ are ejected in a ‘‘normal’’ supernova event. However the luminosity
from such an explosion would not show the characteristic ‘‘radioactive tail’’ because all
the nickel that was produced in the explosion falls back.
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Figure 4.15: Left panel. Accretion rate on the compact remnant as a function of time for the 25
M⊙ progenitor exploded with different mechanisms. Right panel. Peak temperature as a function of
time for the 25 M⊙ progenitor exploded with different mechanisms.

Figure 4.16: Evolution of a 37.0 M⊙ star exploded by neutrino heating, with an explosion energy
of 0.4 B. Left panel. Density as a function of radius at different times. Right panel. Radial velocity
as a function of radius at different times.

Figure 4.17: Evolution of a 37.0 M⊙ star exploded by neutrino heating, with an explosion energy
of 0.4 B. Left panel. Baryonic remnant mass as a function of time. Right panel. Total mass of 56Ni
on the grid as a function of time.
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4.4 Results for solar-metallicity progenitor set

4.4.1 Remnants and fallback for piston-driven explosions

The results for the full set of models exploded by pistons are shown in Figures 4.18 and
4.19. When the piston is placed at the edge of the deleptonized core, the fallback is very
massive, especially for progenitors more massive than ∼ 20 M⊙.

Since there is still uncertainty about the equation of state of nuclear matter and conse-
quently on what is the maximum neutron star mass allowed, it is difficult to say which of
these remnants are black holes [see for instance Bauswein et al., 2012].
The most massive neutron star observed has a (gravitational) mass of 1.97 M⊙ [Demorest
et al., 2010], corresponding to a baryonic mass of about 2.2 M⊙ (the exact value depends
on the EoS). Therefore, the maximum neutron star mass must be at least ∼ 2.2 M⊙. If
this is the case, many stars of initial mass greater than 22 M⊙ would form black holes
via fallback, however five models, namely P27A, P28A, P29A, P31A and P38A would form
neutron stars.
The upper limit for the maximum (baryonic) neutron star mass is roughly 3.0 M⊙: in this
case, only the model P37A would leave behind a black hole, while all the others would
form neutron stars.
Nevertheless, fallback brings back a lot of nickel for the massive stars. While the su-
pernovae will eject most of the progenitor mass, their luminosity will drop quickly with
time since there is almost no contribution from 56Ni decay. The piston models are compat-
ible with speculations that faint SNe are associated with fallback and massive progenitors.

Figure 4.18: Results for piston located at the edge of the iron core (set PA). Left panel. Baryonic
remnant mass as function of ZAMS mass. Right panel. Nickel ejection as function of ZAMS mass.

The scenario is somewhat different for the set of models PB, exploded with a piston located
at the base of the oxygen burning shell. In this case the fallback is considerably smaller
than in set PA, but the initial remnant mass is greater. For progenitors with ZAMS mass
lower than about 20 M⊙ then the final remnant mass is usually greater than that of set
PA, while the opposite happens for more massive progenitors. Similar considerations hold
for the nickel ejection: the amount of nickel ejected is (generally) lower for low-mass pro-
genitors, due to the lower peak temperatures of models PB, and higher for more massive
progenitors, due to less fallback.
Once again the exact fraction of remnants which are black holes depends on the uncertain
maximum mass for neutron stars: for Mmax

NS = 2.2 M⊙ we would have 13 black holes, for
Mmax

NS = 3.0 M⊙ none of the models computed would for a black hole and for intermediate
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Figure 4.19: Results for piston located at the base of the oxygen shell (set PB). Left panel. Baryonic
remnant mass as function of ZAMS mass. Right panel. Nickel ejection as function of ZAMS mass.

values we expect that the number of black holes formed is slightly lower than for set PA.

It is somewhat difficult to compare our piston models to those of Woosley and collabora-
tors, since they have not published detailed results from the progenitor sequence that we
have employed.
We have tried to compare our results to those of Zhang et al. [2008] and MacFadyen et al.
[2001], who employ solar metallicity stars whose properties are not very different from
our sample and an Eulerian code (although the explosion is always calculated with the
Lagrangian code KEPLER and only linked to the Eulerian code at later times). We find
that our piston models tend to develop more fallback than the models published in these
works, for similar explosion energies. We believe that the difference originates from differ-
ent density profiles close to the inner boundary: KEPLER produces much flatter density
profiles (see Fig. 1 in Zhang et al. [2008] and Fig. 4 in MacFadyen et al. [2001]), possibly
because of insufficient resolution near the origin at times when most mass is far away
from the inner boundary (A. Heger, private communication).

The results for the piston models, together with the values of the parameters adopted for
each model, are listed in Table 4.1.

Model sequence PA Model sequence PB
ZAMS u0 109 Eexp Mpis Mend MNi u0 109 Eexp Mpis Mend MNi

M⊙ cm/s B M⊙ M⊙ M⊙ cm/s B M⊙ M⊙ M⊙

10.0 4.750 1.160 1.287 1.288 0.021 7.188 1.160 1.317 1.317 0.005
11.0 2.172 1.213 1.226 1.516 0.076 4.541 1.224 1.385 1.587 0.030
12.0 2.328 1.152 1.271 1.557 0.092 6.688 1.153 1.534 1.730 0.000
13.0 2.313 1.195 1.340 1.604 0.055 3.500 1.190 1.448 1.616 0.052
14.0 1.922 1.238 1.435 1.770 0.063 3.688 1.241 1.668 1.839 0.039
15.0 2.203 1.239 1.552 1.802 0.079 3.531 1.243 1.720 1.885 0.050
16.0 2.203 1.233 1.359 1.631 0.075 2.969 1.228 1.474 1.635 0.077
17.0 2.281 1.183 1.402 1.641 0.063 3.250 1.192 1.510 1.649 0.064
18.0 2.016 1.196 1.389 1.788 0.047 2.313 1.195 1.475 1.756 0.060
19.0 2.063 1.190 1.585 1.899 0.050 5.688 1.204 1.917 2.023 0.018
20.0 3.469 1.185 1.456 1.568 0.050 3.500 1.176 1.461 1.571 0.049
21.0 1.750 1.270 1.461 2.082 0.024 6.188 1.251 2.015 2.027 0.000
22.0 2.406 1.193 1.440 1.686 0.045 3.438 1.195 1.545 1.681 0.043
23.0 1.375 1.274 1.613 2.912 0.003 2.906 1.257 2.146 2.526 0.020
24.0 1.422 1.251 1.661 2.956 0.003 2.906 1.239 2.131 2.672 0.008
25.0 1.719 1.300 1.618 2.380 0.014 3.688 1.290 1.978 2.252 0.020
26.0 1.750 1.334 1.607 2.471 0.010 3.398 1.340 1.930 2.390 0.011
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ZAMS u0 109 Eexp Mpis Mend MNi u0 109 Eexp Mpis Mend MNi

M⊙ cm/s B M⊙ M⊙ M⊙ cm/s B M⊙ M⊙ M⊙

27.0 2.250 1.278 1.505 1.951 0.022 3.984 1.269 1.678 1.954 0.016
28.0 2.281 1.265 1.503 2.084 0.011 3.906 1.251 1.671 2.123 0.006
29.0 3.344 1.315 1.532 1.942 0.015 3.375 1.301 1.543 1.948 0.015
30.0 2.234 1.269 1.460 2.504 0.002 2.625 1.266 1.570 2.426 0.003
31.0 2.469 1.244 1.447 2.117 0.005 3.906 1.243 1.583 2.083 0.004
32.0 2.203 1.285 1.479 2.276 0.005 3.719 1.271 1.671 2.218 0.004
33.0 1.969 1.134 1.510 2.962 0.000 3.531 1.125 1.734 2.909 0.000
34.0 1.984 1.274 1.527 2.947 0.001 3.688 1.281 1.785 2.810 0.001
35.0 2.172 1.265 1.486 2.400 0.003 3.781 1.262 1.682 2.364 0.002
36.0 2.094 1.235 1.484 2.397 0.003 3.688 1.241 1.699 2.281 0.003
37.0 1.844 1.218 1.463 3.010 0.001 3.750 1.180 1.922 2.518 0.003
38.0 2.250 1.239 1.517 2.172 0.008 3.813 1.230 1.684 2.236 0.003
39.0 1.641 1.282 1.633 2.796 0.003 3.219 1.265 1.991 2.703 0.003
40.0 1.844 1.252 1.562 2.261 0.010 4.000 1.254 1.850 2.148 0.013

Table 4.1: Explosion energy, remnant mass, nickel ejected and choice of parameters for all models
exploded with pistons.

4.4.2 Remnants and fallback for neutrino-driven explosions

Figure 4.20 shows the results for our sequence N, exploded with enhanced neutrino heat-
ing from the inner boundary. Since neutrino heating is much more efficient in unbinding
the matter outside of the core, because of the push of the neutrino-driven wind phase,
there is almost no ‘‘early’’ fallback and the remnants are much smaller than those of the
sets PA and PB (for the same explosion energy). The amount of nickel ejected is also
greater and all models would be seen as ‘‘canonical’’ supernovae, with the usual tail in
the luminosity created by nickel decay. None of the models exploded with neutrinos with
an explosion energy of 1.2 · 1051 erg forms a black hole.

Figure 4.20: Results for neutrino-driven explosions. Left panel. Baryonic remnant mass as func-
tion of ZAMS mass. Right panel. Nickel ejection as function of ZAMS mass.

Figure 4.21 shows the total energy emitted in neutrinos at the inner boundary (left panel)
and at 500 km (right panel) for each model. This quantity can be regarded as an indica-
tion of how ‘‘difficult’’ it is to explode a given star with our boundary condition, or rather
of how likely it is for a given star to explode with ∼ 1.2 · 1051 erg. For some models (N18,
N19, N21, N23, N24, N25, N26, N30, N37, N39) the neutrino energy input required to
explode the star with the given energy is much greater than for the neighbour models:
it is possible that at least some of these stars would not explode, or would explode less
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energetically, in a realistic scenario.

Figure 4.21: Total energy release as function of ZAMS mass. Left panel. Measured at the inner
boundary. Right panel. Measured at 500 km.

The results of the neutrino-driven models, together with the parameters adopted for the
explosions, are summarized in table 4.2.

Model sequence N
ZAMS p Eexp M15 s Mend MNi

M⊙ B M⊙ M⊙ M⊙

10.0 -2.44 1.168 1.212 1.223 0.038
11.0 -2.50 1.216 1.298 1.494 0.044
12.0 -2.84 1.152 1.445 1.641 0.047
13.0 -2.75 1.189 1.468 1.628 0.057
14.0 -2.55 1.240 1.572 1.721 0.052
15.0 -2.63 1.239 1.650 1.793 0.058
16.0 -3.01 1.232 1.572 1.701 0.093
17.0 -2.93 1.194 1.559 1.677 0.082
18.0 -3.43 1.192 1.692 1.801 0.115
19.0 -3.48 1.195 1.809 1.917 0.086
20.0 -2.79 1.178 1.517 1.589 0.068
21.0 -3.65 1.259 1.844 1.862 0.119
22.0 -2.92 1.187 1.576 1.604 0.091
23.0 -3.44 1.269 2.093 2.100 0.172
24.0 -3.31 1.243 2.060 2.073 0.166
25.0 -3.15 1.282 1.856 1.863 0.105
26.0 -3.21 1.337 1.856 1.866 0.181
27.0 -2.75 1.277 1.599 1.605 0.115
28.0 -2.92 1.257 1.590 1.601 0.113
29.0 -3.24 1.305 1.616 1.622 0.126
30.0 -3.66 1.266 1.757 1.770 0.166
31.0 -2.92 1.235 1.538 1.556 0.113
32.0 -2.90 1.280 1.619 1.626 0.114
33.0 -2.87 1.131 1.677 1.689 0.124
34.0 -3.07 1.278 1.705 1.719 0.155
35.0 -2.88 1.262 1.622 1.644 0.123
36.0 -2.88 1.237 1.667 1.675 0.106
37.0 -3.61 1.196 1.838 1.853 0.101
38.0 -2.89 1.227 1.604 1.616 0.115
39.0 -3.22 1.276 1.922 1.932 0.174
40.0 -2.85 1.253 1.721 1.740 0.091

Table 4.2: Explosion energy, remnant mass, nickel ejected and choice of parameters for all models
exploded with neutrino heating.
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4.5 Conclusions

We have presented calculations of supernova explosions for massive stars of solar metal-
licity, initiated with two different methods: enhanced neutrino heating and pistons. We
have adjusted the parameters in order to have ‘‘canonical’’ explosion energies of roughly
1.2 B and we have compared for each model the effect of different methods of initiating
the explosion. We have found that when neutrino heating is taken into account, the
structure of the exploding shells, especially the regions closer to the core, is considerably
different from the models exploded with pistons. This in turn leads to different results for
the remnant masses and the nickel production. In particular we have found that neutrino
heating is much more efficient in unbinding the material of the star envelope and that in
this case the amount of matter that fails to escape and falls back on the compact remnant
is greatly reduced, especially in stars more massive than about ∼20 M⊙. This also means
that more heavy elements are ejected in the case of neutrino-driven explosions. We con-
clude than that in order to make reliable predictions of the final remnant mass and of
the nucleosynthesis yields of a supernova explosions one should not neglect the effect of
neutrinos.
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Chapter 5

Explosion and Remnant
Systematic for Neutrino-driven
Explosions

5.1 Simulation Setup

The analytic model for the cooling of the proto-neutron star employed to initiate neutrino-
driven explosions is described in detail in Section 2.3.1.
The free parameters of this model have been calibrated in order to reproduce the ob-
served properties (explosion energy, remnant mass and nickel ejected) of SN1987A, with
a suitable progenitor of our set. We have computed explosions for different progenitors
in the mass range 18-20 M⊙ and found that the observables were best reproduced by the
progenitor of initial mass 19.8 M⊙, exploded with this choice of parameters:

• Γ = 3,

• α = 0.6,

• Rc,min = 6 km,

• p = -3.00.

The evolution of the calibration model is shown in Section 5.2.
This choice of parameters was then employed for all the models computed.

Similarly to the models presented in Chapter 4, we run the calculations in two stages. In
the first stage we simulate the first 8-20 seconds of the explosion with neutrino transport.
The grid is composed by 1000 logarithmically spaced zones, the inner boundary is placed
at a mass coordinate of 1.1 M⊙ and contracted to a minimum radius of 20 km, and the
outer boundary is placed at 1.5 · 1010 cm. The inner boundary is closed and hydrostatic
equilibrium is enforced, while the outer boundary is open.
We switch off neutrino transport and remap to a larger grid when the shock has reached
a radius of 1010 km, which happens at a different time for each model, usually between 8
and 20 s. The neutrino luminosity is very low at this time, therefore the difference in the
models introduced by the different time at which we switch off neutrinos is negligible.
The new grid has an inner radius rib = 109 cm and an outer radius rob = Rext given in
Table 3.1. The inner boundary is left open from this moment to the end of the simulation.
Once again, when the time reaches t = 105 s, we remap again to a larger inner bound-
ary (rib = 1010 cm) and continue the simulation until at least t = 106 s, or longer if needed.
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The initial models used for the calculations presented in this work are taken from the
nonrotating solar metallicity set of Woosley et al. [2002] and are described in Chapter 3.

5.2 Evolution of the calibration model

In Figure 5.1 we show a mass-shell plot for the space-time evolution of the calibration
model in the first stage of the computation.

Figure 5.1: Mass shell plot for the evolution of the calibration model. The explosion occurs about
0.6 s after bounce. The red line marks the supernova shock, the blue line marks the neutron star
radius and the black line marks the grid inner boundary. Mass shells are plotted every 0.1 M⊙
between 1.1 and 2.0 M⊙, then every 0.2 M⊙ between 2.0 and 4.0 M⊙.

The explosion sets in about 0.6 s after bounce. At this time the stalled shock is revived
by neutrino heating and starts continuous expansion with an average velocity of roughly
8000 km/s. On its way out the shock reverts the infall of the swept-up matter. When the
shock reaches the radius of 100000 km (at about 12.5 s), we switch to the second stage
of the simulation.
Figure 5.2 displays the νe (solid line) and ν̄e (dashed line) luminosities (left panel) and
mean energies (middle panel) emitted by the nascent neutron star, and the total energy
released in neutrinos (right panel), all quantities measured at a radius of 500 km.

Figure 5.2: Luminosities (left) and mean energies (middle) of νe (solid line) and ν̄e (dashed line), and
total energy radiated in neutrinos of all flavors (right), for the calibration model as a function of time,
measured outside of the nascent neutron star (at a radius of 500 km).

The peaks that can be seen in the luminosity are characteristic of the accretion phase,
during which the shock develops the so-called ‘‘oscillatory radial instability’’ [Fernández,
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2012] and neutrinos are emitted in bursts every time that the shock retreats. After the
explosion sets in at about 0.6 s, the luminosity decreases quickly. The same behaviour
can be seen in the mean energy plot (middle panel). The neutrino mean energies increase
during the first one-two seconds of postbounce evolution because the inner grid boundary
and the neutron star radius contract. Consequently, the outer layers of the neutron star
heat up due to the conversion of gravitational energy to internal energy by compression.
After two-three seconds the contraction is almost over and the decay of the boundary
luminosities leads to less energy being transported into these layers, which therefore
begin to cool down, causing the mean energies of the radiated neutrinos to decline.
Figure 5.3 displays the time evolution of the three quantities that we compare to SN1987A
observables: remnant mass (left panel), nickel mass (middle panel) and explosion energy
(right panel).

Figure 5.3: Baryonic remnant mass (left), minimum (solid line) and maximum (dashed line) of
the uncertainty range for the nickel mass (middle) and explosion energy (right), for the calibration
model as functions of time. The final values of these quantities reproduce reasonably well the values
extrapolated by observational data of SN1987A.

The final remnant mass is 1.584 M⊙, the amount of nickel ejected is about 0.076 M⊙ and
the explosion energy is 1.321 B. These numbers agree reasonably well with the values
extrapolated by observational data of SN1987A [Arnett et al., 1989], therefore we adopted
this model for the calibration of our set of explosions.

5.3 Results for the full set of progenitors

Figure 5.4 shows the explosion energy as a function of the ZAMS mass. Significant vari-
ability between stars of similar ZAMS mass is visible: some of the models do not explode,
whereas others explode with fairly high explosion energy. We find failed explosions even
for some stars of relatively low mass (down to 15.2 M⊙) and we can identify two mass
windows in the ZAMS domain where the stars of the employed set of progenitor models
appear to be particularly hard to explode: one between 15 and 16 M⊙ and the other
around 23-26 M⊙. Not surprisingly, these models also have quite big iron and silicon
cores (see Figs. 5.20 and 5.22).
We note that almost all the low-mass models (mass below 15 M⊙), with only three ex-
ceptions, explode with an energy between 1.5 and 2 B, which is very high, contrary to
what detailed calculations find for this mas range [see e.g. Marek and Janka, 2009]. We
believe that this is the consequence of having to employ a high boundary luminosity in
order to explode the more massive calibration model with an energy of 1.3 B, and that
further improvements of the modeling (e.g. taking into account multidimensional effects)
will allow to reduce the boundary luminosity and get more reasonable explosion energies
for low-mass star. Nevertheless, the high explosion energy does not prevent these models
to have significant fallback (between 0.2 and 0.3 M⊙, see Fig. 5.6) and does not affect by
more than a few percent the amount of nickel ejected.
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We also note that there is not an upper stellar mass limit for explosions with the explored
range of solar-metallicity stars, where we get an explosion even for the 40 M⊙ progenitor.

Figure 5.4: Explosion energy as a function of ZAMS mass. Non-exploding computed models are
indicated by short vertical bars near the top of the plot. The calibration model is indicated with a
green bar.

Figure 5.5: Explosion times as a function of ZAMS mass. Non-exploding computed models are
indicated by short vertical bars near the top of the plot. The calibration model is indicated with a
green bar.

Figure 5.5 displays the time at which the explosion sets in, which is defined as the time
when the shock radius reaches 500 km, since all recent simulations find that if the
shock expands up to roughly 500 km it will not retreat anymore and the explosion will be
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launched [see e.g. Marek and Janka, 2009].
Fryer et al. [2012], by analizing the time evolution of the energy stored in the convective
region, predict that explosions will be less energetic the longer they are delayed. While
we do find that, in general, the explosions that happen later are less energetic, this is not
true for all cases. For instance, models N11.0 and N11.2 have almost the same explosion
energy, but there is a difference of more than 0.1 s between the explosion times; the
same happens for models N18.4 and N18.6; model N16.6 has one of the more delayed
explosions, with 0.9 s between bounce and explosions, and still has an explosion energy
of 0.9 B which we would not define low (and is definitely higher than the 0.5 B of model
N20.8, or the 0.4 B of model N37.0, both exploding with a similar delay); models N20.4
and N20.6 explode more or less at the same time, but there is a difference of 0.2 B in the
explosion energy and the same is true for models N26.4 and N26.6, where the explosion
energy difference is about 0.3 B.

In Figure 5.6 we have plotted the final remnant mass distribution as a function of the
ZAMS mass. The initial remnant mass, measured at the time of the remap between the
two stages of the simulation, is indicated by red bars, while the blue bars indicate the
amount of fallback.
The distribution is broad and the remnant mass is not a monotonic function of the initial
mass. It is interesting to note, as already discussed in Chapter 4, that we find significant
fallback (between 0.2 and 0.3 M⊙) for low- and intermediate-mass stars, and almost no
fallback (less than 0.1 M⊙) for more massive stars, with the only exception of model N37.0,
which explodes with a very low explosion energy (∼ 0.4 B) and forms a black hole with a
mass of 6.5 M⊙ via fallback. This model has been analyzed in detail in Section 4.3.2.

Figure 5.6: Remnant mass as a function of ZAMS mass. The blue bars on top of the red ones
indicate the fallback mass. All remnants with mass greater than 3 M⊙ are black holes produced
via direct collapse of a non-exploding star. The only model which forms a black hole via fallback is
N37.0. Red bars indicate models that explode, grey bars indicate models that do not explode. The
calibration model is marked by a green bar.

Figure 5.7 displays the total energy emitted in neutrinos, as a function of the ZAMS mass.
This distribution follows closely that of the remnant mass.
Finally, Figure 5.8 shows the mass of nickel that is ejected in the explosion. Since our
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Figure 5.7: Total energy emitted in neutrinos as a function of ZAMS mass. Red bars indicate models
that explode, grey bars indicate models that do not explode. The calibration model is marked by a
green bar.

Figure 5.8: Mass of 56Ni ejected in the explosion as a function of ZAMS mass. The red and orange
bars indicate minima and maxima of the uncertainty range. Non-exploding computed models are
indicated by short vertical bars near the top of the plot. The calibration model is indicated with a
green bar.

simplified neutrino transport treatment does not allow to calculate the electron fraction
Ye very precisely, the red and orange bars indicate minima and maxima of the uncertainty
range, respectively. We again find some variability, up to factors of 2-3, between progen-
itors of similar initial mass. Model N37.0, although exploding, does not eject any nickel
since all the nickel produced falls back onto the compact remnant: this model is com-
patible with speculations that faint supernovae are associated with fallback and massive
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progenitors.

In order to calculate the initial mass function for compact objects, we integrate the rem-
nant mass distribution shown in Fig. 5.6 over a Salpeter initial mass function with expo-
nent 2.35 and map the result into bins of 0.1 M⊙.
Two peaks can be distinguished in the distribution, one for neutron stars, centered around
∼ 1.6 M⊙, and one for black holes, centered around ∼ 13.8 M⊙. No remnant is produced
between the maximum neutron star mass of 2 M⊙ and the minimum black hole mass of
6.5 M⊙.

This result is very different from what found with piston explosions of solar metallicity
stars, where no gap is produced and the tipycal black hole mass is around 3 M⊙ [Zhang
et al., 2008]. The reason is that in the case of explosions initiated with pistons black holes
can only be formed via fallback, which for their choices of mass cut and explosion energy
is never more massive than 2-4 M⊙, whereas in neutrino-driven calculations black holes
are mostly formed via direct collapse of the core and in this case there in no source of
energy that can expel the outermost layers of the star, which will collapse on the compact
remnant, forming black holes with a mass around ∼ 10 M⊙.

Fryer et al. [2012] find that the distribution of remnant masses depends on the explosion
mechanism considered. Their ‘‘rapid’’ explosion mechanism, according to which the ex-
plosion occur less than 0.25 s after bounce, produces very few remnants in the region
2-5 M⊙ and black holes up to a maximum mass around ∼ 15 M⊙, whereas the ‘‘delayed’’
explosion mechanism produces much more remnants between 2-5 M⊙ and a maximum
black hole mass of about 9 M⊙. Therefore our results agree better with the rapid explo-
sion model of Fryer et al. [2012], although according to their definition our explosions
are delayed. This is possibly due to the assumptions of Fryer et al. [2012], which do not
reproduce the effects of neutrino heating with sufficient accuracy.

Figure 5.9: Distribution of baryonic remnant masses from explosions of single stars of solar metal-
licity. Neutron stars and black holes form two separate peaks, with a clear gap between the
maximum neutron star mass of 2 M⊙ and the minimum black hole mass of 6.5 M⊙.

The results presented in Figures 5.4-5.8 are summarized in Table 5.1, where we list the
explosion time, energy, the initial and final remnant mass, the minimum and maximum
of the uncertainty range for the mass of nickel ejected and the total energy emitted in
neutrinos, measured at 500 km.
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ZAMS texp Eexp Mremnant,ini Mremnant,fin Mnickel,min Mnickel,max ∆Etot

[M⊙] [s] [B] [M⊙] [M⊙] [M⊙] [M⊙] [100 B]

10.00 0.260 1.574 1.181 1.181 0.012 0.060 2.043
10.20 0.470 1.541 1.234 1.429 0.018 0.056 2.181
10.80 0.760 1.238 1.425 1.616 0.022 0.045 2.792
11.00 0.300 1.608 1.254 1.447 0.021 0.066 2.335
11.20 0.200 1.577 1.179 1.367 0.026 0.071 2.092
11.40 0.220 1.619 1.213 1.408 0.025 0.071 2.207
11.60 0.250 1.630 1.231 1.432 0.023 0.070 2.261
11.80 0.300 1.669 1.235 1.442 0.042 0.088 2.273
12.00 0.910 1.005 1.445 1.642 0.028 0.047 2.911
12.20 0.690 1.313 1.453 1.633 0.035 0.066 2.957
12.40 0.440 1.713 1.395 1.555 0.031 0.078 2.801
12.60 0.500 1.501 1.354 1.510 0.035 0.079 2.686
12.80 0.210 1.747 1.284 1.431 0.023 0.081 2.449
13.00 0.510 1.558 1.378 1.529 0.049 0.094 2.745
13.20 0.490 1.625 1.458 1.614 0.032 0.076 2.997
13.40 0.420 1.776 1.436 1.584 0.038 0.089 2.936
13.60 0.420 1.785 1.452 1.593 0.042 0.093 2.983
13.80 0.380 1.941 1.448 1.590 0.041 0.097 2.971
14.00 0.450 1.759 1.486 1.628 0.042 0.091 3.111
14.20 0.470 1.780 1.507 1.647 0.048 0.092 3.233
14.40 0.470 1.793 1.518 1.660 0.053 0.096 3.264
14.60 0.540 1.623 1.557 1.698 0.044 0.083 3.344
14.80 0.550 1.480 1.569 1.710 0.045 0.078 3.239
15.00 0.580 1.504 1.600 1.738 0.047 0.080 3.500
15.20 --- 0.000 2.574 12.71 0.000 0.000 6.007
15.40 --- 0.000 2.626 12.88 0.000 0.000 6.171
15.60 --- 0.000 2.623 13.00 0.000 0.000 6.118
15.80 --- 0.000 2.566 13.10 0.000 0.000 5.852
16.00 --- 0.000 2.543 13.24 0.000 0.000 5.697
16.20 --- 0.000 2.622 13.41 0.000 0.000 6.027
16.40 1.240 0.784 1.616 1.755 0.066 0.079 3.520
16.60 0.940 0.909 1.577 1.711 0.064 0.082 3.204
16.80 0.790 1.197 1.527 1.645 0.063 0.092 3.270
17.00 0.800 1.202 1.529 1.645 0.064 0.094 3.277
17.20 0.510 1.511 1.471 1.576 0.065 0.112 3.041
17.40 0.660 1.330 1.498 1.607 0.063 0.099 3.181
17.60 0.510 1.498 1.471 1.576 0.065 0.111 3.042
17.80 --- 0.000 2.924 14.45 0.000 0.000 7.356
18.00 --- 0.000 2.895 14.49 0.000 0.000 6.947
18.20 --- 0.000 2.727 14.57 0.000 0.000 6.340
18.40 0.760 1.000 1.767 1.887 0.067 0.078 4.037
18.60 0.860 0.859 1.586 1.699 0.061 0.081 3.207
18.80 0.930 0.852 1.593 1.708 0.056 0.077 3.469
19.00 --- 0.000 2.844 15.03 0.000 0.000 6.681
19.20 1.030 0.613 1.859 1.971 0.057 0.078 4.278
19.40 --- 0.000 2.837 15.22 0.000 0.000 6.738
19.60 0.330 1.605 1.448 1.494 0.022 0.080 2.960
19.80 0.660 1.282 1.503 1.584 0.059 0.097 3.200
20.00 0.580 1.390 1.431 1.502 0.063 0.106 2.910
20.20 0.320 1.595 1.430 1.488 0.019 0.077 2.907
20.40 0.570 1.392 1.607 1.677 0.074 0.111 3.525
20.60 0.610 1.271 1.774 1.839 0.116 0.134 4.037
20.80 0.920 0.662 1.846 1.887 0.108 0.129 4.146
21.00 --- 0.000 2.993 12.99 0.000 0.000 7.299
21.20 --- 0.000 2.853 13.55 0.000 0.000 6.720
21.40 --- 0.000 3.263 14.79 0.000 0.000 8.223
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ZAMS texp Eexp Mremnant,ini Mremnant,fin Mnickel,min Mnickel,max ∆Etot

[M⊙] [s] [B] [M⊙] [M⊙] [M⊙] [M⊙] [100 B]

21.60 0.590 1.337 1.552 1.571 0.066 0.108 3.334
21.80 --- 0.000 2.839 14.77 0.000 0.000 6.629
22.00 0.810 0.899 1.579 1.599 0.071 0.094 3.202
22.20 --- 0.000 3.679 13.21 0.000 0.000 9.391
22.40 0.570 1.334 1.594 1.622 0.073 0.112 3.422
22.60 0.640 1.213 1.728 1.756 0.081 0.111 3.973
22.80 --- 0.000 3.710 14.34 0.000 0.000 9.461
23.00 --- 0.000 3.856 12.99 0.000 0.000 9.679
23.20 --- 0.000 3.783 15.07 0.000 0.000 9.830
23.40 --- 0.000 3.856 13.88 0.000 0.000 9.609
23.60 --- 0.000 3.878 13.72 0.000 0.000 9.619
23.80 --- 0.000 3.866 14.79 0.000 0.000 9.713
24.00 --- 0.000 3.887 14.00 0.000 0.000 9.781
24.20 --- 0.000 3.857 13.89 0.000 0.000 9.302
24.40 --- 0.000 3.846 13.17 0.000 0.000 9.308
24.60 --- 0.000 3.847 13.45 0.000 0.000 9.372
24.80 --- 0.000 4.260 13.10 0.000 0.000 15.41
25.00 0.580 0.960 1.881 1.895 0.080 0.095 4.241
25.20 --- 0.000 3.880 13.11 0.000 0.000 10.09
25.40 --- 0.000 3.900 14.14 0.000 0.000 10.01
25.60 --- 0.000 3.856 14.12 0.000 0.000 9.720
25.80 0.480 1.278 1.701 1.710 0.050 0.088 3.891
26.00 --- 0.000 3.834 12.93 0.000 0.000 9.879
26.20 0.380 1.466 1.577 1.588 0.054 0.110 3.308
26.40 0.380 1.382 1.584 1.596 0.063 0.116 3.243
26.60 0.370 1.664 1.546 1.553 0.053 0.116 3.421
26.80 0.580 1.138 1.549 1.561 0.067 0.110 3.298
27.00 0.390 1.589 1.531 1.539 0.080 0.135 3.318
27.20 0.400 1.579 1.534 1.543 0.083 0.136 3.347
27.40 0.400 1.622 1.567 1.575 0.078 0.133 3.541
27.60 0.390 1.546 1.571 1.581 0.079 0.134 3.390
27.80 0.590 1.176 1.623 1.634 0.076 0.115 3.682
28.00 0.390 1.556 1.527 1.536 0.085 0.141 3.297
29.00 --- 0.000 3.097 12.61 0.000 0.000 7.741
30.00 --- 0.000 3.239 12.24 0.000 0.000 7.956
31.00 0.570 1.253 1.513 1.524 0.082 0.126 3.233
32.00 0.570 1.150 1.601 1.618 0.080 0.117 3.311
33.00 0.440 1.435 1.603 1.618 0.094 0.142 3.423
34.00 0.640 0.965 1.725 1.757 0.082 0.111 3.899
35.00 0.580 1.127 1.625 1.645 0.071 0.110 3.513
36.00 0.560 1.198 1.633 1.650 0.077 0.117 3.463
37.00 0.950 0.429 1.906 6.465 0.000 0.000 4.371
38.00 0.390 1.604 1.535 1.544 0.091 0.146 3.339
39.00 --- 0.000 3.875 8.541 0.000 0.000 10.01
40.00 0.480 1.282 1.716 1.726 0.057 0.095 3.911

Table 5.1: Results for the full set of progenitors exploded with neutrino heating, with parameters
calibrated in order to reproduce SN1987A observables with model N19.8 (highlighted in boldface).
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5.3.1 Comparison of models with similar initial mass and different
outcome

In order to understand the significant variability observed in the explosion energy (Fig. 5.4),
we have analyzed many cases of stars of similar initial mass and different outcome (one
does not explode while the other does).

N15.0 and N15.2. The evolution of the shock in the two models is similar for the first
0.3 s (Fig. 5.10, left panel), then the accretion rate of model N15.0 starts declining. As
soon as the shock crosses the location of the composition interface between the silicon
shell and the oxygen-enriched Si layer (black dot-dashed line in Fig. 5.10), the sudden
increase in entropy causes the accretion rate to drop and the explosion is launched. For
model N15.2, even if the neutrino luminosities are higher (see Fig. 5.11), the accretion
rate remains higher and no explosion develops.

Figure 5.10: Shock radius (left panel) and mass accretion rate (right panel) as functions of time
for models N15.0 (black) and N15.2 (red). In the left panel, the dashed lines mark the trajectory
of the edge of the iron core and the dot-dashed lines mark the trajectory of the base of the oxygen
burning shell. The explosion for model N15.0 develops when the latter is accreted because of the
corresponding drop of the accretion rate.

Figure 5.11: Neutrino luminosities (left panel) and mean energies (right panel) for models N15.0
(black) and N15.2 (red). The solid lines indicate electron neutrinos, the dashed lines electron
antineutrinos.

N16.2 and N16.4. In this case the differences between the two models are marginal. The
accretion rate of model N16.4 is slightly lower than that of model N16.2. The explosion
of model N16.4 happens very late (more than 1 s after bounce) and is aided by the
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development of the oscillatory radial instability of the shock, which has been showed to
reduce the amount of neutrino energy required for the explosion [Fernández, 2012].
Given the small differences between the two models, it is possible that a small change of
the boundary conditions would lead to an explosion also for model N16.2.

Figure 5.12: Shock radius (left panel) and mass accretion rate (right panel) as functions of time for
models N16.4 (black) and N16.2 (red). In the left panel, the dashed lines mark the trajectory of the
edge of the iron core and the dot-dashed lines mark the trajectory of the base of the oxygen burning
shell.

Figure 5.13: Neutrino luminosities (left panel) and mean energies (right panel) for models N16.4
(black) and N16.2 (red). The solid lines indicate electron neutrinos, the dashed lines electron
antineutrinos.

N17.6 and N17.8. This case is very similar to the comparison of N15.0 and N15.2. When
the shock of model N17.6 crosses the composition interface between silicon and oxygen,
the mass accretion rate drops dramatically and eventually the explosion sets in, whereas
for model 17.8 the high accretion rate prevents the shock from moving farther out in
radius.

N18.2 and N18.4. In the first 0.6 s of evolution of the models, the conditions are actually
less favorable for an explosion of model N18.4 than model N18.2 (smaller shock radius,
higher accretion rate, see Fig. 5.16). The accretion of the composition interface happens
exactly at the right time to revert this situation and cause an explosion.
The situation is opposite for model N18.2. In this case the accretion of the composition
interface happens at a very early time, when neutrinos have not yet deposited enough
energy to drive the explosion. Then the situation remains unchanged until eventually the
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Figure 5.14: Shock radius (left panel) and mass accretion rate (right panel) as functions of time for
models N17.6 (black) and N17.8 (red). In the left panel, the dashed lines mark the trajectory of the
edge of the iron core and the dot-dashed lines mark the trajectory of the base of the oxygen burning
shell.

Figure 5.15: Neutrino luminosities (left panel) and mean energies (right panel) for models N17.6
(black) and N17.8 (red). The solid lines indicate electron neutrinos, the dashed lines electron
antineutrinos.

shock reimplodes.

Figure 5.16: Shock radius (left panel) and mass accretion rate (right panel) as functions of time for
models N18.4 (black) and N18.2 (red). In the left panel, the dashed lines mark the trajectory of the
edge of the iron core and the dot-dashed lines mark the trajectory of the base of the oxygen burning
shell.
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Figure 5.17: Neutrino luminosities (left panel) and mean energies (right panel) for models N18.4
(black) and N18.2 (red). The solid lines indicate electron neutrinos, the dashed lines electron
antineutrinos.

N22.6 and N22.8. In this case both models develop the oscillatory radial instability of
the shock, however in the case of model N22.6 the accretion rate is lower and the shock
moves farther out, and after one oscillation the explosion is launched, whereas in the case
of model N22.8 the higher accretion rate damps the oscillations and there is no explosion.

Figure 5.18: Shock radius (left panel) and mass accretion rate (right panel) as functions of time for
models N22.6 (black) and N22.8 (red). In the left panel, the dashed lines mark the trajectory of the
edge of the iron core and the dot-dashed lines mark the trajectory of the base of the oxygen burning
shell.

We have analyzed several cases of models of similar ZAMS mass and different outcome,
and we find that an explosion takes place for favorable combinations of mass accretion
rate and neutrino heating, which depends on neutrino (νe,ν̄e) luminosities.
In many progenitors an entropy decline at the location of shell interfaces can be supportive
of an explosion because the mass accretion rate drops when such feature is accreted by
the shock. However this must happen at a time when the energy deposited by neutrinos
is sufficient to launch the explosion.
Many models show shock oscillations characteristic of the oscillatory radial instability
[Fernández, 2012], that can lead to runaway.
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Figure 5.19: Neutrino luminosities (left panel) and mean energies (right panel) for models N22.6
(black) and N22.8 (red). The solid lines indicate electron neutrinos, the dashed lines electron
antineutrinos.

5.3.2 Connection with progenitor properties

We have tried to link the outcome of the core-collapse simulations to properties of the
progenitor at the beginning of collapse, in order to understand if the state of a given star
can be somehow predicted by its state at the beginning of collapse.
Figure 5.20 shows the mass of the iron core (defined as the location where the electron
fraction Ye increases above 0.497) as a function of the initial mass. We have indicated
with red bars the models that explode, and with grey bars the models that do not explode.
Many models which do not explode have the most massive iron cores (e.g., all the non-
exploding models between 22 and 26 M⊙ and model N39.0). However, the models between
15.2 and 16.4 M⊙ do not explode despite having iron cores less massive than neighbouring
stars (e.g. the 14.6, 14.8 and 15.0 M⊙ progenitors). Therefore the iron core alone is not a
univocal indicator of the fate of a given star.

Figure 5.20: Mass of the iron core as a function of ZAMS mass for all progenitors at the onset of
collapse. Red bars indicate models that explode, grey bars indicate models that do not explode. The
calibration model is marked by a green bar.
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Figure 5.21 gives the binding energy of the material outside the iron core. This energy
must be overcome by the shock in order to have a successful explosion.
From this plot it is more clear why some models like N15.2 and N15.4 do not explode:
despite having not very massive iron cores, the binding energy of the material outside the
iron core is greater than that of neighbour exploding models. However, this quantity still
does not explain why models like N18.2, N19.0 and N19.4 do not explode while models
N18.4 and N19.2, with fatter iron cores and more bound material on top of those, do
explode.

Figure 5.21: Binding energy of matter outside of the iron core as a function of ZAMS mass for
all progenitors at the onset of collapse. Red bars indicate models that explode, grey bars indicate
models that do not explode. The calibration model is marked by a green bar.

Figure 5.22 displays the mass of the composition interface between the silicon shell and
the oxygen-enriched silicon layer, defined as the location where the dimensionless entropy
S/Nak is equal to 4, as a function of the ZAMS mass. The same considerations already
given for the previous two plots apply here: while for some models a high value of this
quantity correlates to non-explosions, this is not true for all cases.

The last parameter that we have studied is the ‘‘progenitor compactness’’ ξ2.5, defined
by O’Connor and Ott [2011] as the ratio ξ2.5 = 2.5/[R(Mbary = 2.5M⊙)/(108cm)]. This
quantity is small if 2.5 M⊙ are contained in a large radius, i.e. the progenitor is not very
‘‘compact’’, whereas it is large if such mass is contained in a very small radius. O’Connor
and Ott [2011] conclude that this quantity allows first order estimates of the outcome of
core-collapse and that for values of ξ2.5 below roughly 0.45 the star will explode, whereas
it will collapse to a black hole for values above 0.45.
We have plotted ξ2.5 as a function of initial mass in Figure 5.23. Of all the progenitor
properties that we have analyzed, this quantity gives the best estimate of the outcome of
core-collapse: most of the non-exploding models lie in regions of local maxima for ξ2.5.
However there are still a few exceptions (e.g. N21.0, N21.2, N31.0), and we do not find
an absolute value of ξ2.5 which can be used as a threshold between explosions and not-
explosions like found by O’Connor and Ott [2011]; actually all the progenitors of our set
have values of ξ2.5 equal to or lower than 0.45, therefore we cannot confirm that this value
is a good estimator for the fate of core-collapse.
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Figure 5.22: Mass of the location of the base of the oxygen-burning shell as a function of the initial
mass for all progenitors at the onset of collapse. Red bars indicate models that explode, grey bars
indicate models that do not explode. The calibration model is marked by a green bar.

Figure 5.23: Progenitor compactness ξ2.5 as a function of ZAMS mass for all progenitors at the
onset of collapse. Red bars indicate models that explode, grey bars indicate models that do not
explode. The calibration model is marked by a green bar.

One might argue that the difference is caused by the fact that O’Connor and Ott [2011]
calculate ξ2.5 at the time of bounce while we calculate it at the time of onset of collapse.
However for the set of progenitors considered here there is hardly any difference in calcu-
lating ξ2.5 at these two different times, as can be seen comparing our values of ξ2.5 (given
in Table 3.1) with those of O’Connor and Ott [2011] (see the second group of models in
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Table 1).

We have compared the results of our set with several progenitor properties in order to
understand wether the fate of a given star can be predicted based on some property at the
onset of collapse. We have found that there is not a simple or a few progenitor properties
that can be used to predict the possibility of an explosion, which depends on the detailed
structure of the progenitor and on a delicate interplay of different factors during the
evolution (mass accretion rate, neutrino heating, shock instabilities).

5.4 Conclusions

In this Chapter we have presented the results of spherically symmetric explosion simu-
lations for a set of about 100 progenitor stars of solar metallicity. The explosions were
initiated by means of a neutrino-heating scheme that depends on parametrized neutrino
quantities (luminosities and mean spectral energies) based on an analytic cooling model
of the high-density core of the nascent neutron star. The free parameters of this model
were calibrated in order to reproduce the observed properties of SN1987A, namely the
explosion energy, the remnant mass and the mass of nickel ejected, with a suitable pro-
genitor of the employed set (here chosen to be the 19.8 M⊙ star). The evolution of the
explosion models was followed beyond shock breakout from the stellar surface.

Because of strong star-to-star variations of the progenitor structure at the onset of col-
lapse, we find a great variability of supernova properties (such as explosion energy, com-
pact remnant mass, and ejected nickel mass) even in narrow progenitor-mass windows.
However there is not a single or a few progenitor properties which can be used to predict
the possibility of an explosion, which depends on the detailed structure of the progenitor
and on a delicate interplay of different factors during the evolution (favorable combination
of mass accretion rate and neutrino heating, development of shock instabilities).

Our novel approach and results allow to establish better links of theoretical explosion
models with observations.
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Conclusions

In this thesis I have presented a novel approach to the study of the connection between
progenitors and the properties of core-collapse supernovae and their compact remnants.
Such connection has been studied for more than thirty years, mainly with simulations in
which the explosions were initiated by means of completely artificial mechanisms, such
as thermal energy deposition or pistons. Such mechanisms have the severe drawback
of imposing by hand the mass cut and the explosion energy, therefore they can greatly
influence the outcome of core-collapse.

The novel approach presented in this thesis is based on a physically motivated mechanism
to initiate the explosions, namely neutrino heating. Deposition of energy by neutrinos has
been proposed as a mechanism to drive explosions already in the 1960s, and although
the viability of this explosion mechanism is still under debate, it is clear that neutrino
heating plays an important role in core collapse [Janka et al., 2007]. Moreover, recent
sophisticated multidimensional simulations with detailed neutrino treatment are at least
near the critical conditions for a success of the neutrino-driven mechanism [Buras et al.,
2006b, Marek and Janka, 2009, Müller et al., 2012]. Therefore, adopting this approach
is likely to be a step towards more realistic modeling of the explosions.
The explosions are thus initiated by means of a neutrino-heating scheme that depends
on parametrized neutrino quantities (luminosities and mean spectral energies) based on
an analytic cooling model of the high-density core of the nascent neutron star.

In Chapter 4 I have compared the proposed method with the piston method commonly
adopted in literature, and I have showed that the results of the two methods are consid-
erably different, especially for more massive stars. When the parameters of each method
are adjusted in order to explode each progenitor with roughly the same energy, the piston
method produces more massive remnants and ejects far less nickel than the neutrino
method. Since the piston method is not based on a physical model of the explosion mech-
anism, employing the neutrino method is a step towards more realistic modeling of the
explosion and more reliable predictions.

In Chapter 5 I have presented the results of spherically symmetric explosion simulations
for a set of about 100 progenitor stars of solar metallicity, exploded with the proposed
method. The free parameters of this method are calibrated in order to reproduce the
observed properties of SN1987A, namely the explosion energy, the remnant mass and
the mass of nickel ejected, with a suitable progenitor of the employed set (here chosen to
be the 19.8 M⊙ star). The evolution of the explosion models was followed beyond shock
breakout from the stellar surface.

Because of strong star-to-star variations of the progenitor structure at the onset of col-
lapse, we find a great variability of supernova properties (such as explosion energy, com-
pact remnant mass, and ejected nickel mass) even in narrow progenitor-mass windows.
However there is not a single or a few progenitor properties which can be used to predict
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the possibility of an explosion, which depends on the detailed structure of the progenitor
and on a delicate interplay of different factors during the evolution (favorable combination
of mass accretion rate and neutrino heating, development of shock instabilities).
Our novel approach and results allow to establish better links of theoretical explosion
models with observations.



Acknowledgements

I would like to say thanks to my advisor Hans-Thomas Janka, for his supervision during
this three and a half years and for his many essential inputs to this work.
Thanks also to Almudena Arcones, for her co-supervision on the project, for her support,
and for introducing me to the code.
A special thanks goes to Lorenz and Janina, for being friends more than colleagues, and
to all the group members for many useful discussions and good moments. Many thanks
to Andreas and Lorenz for computing the collapse and bounce phases of the models that
I have used in this work.
Furthermore my thanks go to Wolfgang Hillebrandt and the Max-Planck Institute for
Astrophysics, for their enduring support and the exceptional scientific environment they
have created in Garching.
I would also like to thank the MPA secretary staff, Maria, Gabi and Cornelia, for being
very helpful and friendly.
Last but not least, thanks to my boyfriend and my parents, who always helped and
supported me. This accomplishment would not have been possible without them.



74 Explosion and Remnant Systematic for Neutrino-driven Explosions



Contents

1 Introduction 3
1.1 The neutrino-heating mechanism . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamental Equations and Numerical Methods 11
2.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 The Method of Godunov for Non-linear Systems . . . . . . . . . . . . 13
2.1.3 The Piecewise Parabolic Method . . . . . . . . . . . . . . . . . . . . . 16

2.2 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Neutrino Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Progenitor Structure and Properties 29

4 Comparison of Piston-driven and Neutrino-driven Esplosions 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Simulation of the explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Piston-driven explosions . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Neutrino-driven explosions . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Hydrodynamics of some reference cases . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Evolution of the 15.0 M⊙ models . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Evolution of the 25.0 M⊙ models . . . . . . . . . . . . . . . . . . . . 42

4.4 Results for solar-metallicity progenitor set . . . . . . . . . . . . . . . . . . . 47
4.4.1 Remnants and fallback for piston-driven explosions . . . . . . . . . . 47
4.4.2 Remnants and fallback for neutrino-driven explosions . . . . . . . . 49

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Explosion and Remnant Systematic for Neutrino-driven Explosions 53
5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Evolution of the calibration model . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Results for the full set of progenitors . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Comparison of models with similar initial mass and different outcome 62
5.3.2 Connection with progenitor properties . . . . . . . . . . . . . . . . . 66

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Conclusions 71

Acknowledgements 73



76 CONTENTS



Bibliography

A. Arcones, H.-T. Janka, and L.Scheck. Nucleosynthesis-relevant conditions in neutrino-
driven supernova outflows i. spherically symmetric hydrodynamic simulations. Astron-

omy and Astrophysics, 467:1227--1248, 2007.

W. D. Arnett, J. N. Bahcall, R. P. Kirshner, and S. E. Woosley. Supernova 1987a. Annual

Reviews of Astronomy and Astrophysics, 27:629--700, 1989.

M. B. Aufderheide, E. Baron, and F. K. Thielemann. hock waves and nucleosynthesis in
type ii supernovae. The Astrophysical Journal, 370:630--642, 1991.

A. Bauswein, H.-T. Janka, K. Hebeler, and A. Schwenk. Equation-of-state dependence
of the gravitational-wave signal from the ring-down phase of neutron-star mergers.
Physical Reviews D, submitted, 2012.

H. A. Bethe. Supernova mechanisms. Reviews of Modern Physics, 62:801--866, 1990.

H. A. Bethe and J. R. Wilson. Revival of a stalled supernova shock by neutrino heating.
Astrophysical Journal, 295:14--23, 1985.

H. A. Bethe, G. E. Brown, J. Applegate, and J. M. Lattimer. Equation of state in the
gravitational collapse of stars. Nuclear Physics A, 324:487--533, 1979.

J. M. Blondin, A. Mezzacappa, and C. DeMarino. Stability of standing accretion shocks,
with an eye toward core-collapse supernovae. The Astrophysical Journal, 584:971--980,
2003.

R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis. Improved models of stellar core
collapse and still no explosions: What is missing? Physical Review Letters, 90:241101,
2003.

R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis. Two-dimensional hydrodynamic core-
collapse supernova simulations with spectral neutrino transport. i. numerical method
and results for a 15 msun star. Astronomy and Astrophysics, 447:1049--1092, 2006a.

R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis. Two-dimensional hydrodynamic core-
collapse supernova simulations with spectral neutrino transport. ii. models for different
progenitor stars. Astronomy and Astrophysics, 457:281--308, 2006b.

A. Burrows. Supernova neutrinos. The Astrophysical Journal, 334:891--908, 1988.

A. Burrows and J. M. Lattimer. The birth of neutron stars. The Astrophysical Journal,
307:178--196, 1986.

A. Burrows, E. Livne, L. Dessart, C. D. Ott, and J. Murphy. A new mechanism for core-
collapse supernova explosions. The Astrophysical Journal, 640:878--890, 2006.

P. Colella and H. M. Glatz. Efficient solution algorithms for the riemann problem for real
gases. Journal of Computational Physics, 59:264--289, 1985.



78 BIBLIOGRAPHY

P. Colella and P. R. Woodward. The Piecewise Parabolic Method (PPM) for Gas-Dynamical
Simulations. Journal of Computational Physics, 54:174--201, 1984.

S. A. Colgate. Hot bubbles drive explosions. Nature, 341:489--490, 1989.

Stirling A. Colgate and Richard H. White. The hydrodynamic behavior of supernovae
explosions. The Astrophysical Journal, 143:626, 1966.

P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels. A
two-solar-mass neutron star measured using shapiro delay. Nature, 467:1081--1083,
2010.

W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and V. Kalogera.
The mass distribution of stellar-mass black holes. The Astrophysical Journal, 741:103,
2011.

R. Fernández. Hydrodynamics of core-collapse supernovae at the transition to explosion.
i. spherical symmetry. The Astrophysical Journal, 749:142, 2012.

C. L. Fryer. Mass limits for black hole formation. The Astrophysical Journal, 522:413--418,
1999.

C. L. Fryer. Fallback in stellar collapse. New Astronomy Reviews, 50:492--495, 2006.

Chris L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, and D. E. Holz.
Compact remnant mass function: Dependence on the explosion mechanism and metal-
licity. The Astrophysical Journal, 749:91, 2012.

S. V. Goldreich, P.; Weber. Homologously collapsing stellar cores. The Astrophysical

Journal, 238:991--997, 1980.

F. Hanke, A. Marek, B. Müller, and H.-Th. Janka. Is strong sasi activity the key to suc-
cessful neutrino-driven supernova explosions? The Astrophysical Journal, submitted,
2011.

M. Hashimoto, K. Nomoto, and T. Shigeyama. Explosive nucleosynthesis in supernova
1987a. Astronomy and Astrophysics, 210:L5--L8, 1989.

A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hartmann. How massive single
stars end their life. The Astrophysical Journal, 591:288--300, 2003.

K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama. Observation of a neutrino
burst from the supernova sn1987a. Physical Review Letters, 58:1490--1493, 1987.

H.-T. Janka. Conditions for shock revival by neutrino heating in core-collapse supernovae.
Astronomy and Astrophysics, 368:527--560, 2001.

H.-Th. Janka. Neutrino transport in type-II supernovae and protoneutron stars by Monte

Carlo methods. PhD thesis, Technische Universität München, 1991.

H.-Th. Janka and E. Müller. Neutrino heating, convection and the mechanism of Type-II
supernova explosions. Astronomy and Astrophysics, 306:167--198, 1996.

H.-Th. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller. Theory of
core-collapse supernovae. Physics Report, 442:38--74, 2007.

K. Kifonidis, T. Plewa, H.-Th. Janka, and E. Müller. Non-spherical core collapse super-
novae. Astronomy and Astrophysics, 408:621--649, 2003.



BIBLIOGRAPHY 79

F. S. Kitaura, H.-Th. Janka, and W. Hillebrandt. Explosions of o-ne-mg cores, the crab
supernova, and subluminous type ii-p supernovae. Astronomy and Astrophysics, 450:
345--350, 2006.

J. M. Lattimer and F. Douglas Swesty. A generalized equation of state for hot, dense
matter. Nuclear Physics A, 535:331--376, 1991.

A. I. MacFadyen, S. E. Woosley, and A. Heger. Supernovae, jets and collapsars. The

Astrophysical Journal, 550:410--425, 2001.

A. Marek and H.-T. Janka. Delayed neutrino-driven explosions aided by the standing
accretion shock instability. The Astrophysical Journal, 694:664--696, 2009.

A. Marek, H. Dimmelmeier, H.-T. Janka, E. Müller, and R. Buras. Exploring the relativistic
regime with newtonian hydrodynamics: an improved effective gravitational potential for
supernova simulations. Astronomy and Astrophysics, 445:273--289, 2006.

A. Mezzacappa, M. Liebendörfer, O. E. Messer, W. R. Hix, F.-K. Thielemann, and S. W.
Bruenn. Simulation of the spherically symmetric stellar core collapse, bounce, and
postbounce evolution of a star of 13 solar masses with boltzmann neutrino transport,
and its implications for the supernova mechanism. Physical Review Letters, 87:1935--
1938, 2001.

B. Müller, H.-Th. Janka, and A. Marek. A new multi-dimensional general relativistic neu-
trino hydrodynamics code for core-collapse supernovae ii. relativistic explosion models
of core-collapse supernovae. The Astrophysical Journal, submitted, 2012.

Eric S. Myra and Sidney A. Bludman. Neutrino transport and the prompt mechanism for
type ii supernovae. The Astrophysical Journal, 340:384--395, 1989.

T. Nakamura, U. Hideyuki, K. Iwamoto, K. Nomoto, M. Hashimoto, W. R. Hix, and F. K.
Thielemann. Explosive nucleosynthesis in hypernovae. The Astrophysical Journal, 555:
880--899, 2001.

K. Nomoto and M. Hashimoto. Presupernova evolution of massive stars. Physical Reports,
163:13--36, 1988.

K. Nomoto, N. Tominaga, H. Umeda, C. Kobayashi, and K. Maeda. Nucleosynthesis yields
of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nuclear

Physics A, 777:424--458, 2006.

Evan O’Connor and Christian D. Ott. Black hole formation in failing core-collapse super-
novae. The Astrophysical Journal, 730:70, 2011.

F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock. The black hole mass distribution
in the galaxy. The Astrophysical Journal, 725:1918--1927, 2010.

M. Rampp and H.-T. Janka. Radiation hydrodynamics with neutrinos. variable eddington
factor method for core-collapse supernova simulations. Astronomy and Astrophysics,
396:361--392, 2002.

M. Rampp and H.-Th. Janka. Spherically symmetric simulation with boltzmann neutrino
transport of core collapse and postbounce evolution of a 15 solar mass star. The

Astrophysical Journal, 539:L33--L36, 2000.

L. Scheck, K. Kifonidis, H.-Th. Janka, and E. Müller. Multidimensional supernova simu-
lations with approximative neutrino transport. I. Neutron star kicks and the anisotropy
of neutrino-driven explosions in two spatial dimensions. Astronomy and Astrophysics,
457:963--986, 2006.



80 BIBLIOGRAPHY

J. Schwab, Ph. Podsiadlowski, and S. Rappaport. Further evidence for the bimodal distri-
bution of neutron star masses. The Astrophysical Journal, 719:722--727, 2010.

L. I. Sedov. Similarity and Dimensional Methods in Mechanics. New York: Academic Press,
1959.

G. Shen, C. J. Horowitz, and S. Teige. New equation of state for astrophysical simulations.
Physical Review C, 83:035802, 2011.

T. Shigeyama, K. Nomoto, and M. Hashimoto. Hydrodynamical models and the light curve
of supernova 1987a in the large magellanic cloud. Astronomy and Astrophysics, 196:
141--151, 1988.

S. J. Smartt. Progenitors of core-collapse supernovae. Annual Review of Astronomy and

Astrophysics, 47:63--106, 2009.

F. Douglas Swesty, James M. Lattimer, and Eric S. Myra. The role of the equation of state
in the ’prompt’ phase of type ii supernovae. The Astrophysical Journal, 425:195--204,
1994.

F. K. Thielemann, M. Hashimoto, and K. Nomoto. Explosive nucleosynthesis in sn 1987a.
ii - composition, radioactivities, and the neutron star mass. The Astrophysical Journal,
349:222--240, 1990.

F.-K. Thielemann, K. Nomoto, and M.-A. Hashimoto. Core-collapse supernovae and their
ejecta. The Astrophysical Journal, 460:408, 1996.

F. X. Timmes and F. Douglas Swesty. The accuracy, consistency, and speed of an electron-
positron equation of state based on table interpolation of the helmholtz free energy. The

Astrophysical Journal Supplement, 126:501--516, 2000.

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 1999.

R. Valentim, E. Rangel, and J. E. Horvath. On the mass distribution of neutron stars.
Monthly Notices of the Royal Astronomical Society, 414:1427--1431, 2011.

J. R. Wilson, R. Mayle, S. E. Woosley, and T. Weaver. Stellar core collapse and supernova.
Annals of the New York Academy of Sciences, 470:267--293, 1986.

S. E. Woosley and A. Heger. Nucleosynthesis and remnants in massive stars of solar
metallicity. Physical Reports, 442:269--283, 2007.

S. E. Woosley and T. A. Weaver. The physics of supernova explosions. Annual Review of

Astronomy and Astrophysics, 24:205--253, 1986.

S. E. Woosley and T. A. Weaver. The evolution and explosion of massive stars. ii. explosive
hydrodynamics and nucleosynthesis. The Astrophysical Journal Supplement, 101:181-
-235, 1995.

S. E. Woosley, A. Heger, and T. A. Weaver. The evolution and explosion of massive stars.
Reviews of Modern Physics, 74:1015--1071, 2002.

W. Zhang, S. E. Woosley, and A. Heger. Fallback and black hole production in massive
stars. The Astrophysical Journal, 679:639--654, 2008.


